Introduction to
Disciplined Agile
Delivery

Second Edition

A Small Agile Team's Journey From Scrum to
Disciplined DevOps

Mark Lines and Scott W. Ambler

vl.l

Contents

Chapter 1 Introduction

Chapter 2 Reality Over Rhetoric

Chapter 3 Disciplined Agile Delivery in a Nutshell

Chapter 4 Introduction to the Case Study

Chapter 5 Inception

Chapter 6 Construction Iteration C1

Chapter 7 Construction Iteration C2

Chapter 8 Construction Iteration C3

Chapter 9 Construction Iteration C7

Chapter 10 Construction Iteration C10

Chapter 11 Transition

Chapter 12 The Road to Disciplined DevOps

Chapter 13 Closing Thoughts

Appendix: The Disciplined Agile Tool Kit
References
Index

About the Authors

Acknowledgments

We'd like to thank Beverley Ambler, Rod Bray, David Dame, Matt
Everard, Louise Lines, Glen Little, Valentin-Tudor Mocanu, Kristen
Morton, David Shapiro, Paul Sims, and Michael Vizdos for their
feedback and input into the development of this book. We couldn't
have done it without you.

Chapter 1

Introduction

Many organizations are struggling to be successful with
mainstream agile methods such as Scrum. Sometimes, the impulse
is to give up and try the next great thing such as Lean or Scaled
Agile Framework (SAFe®). The reality is that the source of failure of
existing agile adoptions can often be traced to either the
misapplication of core agile principles or a naive approach to
scaling agile and the need to address enterprise concerns.

Adding to the confusion is the constant bickering in the agile
community about which method is best between Scrum, Extreme
Programming (XP), Kanban, SAFe, and others. The reality is that
most organizations can benefit from a number of these strategies,
albeit with some consistency that a common tool kit can provide.
This is where the Disciplined Agile™ (DA) tool kit comes in.

DA is a hybrid of existing methods that provides the flexibility to
use various approaches, as well as plugging some gaps not
addressed by mainstream agile methods. In a nutshell, DA, and
more importantly, the Disciplined Agile Delivery (DAD) portion of
it that is the focus of this book, is “pragmatic agile.” It describes

proven strategies to adapt and scale agile initiatives that suit the
unique realities of your enterprise, without having to figure it all
out by yourself.

The book Choose Your WoW! A Disciplined Agile Delivery Handbook for
Optimizing Your Way of Working is the definitive guide for DAD. We
have key information about DA, in general, at PMI.org/disciplined-
agile.

While Choose Your Wow is a great overview and reference guide, it is
over 400 pages. We felt that it would be useful to summarize DAD
into a quick read to show how it can be applied in a typical
situation. That thinking led to the first edition of Introduction to
Disciplined Agile Delivery, published in the third quarter of 2015. We
have found that organizations that simply take a bit of time to
understand what DAD is, as well as what it is not, see very quickly
the obvious benefits of DAD.

We wrote this short book in the hope that after having invested
just an hour or two to learn about what DAD actually is, you are
convinced that it is worthwhile to further investigate the possible
fit for DAD within your organization.

Some quick facts about DAD:

* DAD is the delivery portion of the Disciplined Agile (DA) tool
kit. DAD is a key component of Disciplined DevOps, which in
turn is part of DA's value stream layer, which is part of the
Disciplined Agile Enterprise (DAE). The book An Executive's Guide

to the Disciplined Agile Tool Kit provides an overview of DA, as
does the appendix at the back of the book.

DA is resonating within organizations around the world.
Organizations that have adopted, or are in the process of
adopting, DA include large financial institutions, software
companies, e-commerce companies, restaurant chains,
government agencies, and many others. By adoption, we mean
either planning or actively implementing it across their entire
organization, not just with one or two teams.

Although DAD was originally developed at IBM, it is now the
intellectual property of Project Management Institute (PMI),
and is available at no cost to PMI members.

The certification program is described at PMI.org.

DA is not a replacement for existing agile and lean methods. It
complements them and, in many cases, extends them to be
enterprise ready.

Chapter 2

Reality Over Rhetoric

One of the reasons why DAD is quickly growing in popularity is

that it acknowledges how organizations that are effectively scaling
agile are really doing things. We think that it is important to clear
up some of the misconceptions regarding the hype of agile purism
versus what we have found to be really happening based on both

our hands-on experience with many clients around the world and

our comprehensive industry research.!

Myth

Reality

Agile teams don't
do requirements
or planning.

