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Preface

by aficianados in a hurry. The symbol & indicates a section which may require a bit
more digging for new students to digest, but which is reasonably self-contained and
worth a bit of spadework. Finally, readers wishing to beat their heads against sections
containing more challenging topics should seek out those marked with &.

The lion’s share of the book is aimed at applications, since this most effectively
brings out both the utility and the unity of the approach. The examples also provide
a pedagogical framework for introducing some specific techniques. Since many
of these applications are independent of one another, a course can be built by
starting with Part I's introductory material and picking and choosing amongst the
later sections that are of most interest.
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Decoupling and Hierarchies of Scale

The world around us contains a cornucopia of length scales, ranging (at the time of
writing) down to quarks and leptons at the smallest and up to the universe as a whole
at the largest, with qualitatively new kinds of structures — nuclei, atoms, molecules,
cells, organisms, mountains, asteroids, planets, stars, galaxies, voids, and so on —
seemingly arising at every few decades of scales in between. So it is remarkable
that all of this diversity seems to be described in all of its complexity by a few
simple laws.

How can this be possible? Even given that the simple laws exist, why should it be
possible to winkle out an understanding of what goes on at one scale without having
to understand everything all at once? The answer seems to be a very deep property
of nature called decoupling, which states that most (but not all) of the details of
very small-distance phenomena tend to be largely irrelevant for the description of
much larger systems. For example, not much needs to be known about the detailed
properties of nuclei (apart from their mass and electrical charge, and perhaps a few of
their multipole moments) in order to understand in detail the properties of electronic
energy levels in atoms.

Decoupling is a very good thing, since it means that the onion of knowledge can
be peeled one layer at a time: our initial ignorance of nuclei need not impede the
unravelling of atomic physics, just as ignorance about atoms does not stop working
out the laws describing the motion of larger things, like the behaviour of fluids or
motion of the moon.

It so happens that this property of decoupling is also shared by the mathematics
used to describe the laws of nature [1]. Since nowadays this description involves
quantum field theories, it is gratifying that these theories as a group tend to predict
that short distances generically decouple from long distances, in much the same way
as happens in nature.

This book describes the way this happens in detail, with two main purposes in
mind. One purpose is to display decoupling for its own sake since this is satisfying
in its own right, and leads to deep insights into what precisely is being accomplished
when writing down physical laws. But the second purpose is very practical; the
simplicity offered by a timely exploitation of decoupling can often be the difference
between being able to solve a problem or not. When exploring the consequences
of a particular theory for short distance physics it is obviously useful to be able to
identify efficiently those observables that are most sensitive to the theory’s details
and those from which they decouple. As a consequence the mathematical tools —
effective field theories — for exploiting decoupling have become ubiquitous in some
areas of theoretical physics, and are likely to become more common in many more.

The purpose of the rest of Chapter 1 is twofold. One goal is to sketch the broad
outlines of decoupling, effective lagrangians and the physical reason why they work,



6 Decoupling and Hierarchies of Scale

all in one place. The second aim is to provide a toy model that can be used as a
concrete example as the formalism built on decoupling is fleshed out in more detail
in subsequent chapters.

1.1 Anlllustrative Toy Model ¢
o

The first step is to set up a simple concrete model to illustrate the main ideas. To
be of interest this model must possess two kinds of particles, one of which is much
heavier than the other, and these particles must interact in a simple yet nontrivial way.
Our focus is on the interactions of the two particles, with a view towards showing
precisely how the heavy particle decouples from the interactions of the light particle
at low energies.

To this end consider a complex scalar field, ¢», with action’

S:= —fd4x [0.9°0% ¢ + V(™ )], (1.1)
whose self-interactions are described by a simple quartic potential,
* A’ * 2
V@) =7 (¢"p =), (12)
where A and v? are positive real constants. The shape of this potential is shown in

Fig. 1.1

1.1.1 Semidassical Spectrum

The simplest regime in which to explore the model’s predictions is when A < 1 and
both v and || are O (/‘l‘” 2). This regime is simple because it is one for which the
semiclassical approximation provides an accurate description. (The relevance of
the semiclassical limit in this regime can be seen by writing ¢ := @/A!? and
v = u/AY% with ¢ and p held fixed as A — 0. In this case the action depends
on A only through an overall factor: S[¢h, v, A] = (1/A)S[¢, u]. This is significant
because the action appears in observables only in the combination §/#, and so the
small-A limit is equivalent to the small-# (classical) limit.)?

In the classical limit the ground state of this system is the field configuration that
minimizes the classical energy,

E= fd% [6:p" ) + V™ - Vo + V(™). (1.3)

Since this is the sum of positive terms it is minimized by setting each to zero; the
classical ground state is any constant configuration (so d;,¢p = V¢p = 0), with || = v
(soV =0).

I Although this book presupposes some familiarity with quantum field theory, see Appendix C for a
compressed summary of some of the relevant ideas and notation used throughout. Unless specifically
stated otherwise, units are adopted for which # = ¢ = 1, so that time ~ length and energy ~ mass ~
1/length, as described in more detail in Appendix A.

2 The connection between small coupling and the semi-classical limit is explored more fully once power-
counting techniques are discussed in §3.



1.1 An lllustrative Toy Model

The potential V(¢p;, ¢p/), showing its sombrero shape and the circular line of minimaat [¢p| = v.

In the semi-classical regime, particle states are obtained by expanding the action
about the classical vacuum, ¢ = v + ¢,

S=—fd4x {aﬂé*a#q% % [v(¢3+q3*)+q5*q5]2}, (1.4)

and keeping the leading (quadratic) order in the quantum fluctuation (;B In terms
of the field’s real and imaginary parts, ¢ = %(qﬁn + i), the leading term in the
expansion of § is

1 ~ " 5w ”
So=—5fd4x |0 Pe 0¥ b + 0 bs 0 by + AV B3] . (1.5)

The standard form (see §C.3.1) for the action of a free, real scalar field of mass
m is proportional to 8,1 8% + m*p?, and so comparing with Eq. (1.5) shows o8
represents a particle with mass m? = Av? while ¢, represents a particle with mass
m? = 0. These are the heavy and light particles whose masses provide a hierarchy of
scales.

1.1.2 Scattering

For small A the interactions amongst these particles are well-described in perturba-
tion theory, by writing § = Sy + Sin and perturbing in the interactions

Sintz—fd4x I;\‘/’E Ps (@ﬁ+q§?)+%(¢3§+g§?)2]. (1.6)

Using this interaction, a straightforward calculation — for a summary of the steps
involved see Appendix B — gives any desired scattering amplitude order-by-order in
A. Since small A describes a semiclassical limit (because it appears systematically
together with % in §/#, as argued above), the leading contribution turns out to come
from evaluating Feynman graphs with no loops® (i.e. tree graphs).

3 A connected graph with no loops (or a ‘tree’ graph) is one which can be broken into two disconnected
parts by cutting any internal line. Precisely how to count the number of loops and why this is related to
powers of the small coupling A is the topic of §3.
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\/ + + \ ..... / + crossed

The tree graphs that dominate qBR q3, scattering. Solid (dotted) lines represent (f),? (qs,), and ‘crossed’
graphs are those with external lines interchanged relative to those displayed.

Consider the reaction ¢,(p) + ¢,(q) = Px(p’) + ¢:(g’), where p* = {p°,p) and
g" = {q",q) respectively denote the 4-momenta of the initial q‘SR and rﬁ, particle,
while p’* and g’" are 4-momenta of the final (E)R and qg, states. The Feynman graphs
of Fig. 1.2 give a scattering amplitude proportional to* A,_,0%p + g — p’ — q').
where the Dirac delta function, 6*(p + ¢ — p’ — q’), expresses energy—momentum
conservation, and

A i2 Av \ 24(—i) 8(—i) 8(—i) ]
ﬁm—>;u:4 -5 - -
l( 8)+(2)( 2\/5_) [(p—p’)2+m§+(1r1+q)2+(Pq’)2

_ i . i(Av)? [ 3 ~ 1 ~ 1 }
2 2md [L-2q-q@md 1-2p-q/mi 142p-q'[ml]
(1.7)

Here the factors like 4, 24 and 8 in front of various terms count the combinatorics of
how many ways each particular graph can contribute to the amplitude. The second
line uses energy—momentum conservation, (p — p )¥ = (g’ — ¢)¥, as well as the
kinematic conditions p?> = —(p°)* + p* = —-m? and (¢")* = ¢* = —(¢°)* + ¢ = 0,
as appropriate for relativistic particles whose energy and momenta are related by
E=p’= +p*+m.

Notice that the terms involving the square bracket arise at the same order in A
as the first term, despite nominally involving two powers of Si, rather than one
(provided that the square bracket itself is order unity). To see this, keep in mind
m? = Av? so that (Av/m)? = A.

For future purposes it is useful also to have the corresponding result for the
reaction q")J(p) + qg,(q) — qg,(p’) + qg,(q’). A similar calculation, using instead the
Feynman graphs of Fig. 1.3, gives the scattering amplitude

A i2 Av \?
Ao =24 (56) +8(3) (-5 5)

-1 -1 -1
+ +
(p+q@)*+m: (p—-p)+mi (p—q)+m
A i(Av)?
_ 17 + 1( V)
2 2m?

| | 1
+ + .
1+2p-g/m> 1-2q-q'/m} 1-2p- q'/m,%]
(1.8)

4 See Exercise 1.1 and Appendix B for the proportionality factors.
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° + —— + + crossed

(U157 Thetree graphs that dominate the (, ¢, scattering amplitude. Solid (dotted) lines represent ¢, and ¢b,
particles.

1.1.3 The Low-Energy Limit

For the present purposes it is the low-energy regime that is of most interest: when
the centre-of-mass kinetic energy and momentum transfers during scattering are very
small compared with the mass of the heavy particle. This limit is obtained from the
above expressions by taking |p-¢|, |p-¢’| and |g-¢’| all to be small compared with m?.

Taylor expanding the above expressions shows that both ‘A, and A, , are
suppressed in this limit by powers of (g or ¢")/m,, in addition to the generic small
perturbative factor A:

Ao = 200 (q'f )+o(m;“), (1.9)
mR
while
. )2 L a"y2 . a2
ﬁ,,ﬁ,,a_uzm[(” T rp gy g g) ]+0(m;6). (1.10)
mR

Both of these expressions use 4-momentum conservation, and kinematic conditions
like g*> = 0 ete. to simplify the result, and both expressions end up being suppressed
by powers of g/m, and/or g’/m, once this is done.

The basic simplicity of physics at low energies arises because physical quantities
typically simplify when Taylor expanded in powers of any small energy ratios (like
scattering energy/m, in the example above). It is this simplicity that ultimately under-
lies the phenomenon of decoupling: in the toy model the low-energy implications of
the very energetic qER states ultimately can be organized into a sequence in powers of
m;%, with only the first few terms relevant at very low energies.

1.2 The Simplicity of the Low-Energy Limit ©

Now imagine that your task is to build an experiment to test the above theory by
measuring the cross section for scattering (13, particles from various targets, using
only accelerators whose energies, E, do not reach anywhere near as high as the mass
my. Since the experiment is more difficult if the scattering is rare, the suppression of
the order-A cross sections by powers of g/m, and/or g’ /m, at low energies presents
a potential problem. But maybe this suppression is an accident of the leading, O(A),
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where U(t,1") = exp[—iH (¢ —t')] with a Hamiltonian® H = H((;BR, (f) ) depending on
both the heavy and light fields. But if the initial state has an energy E; < m, it cannot
contain any (j)k particles, and energy conservation then precludes qu particles from
ever being produced by subsequent time evolution.

This means that time evolution remains a linear and unitary transformation even
when it is restricted to low-energy states. That is, suppose we define

Ueg(t,t") := Py U(1,1") Py := exp [—iHm(t — 1)], (1.18)

with Pi = P, being the projection operator onto states with low energy £ < A <
myg. Py commutes with H and so also with time evolution. Because He = PAH Py
if H is hermitian then so must be Hyy and so if U(z,t") is unitary then so must be
Uesr(z,t") when acting on low-energy states.

Furthermore, because the action of H.y is well-defined for states having energy
E < A, it can be written as a linear combination of products of creation and
annihilation operators for the (f), field only (since these form a basis for operators that
transform among only low-energy states).® As a consequence, it must bc possible to
write Heg = Heﬂ[(‘),] without making any reference to the heavy field (;‘),i at all.

But there is no guarantee that the expression for Heﬁ[q‘) ] obtained in this way is
anywhere as simple as is H [(pR, (‘b ]. So the real puzzle is why the effective interaction
found above is so simple. In particular, why is it local,

Held] = f &x Har(x), (1.19)

with He(x) a simple polynomial in (f),(x) and its derivatives, all evaluated at the
same spacetime point?

