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From Logic to Cognitive Science

1.1 The Beginnings of Artificial Neural Networks

Artificial intelligence has it roots in two philosophical ideas of Gottfried Leibniz, the
great seventeenth-century philosopher and mathematician, viz. the characteristica
universalis and the calculus ratiocinator. The characteristica universalis 1s an 1de-
alized language, in which all of science could in principle be translated. It would be
language in which every natural language would translate, and as such i1t would be
the language of pure meaning, uncluttered by linguistic technicalities. This language
can then serve as a background for explicating rational thinking, in a manner so pre-
cise, a machine could be made to replicate it. The calculus ratiocinator would be a
name for such a machine. There 1s a debate among historians of philosophy whether
this would mean making a software or a hardware, but this 1s in fact a insubstantial
question since to get the distinction we must understand the concept of an universal
machine accepting different instructions for different tasks, an idea that would come
from Alan Turing in 1936 [1] (we will return to Turing shortly), but would become
clear to a wider scientific community only in the late 1970s with the advent of the
personal computer. The 1deas of the characteristica universalis and the calculus rati-
ocinator are Leibniz’ central 1deas, and are scattered throughout his work, so there
1s no single point to reference them, but we point the reader to the paper [2], which
1s a good place to start exploring.

The journey towards deep learning continues with two classical nineteenth century
works in logic. This is usually omitted since it is not clearly related to neural networks,
there was a strong influence, which deserves a couple of sentences. The first 1s John
Stuart Mill’s System of Logic from 1843 [3], where for the first time in history,
logic 1s explored in terms of a manifestation of a mental process. This approach,

© Springer International Publishing AG, part of Springer Nature 2018 1
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2 1 From Logic to Cognitive Science

called logical psychologism, is still researched only in philosophical logic,' but even
in philosophical logic it is considered a fringe theory. Mill’s book never became
an 1mportant work, and his work 1n ethics overshadowed his contribution to logical
psychologism, but fortunately there was a second book, which was highly influential.
It was the Laws of Thought by George Boole, published in 1854 [4]. In his book,
Boole systematically presented logic as a system of formal rules which turned out
to be a major milestone 1n the reshaping of logic as a formal science. Quickly after,
formal logic developed, and today it 1s considered a native branch of both philosophy
and mathematics, with abundant applications to computer science. The difference in
these ‘logics’ 1s not in the techniques and methodology, but rather in applications.
The core results of logic such as De Morgan’s laws, or deduction rules for first-order
logic, remain the same across all sciences. But exploring formal logic beyond this
would take us away from our journey. What i1s important here 1s that during the first
half of the twentieth century, logic was still considered to be something connected
with the laws of thinking. Since thinking was the epitome of intelligence, i1t was only
natural that artificial intelligence started out with logic.

Alan Turing, the father of computing, marked the first step of the birth of artifi-
cial intelligence with his seminal 1950 paper [5] by introducing the Turing test to
determine whether a computer can be regarded intelligent. A Turing test 1s a test in
natural language administered to a human (who takes the role of the referee). The
human communicates with a person and a computer for five minutes, and if the ref-
eree cannot tell the two apart, the computer has passed the Turing test and it may be
regarded as intelligent. There are many modifications and criticism, but to this day
the Turing test 1s one of the most widely used benchmarks 1n artificial intelligence.

The second event that 1s considered the birth of artificial intelligence was the
Dartmouth Summer Research Project on Artificial Intelligence. The participants were
John McCarthy, Marvin Minsky, Julian Bigelow, Donald MacKay, Ray Solomonoff,
John Holland, Claude Shannon, Nathanial Rochester, Oliver Selfridge, Allen Newell
and Herbert Simon. Quoting the proposal, the conference was to proceed on the basis
of the conjecture that every aspect of learning or any other feature of intelligence
can in principle be so precisely described that a machine can be made to simulate
it.> This premise made a substantial mark in the years to come, and mainstream
Al would become logical Al. This logical AI would go unchallenged for years,
and would eventually be overthrown only in the 21 millennium by a new tradition,
known today as deep learning. This tradition was actually older, founded more than
a decade earhier in 1943, 1n a paper written by a logician of a different kind, and
his co-author, a philosopher and psychiatrist. But, before we continue, let us take a
small step back. The interconnection between logical rules and thinking was seen as
directed. The common knowledge 1s that the logical rules are grounded in thinking.
Artificial intelligence asked whether we can impersonate thinking in a machine with

IToday, this field of research can be found under a refreshing but very unusual name: ‘logic in the
wild’.

>The full text of the proposal is available at https://www.aaai.org/ojs/index.php/
ailmagazine/article/view/1904/1802.
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logical rules. But there was another direction which is characteristic of philosophical
logic: could we model thinking as a human mental process with logical rules? This
1s where the neural network history begins, with the seminal paper by Walter Pitts
and Warren McCulloch titled A Logical Calculus of Ideas Immanent in Nervous
Activity and published in the Bulletin of Mathematical Biophysics. A copy of the
paper i1s available at http: / /www.cs.cmu.edu/~epxing/Class/10715/
reading/McCulloch.and.Pitts.pdf, and we advise the student to try to
read it to get a sense of how deep learning began.

Warren McCulloch was a philosopher, psychologist and psychiatrist by degree,
but he would work 1n neurophysiology and cybernetics. He was a vivid character,
embodying many academic stereotypes, and as such was a curious person whose
interests could be described as interdisciplinary. He met the homeless Walter Pitts
in 1942 when he got a job at the Department of Psychiatry at the University of
Chicago, and invited Pitts to come to live with his family. They shared a lifelong
interested in Leibniz, and they wanted to bring his ideas to fruition an create a
machine which could implement logical reasoning.” The two men worked every
night on their idea of capturing reasoning with a logical calculus inspired by the
biological neurons. This meant constructing a formal neuron with capabilities similar
to that of a Turing machine. The paper had only three references, and all of them
are classical works 1n logic: Carnap’s Logical Syntax of Language [6], Russell’s and
Whitehead’s Principa Mathematica 7] and the Hilbert and Ackermann Grundiige
der Theoretischen Logik. The paper itself approached the problem of neural networks
as a logical one, proceeding from definitions, over lemmas to theorems.