The average agile team spends about one month doing some up-
front planning and requirements modeling. While DAD seeks to
minimize this work, we acknowledge this reality and suggest that
teams new to agile spend a few weeks in an Inception phase to
complete the work in a minimal, yet sufficient, fashion.

DAD is a form of
“WaterScrumFall,”
with lots of up-
front planning and
requirements
(Water), and
testing and
deployment at the
end (Fall), with

While DAD acknowledges that some prework is required to secure
funding, among other precoding activities, DAD suggests you
minimize the work in Inception. Similarly, while DAD recognizes
that the common pattern in enterprises is to deploy solutions in a
structured fashion, which we describe as the Transition phase, the
disciplined testing practices in the Construction phase, such as
continuous integration, should minimize the transition effort and
end-of-life-cycle testing. For more advanced applications of DAD,
the teams may not even require an explicit Inception or Transition

Scrum in the

middle.

phase, as described in DAD's Continuous Delivery: Agile and
Continuous Delivery: Lean life cycles.

“Governance” is an
agile dirty word.
The agile concept
of self-
organization
means that
enterprises should
not interfere with
how agile teams
deliver their
software.

Governance is actually a good thing when it's done in an agile/lean
manner. Sponsors, and the enterprise as a whole, deserve to know
that their investments are being properly spent and that the risk of
delivery is monitored and controlled, albeit in a lightweight, agile
fashion. DAD provides specific guidance to fulfill this responsibility
in a relatively painless fashion.

DAD is complicated
and would be
disruptive to

DAD is quite simple to adopt, especially if your organization is
familiar with common agile practices. The good news is that DAD
provides guidance that addresses why some existing agile

solution to scaling
agile.

adopt. implementations are struggling, and DAD can help to bring these
implementations back on track.
SAFe is the For large organizations that have delivery teams greater than 100

people, SAFe may indeed be a good fit for some teams. However,
most organizations have a mix of small- to mediumsized teams
delivering solutions for multiple lines of business. In these
situations, SAFe may not be suitable. While SAFe is suitable in a
specific context, DAD is much more flexible and adaptable to a
broader range of situations in the enterprise.

1 see Ambysoft.com/surveys/.

Chapter 3

Disciplined Agile Delivery in a
Nutshell

Key Points

DAD is the delivery portion of the Disciplined Agile (DA) tool kit, not
just another methodology.

If you are using Scrum, XP, or Kanban, you are already using variations
of a subset of DAD.

DAD provides six life cycles to choose from; it doesn't prescribe a single
way of working. Choice is good.

DAD focuses on achieving common goals in an agile manner, not the
production of specific work products or following a prescriptive agile
strategy.

DAD addresses key enterprise concerns not described by mainstream
methods such as Scrum.

DAD is complementary to SAFe, yet far less prescriptive and more
practical for most enterprises.

DAD shows how agile works from beginning to end.

DAD provides a flexible foundation from which to scale mainstream
methods.

+ While DAD's philosophy is consistent with that of the Manifesto for Agile
Software Development (Agile Manifesto), it includes additional guidance
to be effective in more complex enterprise situations.

s Tt is not difficult to get started with DAD.

Many organizations start their agile journey by adopting Scrum
because it describes a good strategy for leading agile software
teams. However, Scrum is only a small part of what is required to
deliver sophisticated solutions to your stakeholders. Invariably,
teams need to look to other methods to fill in the process gaps.
When looking at other methods, there is considerable overlap and
conflicting terminology that can be confusing to practitioners, as
well as outside stakeholders. Worse yet, people don't always know
where to look for advice, or even know what issues they need to
consider.

To address these challenges, Disciplined Agile Delivery (DAD) is a
people-first, learning-oriented, hybrid agile approach to IT
solution delivery. Delivery (DAD) provides a more cohesive
approach to agile solution delivery. It supports several risk value
delivery life cycles, is goal driven, enterprise aware, scalable, and
reflects the realities of enterprise solution delivery. DAD can—and
should—be used to extend Scrum to address the critical aspects of
software development that Scrum purposefully leaves up to you.

There are clearly some interesting aspects to DAD:

1. Hybrid. DAD is an agnostic, hybrid approach that puts proven
strategies from Scrum, Agile Modeling (AM), Extreme

Programming (XP), Unified Process (UP), Kanban, Lean
Software Development, SAFe, and several other methods into
context.

2. Full-delivery life cycle. DAD extends the construction-
focused life cycle of Scrum to address the full beginning-to-
end delivery life cycle, from team initiation all the way to
delivering the solution to its end users.