Ultimately, the simplicity of this local form can be traced to the uncertainty
principle. Interactions, like Eq. (1.12), in H.y not already present in H dcscrlbc
the influence on low-energy (j), articles of virtual processes involving heavy (,f)R
particles. These virtual processes are not ruled out by energy conservation even
though the production of real (ﬁk particles is forbidden. One way to understand
why they are possible is because the uncertainty principle effectively allows energy
conservation to be violated,” Ef = E; + AE, but only over time intervals that are
sufficiently short, Ar < #ii/AE. The effects of virtual qBR particles are necessarily
localized in time over intervals that are of order 1/m,, which are unobservably short
for observers restricted to energies £ <« m,. Consequently, they are described at
these energies by operators all evaluated at effectively the same time.

In relativistic theories, large momenta necessarily involve large energies and since
the uncertainty principle relates large momenta to short spatial distances, a similar
argument can be made that the effect of large virtual momentum transfers on the

3 The convention here is to use (,IJ to denote the fluctuation when this is a non-operator field (appearing

within a path integral, say) and instead use c,b for the quantum operator fluctuation field.

6 See the discussion around Eq. (C.9) of Appendix C for details.

7 More precisely, energy need not be conserved at each vertex when organized in old-fashioned
Rayleigh—Schridinger perturbation theory from undergraduate quantum mechanics classes. Once
reorganized into manifestly relativistic Feynman—Schwinger—-Dyson perturbation theory energy

actually is preserved at each vertex, but internal particles are not on-shell: E # /p? + m?2. Either way
the locality consequences are the same.



3

1.2 The Simplicity of the Low-Energy Limit

low-energy theory can also be captured by effective interactions localized at a single
spatial point. Together with the localization in time just described, this shows that the
effects of very massive particles are local in both space and time, as found in the toy
model above.

Locality arises explicitly in relativistic calculations when expanding the propaga-
tors of massive particles in inverse powers of m,, after which they become local in
spacetime since

d4p efp(x_}')

Q2n)* pr+m?

i k iSO
o —— &Py = (—) O x —y),
m? ,Z‘f 2n)? ( m;‘;) mi &4\ m?

where the ‘T” denotes time ordering, p(x — y) = p- (x — y) = py(x — y)# and
O = 8,0" = =0} + V* is the covariant d’Alembertian operator.

The upshot is this: to any fixed order in 1/m, the full theory usually can be
described by a local effective lagrangian.® The next sections develop tools for its
efficient calculation and use.

G(x,y) := (OITPo(x)()]0) = — (1.20)

1.2.3 Symmetries: Linear vs Nonlinear Realization

Before turning to the nitty gritty of how the effective action is calculated and used, it
is worth first pausing to extract one more useful lesson from the toy model considered
above. The lesson is about symmetries and their low-energy realization, and starts by
asking why it is that the self-interactions among the light q?), particles — such as the
amplitudes of Eqs. (1.9) and (1.10) — are so strongly suppressed at low energies by
powers of 1/m?.

That is, although it is natural to expect some generic suppression of low-energy
interactions by powers of 1/m?, as argued above, why does nothing at all arise at
zeroeth order in 1/m, despite the appearance of terms like /’tqb, in the full toy- model
potential? And why are there so very many powers of 1/m, in the case 0f2¢, — Nq‘),
scattering in the toy model? (Specifically, why is the amplitude for two q‘), particles
scattering to N (;;, particles suppressed by (1/m,)V*%?)

This suppression has a very general origin, and can be traced to a symmetry of
the underlying theory [3—5]. The symmetry in question is invariance under the U (1)
phase rotation, ¢p — ei“’qb, of Egs. (1.1) and (1.2). In terms of the real and imaginary

parts this acts as
O _, [ cosw -—sinw Pr . (1.21)
b, sin@w  cosw O,

A symmetry such as this that acts linearly on the fields is said to be linearly
realized. As summarized in Appendix C.4, if the symmetry is also linearly realized
on particle states then these states come in multiplets of the symmetry, all elements
of which share the same couplings and masses. However (as is also argued in

8 For nonrelativistic systems locality sometimes breaks down in space (e.g. when large momenta coexist
with low energy). It can also happen that the very existence of a Hamiltonian (without expanding the
number of degrees of freedom) breaks down for open systems — the topic of §16.
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Appendix C.4) linear transformations of the fields — such as (1.21) — are insufficient
to infer that the symmetry also acts linearly for particle states, |p) = a;|0), unless
the ground-state, |0}, is also invariant. If a symmetry of the action does not leave the
ground state invariant it is said to be spontaneously broken.

For instance, in the toy model the ground state satisfies (0|¢»(x)|0) = v, and so
the ground state is only invariant under ¢» — ¢'“¢» when v = 0. Indeed, for the toy
model if v = 0 both particle masses are indeed equal: m, = m, = 0, as are all of
their self-couplings. By contrast, when v # 0 the masses of the two types of particles
differ, as does the strength of their cubic self-couplings. Although ¢ — ei"'c,’) always
transforms lmcarly, the symmetry acts inhomogeneously on the deviation q‘) ¢ -
v ‘[_ ((p,,, + 1qb) that creates and destroys the particle states. It is because the
deviation does not transform linearly (and homogeneously) that the arguments in
Appendix C.4 no longer imply that particle states need have the same couplings and
masses when v # 0.

To see why this symmetry should suppress low-energy q;, interactions, consider
how it acts within the low-energy theory. Even though ¢ transforms linearly in the
full theory, because the low-energy theory involves only the single real field qu,, the
symmetry cannot act on it in a linear and homogeneous way. To see what the action
of the symmetry becomes purely within the low-energy theory, it is useful to change
variables to a more convenient set of fields than qb,a and qb,

To this end, define the two real fields y and & by’

X\ ie/vav
=|lv+—]|e . (1.22)
o=+ %)
These have the advantage that the action of the U(1) symmetry, ¢ — ¢'“¢ takes a
particularly simple form,
EoE+ V2vo, (1.23)

with y unchanged, so & carries the complete burden of symmetry transformation.
In terms of these fields the action, Eq. (1.1), becomes

AN

(1.24)

) 0 EME+V(Y)],

1
Auxo'x + 3 (1 -

V2

with

242
V(X)=%(x6v,r+"2) _ (1.25)

Expanding this action in powers of } and & gives the perturbative action § = Sy + Siy,
with unperturbed contribution

1

This shows that y is an alternative field representation for the heavy particle, with
2
X : _
It also shows the symmetry is purely realized on the massless state, as an
inhomogeneous shift (1.23) rather than a linear, homogeneous transformation.

m? = m2 = Av?. & similarly represents the massless field.

9 Numerical factors are chosen here to ensure fields are canonically normalized.
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Such a transformation — often called a nonlinear realization of the symmetry
(both to distinguish it from the linear realization discussed above, and because the
transformations turn out in general to be nonlinear when applied to non-abelian
symmetries) — is a characteristic symmetry realization in the low-energy limit of
a system which spontaneously breaks a symmetry.

The interactions in this representation are given by

’ 2 Av A
Sim=_fd4x [(\%v 4X2)6;15 5"'—\5)( ]6X (1.27)

For the present purposes, what is important about these expressions is that & always
appears differentiated. This is a direct consequence of the symmetry transformation,
Eq. (1.23), which requires invariance under constant shifts: £ — & + constant. Since
this symmetry forbids a £ mass term, which would be « m,2 &2 it ensures & remains
exactly massless to all orders in the small expansion parameters. & is what is called a
Goldstone boson for the spontaneously broken U(1) symmetry: it is the massless
scalar that is guaranteed to exist for spontaneously broken (global) symmetries.
Because & appears always differentiated it is immediately obvious that an amplitude
describing N; & particles scattering into Ny & particles must be proportional to at
least N; + Ny powers of their energy, explaining the low-energy suppression of light-
particle scattering amplitudes in this toy model.

For instance, explicitly re-evaluating the Feynman graphs of Fig. 1.3, using the
interactions of Eq. (1.27) instead of (1.6), gives the case N; = Ny = 2 as

i2)( ; )2[_i(p'q)(1)’-Q’) LT pg-q) | —ip-g)(q-p)
V2v) L (p@?+m;  (p=p)P+mp (p—q)+mp
r-q) (q-9') (p-q')?

+ = +
1+2])-q/m§ 1-2g-q'/m2 1—2p-q’/m£

(1.28)

in precise agreement with Eq. (1.8) — as may be seen explicitly using the identity
(1+x)"" =1 =x+x*/(1 + x) — but with the leading low-energy limit much more
explicit.

This representation of the toy model teaches several things. First, it shows that
scattering amplitudes (and, more generally, arbitrary physical observables) do not
depend on which choice of field variables are used to describe a calculation [8-10].
Some kinds of calculatmns (l1kc loops and renormalization) are more convenient
using the variables q‘)R and qb;, while others (like extracting consequences of
symmetries) are easier using x and &.

Second, this example shows that it is worthwhile to use the freedom to perform
field redefinitions to choose those fields that make life as simple as possible. In
particular, it is often very useful to make symmetries of the high-energy theory as
explicit as possible in the low-energy theory as well.

Third, this example shows that once restricted to the low-energy theory it need
not be true that a symmetry remains linearly realized by the fields [11-13], even
if this were true for the full underlying theory including the heavy particles. The
necessity of realizing symmetries nonlinearly arises once the scales defining the
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low-energy theory (e.g. E < my,) are smaller than the mass difference (e.g. m;)
between particles that are related by the symmetry in the full theory, since in this
case some of the states required to fill out a linear multiplet are removed as part of
the high-energy theory.

1.3 Summary
o

This first chapter defines a toy model, in which a complex scalar field, ¢, self-interacts via a potential
V= 2(¢"p — ') that preserves a U (1) symmetry: ¢» — €’ ¢b. Predictions for particle masses and
scattering amplitudes are made as a function of the model’s two parameters, A and v, in the semiclassical
regime A << 1.This model is used throughout the remaining chapters of Part | as a vehicle for illustrating
how the formalism of effective field theories works in a concrete particular case.

The semiclassical spectrum of the model has two phases. If v = 0 the U (1) symmetry is preserved
by the semiclassical ground state and there are two particles whose couplings and masses are the same
because of the symmetry. Whenv # 0the symmetry is spontaneously broken, and one particle is massless
while the other gets a nonzero massm = VA v.

The model’s symmetry-breaking phase has a low-energy regime, £ << m, that provides a useful
illustration of low-energy methods. In particular, the massive particle decouples at low energies in
the precise sense that its virtual effects only play a limited role for the low-energy interactions of the
massless particles. In particular, explicit calculation shows the scattering of massless particles at low
energies in the full theory to be well-described to leading order in A and £/m in terms of a simple
local ‘effective’ interaction with lagrangian density L = a(d, < A" &)?, with effective coupling:
ag = AJ(4m*). The U (1) symmetry of the full theory appears in the low-energy theory as a shift
symmetry & — & + constant.

Exercises
e |

Exercise1.1 Use the Feynman rules coming from the action § = Sy + Siy: given in
Egs. (1.5) and (1.6) to evaluate the graphs of Fig. 1.2. Show from your result
that the corresponding S-matrix element is given by

(De(p)s PGS | Du(p), il@)) = =i 2T Ay 6* (p + g = p' = q'),

with Ay given by Eq. (1.7). Taylor expand your result for small ¢, g’ to
verify the low-energy limit given in Eq. (1.9). [Besides showing the low-energy
decoupling of Goldstone particles, getting right the cancellation that provides
this suppression in these variables is a good test of — and a way to develop faith
in — your understanding of Feynman rules.]

Exercise 1.2 Using the Feynman rules coming from the action § = Sy + Sy given in
Egs. (1.5) and (1.6) evaluate the graphs of Fig. 1.3 to show

(P, @S| Dup). i)y = =i Ay 6*(p+ g — ' — '),



2.1 Generating Functionals — A Review

The basic connection between operator correlation functions and path integrals is
the expression

6ot ) = [ D[ gt ] lisiol). @

where D = DG --- DHn denotes the functional measure for the sum over
all field configurations, ¢“(x), with initial and final times weighted by the wave
functional, ¥;[¢] and ‘¥},[¢]. appropriate for the initial and final states, ,{(€2| and

|Q);. The special case n = 0 is the example most frequently encountered in
elementary treatments, for which
@10y = [ D4 exfistol). (2.5)
Direct use of the definitions then leads to the following expression for Z[J]:
Z[J] = f.'qu exp {iS[¢] + ijd4x (j)“(x)]a(x)} . (2.6)

and so Z[J = 0] = ,{Q|Q);.