Their paper introduced the 1dea of the artificial neural network, as well as some
of the definitions we take for granted today. One of these 1s what would 1t mean for a
logical predicate to be realizable on a neural network. They divided the neurons in two
groups, the first called peripheral afferents (which are now called “input neurons’),
and the rest, which are actually output neurons, since at this time there was no hidden
layer—the hidden layer came to play only in the 1970s and 1980s. Neurons can be in
two states, firing and non-firing, and they define for every neuron  a predicate which
1s true when the neuron 1s firing at the moment ¢. This predicate 1s denoted as N;(¢).
The solution of a network 1s then an equivalence of the torm N;(¢) = B where B 1s
a conjunction of firings from the previous moment of the peripheral afferents, and i
1S not an input neuron. A sentence like this is realizable in a neural network if and
only if the network can compute it, and all sentences for which there is a network
which computes them are called a temporal propositional expression (T P E'). Notice
that 7 P E's have a logical characterization. The main result of the paper (asides from
defining artificial neural networks) is that any 7' P E can be computed by an artificial
neural network. This paper would be cited later by John von Neumann as a major
influence 1in his own work. This 1s just a short and incomplete glimpse into this
exciting historical paper, but let us return to the story of the second protagonist.

>This was 15 years before artificial intelligence was defined as a scientific field.
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Walter Pitts was an interesting person, and, one could argue, the father of artificial
neural networks. At the age of 12, he ran away from home and hid in a library,
where he read Principia Mathematica [7] by the famous logician Bertrand Russell.
Pitts contacted Russell, who invited him to come to study at Cambridge under his
tutorship, but Pitts was still a child. Several years later, Pitts, now a teenager, found
out that Russell was holding a lecture at the University of Chicago. He met with
Russell 1in person, and Russell told him to go and meet his old friend from Vienna,
the logician Rudolph Carnap, who was a professor there. Carnap gave Pitts his
seminal book Logical Syntax of Language® [6], which would highly influence Pitts
in the following years. After his initial contact with Carnap, Pitts disappeared for a
year, and Carnap could not find him, but after he did, he used his academic influence
to get Pitts a student job at the university, so that Pitts does not have to do menial
jobs during days and ghostwrite student papers during nights just to survive.

Another person Pitts met during Russell was Jerome Lettvin, who at the time was
a pre-med student there, and who would later become neurologist and psychiatrist
by degree, but he will also write papers in philosophy and politics. Pitts and Lettvin
became close friends, and would eventually write an influential paper together (along
with McCulloch and Maturana) titled What the Frog’s Eve Tells the Frog’s Brain in
1959 [8]. Lettvin would also introduce Pitts to the mathematician Norbert Weiner
from MIT who later became known as the father of cybernetics, a field colloquially
known as ‘the science of steering’, dedicated to studying system control both in
biological and artificial systems. Weiner invited Pitts to come to work at MIT (as
a lecturer 1in formal logic) and the two men worked together for a decade. Neural
networks were at this time considered to be a part of cybernetics, and Pitts and
McCulloch were very active 1n the field, both attending the Macy conferences, with
McCulloch becoming the president of the American Society for Cybernetics in 1967-
1968. During his stay at Chicago, Pitts also met the theoretical physicist Nicolas
Rashevsky, who was a pioneer in mathematical biophysics, a field which tried to
explain biological processes with a combination of logic and physics. Physics might
seem distant to neural networks, but 1n fact, we will soon discuss the role physicists
played 1n the history of deep learning.

Pitts would remain connected with the University, but he had minor jobs there due
to his lack of formal academic credentials, and in 1944 was hired by the Kellex Cor-
poration (with the help of Weiner), which participated in the Manhattan project. He
detested the authoritarian General Groves (head of the Manhattan project), and would
play pranks to mock the strict and sometimes meaningless rules that he enacted. He
was granted an Associate of Arts degree (2-year degree) by the University of Chicago
as a token of recognition of his 1943 paper, and this would remain the only academic
degree he ever earned. He has never been fond of the usual academic procedures and
this posed a major problem in his formal education. As an illustration, Pitts attended a

*The author has a fond memory of this book, but beware: here be dragons. The book is highly
complex due to archaic notation and a system quite different from today’s logic, but it 1s a worthwhile
read 1f you manage to survive the first 20 pages.
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course taught by professor Wilfrid Rall (the pioneer of computational neuroscience),
and Rall remembered Pitts as ‘an oddball who felt compelled to criticize exam ques-
tions rather than answer them’.

In 1952, Norbert Weiner broke all relations with McCulloch, which devastated
Pitts. Weiner wife accused McCulloch that his boys (Pitts and Lettvin) seduced their
daughter, Barbara Weiner. Pitts turned to alcohol to the point that he could not take
care of his dog anymore,’ and succumbed to cirrhosis complications in 1969, at the
age of 46. McCulloch died the same year at the age of 70. Both of the Pitts’ papers
we mentioned remain to this day two of the most cited papers 1n all of science. It 1s
interesting to note that even though Pitts had direct or mediated contact with most
of the pioneers of Al, Pitts himself never thought about his work as geared towards
building a machine replica of the mind, but rather as a quest to formalize and better
understand human thinking [9], and that puts him squarely in the realm of what 1s
known today as philosophical logic.°

The story of Walter Pitts 1s a story of influences of ideas and of collaboration
between scientists of different backgrounds, and in a way a neural network nicely
symbolizes this interaction. One of the main aims of this book 1s to (re-)introduce
neural networks and deep learning to all the disciplines’ which contributed to the
birth and formation of the field, but currently shy away from it. The majority of the
story about Walter Pitts we presented 1s taken from a great article named The man
who tried to redeem the world with logic by Amanda Gefter published 1in Nautilus

[10] and the paper Walter Pitts by Neil R. Smalheiser [9], both of which we highly
recommend.®

1.2 The XOR Problem

In the 1950s, the Dartmouth conference took place and the interest of the newly born
field of artificial intelligence 1n neural networks was evident from the very conference
manifest. Marvin Minsky, one of the founding fathers of Al and participant to the
Dartmouth conference was completing his dissertation at Princeton in 1954, and the
title was Neural Nets and the Brain Model Problem. Minsky’s thesis addressed several
technical 1ssues, but 1t became the first publication which collected all up to date
results and theorems on neural networks. In 1951, Minsky built a machine (funded

> A Newfoundland, name unknown.