3. Support for multiple life cycles. DAD also supports lean,
continuous delivery, and exploratory versions of the life cycle.
Unlike other agile methods, DAD doesn't prescribe a single life
cycle because it recognizes that one process size does not fit
all.

4. Complete. DAD includes advice about how development,
modeling, documentation, and governance strategies fit
together in a streamlined whole. We like to say that DAD does
the “process heavy lifting” that other methods leave up to you.

5. Context sensitive. Instead of the prescriptive approach seen
in other agile methods, including Scrum, DAD promotes what
we call a goal-driven or objective-driven approach. In doing
s0, DAD provides contextual advice regarding viable
alternatives and their trade-offs, enabling you to tailor DAD to
effectively address the situation in which you find yourself. By
describing what works, what doesn't work, and more
importantly, why, DAD helps you to increase your chance of
adopting strategies that will work for you.

People First: Roles in Disciplined Agile Delivery

As shown in Figure 3.1, DAD suggests a robust set of roles for agile
solution delivery. A common question that we get is what is the
difference between primary and supporting roles? Primary roles
exist in all DAD teams regardless of scale. Supporting roles,
however, typically occur only at scale and sometimes only for a
temporary period of time. Another common question that we get
is: “Why are there so many roles?” Scrum has three roles—scrum
master, product owner, and team member—so why does DAD need
107 The key issue is one of scope. Scrum mostly focuses on
leadership and change management aspects during Construction,
and therefore has roles that reflect this. DAD, on the other hand,
explicitly focuses on the entire delivery life cycle and all aspects of
solution delivery, including the technical aspects that Scrum
leaves out. So, with a larger scope comes more roles. For example,
DAD encompasses agile architecture issues so it includes an
architecture owner role. Scrum doesn't address architecture, so it
doesn't include this role.

An Agnostic, Hybrid Tool Kit

Disciplined Agile (DA) is an agnostic, hybrid tool kit that builds
upon the solid foundation of other methods and software process
frameworks. The DAD portion of DA adopts practices and
strategies from existing sources and provides agnostic advice for
when and how to apply them together. In one sense, methods such
as Scrum, Extreme Programming (XP), Kanban, and Agile Modeling
(AM) provide the process bricks, and DAD provides the mortar to
fit the bricks together effectively, as depicted in Figure 3.2.

One of the great advantages of agile and lean software
development is the wealth of practices, techniques, and strategies
available to you. This is also one of its greatest challenges, because
without something like the DAD, it's difficult to know which
practices to choose and how to fit them together. Worse yet, many
teams new to agile will treat a method like Scrum or SAFe as if it's
a recipe, ignoring advice from other sources and thereby getting
into trouble.

Choice Is Good: Full-Delivery Life Cycles

The focus of DAD is on delivery, although remember that other
aspects of IT and your organization still exist, such as data
management, enterprise architecture, operations, portfolio
management, and more. A full-system/product life cycle goes from
the initial concept for the product, through delivery, to operations
and support, and often includes many iterations of the delivery life
cycle. Figure 3.3 depicts a high-level view of the DAD life cycle. The
inner three phases—Inception, Construction, and Transition—form
the delivery portion of the life cycle. During delivery, you
incrementally build an increasingly more consumable solution.

Obviously, there's more to DAD than what this high-level diagram
shows. DAD, because it's not prescriptive and strives to reflect
reality as best it can, supports several versions of a delivery life
cycle. Six versions of the life cycle follow: the Agile life cycle that

extends the Scrum Construction life cycle with proven ideas from
Unified Process to support early mitigation of risk and lightweight
governance; the Lean life cycle based on Kanban; the Continuous
Delivery: Agile life cycle; the Continuous Delivery: Lean life cycle;
the Exploratory life cycle based upon a Lean Startup approach; and
the Program life cycle for a team of teams. DAD teams will adopt
the life cycle that is most appropriate for their situation and then
tailor it appropriately. The visual depictions of the life cycles are
shown first, then descriptions follow.