Semiclassical Evaluation

Semiclassical perturbation theory can be formulated by expanding the action within
the path integral about a classical background:* ¢%(x) = @ (x) + P (x), where g
satisfies

(D—S) +7,=0. (2.7)
6(Pa h=
1

The idea is to write the action, S,[¢p] := S[¢p ] + fd4x (p*Jy), as

Slpa+ @1 = Slpal + Sal@a, ¢ 1+ Sml@a, ¢ 1. (2.8)

with
Sy = - f d*x ¢ Aup (@) PP, (2.9)

being the quadratic part in the expansion (for some differential operator A,;). The
‘interaction’ term, S;,, contains all terms cubic and higher order in QB”; no linear
terms appear because the background field satisfies Eq. (2.7).
The relevant path integrals can then be evaluated by expanding
iS i [ d'x @) S i) ! (is; '
exp{l [(P] +1 X q a} - exp{l [(Pcl] + 15 (Pch Z[; ; 1 mt[(Pcl: ]) )
(2.10)

in the path integral (2.6) and explicitly computing the resulting gaussian functional
integrals.

3 1t is sometimes useful to make a more complicated, nonlinear, split & = @ (¢, @) in order to make
explicit convenient properties (such as symmetries) of the action.
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+

Z[J1 = N (det”'A 1+8 + @ + N @ N @

A sampling of some leading perturbative contributions to the generating functional Z [J] expressed
using Eq. (2.11) as Feynman graphs. Solid lines are propagators (A~") and solid circles represent
interactions that appearin S,,. 1-Particle reducible and 1P| graphs are both shown as examples at two
loops and a disconnected graph is shown at four loops. The graphs shown use only quartic and cubic
interactions in §,

int*

This process leads in the usual way to the graphical representation of any
correlation function. Gaussian integrals ultimately involve integrands that are powers
of fields, leading to integrals of the schematic form*

f D0 2T G (x1) - G (x) oc (det™2A)

x (a7 AT 4 (perms)],

(2.11)

if n 1s even, while the integral vanishes if n is odd. Here, the evaluation ignores a
proportionality constant that is background-field independent (and so isn’t important
in what follows). The interpretation in terms of Feynman graphs comes because the
combinatorics of such an integral correspond to the combinatorics of all possible
ways of drawing graphs whose internal lines represent factors of A~! and whose
vertices correspond to interactions within Siy.

Within this type of graphical expression Z[J] is given as the sum over all vacuum
graphs, with no external lines. All of the dependence on J appears through the
dependence of the result on @, which depends on J because of (2.7). The graphs
involving the fewest interactions (vertices) first arise with two loops, a sampling of
which are shown in Fig. 2.1 that can be built using cubic and quartic interactions
within S,

As mentioned earlier, this includes all graphs, including those that are discon-
nected, like the right-most four-loop graph involving four cubic vertices in Fig. 2.1.
Graphs like this are disconnected in the sense that it is not possible to get between
any pair of vertices along some sequence of contiguous internal lines.

Although simple to state, the perturbation expansion outlined above in terms of
vacuum graphs is not yet completely practical for explicit calculations. The problem
is the appearance of the background field ¢ in the propagator (A™!),. Although
Agp(x,y) = —52S/é(f)“(x)5¢)b(}') itself is easy to compute, it is often difficult to
invert explicitly for generic background fields. For instance, for a single scalar field
interacting through a scalar potential U(¢) one has A(x, y) = [-U+U"(¢)] S (x—y)
and although this is easily inverted in momentum space when ¢ is constant, it is more
difficult to invert for arbitrary @ (x).

This problem is usually addressed by expanding in powers of J,(x), so that the
path integral is evaluated as a semiclassical expansion about a simple background

4 This expression assumes a bosonic field, but a similar expression holds for fermions.
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—x

The Feynman rule for the vertex coming from the linear term, S, in the expansion of the action. The cross
represents the sum 65/6¢" + J,.

configuration, g, that satisfies (65/0¢“)(¢ = @) = 0 instead of Eq. (2.7). The
Feynman graphs for this modified expansion differ in two ways from the expansion
described above: (i) the propagators A~! now are evaluated at a J-independent
configuration, ¢, which can be explicitly evaluated if this configuration is simple
enough (such as, for instance, if ¢ = 0); and (ii) the term ¢“J, in the exponent of
the integrand in (2.6) is now treated as an interaction. Since this interaction is linear
in ¢“ it corresponds graphically to a ‘tadpole’ contribution (as in Fig. 2.2), with the
line ending in a cross whose Feynman rule is J, (x).

Within this framework, the Feynman graphs giving Z[J] are obtained from those
given in Fig. 2.1 by inserting external lines in all possible ways (both to propagators
and vertices), with the understanding that the end of each external line represents a
factor of J,(x). This kind of modified expansion gives Z[J] explicitly as a Taylor
expansion in powers of J.

2.1.1 Connected Correlations

As Fig. 2.1 shows, the graphical expansion for Z[J] in perturbation theory includes
both connected and disconnected Feynman graphs. It is often useful to work
instead with a generating functional, W[./], whose graphical expansion contains only
connected graphs. As shown in Exercise 2.4, this is accomplished simply by defining
Z[J] = exp{iW[J]} [5, 15], since taking the logarithm has the effect of subtracting
out the disconnected graphs. This implies the path integral representation

exp{iW[J’]} =ff£)qb exp{iS[¢]+ifd4x¢r“Jd}. (2.12)

The connected, time-ordered correlation functions are then given by functional
differentiation:

a .. hOn e (_iyn—1 5”W[J]
(T (x1) -+ " (xa) e = (1) (wal(xl)---610,,(xn)),_0 (2.13)
For example,
e (OWL (1 8ZIT\  oQItIQ:
((P (X))U B ((SJ{J(-X))]_O - l(Z[J] (SJJJ()') )_;_0 B (,<Q|Q),- ’ (214)
while,
o 8PWLJ]
T[o“ b e = W\
TP (x) " (MD ](bJ{,(x)OJ,,(y)),_O
oQUT [P (x) O (1)]1€2)s
= 2.15
RGNS @1

~ (,mqb“(xnmf) ((,<ﬁ|qb”(y)|n>f)
rJ(ng)f ()(QIQ>J' ’
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and so on. As is easily verified, the graphical expansion of the factor ,(Q|T[¢(p“(x)
c,b”( ¥)]1€2); in this last expression corresponds to the sum over all Feynman graphs
with precisely two external lines, corresponding to the fields ¢“(x) and ¢”(y). The
graphical representation of a term like ,,(Q[p“(x)|Q); is similarly given by the sum
over all Feynman graphs (called tadpole graphs) with precisely one external line,
corresponding to (% (x).

Dividing all terms by the factors of ,{Q2]Q); in the denominator is precisely
what is needed to cancel disconnected vacuum graphs (i.e. those disconnected
subgraphs having no external lines). But this does not remove graphs in
o(QIT[D(x) ¢”(¥)]IQ); corresponding to a pair of disconnected ‘tadpole’
graphs, each of which has a single external line. These disconnected graphs
precisely correspond to the product ,{(Q|p“(x)|Q); (,<Q|q‘)” (v)|€2); in (2.15),
whose subtraction therefore cancels the remaining disconnected component from
(TP (x) P (N

A similar story goes through for the higher functional derivatives, and
shows how correlations obtained by differentiating W have their disconnected
parts systematically subtracted off. Indeed Egs. (2.13) and (2.12) can be used as
non-perturbative definitions of what is meant by connected correlations functions
and their generators [15].

2.1.2 The 1PI (or Quantum) Action *

As Egs. (2.12) and (2.4) show, the functional Z[J] = cxp{iW[J]} can be physically
interpreted as the ‘in-out’ vacuum amplitude in the presence of an applied current
Jo(x). Furthermore, the applied current can be regarded as being responsible for
changing the expectation value of the field, since not evaluating Eq. (2.14) at J, = 0
gives

14

P (x) =P (x)), = AT (2.16)

as a functional of the current J,(x). However, it is often more useful to have the
vacuum-to-vacuum amplitude expressed directly as a functional of the expectation
value, @“(x), itself, rather than J,(x). This is accomplished by performing a
Legendre transform, as follows.

Legendre Transform

To perform a Legendre transform, define [15]
Ip]:=W[J]- f d*x “J,, (2.17)

with J,(x) regarded as a functional of @“(x), implicitly obtained by solving
Eq. (2.16). Once I'[g ] is known, the current required to obtain the given ¢“(x)
is found by directly differentiating the definition, Eq. (2.17), using the chain rule
together with Eq. (2.16) to evaluate the functional derivative of W[J]:

or _fd4' 6-’[)(,") oW 5-’0()’)

_ Cnaw - [dty oty D
59 (x) spe(x) () e f YO Spaiey = TP
(2.18)
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In particular, this last equation shows that the expectation value for the ‘real’
system with J, = 0 is a stationary point of I'[¢ ]. In this sense I'[¢ ] is related to {(¢“)
in the same way that the classical action, S[¢ ], is related to a classical background
configuration, ¢¢. For this reason I'[¢ ] is sometimes thought of as the quantum
generalization of the classical action, and known as the theory’s quantum action.

This similarity between I'[¢ ] and the classical action is also reinforced by other
considerations. For instance, because the classical action is usually the difference,
S = K -V, between kinetic and potential energies, for time-independent configu-
rations (for which the kinetic energy is K = 0) the classical ground state actually
minimizes V = —S§. It can be shown that for time-independent systems — i.e. those
where the ground state |Q) is well-described in the adiabatic approximation — the
configuration ¢ = () similarly minimizes the quantity —T. In particular, for
configurations ¢“ independent of spacetime position the configuration minimizes
the quantum ‘effective potential’ V(@) = —=I'[¢]/(Vol), where “Vol’ is the overall
volume of spacetime.

One way to prove this [16, 17] is to show that, for any static configuration, ¢, the
quantity —I'[@ ] can be interpreted as the minimum value of the energy, (¥|H|¥),
extremized over all normalized states, |'V'), that satisfy the condition (¥[p“ (x)|¥) =
@“(x). The global minimum to —I'[¢ ] then comes once ¢ is itself varied over all
possible values.

Semiclassical Expansion

How is I'[¢ ] computed within perturbation theory? To find out, multiply the path
integral representation for W[J], Eq. (2.12), on both sides by exp {—i f d*x (¢ J“)} .
Since neither @ nor J,, are integration variables, this factor may be taken inside the
path integral, giving

exp{il"[(p]} = exp {iW[J] —i f d*x qo“.](,}

:ffqu exp{i5[¢]+ifd“x(¢“—cp“)J,,,} (2.19)

= f:DqS exp {iS[go + (f)] +ifd4x qg“Ju} .

The last line uses the change of integration variable ¢¢ — G“ := ¢p¢ — @*.

At face value, Eq. (2.19) doesn’t seem so useful in practice, since the dependence
on J, inside the integral is to be regarded as a functional of ¢, using Eq. (2.18). This
means that [[¢ ] is only given implicitly, since it appears on both sides. But on closer
inspection, the situation is much better than this, because the implicit appearance of
I" through J,, on the right-hand side is actually very easy to implement in perturbation
theory.

To see how this works, imagine evaluating Eq. (2.19) perturbatively by expanding
the action inside the path integral about the configuration ¢“ = ¢“, using

Slp+ 1= S+ Sal@. P1+ Sinl@, P 1+ Sl P1. (2.20)

This is very similar to the expansion in Eq. (2.10), apart from the term linear in (f)”,
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displacement of ¢“ away from a sufficiently simple background for which A;},
can be evaluated).
In this case, using

(eseren)
567 05" ),

L P
5¢a(x) 002 ), 3¢a(x) 007 () 56<(2) ) © ’
(2.26)

and (Ao — 8A)™' = A1 % (OA A;')" shows that the required Feynman graphs are
obtained by inserting external lines in all possible ways (both to the internal lines and
the vertices) in the 1PI vacuum graphs of Fig. 2.1, with the external lines representing
the Feynman rule ¢ (x).

2.2 The High-Energy/Low-Energy Split ¢

So far, so good, but how can the above formalism be used to compute and use low-
energy effective actions? The rest of this chapter specializes to theories having two
very different intrinsic mass scales — like m, < m, of the toy model in Chapter | —in
order to address this question. After formalizing the split into low- and high-energy
theory in this section, the following two sections identify two useful ways of defining
a low-energy effective action.

2.2.1 Projecting onto Low-Energy States

The starting point, in this section, is to define more explicitly the split between low-
and high-energy degrees of freedom. There are a variety of ways to achieve this split.
Most directly, imagine dividing the quantum field ¢¢ into a low-energy and high-
energy part: ¢“(x) = I“(x) + h*(x), with

19(x) := PA®(x)Pa, (2.27)

where Py = Pf\ denotes the projector onto states having energy £ < A. To be of
practical use, the scale A should lie somewhere between the two scales (such as m,
and m,) that define the underlying hierarchy (m, < m;) in terms of which the low-
energy limit is defined for the theory of interest.