© An additional point here is the great influence of Russell and Carnap on Pitts. It is a great shame
that many logicians today do not know of Pitts, and we hope the present volume will help bring the
story about this amazing man back to the community from which he arose, and that he will receive
the place he deserves.

’And any other scientific discipline which might be interested in studying or using deep neural
networks.

SAIS[}, there 1s a webpage on Pitts http://www.abstractnew.com/2015/01/walter-
pitts-tribute-to-unknown-genius.html worth visiting.
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by the Air Force Office of Scientific Research) which implemented neural networks
called SNARC (Stochastic Neural Analog Reinforcement Calculator), which was the
first major computer implementation of a neural network. As a bit of trivia, Marvin
Minsky was an advisor to Arthur C. Clarke’s and Stanley Kubrick’s 2001: A Space
Odyssey movie. Also, Isaac Asimov claimed that Marvin Minsky was one of two
people he has ever met whose intelligence surpassed his own (the other one being
Carl Sagan). Minsky will return to our story soon, but first let us present another hero
of deep learning.

Frank Rosenblatt received his PhD in Psychology at Cornell University in 1956.
Rosenblatt made a crucial contribution to neural networks, by discovering the per-
ceptron learning rule, a rule which governs how to update the weights of neural
networks, which we shall explore 1n detail in the forthcoming chapters. His percep-
trons were 1nitially developed as a program on an IBM 704 computer at Cornell
Aeronautical Laboratory in 1957, but Rosenblatt would eventually develop the Mark
I Perceptron, a computer built with the sole purpose of implementing neural net-
works with the perceptron rule. But Rosenblatt did more than just implement the
perceptron. His 1962 book Principles of Neurodynamics |11] explored a number of
architectures, and his paper [12] explored the 1dea of multilayered networks similar
to modern convolutional networks, which he called C-system, which might be seen
as the theoretical birth of deep learning. Rosenblatt died in 1971 on his 43rd birthday
in a boating accident.

There were two major trends underlying the research in the 1960s. The first one
was the results that were delivered by programs working on symbolic reasoning, using
deductive logical systems. The two most notable were the LLogic Theorist by Herbert
Simon, Cliff Shaw and Allen Newell, and their later program, the General Problem
Solver [13]. Both programs produced working results, something neural networks
did not. Symbolic systems were also appealing since they seemed to provide control
and easy extensibility. The problem was not that neural networks were not giving
any result, just that the results they have been giving (like image classification) were
not really considered that intelligent at the time, compared to symbolic systems
that were proving theorems and playing chess—which were the hallmark of human
intelligence. The 1dea of this intelligence hierarchy was explored by Hans Moravec
in the 1980s [14], who concluded that symbolic thinking 1s considered a rare and
desirable aspect of intelligence in humans, but it comes rather natural to computers,
which have much more trouble with reproducing ‘low-level’ intelligent behaviour
that many humans seem to exhibit with no trouble, such as recognizing that an animal
in a photo is a dog, and picking up objects.’

The second trend was the Cold War. Starting with 1954, the US military wanted to
have a program to automatically translate Russian documents and academic papers.

?Even today people consider playing chess or proving theorems as a higher form of intelligence than
for example gossiping, since they point to the rarity of such forms of intelligence. The rarity of an
aspect of intelligence does not directly correlate with its computational properties, since problems
that are computationally easy to describe are easier to solve regardless of the cognitive rarity in
humans (or machines for that matter).
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Funding was abundant, but many technically inclined researchers underestimated
the linguistic complexities involved in extracting meaning from words. A famous
example was the back and forth translation from English to Russian and back to
English of the phrase ‘the spirit was willing but the flesh was weak’ which produced
the sentence ‘the vodka was good, but the meat was rotten’. In 1964, there were
some concerns about wasting government money in a dead end, so the National
Research Council formed the Automatic Language Processing Advisory Committee
or ALPAC [13]. The ALPAC report from 1966 cut funding to all machine translation
projects, and without the funding, the field lingered. This 1n turn created turmoil in
the whole Al community.

But the final stroke which nearly killed off neural networks came in 1969, from
Marvin Minsky and Seymour Papert [15], in their monumental book Perceptrons:
An Introduction to Computational Geometry. Remember that McCulloch and Pitts
proved that a number of logical functions can be computed with a neural network. It
turns out, as Minsky and Papert showed 1n their book, they missed a simple one, the
equivalence. The computer science and AI community tend to favour looking at this
problem as the XOR function, which 1s the negation of an equivalence, but it really
does not matter, since the only thing different 1s how you place the labels.

It turns out that perceptrons, despite the peculiar representations of the data they
process, are only linear classifiers. The perceptron learning procedure 1s remarkable,
since 1t 1s guaranteed to converge (terminate), but it did not add a capability of cap-
turing nonlinear regularities to the neural network. The XOR is a nonlinear problem,
but this is not clear at first.'” To see the problem, imagine!! a simple 2D coordinate
system, with only O and 1 on both axes. The XOR of 0 and 0 1s 0, and write an O at
coordinates (0, 0). The XOR of O and 1 1s 1, and now write an X at the coordinates
(0,1). Continue with XOR(1,0) = 1 and XOR(1, 1) = 0. You should have two Xs
and two Os. Now 1magine you are the neural network, and you have to find out how
to draw a curve to separate the Xs from Os. If you can draw anything, it 1s easy. But
you are not a modern neural network, but a perceptron, and you must use a straight
line—no curves. It soon becomes obvious that this is impossible.'? The problem with
the perceptron was the linearity. The 1dea of a multilayered perceptron was here, but
it was 1impossible to build such a device with the perceptron learning rule. And so,
seemingly, no neural network could handle (learn to compute) even the basic logical
operations, something symbolic systems could do in an instant. A quiet darkness fell
across the neural networks, lasting many years. One might wonder what was hap-
pening 1in the USSR at this time, and the short answer 1s that cybernetics, as neural
networks were still called in the USSR 1n this period, was considered a bourgeois
pseudoscience. For a more detailed account, we refer the reader to [16].