Explicit Phases Make Agile More Palatable to
Management

As shown in Figure 3.4, DAD life cycles can have phases. Daniel
Gagnon has been at the forefront of agile practice and delivery
for almost a decade in two of Canada's largest financial
institutions. He had this to say about using DA as an
overarching framework: “At both large financials that I have
worked in, I set out to demonstrate the pragmatic advantages
of using DA as a ‘top-of-the-house’ approach. Process tailoring
in large, complex organizations clearly reveals the need for a
large number of context-specific implementations of the four
(now six) life cycles, and DA allows for a spectrum of
possibilities that no other framework accommodates. However,
I call this ‘structured freedom,’ as all choices are still governed
by DA's application of Inception, Construction, and Transition

with lightweight, risk-based milestones. These phases are
familiar to project management offices (PMOs), which means
that we aren't carrying out a frontal assault on their fortified
position, but rather introducing governance change in a lean,
iterative, and incremental fashion.”

Consumable Solutions Over Working
Software

The Agile Manifesto suggests that we measure progress based
upon “working software.” But what good is that when the
customer can't—or worse—doesn't want to use it? What we
deliver should be consumable, which is functional + usable +
desirable. Additionally, what we produce usually is not just
software. There may be business changes and other supporting
deliverables, so we suggest striving to deliver “consumable
solutions.”

In general, we suggest the following guidance regarding which life
cycles fit in certain circumstances:

Agile life cycle. This life cycle, shown in Figure 3.4, is based
largely upon Scrum and XP with a set of timeboxed iterations
(sprints) being the core of the Construction phase. It is the most
commonly used life cycle that is suitable in these types of

situations:

+ The work is primarily enhancements or new features.

+ The work can be identified, prioritized, and estimated early in
the process.

+ The team is new to agile.

* The team is familiar with Scrum and XP.

+ The team is typically working on a project.

Note that while the diagram shows that you should have
increments of a consumable solution at the end of each iteration,
for a new product or solution you may not have something truly
consumable until after having completed several iterations.

Continuous Delivery: Agile life cycle. This life cycle, shown in
Figure 3.5, is a natural progression from the Agile life cycle. Teams
typically evolve to this life cycle from the Agile life cycle, often
adopting iteration lengths of one week or less. The key difference
between this and the Agile life cycle is that the continuous delivery
life cycle results in a release of new functionality at the end of each
iteration, rather than after a set of iterations. Teams require a
mature set of practices around continuous integration and
continuous deployment and other DevOps strategies. This life cycle
is suitable when:

* Solutions can't be delivered to stakeholders on a frequent and
incremental basis.

« Work remains relatively stable within an iteration.

+ Organizations have streamlined deployment practices and

procedures.

* There is a critical need to get value into the hands of
stakeholders rapidly, before the entire solution is complete.

+ Teams have mature DevOps practices in place, including
continuous integration, continuous deployment, and
automated regression testing.

+ The team is long-lived (stable), and is working on a series of
releases over time.

Lean life cycle. This life cycle, shown in Figure 3.6, promotes lean
principles such as minimizing work in process, maximizing flow,
having a continuous stream of work (instead of fixed iterations),
and reducing bottlenecks. New work is pulled from the work item
pool as the team has capacity.

Note that Scrum prescribes the use of a set of “ceremonies,” such
as the daily coordination meeting (Scrum), iteration (sprint)
planning sessions, and retrospectives to be done on certain
cadences within the iterations (sprints). Lean does not prescribe
this overhead. In fact, it considers these practices to be a source of
waste and instead suggests that they be done only when necessary.
This requires a degree of discipline and self-awareness not usually
found on teams new to agile. While the concepts of lean and the
Kanban system are very easy to learn, it can be difficult to master
the principles of lean flow and maximizing system throughput. It
is suitable in these situations:

« Work can be broken down into very small work items of
roughly the same size.

+ Work is difficult to predict in advance. For example, teams that
are focused on fixing defects or handling support issues are
good candidates for this life cycle.

* The team favors the lean approach of minimizing batch size
(which helps to reduce work in process) and reducing or
eliminating any planning in advance of doing the work.

+ The team is typically working on a series of small changes and
then releasing them periodically in a manner such as a monthly
release cycle.

Continuous Delivery: Lean life cycle. This life cycle, shown in
Figure 3.7, is a natural progression from the Lean life cycle. It
supports the goal of delivering increments of the solution in a
more frequent manner than the other life cycles. Teams typically
evolve into this life cycle from either the Lean life cycle or the
Continuous Delivery: Agile life cycle. It requires a mature set of
practices around continuous integration and deployment in order
to be practical. It also requires the technical infrastructure and
advanced DevOps practices that support this approach. It is best
suited in these types of situations:

» Solutions can be delivered to stakeholders frequently and
incrementally.

+ New work, including both new requirements and defect reports,
arrives often.

* Organizations have streamlined deployment practices and

procedures.