This can be made more explicit in semiclassical perturbation theory, where ¢¢ =
g+ qf)". Since in the interaction representation the quantum field satisfies the
linearized field equation, Aubcf)b = 0, one can decompose qga (x) in terms of a basis
of eigenmodes, u, (x),

$(x) = Z[a,,uf,(x) +apul’ (). (2.28)
P

For time-independent backgrounds these eigenmodes can be chosen to simultane-
ously diagonalize the energy, id,u,, = €, up,, and so the low-energy part of the field
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is that part of the sum for which the mode energies are smaller than the reference
scale A. That is,

[9(x) = Z [a,,u (x) +a, “*(x)] (2.29)
Ep<h
and so
B = 4 — [ = Z [ () + s (x)]. (2.30)
Ep=A

Of course, one might also implement a cutoff more smoothly, by weighting high-
energy states in amplitudes by some suitably decreasing function of energy rather
than completely cutting them off above A.

It is natural at this point to worry that a division into high- and low-energy modes
introduces an explicit frame-dependence into the problem. After all, a collision that
appears to involve only low energies to one observer would appear to involve very
high energies to another observer who moves very rapidly relative to the first one.
Although this is true in principle, in practice frame-independent physical quantities
(like the scattering amplitudes examined for the toy model in Chapter 1) only depend
on invariant quantities like centre-of-mass energies, and all observers agree when
these are large or small. For scattering calculations the natural split between low-
and high-energies is therefore made in the centre-of-mass frame. The point is that in
order to profit from the simplification of physics at low energies, it suffices that there
exist some observers who see a process to be at low energies; it is not required that
all observers do so.

Notice that correlation functions of low-energy states necessarily do not vary very
quickly with time. This may be seen by inserting a complete set of intermediate
energy eigenstates between any two pairs of low-energy fields, such as

QU1 (x) 1P () 1) = o(QIPAG (X) P2 )P () PA I,
= > QUG WIPXPIF"MI,  (231)

Ep<A
which uses Po|Q) = [Q) and Pp|p) = |p) for low-energy states, while P|p) = 0 for
high-energy states. This result clearly has support only for frequencies w = ¢, < A.
In relativistic and translation-invariant theories, for which low energy also means
low momentum, the same argument shows that correlations also have slow spatial
variation.

Example: The Toy Model

To make this concrete, consider the toy model of Chapter 1. In this case, there are
two quantum fields, qb, and qbk (or equivalently, & and X). and the two intrinsic
mass scales are m, = 0 < m,. The energy eigenmodes for these are labeled by
4-momentum, 1, (x) e'P*, and the linearized field equation (-0 + mz)(fJ =0,

relates the energy to the momentum by ¢° = ¢, = g for qg, and p’ = ¢, = \[p* + m}
for qBR.

In this case, the useful choice is m, < A < m,, which is possible because of
the hierarchy m, < m,. With this choice, the light fields consist only of the long-
wavelength modes of ¢,,
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f(x) = Z [cq 9 4 c; e’j(“"], (2.32)

€g<h

while the heavy fields contain all of the qa.le modes together with the short-wavelength
modes of ¢,

b,(x) = Z [cq e + c:, e_i{”] and  Dy(x) = Z[bf’ P + b;‘, e‘”’x]. (2.33)

€g>A P

2.2.2 Generators of Low-Energy Correlations *

The next step is to seek generating functionals specifically for low-energy correlation
functions, and to investigate their properties. The key tool for this purpose is the
observation made above that the correlation functions themselves can vary only over
time and length scales larger than A~".

Imagine now defining the generating functional, Z.[J], for the time-ordered in-
out correlations of only the low-energy fields, [“(x). This can be done simply by
restricting the definition, Eq. (2.2), of Z[J/], to include only correlation functions
that vary slowly in space and time (i.e. only over scales larger than A™!), leading to
the result

o i
Zlc[]] = Z n_! f d4X] e d4an|‘: “n (X], e axri)jtu (xl) et Jan (-xn)' (234)
n=0 "~
Because the low-energy correlation functions only vary slowly in space and time, the
same is true of any currents, J,(x), appearing in Z[J]. That is, if the current is split
into long- and short-wavelength Fourier modes, J,(x) = j,(x) + Ju(x), with

ja® = japrer, (2.35)

slowly varying

then the generating functional for low-energy correlations, Z[J], is simply the
restriction of the full generating functional to slowly varying currents:

Zie[j]=Z[j.J = 0]. (2.36)

Here, the precise definition of ‘slowly varying” in Eq. (2.35) depends on the details
of the particle masses and the way the cutoff A is implemented — c./. Eq. (2.29) for
example — for the quantum states.

It might seem bothersome that the generating functionals for low-energy correla-
tion functions depend explicitly on the value of A, as well as on all of the details of
precisely how the high-energy modes are cut off. One of the tasks of later chapters
is to show how this dependence can be absorbed into appropriate renormalizations
of effective couplings, so that predictions for physical processes (like scattering
amplitudes) only depend on physical mass scales like m, (rather than A or other
definitional details).

For relativistic, translationally invariant theories a slightly more convenient way
to break Fourier modes into slowly and quickly varying parts is to Wick rotate [18]
to euclidean signature, {x°,x} — {ix* x}. In this case, the time-components of any
4-vector must be similarly rotated, so the invariant inner product of two 4-vectors
becomes
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p-a=puq" =-p°¢"+p-q—-+p'd" +p-q=(p- .. (2.37)
This ensures that the invariant condition p,p" = (p*)? + p* < A? excludes large
values of both |p| and p* (unlike for Minkowski signature, where pubt = —-(p*)? +
p? < A? allows both |p| and p° to be arbitrarily large but close to the light cone).
The generator, Wy.[j], of low-energy connected correlations can be defined as
before, by taking the logarithm of Z,.[], leading to the path integral representation

exp{iWi[/]} :fi)qb exp {iS[qu]+ifd4xqb"ju}. (2.38)

The main difference between this and the expression for W[J] is the absence of
currents coupled to the high-frequency components of ¢“. That is, if ¢ = ¢ + h¢
is split into slowly varying (‘light’, ) and rapidly varying (‘*heavy’, h*) parts, along
the same lines as Eq. (2.35) for J,, then Eq. (2.38) becomes

exp|iWic[j1} =f:Dbe exp {iS[l+I)]+ifd4xl“ju}. (2.39)

Physically, this states that a restriction to low-energy correlations can be obtained
simply by restricting oneself only to probing the system with slowly varying currents.

2.2.3 The1LPI Action

At this point, it is hard to stop from performing a Legendre transformation to
obtain the generating functional, I'.[£], directly in terms of the low-energy field
configurations, %, rather than j,. To this end, define

el €] := Wee[j] - fd4-’f tJa, (2.40)

with j, = j,[f] regarded as a functional of £ found by inverting the relation £¢ =
£“[j] obtained from

_ OWe

£° = 241
57 (2.41)
with the result — ¢.f Eq. (2.18)
. 5rle
«=- . 242
J 5¢a (2.42)

It is important to realize that although I'l.[{] obtained in this way only has support
on slowly varying field configurations, {“(x), it is rot simply the restriction of
I'l¢] = T'[¢, k] to long-wavelength configurations: A := W /07, = 0. To see
why not, consider its path integral representation:

exp{ile[(]} = f@t@h exp {iS[l,h] + if d*x (1 —f“)j,,}
= foDb exp {iS[f +0,0]+i f d4xf“ja} ) (2.43)
For comparison, the earlier result, Eq. (2.4), for I'[¢p ] = I'[£, h] is

oxp{iTic[¢, 1} :f@?@ﬁ exp{iS[£+f,f1+ﬁ]+ifd4x(f“ju+f)“ja)}.
(2.44)
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The key point is that the condition & = 0 is not generically equivalent to the condition
Ja(x) = 0 that relates I'le[£] to I'[£, h]. Instead, the condition 7, = 0 states that the
short-wavelength part of the field should be chosen as that configuration, 4“ = hl‘;(f ),
that satisfies

ol
(—a) =0, (2.45)
oh h=hj(£)

In particular, the vanishing of §, means that the short-wavelength components
of the current are not available to take the values 7, = —0I'/0h” they would have
taken in the Legendre transform of W[J] = W[/, 7]. They are therefore not able
to cancel the one-particle-reducible graphs that can be broken in two by cutting a
single b line. The quantity I'e[¢] is therefore given as the sum of one-light -particle
irreducible (or 1LPI) graphs, which are only irreducible in the sense that they cannot
be broken into two disconnected pieces by cutting a /ight -particle, i“, line.

Example: The Toy Model

How does all this look in the toy model of Chapter 1?7 In this case, with A chosen
to satisfy m, <« A <« my, the ‘light’ fields consist only of the low-energy modes of
the massless field, & (or (}5,), and the ‘heavy’ fields consist of both the high-energy
modes of & together with all of the modes of the massive field x (or cf;,,). The 1LPI
generator of low-energy connected correlation functions then is

ewfirtel) = [ Déot e {iste + Lnei [ i), o

with £% and j, = —8Te/8& only varying over times and distances longer than A™!.

Recall that small A controls a semiclassical expansion, and imagine computing
[e[£] in the leading, classical approximation. As argued earlier (and elaborated in
§3 below), in this limit the full 1PI generator reduces to the classical action: I'[£, y] =~
S[&, x1, explicitly given in Eq. (1.24),

i) = [ ds

with

2 2

1 1 :
= Bux 0" x + 3 (1 + {%) 0 EatE + V()()] . (247)
v

3,0 A 4

2
r 2 o
ekt (2.48)

Voo =50+
2 2V2

In general, the above arguments say that I.[£] = T[&, x1e(&)], where xi(E)

is obtained by solving OI'TE, x1/6x = 0 (c.f Eq. (2.45)). So in the classical

approximation [ [&] = S[E, x1.(£)], where Eq. (2.45) in the classical approximation

says x1.(&) is found by solving the classical field equation

| 1 3Av A
2 2 3
(_m e o aysa“a) o=~ Q- T - S @49
Using this in the classical action leads (after an integration by parts) to
Av

A
Xit+ — L], (2.50)

T _ 4 71 X]E Ju
S[é.x|c(<,)]—de[ 2(1+ )aysa £+ =

V2v 42

where Y1.(&) is to be interpreted as the function of £ obtained by solving (2.49).
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2.3.1 Definitions

A good starting point for describing the Wilson action is the path integral expression
for the 1LPI generator, Eq. (2.43):

exp{ile[]} =fz)z'z)b exp {iS[f+I+ h]+ifd4xf“ja}. (2.57)

What is noteworthy about this expression is that — because the currents are chosen
to explore only low-energy quantities — the heavy field, ), appears only in the
classical action and not in the current term. As a consequence, all possible low-
energy influences of the heavy field must be captured in the quantity

exp{is, [/} := f@b exp{iS[/ + 5]}, (2.58)

in terms of which the full 1LPI action is given by

exp{ilic[(]} =ffl)f exp{iS,.-[£+f]+ifd4xf“j€,}. (2.59)

Eq. (2.58) defines the Wilson action, obtained by integrating out all heavy degrees
of freedom having energies above the scale A. It has several noteworthy features,
which are explored in detail throughout the rest of the book.

* As the definition shows, the Wilson action provides the earliest place in a
calculation to systematically identify, once and for all, the low-energy influence
of the heavy degrees of freedom §). Best of all, this can be done in one fell swoop,
before choosing precisely which observable or correlation function is of interest in
a particular application.

» For practical applications, most real interest is in obtaining the Wilson action as
a series expansion in inverse powers of the heavy mass scales in the problem of
interest. As shall be seen in some detail, at any fixed order in this expansion the
Wilson action is a local functional, S, = f d*x €,(x), with £,(x) being a function
of the light fields and their derivatives all evaluated at the same spacetime point.

+ What is striking about Eq. (2.59) is that the Wilson action, S,, appears in the
expression for the generator, I, of low-energy correlators, in precisely the way
that the classical action, S, appears in the expression, Eq. (2.19), for the generator,
I', of generic correlators. This suggests that the classical action of the full theory
might itself be better regarded as the Wilson action from some even higher-energy
theory.

* Eq. (2.58) shows that S, depends in detail on things like A and precisely how
the split is made between the high- and low-energy sectors, since these are buried
in the definitions of the split between h* and [“. So it is misleading to speak about
‘the’ Wilson action, rather than ‘a’ Wilson action. Yet we know that A cannot
appear in any physical observables, because it is just an arbitrary artificial scale
that is introduced for calculational convenience. Part of the story to follow must
therefore be why all these calculational details in S, drop out of observables. The
outlines of this argument are already clear in Eq. (2.59), which shows that the A
dependence introduced by performing the integration over D5 is later canceled
when integrating over the rest of the fields, DI, since the total measure D¢ =
DI Dh is A-independent.
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In semiclassical perturbation theory, the arguments of earlier sections show that
Eq. (2.58) gives S, as the sum over all connected vacuum graphs — not just 1PI
graphs, say — using Feynman rules computed for the ‘high-energy’ fields with
the ‘low-energy’ fields regarded as fixed background values. (Recall in this split
that high-energy fields can include the high-energy modes of particles with small
masses.) Eq. (2.59) then says to construct Feynman graphs using propagators and
vertices for the light fields defined from S, with I, then obtained by computing all
1PI graphs in this low-energy theory. This combination reproduces the set of 1LPI
graphs using the Feynman rules of the full theory.