'0The view is further dimmed by the fact that the perceptron could process an image (at least
rudimentary), which intuitively seems to be quite harder than simple logical operations.

'Pick up a pen and paper and draw along.

"2If you wish to try the equivalence instead of XOR, you should do the same but with
EQUIV(0,0) = 1, EQUIV(0, 1) =0, EQUIV(I,0) =0, EQUIV(1, 1) = 1, keeping the Os for
0 and Xs for 1. You will see 1t 1s literally the same thing as XOR 1n the context of our problem.



3 1 From Logic to Cognitive Science

1.3 From Cognitive Science to Deep Learning

But the idea of neural networks lingered on in the minds of only a handful of believers.
But there were processes set in motion which would enable their return in style. In
the context of neural networks, the 1970s were largely uneventful. But there we
two trends present which would help the revival of the 1980s. The first one was the
advent of cognitivism in psychology and philosophy. Perhaps the most basic idea that
cognitivism brought in the mainstream 1s the 1dea that the mind, as a complex system
made from many interacting parts, should explored on its own (independent of the
brain), but with formal methods.'? While the neurological reality that determines
cognition should not be ignored, it can be helpful to build and analyse systems
that try to recreate portions of the neurological reality, and at the same time they
should be able to recreate some of the behaviour. This 1s a response to both Skinner’s
behaviourism [18] 1n psychology of the 1950s, which aimed to focus a scientific
study of the mind as a black box processor (everything else is purely speculation'#)
and to the dualism of the mind and brain which was strongly implied by a strict
formal study of knowledge 1n philosophy (particularly as a response to Gettier [19]).

Perhaps one of the key 1deas in the whole scientific community at that time was
the 1dea of a paradigm shift in science, proposed by Thomas Kuhn 1n 1962 [20], and
this was undoubtedly helpful to the birth of cognitive science. By understanding the
idea of the paradigm shift, for the first time 1n history, it felt legitimate to abandon
a state-of-the-art method for an older, underdeveloped 1dea and then dig deep into
that idea and bring it to a whole new level. In many ways, the shift proposed by
cognitivism as opposed to the older behavioural and causal explanations was a shift
from studying an immutable structure towards the study of a mutable change. The first
truly cognitive turn 1n the so-called cognitive sciences 1s probably the turn made 1n
linguistics by Chomsky’s universal grammar [21] and his earlier and ingenious attack
on Skinner [22]. Among other early contributions to the cognitive revolution, we
find the most interesting one the paper from our old friends [23]. This paradigm shift
happened across six disciplines (the cognitive sciences), which would become the
founding disciplines of cognitive science: anthropology, computer science, linguistic,
neuroscience, philosophy and psychology.

The second was another setback in funding caused by a government report. It was
the paper Artificial Intelligence: A General Survey by James Lighthill [24], which
was presented to the British Science Research Council in 1973, and became widely
known as the Lighthill report. Following the Lighthill report, the British government
would close all but three Al departments in the UK, which forced many scientists
to abandon their research projects. One of the three Al departments that survived
was Edinburgh. The Lighthill report enticed one Edinburgh professor to issue a
statement, and in this statement, cognitive science was referenced for the first time

I3A great exposition of the cognitive revolution can be found in [17].

4Tt must be acknowledged that Skinner, by insisting on focusing only on the objective and measur-
able parts of the behaviour, brought scientific rigor into the study of behaviour, which was previously
mainly a speculative area of research.
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in history, and its scope was roughly defined. It was Christopher Longuet-Higgins,
Fellow of the Royal Society, a chemist by formal education, who began work in
Al in 1967 when he took a job at the University of Edinburgh, where he joined the
Theoretical Psychology Unit. In his reply,'” Longuet-Higgins asked a number of
important questions. He understood that Lighthill wanted the AI community to give
a proper justification of Al research. The logic was simple, if Al does not work, why
do we want to keep 1t? Longuet-Higgins provided an answer, which was completely
in the spirit of McCulloch and Pitts: we need Al not to build machines (although that
would be nice), but to understand humans. But Lighthill was aware of this line of
thought, and he has acknowledged 1n his report that some aspects, in particular neural
networks, are scientifically promising. He thought that the study of neural networks
can be understood and reclassified as Computer-based studies of the central nervous
system, but 1t had to abide by the latest findings of neuroscience, and model neurons
as they are, and not weird variations of their simplifications. This 1s where Longuet-
Higgins diverged from Lighthill. He used an interesting metaphor: just like hardware
in computers 1s only a part of the whole system, so 1s actual neural brain activity,
and to study what a computer does, one needs to look at the software, and so to see
what a human does, one need to look at mental processes, and how they interact.
Their interaction 1s the basis of cognition, all processes taking parts are cognitive
processes, and Al needs to address the question of their interaction 1n a precise and
formal way. This 1s the true knowledge gained from Al research: understanding,
modelling and formalizing the interactions of cognitive processes. An this 1S why
we need Al as a field and all of its simplified and sometimes inaccurate and weird
models. This 1s the true scientific gain from Al, and not the technological, martial
and economic gain that was initially promised to obtain funding.

Before the turn of the decade, another thing happened, but 1t went unnoticed.
Up until now, the community knew how to train a single-layer neural network, and
that having a hidden layer would greatly increase the power of neural networks. The
problem was, nobody knew how to train a neural network with more than one layer. In
1975, Paul Werbos [25], an economist by degree, discovered backpropagation, a way
to propagate the error back through the hidden (middle) layer. His discovery went
unnoticed, and was rediscovered by David Parker [26], who published the result
in 1985. Yann LeCun also discovered backpropagation in 1985 and published 1n
[27]. Backpropagation was discovered for the last time in San Diego, by Rumelhart,
Hinton and Williams [28], which takes us to the next part of our story, the 1980s, in
sunny San Diego, to the cognitive era of deep learning.