It is critical that solutions get value into the hands of
stakeholders rapidly, even before the entire solution is
complete.

Teams have mature DevOps practices in place, including
continuous integration, continuous deployment, and
automated regression testing.

The team is long-lived (stable), and is working on a series of
releases over time.

Exploratory life cycle. This life cycle, shown in Figure 3.8, is based
on the Lean Startup principles advocated by Eric Ries, and is

extended with ideas from complexity theory to increase its

effectiveness. The philosophy is to minimize up-front investments

in solutions in favor of small experiments (called minimal viable

products, or MVPs) that are market tested and measured early and

often. As the solution is being developed, the delivery team has the
opportunity to deliver what is truly required based on feedback
from actual usage. It is useful in these types of situations:

The solution addresses high-incertitude cases such as a new,
unexplored market or a new product.

The stakeholders and delivery team are very flexible in
adapting the solution as it is being developed.

You have a valid hypothesis/strategy to test with clear go/no-
go criteria for when the test is over.

You are willing to experiment and evolve your idea based on
your learnings.

G
Gantt chart, 35
GCI, 68
goal diagram
explore scope, 18
plan the release, 35
produce a potentially consumable solution, 50
goal driven, 18
Inception phase, 29
governance, 4, 6, 8, 22, 75
guided continuous improvement, 68

H
hardening, 43, 49, 54, 59, 70
hardening sprint anti-pattern, 63

hybrid, 6

I

Inception phase, 29

ISO, 22

IT governance milestones, 8
iteration burndown, 42
iteration planning, 39, 47
iteration review, 43

ITIL, 22

J

just in time design, 47

K
Kanban, 5

L
lean life cycle, 10, 71
Lean Software Development, 5
Lean Startup, 13
learn fast, 22
LeSS, 16
life cycle
agile, 10
and process improvement, 17
continuous delivery agile, 10
continuous delivery lean, 13
exploratory, 13
lean, 10
risk value, 22
long-lived teams. See stable teams
look-ahead modeling, 47

M
measured improvement, 68
metrics
automated dashboard, 58
defect trend chart, 61
release burnup chart, 54, 58
velocity, 35, 44, 51
microservices, 31, 70

milestone
delighted stakeholders, 35
proven architecture, 49
stakeholder vision, 38
sufficient functionality, 55, 63
milestones, 8
mindset
learn fast, 22
modeling
data, 43
initial architecture, 29
initial requirements, 30
just in time, 47
look-ahead analysis, 45, 48, 53
look-ahead design, 45
up-front, 56
usage, 30
MVP, 13

N

Nexus, 16

nonfunctional requirements, 32
nonsolo work, 53, 72

0
optimize flow, 17

P

pairing, 53
parallel independent testing, 62, 69
phases, 8
planning
date-driven, 35
deployment planning, 58, 61
iteration planning, 39, 47
release planning, 33, 58, 66
scheduling, 35
scope-driven, 35
planning poker, 33
PMO, 38
pragmatic agile, 1
principle
choice is good, 6, 23
context counts, 18
optimize flow, 17
prioritization, 32, 66
process
goal driven, 18
process improvement and life cycles, 17
product teams. See stable teams
proof of concept, 33

Q

quality assurance, 69

R

refactoring legacy code, 31
regulatory compliance separation of roles, 66
relative-mass sizing, 33, 54
release burnup chart, 54
release planning, 33, 58, 66
release window, 58
remote work, 68
requirements
ATDD/BDD, 70
envisioning, 30, 66, 70
retrospective, 44, 58, 62
measured improvement, 68
risk management, 32
delighted stakeholders, 35
deployment risk, 31
mitigation of risk early, 33
proven architecture, 49
release cadence, 71
stakeholder vision, 38
sufficient functionality, 55, 63
risk value life cycle, 22
roles, 6

S

SAFe, 6, 16

scaling, 77
factors, 22
strategic, 22, 80

tactical, 22, 77
scope creep, 53
screen sketches, 48
Scrum, 18
spike, 33
stabilization, 43
stable teams, 13, 17, 69
stakeholders, 35
standup meeting. See coordination meeting
story map, 30
strategic scaling, 22, 80
succeed early, 22

T
tactical scaling, 22, 77
task board, 39
team kickoff, 29
team of teams, 13
team room, 36, 68
technology roadmap, 31, 49
test often, 57
test-after programming, 51
test-driven development, 67
test-first programming, 51
testing
deployment testing, 65
final testing, 65
parallel independent testing, 62