In particular, since any tree graph with an internal line is one-particle reducible,
this means that Ie[¢] =~ S,[¢] within the classical approximation (no loops).
Furthermore, in the same approximation both are related to the classical action of
the full theory by

D[] = S, [€] = S[E, ()] (classical approximation), (2.60)

where h% = hi(f) is obtained (in the classical approximation) by solving
(08/0h*)p=p, ¢y = 0. But — as is seen more explicitly below — I'e[£] and S,[f]
need no longer agree once loops are included.

It is the Wilson action that is the main tool used in the rest of this book. But why
bother with S, given that I, also captures all of the information relevant for low-
energy predictions? As later examples show in more detail, in real applications it is
often the Wilson action that is the easier to use, since it exploits the simplicity of the
low-energy limit as early as possible. It plays such a central role because it has two
very attractive properties.

First, it contains enough information to be useful. That is, any low-energy
observable can be constructed from low-energy correlation functions (and so also
from I'), and because I'. can be computed from S, using only low-energy degrees
of freedom, it follows that S, carries all of the information necessary to extract the
predictions for any low-energy observable.

But it is the second property that makes it such a practical tool: it doesn’t contain
too much information. That is, the Wilson action is the bare-bones quantity that
contains all of the information about the system’s high-energy degrees of freedom
without polluting it with any low-energy details. Unlike I'., the Wilson action is
constructed by integrating only over the high-energy degrees of freedom. This means
that there is a maximal labour saving in exploiting any simplicity in S, since
this simplicity is present before performing the rest of the low-energy part of the
calculation.

Example: The Toy Model

To better understand how the Wilson action is defined, and how it is related to the
low-energy 1LPI generator, it is useful to have a concrete example to examine in
detail. Once again the toy model of Chapter 1 provides a useful place to start.

Since I, and S, only begin to differ beyond the classical approximation, imagine
computing both [ and S, at one loop. According to its definition, the Feynman
graphs contributing to S, can involve only the high-energy degrees of freedom in the
internal lines, while those contributing to I, also involve virtual low-energy states.
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(a) (b) (c) (d (e)
Tt ) + )
® (g) (h)

@ ) (k)

One-loop graphs that contribute to the (J,, €9 &) interaction in the Wilson and 1LPI actions using the
interactions of Egs. (1.24) and (1.25). Solid (dotted) lines represent x (and &) fields. Graphs involving
wave-function renormalizations of & are not included in this list.

For both S, and I’ the graphs can be one-particle reducible when cutting heavy-
particle lines, but for I'i. the graphs must be one-particle irreducible when light-
particle lines are cut.

For concreteness’ sake, for the toy model consider the one-loop contributions to
the effective interaction

a f d*x (8,E07 &), (2.61)

in both I, and S,. The relevant Feynman graphs are shown in Fig. 2.4, using
Feynman rules appropriate for the y and & fields using the interactions given in
Egs. (1.24) and (1.25). (An equivalent set of graphs could also be written for the
variables qu),f and (,‘), Although both ultimately give the same physical results, they
can differ in intermediate steps, and which is more useful depends on the application
one has in mind.)

Since all of the internal lines for Feynman graphs (a) through (e) involve only the
field yx, and since all modes of this field are classified as ‘high-energy’ — c.f the
discussion in §2.2.1 — all five of these graphs contribute to both S, and T'.. In order
of magnitude, each contributes to the effective interaction an amount, as follows
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1
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sraph(e -— |- — = , 2.66
@graph( ;06( 2\5) ( \Ev) e~ ToAre (2.66)

where the powers of 1/m? come from the internal lines that do not appear within a
loop, since these are evaluated at momenta much smaller than m,. The contribution
of the loop integrals themselves are of order

R 1V Q
L] = oC > In|—
Q2m)* \p? + m; 16n2  \m,

o g 1 2
d L,= . 2.67
o ’ f (2m)* (p2+m§) “ Ton2 (2.67)

Here Q > m; is a cutoff that is introduced because the loop in the full theory is UV
divergent. This divergence is ultimately dealt with by renormalizing the couplings of
the microscopic theory; a point to be returned to in more detail shortly.

For the present purposes — keeping in mind that m?> = A v? — what is important
is that graphs (a) through (c) clearly contribute to the coupling a (in both §,, and
Ie) an amount of order aj_1p0p « Li/v* « (1/47v%)*In (Qz/mﬁ). Graphs (d) and
(e) instead contribute an amount of order ay_joop « (1/471v%)? (Qz /mﬁ) Once the
UV divergent function of Q/m, is renormalized into an appropriate coupling, the
remaining coefficient for each of these loop contributions is suppressed by a factor
of A/167? relative to the tree-level result, ayee = 1/(4A v?), in agreement with the
discussion surrounding Eq. (2.24). As such, they all contribute to the coefficient a,
of Eq. (1.16).

The difference between S, and I arises in graphs (f) through (k), with S,, only
receiving contributions where the momentum in the internal & propagators is larger
than A, whereas there is no such a restriction for I'.. The contribution from graphs
(1) through (k) when all loop momenta are large is of order
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where the new loop integrals are also logarithmically divergent in the UV, and so up
to numerical factors are again or order L, in size. These contribute to ¢ an amount
comparable to the size of graphs (a) through (c). By contrast, graphs (f) through (h)

give the results,
4
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agraph(ﬂ o= i = —4

2=
2y mi 4vim)

2
1 1\ Ls L
Aoraphig) < | — -— === 2.69
graph(g) ( '\6\)) 4V2) FH: 81741?1: ( )

( 1 )3 ( Av ) Ls Ly

dgr, o | —— - — = —,

et ® ST T 2va ) mE T sl

and so are of order (1/v*)(L3/m?), where the & loop has the ultraviolet behaviour

o g4 P pz k ot
eny’ (?) " Ten?’
where k = 2 for graph (f) and & = 1 for graphs (g) and (h).
All of these graphs are dominated by large momenta (small wavelengths), which
is why they diverge for large . Although a more systematic treatment of these
UV divergences (in particular how to treat them using dimensional regularization)
is given in Chapter 3, there is a conceptual point to be made concerning their Jower
limit of integration. The point is that for graphs (f) through (k) this lower limit differs
when computing I, and S,,. For I}, the contributions to the effective interaction

Ly= (2.70)

a. [ @t @uc0mer e @)
integrate over all momenta. But for S, in the contribution to
a, f d*x (8,04 &) c 8, (2.72)

the integrations exclude momenta smaller than A (for which the internal & propaga-
tors are then ‘light” degrees of freedom) that are not integrated out in the path integral
representation of S,,.

Take, for instance, graphs (i) through (k) of Fig. 2.4. Since A << m,, the predicted
coeflicient for I'y, differs from the coefficient in S, by an amount of order

1 dt 1V 1 (A
@i = ay() = — ”( )(”) (4) 2.73)

=] x
o Qm* \pr+m?) \p? l6m2vt \m

The suppression by powers of A/m, ensures this difference is numerically small,
although that turns out to be an artefact of this particular example. It is nonetheless
conceptually important. In particular, the A-dependence of the right-hand side is
associated with the Wilsonian coupling a,(A) because the scale A does not appear
at all in the definition of ai. (which, after all, is defined in terms of integrations over
modes at all scales).

How can these different values, aj. # a,, lead to the same physical predictions
for observables? The answer lies in Eq. (2.59), which states that I, is obtained
from S, by integrating over the light degrees of freedom, using S, rather than §
as the action. It is this that fills in those parts of [, not produced through loops
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with

L= a0l b, ++), (2.78)
n
a sum of powers of ¢ and its derivatives all evaluated at the same point, and (for
relativistic systems) built to transform like a Lorentz scalar. If the low-energy theory
is unitary then £, should also be real. The goal is to use dimensional analysis to
identify the power of M appearing in each effective coupling, ¢,,.

This book uses ‘fundamental’ units for which® 7 = ¢ = 1, and so the (engineering)
dimension of any quantity can be regarded as a power of energy or mass (see
Appendix A for conversions between these and more conventional units). In these
units the action, S, itself is dimensionless — i.e. has dimension (encrgy)“ — or, more
precisely, S,/h is dimensionless. Similarly, time and space coordinates, ¢ and x,
have dimension (energy)~!, while derivatives like dy have dimension of energy. It
is common to use the notation [A] = p as a short form for the statement ‘quantity A
has dimension (energy)” in units where # = ¢ = 1°, and in this notation [S,] = 0,
[x#]=-land[d,] = 1.

Because the action is related to the lagrangian density by Eq. (2.77), in four
spacetime dimensions it follows that €, has dimension (energy)* — i.e. [¢,] = 4 —
because the measure, d*x, satisfies d4x] = —4. If M is the only relevant mass scale
in the problem and if a particular interaction, O, has dimension [O,] = A, then
because [¢,0,] = 4 it follows that [c,] = 4 — A,,, and so one expects

On]l=Ar = ¢ with p, = A, -4, (2.79)

An
= Mpn
where a,, 1s dimensionless. To the extent that it 1s M that sets the scale of ¢, in this
way (and much of the next chapter is devoted to showing that the low-energy theory
often can be set up so that it is), higher-dimensional interactions in S, should be
expected to be more suppressed at low energies by higher powers of M.

Further progress requires a way to compute the dimension, A,,, of a given operator,
O,. For weakly interacting systems dimensions can be computed in perturbation
theory. To see how this works, consider a real scalar field, ¢, and suppose the regime
of interest is one where it is relativistic and very weakly interacting. This means the
action S, = Sy + Sint 18 dominated by its kinetic term

1
So = -3 f d*x Oup ' P, (2.80)
while all remaining terms, lumped together into Siy; = fd4x Line with
2
ms 5 4 €60 C42 5 Ca4 2
Lint = 3 ¢"+eag P+ el (Pﬁ + Az Oy o+ F(ay(payq‘)) Foen,

(2.81)

are assumed to be small. In this expression a symmetry of the form ¢ — —¢ is
imposed (for simplicity) so that only terms involving an even power of ¢ need to be
considered. Furthermore, appropriate powers of the cutoff, A, for the Wilsonian EFT

¥ When temperatures are considered, units are also chosen with Boltzmann’s constant satisfying ks = 1,
so temperature can also be measured in units of energy.
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are included explicitly in the coefficients for each effective interaction for reasons
now to be explained.

Any effective coupling premultiplying S is imagined to be removed by appro-
priately rescaling ¢, with the choice of 5 in Eq. (2.80) called canonical normal-
ization. (The reasons for using this normalization are elaborated below, and in
Appendix C.3.) Given this normalization, the dimension, [¢» ], of the (scalar) field
¢ is then determined by demanding that [£y] = 4, and so

4=[3,p0tp]=2+2[0], (2.82)

which implies that [¢p] = 1 (or ¢ has dimensions of energy). With this choice, an
identical argument shows [m"‘] = 2, and so m also has dimensions of energy (as
expected, since m is interpreted as the ¢»-particle’s mass).

A similar story applies to all of the other terms in Sj,,, and shows that the factors of
A in (2.81) are extracted so that the remaining effective couplings are dimensionless:
[cn.a] = 0. For later purposes notice that a term in Siy involving n powers of ¢» and d
derivatives comes premultiplied by A” with p = 4 —n —d, and so the infinite number
of local interactions that are not written explicitly in (2.81) have effective couplings
with only negative powers of A.

The goal is to identify the domain of validity of the assumed perturbative hierarchy
between Sy and Sj;. The next few paragraphs argue that perturbative arguments are
appropriate when the dimensionless couplings are assumed to be small: |¢, 4| < 1,
following arguments made in [19]. To this end, consider evaluating $,,[¢] at a wave-
packet configuration ¢ (x) = fr(x) e** where Jx(x) is a smooth envelope that
is order unity for a spacetime region of linear size 27 /k in all four rectangular
spacetime directions. For such a configuration spacetime derivatives are of order
Oupx ~ ky¢r and the spacetime volume integral is of order fd"x ~ (2m/k)*,
and so

21 4 C
Sulr] ~ (T) [k2 OF +mPOf + cag Pf + AL; o
2 4

k=Y | k
+ 64!2 (P) q)i + Cq4 (F) (‘bi + .-

[ —

(2.83)
~@2n)?

2 m’ 2 4 k> 6
<Pk+ﬁ% T Ca0 P + Cop e P
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+Ca2 F @)+ Caa F Pt

where @ := ¢ /k is a new dimensionless variable. What is key about ¢ is that
the path integral over ¢ would be dominated by ¢y < O(l) in the absence of
interactions” (i.e. when S, = Sp). This conclusion that dominant configurations for
@y are order unity is contingent on the coefficient of (d¢»)? in Sy being order unity
due to the choice of canonical normalization.