The San Diego circle was composed of several researchers. Geoffrey Hinton, a
psychologist, was a PhD student of Christopher Longuet-Higgins back in the Edin-
burgh Al department, and there he was looked down upon by the other faculty,
because he wanted to research neural networks, so he called them optimal networks

5The full text of the reply 1s available from http: //www.chilton-computing.org.uk/
inf/literature/reports/lighthill report/p004.htm.
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to avoid problems.'® After graduating (1978), he came to San Diego as a visiting
scholar to the Cognitive Science program at UCSD. There the academic climate was
different, and the research in neural networks was welcome. David Rumelhart was
one of the leading figures in UCSD. A mathematical psychologist, he 1s one of the
founding fathers of cognitive science, and the person who introduced artificial neural
networks as a major topic in cognitive science, under the name of connectionism,
which had wide philosophical appeal, and is still one of the major theories in the
philosophy of mind. Terry Sejnowski, a physicist by degree and later professor of
computational biology, was another prominent figure in UCSD at the time, and he
co-authored a number of seminal papers with Rumelhart and Hinton. His doctoral
advisor, John Hopfield was another physicist who became interested in neural net-
works, and improved an popularized a recurrent neural network model called the
Hopfield Network |29]. Jeffrey Elman, a linguist and cognitive science professor at
UCSD, who would introduce Elman networks a couple of years later, and Michael
I. Jordan, a psychologist, mathematician and cognitive scientist who would intro-
duce Jordan networks (both of these networks are commonly called simple recurrent
networks in today’s literature), also belonged to the San Diego circle.

This leads us to the 1990s and beyond. The early 1990s were largely uneventful,
as the general support of the AI community shifted towards support vector machines
(SVM). These machine learning algorithms are mathematically well founded, as
opposed to neural networks which were interesting from a philosophical standpoint,
and mainly developed by psychologists and cognitive scientists. To the larger Al
community, which still had a lot of the GOFAI drive for mathematical precision,
they were uninteresting, and SVMs seemed to produce better results as well. A good
reference book for SVMs 1s [30]. In the late 1990s, two major events occurred,
which produced neural networks which are even today the hallmark of deep learn-
ing. The long short-term memory was invented by Hochreiter and Schmidhuber [31]
in 1997, which continue to be one of the most widely used recurrent neural net-
work architectures and in 1998 LeCun, Bottou, Bengio and Haffner produced the
first convolutional neural network called LeNet-5 which achieved significant results
on the MNIST dataset [32]. Both convolutional neural networks and LSTMs went
unnoticed by the larger Al community, but the events were set in motion for neural
networks to come back one more time. The final event in the return of neural net-
works was the 2006 paper by Hinton, Osindero and Teh [33] which introduced deep
belief networks (DMB) which produces significantly better results on the MNIST
dataset. After this paper, the rebranding of deep neural networks to deep learning
was complete, and a new period in Al history would begin. Many new architectures
followed, and some of them we will be exploring in this book, while some we leave to
the reader to explore by herseltf. We prefer not to write to much about recent history,
since 1t 1s still actual and there is a lot of factors at stake which hinder objectivity.

'The full story about Hinton and his struggles can be found at http: //www.chronicle.
com/article/The-Believers/190147.
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For an exhaustive treatment of the history of neural networks, we point the reader to
the paper by Jiirgen Schmidhuber [34].

1.4 Neural Networks in the General Al Landscape

We have explored the birth of neural networks from philosophical logic, the role
psychology and cognitive science played in their development and their grand return
to mainstream computer science and Al. One question that 1s particularly interest-
ing 1s where do artificial neural networks live in the general Al landscape. There
are two major societies that provide a formal classification of Al, which 1s used in
their publications to classify a research paper, the American Mathematical Society
(AMS) and the Association for Computing Machinery (ACM). The AMS maintains
the so-called Mathematics Subject Classification 2010 which divides Al into the
following subfields'’: General, Learning and adaptive systems, Pattern recognition
and speech recognition, Theorem proving, Problem solving, Logic 1n artificial intel-
ligence, Knowledge representation, Languages and software systems, Reasoning
under uncertainty, Robotics, Agent technology, Machine vision and scene under-
standing and Natural language processing. The ACM classification'® for Al pro-
vides, 1in addition to subclasses of Al, their subclasses as well. The subclasses of Al
are: Natural language processing, knowledge representation and reasoning, planning
and scheduling, search methodologies, control methods, philosophical/theoretical
foundations of Al, distributed artificial intelligence and computer vision. Machine
learning 1s a parallel category to Al, not subordinated to it.

What can be concluded from these two classifications 1s that there are a few broad
fields of Al, inside which all other fields can be subsumed:

Knowledge representation and reasoning,
Natural language processing,

Machine Learning,

Planning,

Multi-agent systems,

Computer vision,

Robotics,

Philosophical aspects.

In the simplest possible view, deep learning is aname for a specific class of artificial
neural networks, which 1n turn are a special class of machine learning algorithms,
applicable to natural language processing, computer vision and robotics. This 1s a
very simplistic view, and we think 1t 1s wrong, not because 1t 1s not true (1t 1s true), but

7See http://www.ams.org/msc/.
18See http://www.acm.org/about/class/class/2012.
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Fig. 1.1 Vertical and horizontal components of Al

because it misses an important aspect. Recall the Good Old-Fashioned AI (GOFAI),
and consider what it 1s. Is 1t a subdiscipline of AI? The best answer 1t to think of
subdivisions of Al as vertical components, and of GOFALI as a horizontal component
that spans considerably more work in knowledge representation and reasoning than
in computer vision (see Fig. 1.1). Deep learning, in our thinking, constitutes a second
horizontal component, trying to unify across disciplines just as GOFAI did. Deep
learning and GOFALI are in a way contenders to the whole Al, wanting to address all
questions of Al with their respective methods: they both have their ‘strongholds’,'”
but they both try to encompass as much of Al as they can. The idea of deep learning
being a separate influence 1s explored in detail in [35], where the deep learning
movement 1s called ‘connectionist tribe’.

1.5 Philosophical and Cognitive Aspects

So far, we have explored neural networks from a historical perspective, but there are
two important things we have not explained. First, what the word ‘cognitive’ means.
The term 1tself comes from neuroscience [36], where i1t has been used to characterize
outward manifestations of mental behaviour which originates in the cortex. The what
exactly comprises these abilities 1s non-debatable, since neuroscience grounds this
division upon neural activity. A cognitive process in the context of Al is then an

"Knowledge representation and reasoning for GOFAI, machine learning for deep learning.
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imitation of any mental process taking place in the human cortex. Philosophy also
wants to abstract away from the brain, and define its terms in a more general setting.
A working definition of ‘cognitive process’ might be: any process taking place in
a stmilar way 1n the brain and the machine. This definition commits us to define
‘stmilar way’, and 1f we take artificial neural networks to be a simplified version of
the real neuron, this might work for our needs here.

This leads us to the bigger 1ssue. Some cognitive processes are simpler, and we
could model them easily. Advances in deep learning sweep away one cognitive
process at the time, but there 1s one major cognitive process eludes deep learning—
reasoning. Capturing and describing reasoning 1s the very core of philosophical
logic, and formal logic as the main method for a rigorous treatment of reasoning has
been the cornerstone of GOFAIL Will deep learning ever conquer reasoning? Or 1s
learning simply a process fundamentally different from reasoning? This would mean
that reasoning 1s not learnable in principle. This discussion resonates the old philo-
sophical dispute between rationalists and empiricists, where rationalists argued (in
different ways) that there 1s a logical framework in our minds prior to any learning.
A formal proof that no machine learning system could learn reasoning which 1s con-
sidered a distinctly human cognitive process would have a profound technological,
philosophical and even theological significance.

The question about learning to reason can be rephrased. It 1s widely believed
that dogs cannot learn relations.”’ A dog would then be an example of a trainable
cognitive system incapable of learning relations. Suppose we want to teach a dog
the relation ‘smaller’. We could devise a training setting where we hand the dog
two different objects, and the dog should pick the smaller one when hearing the
command ‘smaller’ (and he 1s rewarded for the right pick). But the task for the dog 1s
very complex: he has to realize that ‘smaller’ 1s not a name of a single object which
changes reference from one training sample to the next, but something immaterial
that comes 1nto existence when you have both objects, and then resolves to refer to
a single object (the smaller one). If you think about 1t like that, the difficulties of
learning relations become clearer.

Logic 1s inherently relational, and everything there 1s a relation. Relational rea-
soning 1s accomplished by formal rules and poses no problem. But logic has the
very same problem (but seen from the other side): how to learn content for relations?
The usual procedure was to hand define entities and relations and then perhaps add
a dynamical factor which would modify them over time. But the divide between
patterns and relations exists on both sides.

2OWhether this is true or not, is irrelevant for our discussion. The literature on animal cognitive
abilities 18 notoriously hard to find as there are simply not enough academic studies connecting
animal cognition and ethology. We have 1solated a single paper dealing with limitations of dog
learning [37], and therefore we would not dare to claim anything categorical—just hypothetical.
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The paper that exposed this major philosophical issue in artificial neural networks
and connectionism, is the seminal paper by Fodor and Pylyshyn [38]. They claimed
that thinking and reasoning as a phenomena 1s inherently rule-based (symbolic,
relational), and this was not so much a natural mental faculty but a complex ability
that evolved as a tool for preserving truth and (to a lesser extent) predicting future
events. They pose it as a challenge to connectionism: 1f connectionism will be able
to reason, the only way it will be able to do so (since reasoning 1s inherently rule-
based) 1s by making an artificial neural network which produces a system of rules.
This would not be ‘connectionist reasoning’ but symbolic reasoning whose symbols
are assigned meaningful things thanks to artificial neural networks. Artificial neural
networks fill in the content, but the reasoning itself 1s still symbolic.

You might notice that the validity of this argument rests on the 1dea that thinking
1s inherently rule-based, so the most easy way to overcome their challenge it is to
dispute this initial assumption. If thinking and reasoning would not be completely
rule-based, it would mean that they have aspects that are processed ‘intuitively’, and
not derived by rules. Connectionists have made an incremental but important step
in bridging the divide. Consider the following reasoning: ‘it is to long for a walk, I
better take my van’, ‘I forgot that my van 1s at the mechanic, I better take my wife’s
car’. Notice that we have deliberately not framed this as a classic syllogism, but in
a form similar to the way someone would actually think and reason.?! Notice that
what makes this thinking valid,?* is the possibility of equating ‘car’ with ‘van’ as
similar.”> Word2vec [39] is a neural language model which learns numerical vectors
for a given word and a context (several words around 1t), and this 1s learned from
texts. The choice of texts 1s the *big picture’. A great feature of word2vec 1s that
it clusters words by semantic similarity in the big picture. This 1s possible since
semantically similar words share a similar immediate context: both Bob and Alice
can be hungry, but neither can Plato nor the number 4. But substituting similar for
similar 1s just proto-inference, the major incremental advance towards connectionist
reasoning made possible by word2vec 1s the native calculations it enables. Suppose
that v(x) 1s the function which maps x (which 1s a string) to its learned vector.
Once trained, the word vectors word2vec generates are special in the sense that one
can calculate with them like v(king) — v(man) + v(woman) ~ v(queen). This 1s
called analogical reasoning or word analogies, and it is the first major landmark in
developing a purely connectionist approach to reasoning.

We will be exploring reasoning in the final chapter of the book in the context of
question answering. We will be exploring also energy-based models and memory
models, and the best current take on the issue of reasoning is with memory-based

*IPlato defined thinking (in his Sophist) as the soul’s conversation with itself, and this is what we
want to model, whereas the rule-based approach was championed by Aristotle in his Organon.
More succinctly, we are trying to reframe reasoning in platonic terms instead of using the dominant
Aristotelian paradigm.