Perturbation theory in Sj, requires |Six| < |Sp| throughout the regime from
which the path integral receives significant contributions, which from the above

9 This is clearest if the problem is Wick-rotated to euclidean signature by going to imaginary time, so
that e’ — =5, This estimate also ignores factors of 271, though their inclusion somewhat broadens
the domain of validity of perturbative methods.
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considerations is the regime ¢, < O(1). Consider first choosing &k as large as
possible: near the UV cutoff |k?| ~ A%. Since A = m, it follows that |k?| > m?, and
so perturbation theory in this regime requires |¢, 4| < 1.

How does this conclusion change if & is now dialled down to smaller values? Since
all interactions except the ¢»> and ¢* interactions come pre-multiplied by positive
powers of k%/A2, they become less and less important for smaller k. Interactions
like this, which are less important at lower energies, are called irrelevant. Irrelevant
interactions are also often called ‘non-renormalizable’.'°

By contrast, the ¢»* interaction is k-independent and so has strength controlled by
cap for all k. Interactions like this, whose strength does not vary with k, are called
marginal.

Finally, the mass (or ¢») term is the only interaction that grows in importance
for smaller k, the defining property of a relevant interaction. Once |k?| < m?, the
mass term competes with Sy and so changes the nature of the dominant path
integral configurations. This nonrelativistic regime is, of course, important to many
applications, and so is returned to in some detail as the topic of Part III. Relevant
interactions are sometimes also called ‘super-renormalizable’, while marginal and
relevant interactions taken together are called ‘renormalizable’.

A similar story goes through for fields representing other spins at weak coupling.
For instance, a field, 1, describing a free relativistic spin-half particle with lagrangian
density

Sijs = —fd“x vy, (2.84)

with ¢ = p#d, for dimensionless Dirac matrices, y* (see Appendices A.2.3 and
C.3.2), must have dimension [¢] = 3/2. The kinetic term for an electromagnetic
potential, A, is

| , 1 . A AV '
S = -2 fd“x F FH = -3 fd“x dy AL (" AT — 9" AF), (2.85)
and so the potential has dimension [A,] = 1, while the field-strength satisfies
[Fuw] =2.

It is an important fact that all of the weakly interacting ficlds most commonly
dealt with — such as ¢, 1 and Ay, as well as the derivative d, — have positive
dimension, so more complicated interactions involving more powers of fields and/or
derivatives always have higher and higher dimension. The corresponding effective
couplings must therefore be proportional to more and more powers of 1/A (and so
be less and less important at low energies). This is what ensures that all but a handful
of effective interactions are irrelevant at low energies, in the sense defined above.
Precisely how irrelevant they are for any given k depends on the power of k?/A2
involved, so it makes sense to organize any list of potential interactions in order of
increasing operator dimension, since the leading terms on the list are likely to be the
most important at low energies.

!9 The recognition that it is useful to classify interactions according to their dimension came early [6], as
did the connection to renormalizable and non-renormalizable interactions [7].
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From this point of view it is clear that the limited number of renormalizable
(marginal and relevant) interactions with dimension [0, ] < 4 are special, since their
importance is not diminished (and can be enhanced) at low energies.

For concreteness’ sake the introductory discussion given above is phrased in
perturbation theory, so it is worth mentioning in passing that this is not, in principle,
necessary. That is, although EFT methods always exploit expansions in ratios of
energy scales (like E/my, for the toy model), it is not a requirement of principle that
the dimensionless couplings of the underlying UV theory (like A for the toy model)
are perturbatively small.'" Although it goes beyond the scope of this chapter to show
in detail, strong underlying couplings can change some of the detailed statements
used above, such as by changing the dimension of the field to be [¢p] = 1 + &, with
|6] — 0 as these couplings are taken to zero. (Examples along these lines where &
is perturbatively small are considered in later sections.) Differences like ¢ are called
‘anomalous dimensions’ for the quantities involved. What counts in the dimensional
arguments to follow is that the full scaling dimensions (including these anomalous
contributions) are used, rather than the lowest-order ‘naive’ scaling dimension.

Example: The Toy Model

As applied to the toy model, because the kinetic terms for the two fields & and y have
the form of Eq. (2.80), the dimensions of both are [x] = [£] = 1. Using this with the
full classical action, Egs. (1.24) and (1.25), shows that [A ] = O and [v] = [m,] = 1,
as expected.

Applied to the Wilson action, the effective coupling a appearing in the interaction
g, Da (6#@{')\“5)2 must have dimension (energy)‘“", consistent with its computed
tree-level value ayee = A/4m}. This shows that at leading order it is explicitly
the heavy scale m, that plays the role of the dimensional parameter of the general
discussion. Powers of A < m, also arise once loops are included, and subsequent
sections are devoted to identifying which scale is important in any particular
application.

2.4.2 Scaling

It is worth rephrasing the above discussion more formally in terms of a scaling
transformation. This is useful for several reasons: because it sets up the use of
renormalization-group methods; and because it provides a framework that is more
easy to generalize in more complicated settings, such as in the nonrelativistic limit
considered in Part I11.

To this end, consider again the scalar-field Wilson action of Egs. (2.80) and (2.81):

Splp(x)im,cap,co0, 1= So[P(x)] + Sime[Pp(x)im, cap,--- 1, (2.86)

"' In an unfortunate use of language the breakdown of the low-energy (e.g. E/my) expansion has in
some quarters come to be called ‘strong coupling’. This is misleading because it can happen that the
physics appropriate to these energies is weakly coupled, in the sense that it involves dimensionless
couplings that are small. For this reason in this book ‘strong coupling’ never means ‘breakdown of the
low-energy limit’, and it is reserved for situations where underlying dimensionless couplings (like A
in the toy model) are not small.
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where the notation explicitly highlights the dependence on the effective couplings
as well as on the field ¢. Now perform the scale transformation, x* — sx* and
¢(x) — ¢(sx), where s is a real parameter. For a configuration like ¢y (x) etk
this becomes ¢y (sx) o elohx o ¢k (x) and so taking s — 0 corresponds to taking
the infrared limit where k — 0.

Inserting these definitions into S gives

1
So[h(sx)] = -3 fd4x 3y (sx) 3 p(sx)

1 d4 ' R
-5 [ S [Pavpnorow]. 257

in which the spacetime integration variable is changed from x ¥ to x'* = sx#. This
shows that Sy remains unchanged if the scalar field variable is also rescaled according
to ¢(x) — ¢Ps(x) 1= P(x)/s. Requiring So[¢p(sx)] = So[¢ps(x)] is natural in the
weak-coupling limit, since this keeps fixed the configurations that dominate in the
path integral over ¢ and ¢y.

With these choices, the effects of rescaling on the interaction terms can be read
off, giving

4 s m? 2 4 s%cep 6
Sint[Q(sx);m, cap,¢60,Ca2,--+]= | d'x —Eqbs +capfy + A2 Oy

s%can

t g 1O 0 )+

= Sint [(,'D.c(x); ?, €4.0, 57C6,0, S7Ca2 *+ ] . (2.88)

This shows that changes of scale can be compensated by appropriately rescaling all
effective couplings. For instance, for an interaction S, [¢; a,] = f d*x a,0,[P] €
Sint, Where O, has engineering dimension [0, ] = A,,, the required scaling is

Sn[¢(SI);ﬂn] = Sn[q&'s(x);-sp"an]a (2.89)

where p, = —[a,] = A, — 4 = (so that a, = ¢,,/AP" for dimensionless c;,).

Rescalings can be regarded as motions within the space of coupling constants. This
provides an alternative way to define relevant, marginal and irrelevant interactions.
Since low energies correspond to s — 0, an effective interaction is irrelevant if
Pn > 0, it is marginal if p, = 0 and it is relevant if p, < 0. This definition clearly
agrees with the one presented earlier.

2.5 Redundant Interactions ©
L |

It is generally useful to have in mind what are the most general possible kinds of
effective interactions that can arise in a Wilson action at any given dimension, and
it is tempting to think that this means simply listing all possible combinations of
local interactions involving the given fields and their derivatives. In practice, such
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SulE] = - f d'x [%ﬁnéaﬂza(a;,fsa“s)za’w“aa“é)D<auaa“£.)

— b (8, E0"E) = B (8, E0ME)D(D,EDMEY +--- |, (2.97)
where
— 1 /]L 2 r_ I A 2 _ l 3
a=_7lz+o0 )] o a= g o )] , b= m—§[0+0(/\ )] (2.98)

and so on. The question is: are these the most general kinds of interactions possible?
In particular, are there terms suppressed by only two powers of 1/m,? If not, why
not?

Of course, symmetries restrict the form of S,,, and for the toy model symmetry
under the shift & = &+ V2vw requires & always to appear in S, differentiated, so all
interactions must involve at least as many derivatives as powers of &. Furthermore,
to be a Lorentz scalar it must involve an even number of derivatives, so that all
Lorentz indices can be contracted. But these conditions allow interactions that do
not appear in Eq. (2.97). For instance, they allow the following effective interactions
with dimension (energy)®,

a 4] ,
2 = ﬁ(apéma*'a + mi (8,0, 88" &)
R R
- W) g c0ate) + 2,0, 0407), 2.99)
% my

where (given the explicit dimensional factor of m;?) a; and a, are dimensionless
effective couplings.

The point is that both of these interactions are redundant, in the sense outlined
above. The second line shows that one combination can be regarded as a total
derivative, and so it is redundant to the extent that boundaries (or topology) do
not play an important role in the physics of interest. The remaining term, involving
the combination d,&0aH &, vanishes once evaluated using the equations of motion,
O& = 0, for the lowest-order action. It can therefore be removed using the field
redefinition

@ ‘2“‘ O&, (2.100)

m;

E—E+

since in this case

ar» —daj

m?

3 OuEOHE > —3 0,501 E + @,00°8), (2101
up to terms of order 1/ mﬂ. This shows that (in the absence of boundaries) the first
low-energy effects of virtual heavy particles arise at order 1/m? rather than 1/m?.
What about interactions with dimension (energy)®: is (8,& 4% &) the only allowed
dimension-8 interaction? Since total derivatives are dropped, integration by parts
can be used freely to simplify any candidate interactions. The most general possible
Lorentz-scalar interactions invariant under constant shifts of & then are

0 = —a(9,E0E)? - % (0, EC%01 ), (2.102)
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where a3 is a new dimensionless coupling and the freedom to integrate by parts is
used (for the terms quadratic in &) to ensure all of the derivatives but one act on
only one of the fields. The second term in (2.102) can be removed using the field
redefinition

a
£ &+ — 0%, (2.103)
R
without changing the coefficient a (or coefficients of any lower-dimension interac-
tions), showing that a captures all of the effects that can arise at order 1/m.

2.6 Summary
|

This chapter lays one of the cornerstones for the rest of the book; laying out how effective lagrangians fit
into the broader context of generating functionals and the quantum (1P1) action.” By doing so, it provides
a constructive framework for defining and explicitly building effective actions for a broad class of physical
systems.

The1Plaction is a useful starting point for this purpose because it already plays a central role in quantum
field theory. [t does so partly because it is related to the full correlation functions and the energetics of field
expectation values in the same way that the classical action is related to the classical correlation functions
and the energetics that fixes the values of dlassical background fields. The low-energy 1LPI action is the
natural generalization of the 1Pl action because it is constructed in precisely the same way, but with the
proviso that it only samples slowly varying field configurations. As such, it contains all the information
needed to construct any observable that involves only low-energy degrees of freedom.

In this chapter, the Wilson action, 5,,, emerges as the minimal object for capturing the implications of
high-energy degrees of freedom for the low-energy theory. The Wilson action is related to the 1LPI action
inthe low-energy theory in precisely the same way that the classical action s related to the 1Pl generatorin
thefull theory. Because S,, is obtained by integrating out only high-energy states, its interactions efficiently
encode their low-energy implications. And because knowledge of S, allows the calculation of the 1LPI
action it contains all of the information required to compute any low-energy observable.

The chapter concludes with a few tools that will prove useful in later chapters when computing and
using the Wilson action. The first tool is simply dimensional analysis, which dassifies effective interactions
based on their operator dimension (in powers of energy). More and more interactions exist with larger
operator dimension, but it is the relatively few lower-dimension interactions in this classification that are
more important at low energies. This chapter also describes the related renormalization-group scaling
satisfied by the effective couplings. These express how the effective couplings differentially adjust as more
and more modes are integrated out, lowering the energy scale A that differentiates low energies from
high. (The next chapter also has more to say about this dimensional scaling and its utility for identifying
which interactions are important at low energies.)

The second tool described in this chapter identifies classes of effective interactions that are redundant
in the sense that they do not contribute at all to physical processes. They do not contribute for one of two

'3 n some of the earlier literature the quantum action is also called the effective action, unlike the modern
usage, where effective action usually means the Wilson action.
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reasons: either they are total derivatives and so are only sensitive to physics that depends in detail on the
information at the system's boundaries; or because a change of variables exists that allows them to be
completely removed.