2 At this point, we deliberately avoid talking of ‘valid inference’ and use the term ‘valid thinking’.
>3Note that this interchangeability dependent on the big picture. If I need to move a piano, I could
not do 1t with a car, but if I need to fetch groceries, I can do it with either the car or the van.
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models. This is perhaps surprising since in the normal cognitive setting (undoubtedly
under the influence of GOFAI), we consider memory (knowledge) and reasoning as
two rather distinct aspects, but it seems that neural networks and connectionism do
not share this dichotomy.
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A set does not remember the order of elements or repetitions of one element. If we
have a set that remembers repetitions but not order we have multisets or bags, so we
have {1, 0, 1} = {1, 1, O} but neither is equal to {1, 0}, we are talking about multisets.
The usual way to denote bags to distinguish them from sets 1s to number the elements,
soinsteadof writing {1, 1, 1, 1,0, 1, O, O} we would write {"1" : 5, "0" : 3}. Bags will
be very useful to model language via the so-called bag of words model as we will
see 1n Chap. 3.

If we care both about the position and repetitions, we write (1, 0,0, 1, 1). This
object1s called a vector. If we have a vector of variables like (xy, x», ..., x;,,) we write
it as X or X. The individual x;, 1 < i < n, 1s called a component (in sets they used to
be called members), and the number of components 1s called the dimensionality of
the vector X.

The terms fuple and list are very similar to vectors. Vectors are mainly used
in theoretical discussions, whereas tuples and lists are used 1n realizing vectors In
programming code. As such, tuples and lists are always named with programming
variables such as myList or vectorAsTuple. So an example of either tuple
or list would be newThing := (11, 22, 33). The difference between tuple and a
list 1s that lists are mutable and tuples are not. Mutability of a structure means
that we can assign a new value to a member of that structure. For example, 1if we
have newThing := (11, 22, 33) and then we do newThing[l] < 99 (to be read
‘assign to the second” item the value of 99°), we get newThing (= (11,99, 33).
This means that we have mutated the list. If we do not want to be able to do
that, we use a tuple, in which case we cannot modify the elements. We can
create a new tuple newerThing such that newerThing|0] < newThing|0],
newerThing[l] < 99 and newerThing[2] <« newThing[2] but this is not
changing the values, just copying it and composing a new tuple. Of course, 1f we
have an unknown data structure, we can check whether it 1s a list or tuple by trying
to modify some component. Sometimes, we might wish to model vectors as tuples,
but we will usually want to model them as lists in our programming codes.

Now we have to turn our attention to functions. We will take a computational
approach in their definition.” A function is a magical artifact that takes arguments
(inputs) and turns them into values (outputs). Of course, the trick with functions 1s
that instead of using magic we must define in them how to get from inputs to outputs,
or in other words how to transform the inputs into outputs. Recall a function, e.g.
y = 4x> + 18 or equivalently f (x) = 4x> + 18, where x is the input, y is the output
and f 1s the function’s ‘name’. The output y 1s defined to be the application of f to x,
1.e.y :=f(x). We are omitting a few things here, but they are not important for this
book, but we point the interested reader to [1].

When we think of a function like this, we actually have an instruction (algorithm)
of how to transform the x to get the y, by using simpler functions such as addition,

>The counting starts with 0, and we will use this convention in the whole book.

The traditional definition uses sets to define tuples, tuples to define relations and relations to define
functions, but that 1s an overly logical approach for our needs in the present volume. This definition
provides a much wider class of entities to be considered tunctions.
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multiplication and exponentiation. They in turn can be expressed from simpler func-
tions, but we will not need the proofs for this book. The reader can find in [2] the
details on how this can be done.

Note that if we have a function with 2 arguments® f (x, y) = x* and pass in values
(2,3) we get 8. If we pass in (3, 2) we will get 9, which means that functions are
order sensitive, 1.e. they operate on vector inputs. This means that we can generalize
and say that a function always takes a vector as an input, and a function taking an
n-dimensional vector 1s called an n-ary function. This means that we are free to use
the notation f (x). A O-ary function 1s a function that produces an output but takes
in no input. Such a function 1s called a constant, e.g. p() = 3.14159 ... (notice the
notation with the open and closed parenthesis).

Note that we can take a function’s argument input vector and add to it the output,
so that we have (x1, x2, ..., x,, v). This structure 1s called a graph of the function
f for mputs x. We will see how we can extend this to all inputs. A function can
have parameters and the function f (x) = ax 4+ b has a and b as parameters. They
are considered fixed, but we might want to tweak them to get a better version of the
function. Note that a function always gives the same result if 1t 1s given the same
input and you do not change the parameters. By changing the parameters, you can
drastically change the output. This 1s very important for deep learning, since deep
learning 1s a method for automatically tuning parameters which in turn modifies the
output.

We can have a set A and we may wish to create a function of x which gives a
value 1 to all values which are members of A and O to all other values for x. Since
this function 1s different for all sets A, other than this, 1t always does the same thing,
we can give 1t a name which includes A. We choose the name 14. This function 1s
called indicator function or characteristic function, and 1t 1s sometimes denoted as
x4 1n the literature. This 1s used for something which we will call one-hot encoding
in the next chapter.

If we have a function y = ax, then the set from which we take the inputs 1s called
the domain of the function, and the set to which the outputs belong 1s called the
codomain of the function. In general, a function does not need to be defined for all
members of the domain, and, 1f 1t 1s, 1t 1s called a total function. All functions that
are not total are called partfial. Remember that a function assigns to every vector
of inputs always the same output (provided the parameters do not change). If by
doing so the function ‘exhausts’ the whole codomain, i.e. after assignment there are
no members of the codomain which are not outputs of some inputs, the function
1s called a surjection. If on the other hand the function never assigns to different
input vectors the same output, it 1s called an injection. If it 1s both an injection and
surjection, it 1s called a bijection. The set of outputs B given a set of inputs A 1s called
an image and denoted by f[A] = B. If we look for a set of inputs A given the set of
outputs B, we are looking at its inverse image denoted by f ~!'[B] = A (we can use
the same notation for individual elements f_l (b) = a).

*A function with n-arguments 1s called an n-ary function.
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A function f 1s called monotone if for every x and y from the domain (for which
the function is defined) the following holds: if x < ythenf (x) < f(y) orifx > ythen
f(x) = f(yv). Depending on the direction, this 1s called an increasing or decreasing
function, and 1f we have < instead of <, it 1s called strictly increasing (or strictly
decreasing). A continuous function 1s a function that does not have gaps. For what
we will be needing now, this definition 1s good enough—we are imprecise, but we
are sacrificing precision for clearness. We will be returning to this later.

One interesting function 1s the characteristic function for rational numbers over
all real numbers. This function returns 1 1f and only if the real number 1t picked 1s
also a rational number. This function 1s continuous nowhere. A different function
which 1s continuous 1n parts but not everywhere is the so-called step function (we
will mention 1t again briefly in Chap. 4):

I,x >0

EIEp(}(X) — <0

Note that stepg can be easily generalized to step,, by simply placing n instead of 0.
Also, note that the 1 and —1 are entirely arbitrary, so we can put any values instead. A
step function that takes in an n-dimensional vector is also sometimes called a voting
function, but we will keep calling it a step function. In this version, all components of
the input vector of the function are added before being compared with the threshold
n (the threshold n 1s called a bias in neural network literature). Pay close attention
to how we defined the step function with two cases: if a function 1s defined by cases,
it 1s an important hint that the function might not be continuous. It 1s not always the
case (in either way we look at it), but it is a good hint to follow and it is often true.

Before continuing to derivations, we will be needing a few more concepts. If the
outputs of the function f approach a value ¢ (and settle in 1t), we say that the function
converges in c. If there 1s no such value, the function is called divergent. In most
mathematics textbooks, the definitions of convergence are more meticulous, but we
will not be needing the additional mathematical finesse in this book, just the general
intuition.

An important constant we will use 1s the Euler number, e = 2.718281828459 . . ..
This 1s a constant and we will reserve for it the letter e. We will be using the basic
numerical operations extensively, and we give a brief overview of their behaviour
and notations used here:

1
X

1

he reciprocal number of x 1s -~ or equivalently x™—

® @
= = =

.0 .
he square root of x is x2 or equivalently /x
he exponential function has the properties: x
(.I.H)m H-rr

0

— l, JC] = x, X1 .M — .I'”_H”,
— X

>The ReLLU or rectified linear unit defined by p(x) = max(x, 0) 1s an example of a function that 1s
continuous even though 1t 1s (usually) defined by cases. We will be using RelLU extensively from
Chap. 6 onwards.
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e The logarithmic function has the properties: log. 1 = 0, log.c =1, log.(xy) =
log, x+log, y, log.(%) =log,x —logy, log.x’ =ylogx, log,y= =

log,. x’

| log, v __ ¢ —
log, x) =y, x> =y, Inx :=log, x).

The last concept we will need before continuing to derivations 1s the concept of
a limit. An intuitive definition would be that the limit of a function 1s a value which
the outputs of the function approach but never reach.® The trick is that the limit of
the function 1s considered 1n relation to a change in inputs and 1t must be a concrete
value, 1.e. 1f the limit 18 oo or —o0, we do not call 1t a limit. Note that this means
that for the limit to exist it must be a finite value. For example, Iim f (x) = 10, if we

X—

take f to be f (x) = 2x. It 1s of vital importance not to confuse the number 5 which
the inputs approach and the limit, 10, which the outputs of the function approach as
the inputs approach 3.

The concept of limit 1s trivial (and mathematically weird) 1f we think of integer
iputs. We shall assume when we think of limits that we are considering real numbers
as inputs (where the 1dea of continuity makes sense). Therefore, when talking about
limits (and derivations), the input vectors are real numbers and we want the function
to be continuous (but sometimes it might not be). If we want to know a limit of a
function, and 1t 1s continuous everywhere, we can try to plug in the value to which
the mputs approach and see what we get for the output. If there are problems with
this, we can either try to simplity the function expression or see what 1s happening
to the pieces. In practice,’ the problems occur in two way: (i) the function is defined
by cases or (11) there are segments where the outputs are undefined due to a hidden
division by O for some 1nputs.

We can now replace our intuitive idea of continuity with a more rigorous definition.
We call a functionf continuous in a point x = a if and only 1f the following conditions
hold:

1. f(a) is defined

2. Iim f(x) exists
X—d

3. f(a) = lim f (x).

X—d

A function 1s called continuous everywhere if and only if it 1s continuous in all
points. Note that all elementary functions are continuous everywhere® and so are all

This is why 0.999 - .. #£ 1.

"This is especially true in programming, since when we program we need to approximate functions
with real numbers by using functions with rational numbers. This approximation also goes a long
way In terms of intuition, so it 1s good to think about this when trying to figure out how a function
will behave.

SWith the exception of division where the divisoris 0. In this case, the division function 1s undefined,
and therefore the notion of continuity does not have any meaning in this point.
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polynomial functions. Rational functions’ are continuous everywhere except where

the value of the denominator 1s 0. Some equalities that hold for limits are

I. Ime=c
X—1l

2. lim 1
x—>0+ *
3. lim 1
x—0— "
4. lim %:
X—>00
5. lim (14 1) =e.

X— 00

=°.°

[
|
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Now, we are all set to continue our journey to differentiation.!” We can develop a
bit of intuition behind derivatives by noting that the derivative of a function can be
imagined as the slope of the plot of that function in a given point. You can see an
illustration 1in Fig.2.1. If a function f (x) (the domain 1s X ) has a derivative in every
point a € X, then there exists a new function g(x) which maps all values from X to
its derivative. This function is called the derivative of f. As g(x) depends on f and x,
we introduce the notation f’(x) (Lagrange notation) or, remembering that f (x) = vy,
we can use the notation j—i or % (Leibniz notation). We will deliberately use these
two notations inconsistently in this book, since some 1deas are more intuitive when
expressed 1n one notation, while some are more intuitive in the other. And we want
to focus on the underlying mathematical phenomena, not the notational tidiness.

Let us address this in more detail. Suppose we have a function f (x) = 5. The slope
of this function can be obtained by selecting two points from it, e.g. t; = (x1, V1)

and 1, = (x2, y2). Without loss of generality, we can assume that #; comes before 17,

Fig.2.1 The derivative of
/(x) in the point a

Rational functions are of the form % where / and g are polynomial functions.

'OThe process of finding derivatives is called ‘differentiation’.