Exercises
.|

Exercise2.1 Prove Eq. (2.6) starting from Egs. (2.2) and (2.4).

Exercise2.2 Draw all possible two-loop vacuum diagrams that contribute to Z[J] in a
theory involving both cubic and quartic interactions (such as a scalar potential
V() = g + Ap* for scalar-field self-interactions). Which of these diagrams
contribute to W[J] and to ['[¢]?

Exercise23  For a scalar field self-interacting through the potential V = g¢* + A¢*
express Eq. (2.15) as a sum of Feynman graphs with two external lines. Draw
all graphs that contribute out to two-loop order. Show how the disconnected
graphs cancel in the result.

Exercise2.4 Prove that the graphical expansion of W[J], defined by Z[J] =
exp{iW[J]}, is obtained by simply omitting any disconnected graphs that
contribute to Z[J]. Do so by showing that the exponential of the sum of all
connected graphs reproduces all of the combinatorial factors in the sum over
all (connected and disconnected) graphs. For this argument it is not necessary
to assume that only cubic or quartic interactions arise in S;;.

Exercise 2.5 Consider a single scalar field, ¢, self-interacting through a scalar poten-
tial U(¢). Evaluate Eq. (2.23) in one-loop approximation for ¢ specialized
to a constant spacetime-independent configuration. To do so, use the identity
IndetA = TrInA and work in momentum space, for which A(p,p’) =
(P> + m*> —ie) 8% (p — p’), where m?> := U" := 9*U/d¢’. Evaluate the trace
explicitly and Wick rotate to Euclidean signature (p° = ip?) to derive the
following expression

1 d*p, 2 2 1 4 m*

Vo) =U(p) + ff 2n) In(p; + m”) = Us(g) + g™ In (F),
for the quantum effective potential. Regulate the UV divergences using dimen-
sional regularization (for which p is the arbitrary scale: see Appendix A.2.4),
and show that U, (@) = U(p) + A + Bm*(@) + Cm*(¢), where A, B and
C are divergent constants in four spacetime dimensions. Show that if U(¢) =
U + Ur@? + Uy is quartic (and so renormalizable) then all divergences can
be absorbed into the constants Uy, U> and Uj.

Exercise2.6 Prove that the quantum effective potential is always convex [16, 21]
when constructed about a stable vacuum. That is, show that for 0 < s < 1

Valsgr + (1 = s)@2] < sV(1) + (1 = 5)Vq(@2).

Exercise 2.7 Suppose the action S[¢p] for a field theory is invariant under a symmetry
transformation of the form 6¢¢ = w C“(¢p), where C“(¢p) is a possibly
nonlinear function and @ is an infinitesimal symmetry parameter. Show that
the 1PI generator, I'[¢], is invariant under the symmetry 6¢¢ = w{(C%),
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where the matrix element is taken in the adiabatic vacuum in the presence
of the current J,(¢) defined by Eq. (2.16). In the special case of a linear
transformation, with C%(¢) = M9, qb” the condition (%}, = ¢ implies that
both I'[¢] and S[¢] share a symmetry with the same functional form.

The invariance condition 6" = () for this transformation can be expressed as

4 a oI —
fd O s =0

Since this is true for all @“(x) repeated functional differentiation leads to a
sequence of relations — called Taylor—Slavnov identities [22, 23] — amongst the
IPI correlation functions obtained by differentiating I'[¢].

Exercise2.8 For the toy model of §1 draw all tree-level (no loops) Feynman graphs
that can contribute to the effective interaction £, > ¢ (8, & A*E)* within the
Wilson action. Evaluate these graphs and compute the effective coupling ¢ at
tree level.

Exercise2.9 Construct the most general possible renormalizable relativistic interac-
tions for a single real scalar field ¢» in D = 4 spacetime dimensions. Repeat
this exercise for D = 6 spacetime dimensions. For D = 4 find the most general
possible renormalizable relativistic interactions for a real scalar field coupled
to a spin-half Dirac field 1.

Exercise 2.10  For a real scalar field, &, subject to a shift symmetry, £ — £ + constant,
every appearance of & in the Wilson action must be differentiated at least
once. Show that the most general effective interactions possible for such a field
involving six or fewer derivatives is

£, = —% (0uEOME) + a (9, & 0" E) + b (9,8 0 &)
+ (0, E P ENDD,E) (8707 E),

up to redundant interactions, for effective couplings a, b and c.
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Power Counting and Matching

The previous chapter argues that the Wilson action captures the influence of virtual
high-energy states on all low-energy observables, but a good number of questions
remain to be addressed before it becomes a tool of practical utility. In particular,
the Wilson action in principle contains an infinite number of interactions of various
types, and although these are local (once expanded in inverse powers of the heavy
scale) they ultimately involve arbitrarily many powers of the low-energy fields and
their derivatives. What is missing is a simple way to identify systematically which
interactions are required to calculate any given observable to a given order in the
low-energy (and any other) expansions.

In principle, as argued in §2.4, what makes the Wilson action useful is dimensional
analysis, which shows that more complicated interactions (with more derivatives or
powers of fields) have coupling constants more suppressed by inverse powers of
the physical heavy mass scale, M (like m, in the toy model). This suggests that a
dimension-A interaction can be ignored at low energies, E, provided effects of order
(E/M)?, with p = A — 4, are negligible.

Sounds simple. Unfortunately, there is a confounding factor that complicates the
simple dimensional argument. Although each use of an effective interaction within
a Feynman graph costs inverse powers of a heavy scale like M, it is also true that
the 4-momenta of virtual particles circulating within loops can include energies that
are not small. This means that heavy scales can appear in numerators of calculations
as well as in denominators, making it trickier to quantify the size of higher-order
effects. Power counting — the main subject of this chapter — makes this argument
more precise, and is the tool with which to identify which effective interactions are
relevant to any particular order in the low-energy expansion.

To see how scales appear in calculations, for some purposes it is useful to explicitly
track cutoffs, like A, that label the highest energies allowed to circulate within loops.
Depending on the relative size of scales like M and A, it can happen that loop effects
can cause effective couplings to acquire coefficients ¢, o« A7 rather than ¢,
M~7_ For p > 0 these naively dominate because A <« M. Estimates of the size of
such corrections are discussed in this chapter in the section devoted to the ‘exact
renormalization group’ (or ‘exact RG’).

But it is also true that A ultimately drops out of physical quantities, making its
presence an unnecessary complication when formulating dimensional arguments.
(A drops out of physical quantities because the precise split between low- and
high-energy quantities is ultimately a book-keeping device for making calculations
convenient, so A is not a physical scale. As this chapter shows, the disappearance of
A in physical predictions happens in detail because the explicit A-dependence of the
effective couplings in S, cancels the A-dependence implicit in the definition of the
low-energy path integral in which §, is used.)
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A second useful identity defines the number of loops, £, for each (connected)
graph:

L=1+7T- Z(v,,, (definition of £). (3.5)

As mentioned around Eq. (2.24), this definition is motivated by the topological
identity that applies to any graph that can be drawn on a plane, that states that
L -7+ 3,7V, =1 (which is the Euler number of a disc). In what follows, Egs.
(3.4) and (3.5) are used to eliminate 7 and },, /,Vj.

Feynman Rules

The next step is to use the action of Egs. (3.2) and (3.55) to construct the Feynman
rules for the graph of interest. This is done here in momentum space, but since the
argument to be made is in essence a dimensional one, it could equally well be made
in position space.

Schematically, in momentum space the product of all of the vertices contributes
the following factor to the amplitude:

-1V,
dn l fn "
Vertices) = | | i2n)*s* 4(3) - : 3.6
(Vertices) 1:[1(71) (p) f i . (3.6)
where p generically denotes the various momenta running through the vertex. The
product of all of the internal line factors gives the additional contribution:

I

4 2,2
(Internal Lines) = [i f (dp (M ! ) ! ] . (3.7)

27-[)4 f4 pz + m2
where p again denotes the generic momentum flowing through the lines. m is the
mass of the light particle (or their generic order of magnitude — for simplicity taken
to be similar in size — should there be more than one light field) coming from
the unperturbed term, Eq. (3.2). For the ‘amputated’ Feynman graphs relevant to
scattering amplitudes and contributions to effective couplings in [ the external lines
are removed, and so no similar factors are included for external lines.

The momentum-conserving delta functions appearing in (3.6) can be used to
perform many of the integrals appearing in (3.7) in the usual way. Once this is done,
one delta function remains that depends only on external momenta, (54(q), and so
cannot be used to perform additional integrals. This is the delta function that enforces
the overall conservation of energy and momentum for the amplitude. It is useful to
extract this factor once and for all, by defining the reduced amplitude, Ag, by

As(q) = i21)*6%(q) As(q). (3.8)

The total number of integrations that survive after having used all of the momentum-
conserving delta functions is then 7 — 3, V,, + 1 = L. This last equality uses the
definition, Eq. (3.5), of the number of loops, £.

3.1.2 Power Counting Using Cutoffs

The hard part in computing Ag(q) is to evaluate the remaining multi-dimensional
integrals. Things are not so bad if the only goal is to track how the result depends on
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the scales f, M and v, however, since then it suffices to use dimensional arguments to
estimate the size of the result. Since the integrals typically diverge in the ultraviolet,
they are most sensitive to the largest momenta in the loop, and according to Eq. (2.59)
this is set by the cutoff A. (The contributions of loops having momenta higher than
A are the ones used when computing S, itself from the underlying theory.)
This leads to the following dimensional estimate for the result of the integration
] \24
P N (_) AYA+B-2C (3.9)

ff (2n)4] (P> +m?)C  \an

For the purposes of counting 27’s, a factor of 722 is included for each d*p integration
corresponding to the result of performing the three angular integrations.’

The idea is to Taylor expand the amplitude Ag(g) in powers of external
momentum, ¢, using Eq. (3.9) to estimate the size of the coefficients. Schematically,

Ag(q) = ) Asnq®, (3.10)
D

B

where the coefficients require an estimate for the following integral

L
dpVy
Asn 4" ch f[(Zﬁ)“] (p? +mz)f ( ) ﬂp

1 4 4L-2T+5, dnV)
L) A ndnVa, 3.11
(4n) (A) @11

Combining this with the powers of f, M and v given by the Feynman rules then gives,
after using identities (3.4) and (3.5),

1 & g\?2 | MA 2L A 2+ 30 (dn—2)Vn
D _ 4
Asp q° ~ T (;) (4) (4an) (H) . (3.12)

This is the main result of this section, whose properties are now explored.

A reality check for this formula comes if it is applied to the simplest graph of all
(see Fig. 3.1): one including no internal lines (so £ = 0) and only a single vertex,
n = ng, with f,) = & external lines and d,,, = O derivatives (so >, V, = 1
and Y, d,V, = D). In this case, (3.12) implies that the amplitude depends on the
scales M, A and f in precisely the same way as does the starting lagrangian (3.2):
Aep q® ~ T (1/)E(q/M)”.

The graph describing the insertion of a single effective vertex with £ external lines and no internal lines.

3 The factor of 72 is clearest to see if momenta are Wick rotated to euclidean signature, since it there
represents the volume of the unit 3-sphere corresponding to the integration over the three directions
taken by a 4-vector.
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A second reality check applies (3.12) to the special case where all scales are set by
A (i.e. T = M = v = A) since this corresponds to the choices made in the dimensional
arguments of §2.4.1. In this limit (3.12) becomes

& D 2L
Asp ¢° ~ A* (%) (%) (ﬁ) . (3.13)
Since & and D are fixed by external characteristics (the total number of external
legs and power of ¢ in the final answer), the last factor is the only part of (3.13)
that changes for more and more complicated diagrams that share these external
properties. This factor simply says that 1/(47)? is the price for each additional loop;
that is to say, all graphs with a fixed number of loops are similar in size assuming the
(unwritten) dimensionless couplings — i.e. the ¢, of (3.2) — are also similar in size.
Furthermore, perturbation theory in this regime is ultimately controlled by the ratio
of the dimensionless ¢, compared with 16712, The statement that perturbation theory
applies for small enough ¢, agrees with (and refines) the simple estimate of §2.4.1.

Validity of the Perturbative Expansion

More broadly, Eq. (3.12) outlines the domain of validity of the perturbative expansion
itself. If the contribution estimated in Eq. (3.12) is small for all choices of D, &, L
and V,, then this ensures that the perturbative expansion used in its derivation is
a good approximation, particularly if more complicated graphs (higher £ and V)
are more suppressed than less complicated ones. Conversely, if there is a choice for
D, &, L and V, for which Eq. (3.12) is not small, then the perturbative expansion
fails unless some other small parameter — such as the dimensionless couplings
¢ of (3.2) — can be found that can systematically suppress more complicated
graphs. Furthermore, since the semiclassical expansion is an expansion in loops,*
the perturbative expansion becomes a semiclassical expansion when it is the
L-dependent factor that controls perturbation theory.

Eq. (3.12) shows that there are three small quantities whose size can help control
perturbative corrections: g/A, A/M and AM/47f>. Some remarks are in order for
each of these.

Derivative Expansion

Consider first the factor g/A, which controls the suppression of higher powers of
external momenta. There is no question that ¢/A < 1 since the entire construction
of the low-energy theory presupposes A can be chosen much smaller than the scale of
the heavy physics that is being integrated out, but much larger than the low energies,
q =~ E of applications. But when A <« M the ratio g/A is much bigger than ¢/M,
even if both are separately very small. Eq. (3.12) therefore shows that it could happen
that the derivative expansion in physical quantities (like scattering amplitudes) and in
quantities like S, ends up being controlled by powers of g/A rather than the powers
of g/ M assumed for the original action, (3.2). This point is returned to in §3.1, but
it means that (all other things being equal) derivatives like to be suppressed by the

4 The connection between loops and the semiclassical expansion is established in the discussion
surrounding (2.24). In essence, the semiclassical expansion counts loops because it is an expansion
in powers of i, which appears as an overall factor in the quantity S/h within the path integral.
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lowest possible UV scale available: in this case A. The case M ~ A is one that should
be taken seriously in what follows.

Field Expansion

Notice that the same thing does not happen for the expansion in powers of ¢ /v, since
the factor (1/v)€ assumed to appear in S, does not get converted into a power like
(l/A)a or (I/M)‘c' in Ag. This means that it is consistent to have the scale v that
controls the field expansion be systematically different from the scales A or M that
control the derivative expansion. These scales are logically independent because, in
general, large fields need not imply large energies, so small-field expansions are not
necessarily required in a low-energy limit.

Loop Expansion

Next consider the suppressions coming from loops and vertices. Notice first that
if M = A then the only systematic perturbative suppression in (3.12) comes from
loops, due to the factor (A%/4m§?)>£. If all dimensionless couplings are order unity
then perturbation theory in this limit is revealed to be a semiclassical expansion
(i.e. controlled purely by the number of loops) whose validity rests on the assumption
47112 > A2,

This condition is automatically satisfied in the regime A <« M provided that
f= M is also true. It is a much stronger condition on A, however, if f should
be much smaller than M. In the particularly interesting case where i =~ My
(corresponding to canonical normalization in (3.2)) the loop-suppression factor
becomes (MA/4mi?)*4 =~ (A/4mv)?4,

Dangerous Non-Derivative Interactions

Finally, consider the final factor in (3.12). If A £ M the power of (A/M)¥ appearing
in Eq. (3.12) represents a suppression rather than an enhancement, provided the
power

P = 2+Z(d,, -2V, (3.14)
n
is non-negative. It is this factor that expresses the suppression of the effects of
interactions involving three or more derivatives.

Lorentz invariance often requires d,, to be even (e.g. for scalar fields), and in this
case it is only interactions with no derivatives at all (d,, = 0) for which # can be
negative. These interactions are potentially dangerous in that they can in principle
allow an enhancement in Ag when A < M. When such interactions exist a more
detailed estimate is required to see whether higher-order effects really are suppressed.

As an example of non-derivative interactions, imagine the low-energy field, ¢,
self-interacts through a scalar potential,

Sy D —fd4x V(). (3.15)

where

V() :=fﬁzg, (%) . (3.16)
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Here, g, are dimensionless couplings and { is the typical potential energy density
associated with fields of order ¢ = v. If f, # { then repeating the above power
counting argument shows that each appearance of a vertex drawn from V(@)
contributes an additional factor g, (f,/)*, modifying Eq. (3.12) to

A%+ 1\ 1 g\2 [ MAE
7eoa® - (3) () (da5) 17

(b )

d=2 iy
where the product over vertex labels is now subdivided into groups involving
precisely d derivatives: {n} = {d,i4}, withiy = r.

This last expression shows that the potentially hazardous enhancement factor,
(M /A)*Yor  need not be dangerous if the potential energy density in the low-energy
theory is sufficiently small relative to the generic energy density, {*/i* < A%/M?. But
if this is not so, generic non-derivative interactions can be legitimate obstructions to
having a well-behaved low-energy limit, a point that must be checked on a case-by-
case basis.

Example: The Toy Model

The Wilson action for the toy model, Eq. (2.97), is a special case of the general form
assumed in Egs. (3.2), with M = m, and > = m,v and no zero-derivative interactions
for the low-energy field &. For this special case the estimate Eq. (3.12) becomes

& 2L Y (dn=2)Vn
1 g\? [ A A
D 2A2
TN (7) , 3.18
Aen g ! (v) A (417 v) (nzk) (3.18)

which neglects dimensionless factors that come as a series in powers of the
coupling A.

Notice that Eq. (3.18) agrees with the calculations of the previous chapter for the
size of tree and loop contributions to the effective vertex, ai. (9, & 04E )? appearing in
[, for which & = D = 4. For instance, consider the three contributions of Fig. 2.5.
Figure (a) has £ = 0 and V4 = 1, and so Eq. (3.18) gives

& ae ~ VAP (1) (/A (A /my)?
~1/(Vm?y = A/m?; (3.19)

Figure (b) has £ = 1 and V44 = 2, and so Eq. (3.18) gives
dae ~ VA /N A/ATv) (A me)?
~ [1/(16m*vH)](A/me)* ; (3.20)
Figure (c) has £ = 1 and V6 = 1, and so Eq. (3.18) gives
daie ~ VAT (1) (1A (A/47v)* (A /my)*
~ [1/(167°v) (A /my)*. (3.21)

These all agree with the estimates performed in §2.3.
But Eq. (3.18) contains much more information than just this. Most importantly,
since the symmetry & — & + constant implies that there are no interactions with
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where the O,(?d"'f"') describe all possible local interactions involving f, powers of
the fields and d,, derivatives, and the last line specializes to a single scalar field for
concreteness’ sake.

The power counting result, (3.12), provides an estimate of the size of amputated
Feynman graphs built using these interactions, involving fields defined below the
cutoff A. But this also determines the A-dependence of perturbative corrections
to the couplings in Sy, because the direct contribution of interactions represented
by graphs like Fig. 3.1 must precisely cancel the A-dependence coming from loop
graphs, as estimated by Eq. (3.12).

For the action of (3.26) the estimate (3.12) gives the contribution to the effective
coupling of a term in S, involving & powers of ¢ and D derivatives to be

1 & 1 D 1 & 1 D A 2L
A uiAZ ] 2 _ T - . _ T
e 4 o (PG R e

and so O¢,, acquires corrections from £-loop graphs that are of order

o

2L
- ) X  (combinations of other ¢,’s). (3.28)
v

o An ~

é (4
If v = A, this shows that it is consistent to have the ¢, ’s all be generically < 1 for all
A. Some couplings can be much smaller than this if v > A (or other hierarchies like
powers of A/M or small dimensionless couplings are buried in the ¢,’s), provided
these additional suppressions preserve any initially small values.

Log Running vs Power-Law Running

The exact cutoff-dependent renormalization group is not pursued further in this book,
since the focus here is instead on more practical methods of approximate calculation.
Before leaving the subject, though, it is useful to address a conceptual question
and by so doing contrast the implications of logarithmic and power-law running of
effective couplings, ¢,(A), as A is varied.

The conceptual question is this: why does one care how couplings run with A if
A itself ultimately does not appear in any physical results? It is emphasized many
times in this book that A enters calculations purely as a convenient book-keeping
device: it is useful to organize calculations by scales and integrate out physics one
scale at a time. But in the end, physical quantities are obtained only after a/l scales are
integrated out, after which the arbitrary separations between these scales disappear.

This section follows [28] to argue that understanding the running of couplings in
S, is useful to the extent that it helps track the dependence of physical quantities on
large physical ratios of scale, M /m. In particular, there is often a precise connection
between logarithmic dependence of low-energy quantities on the cutoff A and
a logarithmic dependence on physical scales. The analogous connection is only
qualitative for power-law dependence, however, and so is usually less useful.

To see why this is so, imagine a system characterized by two very different scales,
m << M, such as the masses of two different particles. Further imagine that there is
a physical quantity, A, whose dependence on M /m happens to be logarithmic, so
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M
A = ag ln(—)+a1, (3.29)
m

for some calculable constants ag and a;. If both of these constants are similar in size,
then the value of ay can be important in practice since the large logarithm can make
it dominate numerically in the total result.

Next, suppose a Wilsonian calculation is performed that divides the contributions
to A coming from physics above and below the scale A, with m < A <« M.
How does the large logarithm get into the low-energy part of the theory, given
that it depends on scales that lie on opposite sides of A? Typically, this happens as
follows:

A
Aje = agye In (—) +aie
m
M
Ape = dohe ln(A) + dlhe (3.30)
M
sothat A= A + Ape = ag In|—| +a.
m

The requirement that A cancels implies that agpie = apne and then having the results
agree with the full theory implies that ag1e = done = @ and a; = a1 + @1 pe. What is
significant is that the coefficient, ag, of the logarithm in the full answer is calculable
purely within the low-energy theory because A-cancellation dictates that agie = ao.

The same is not so for power-law dependence. Suppose, for example, that another
observable, B, is computed that depends quadratically on masses, so

B = by M* + by m*. (3.31)

Again the coefficient by is of practical interest since the large size of M can make
this term dominate numerically. In this case, the low- and high-energy parts of the
calculations instead are

B[e = bo]c 1\2 + b’]]E m"‘ + .- (332)
Bhe = bone M* + bipe A* + -+
sothat B = By, + By = by M? + by m?,

with by = byne and by = by, while A-cancellation requires bgje + by pe = 0.
Evidently, the by term cannot be computed purely within the low-energy part of
a Wilsonian calculation simply by tracking the dependence on A?, unlike the way
in which the In A terms reproduce the value for ay. This is a fairly generic result:
quantitative predictions for quantities like by really require detailed knowledge of
the UV theory and cannot be computed using the low-energy Wilsonian theory alone.
But logarithms can often be inferred purely from within the low-energy Wilsonian
perspective. For this reason considerable attention is given to renormalization-group
methods that allow efficient extraction of large logarithms using Wilsonian EFTs.

Method of Regions |

The cancellations of powers of cutoff and the utility of logarithms can be promoted
to a useful tool — sometimes called the method of regions [29] — for estimating
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Feynman integrals in situations where different integration regions compete in their
contributions to the final result.
To illustrate the method, follow [30] and consider the integral

- k dk CIn(M/m) _n(M/m) [ m?
J(: (K2 +m)(k2+M» ~ M2-—m2 M? [] et } . (3.33)

and imagine trying to extract the dominant small-m/M expansion without first
evaluating the full integral. Naively, one simply Taylor expands the integrand in
powers of m and integrates term-by-term, but this has the problem that each term
involves an integral that diverges in the infrared

fﬁ_ﬂi_l_ﬁ+m
0o KkE(kE+ M?) k2
as might be expected given that the full result (3.33) is not analytic at m = 0.

A better procedure instead separates the integral into two regions, an IR region
0 <k < A and a UV region £ > A, and expands the integrand differently in each.
For the IR the integrand is expanded with k* ~ m* < M?, while in the UV one
takes instead m < k ~ M. This leads to the result 7 (m, M) = I"(m,M,\) +
I (m, M, N), with

, (3.34)

" A kdk K2 In(l +A2/m?) A2
= m[ e ]- e a0 G
and
" ® k dk m? In(1 + M?/A?) 2
7 _L m[l_ﬁ_l“”]_T-’-O(m ). (3.36)

Once these last two formulae are summed, all A-dependence cancels (as it must),
leaving residual logarithms of M /m as outlined above that reproduce the expansion
of (3.33). Large logarithms like In(M /m) are ultimately leftovers from the cancella-
tion between the IR divergence of 7" and the UV divergence of 7.

3.1.4 Rationale behind Renormalization ©

The above discussion about integrating out high-energies also provides physical
insight into the entire framework of renormalization. This is because a central
message is that the scale A is ultimately a calculational convenience that drops out
of all physical quantities. In detail, A drops out because of a cancellation between:
(i) the explicit A-dependence of the cutoff on the limits of integration for virtual
low-energy states in loops, and (i7) the cutoff-dependence that is implicitly contained
within the effective couplings of ¥,,.

But this cancellation is eerily reminiscent of how UV divergences are traditionally
handled within any renormalizable theory, and in particular for the underlying UV
theory from which S, is calculated. The entire renormalization program relies on any
UV-divergent cutoff-dependence arising from regulated loop integrals being can-
celled by the regularization dependence of the counterterms of the renormalized
lagrangian. There are, however, the following important differences.
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1. The cancellations in the effective theory occur even though A is not sent to infinity,
and even though ¥, contains arbitrarily many terms that are not renormalizable in
the traditional sense.

2. The cancellation of regularization dependence in the traditional picture of renor-
malization appears completely ad-hoc and implausible, while the cancellation of
A from observables within the effective theory is essentially obvious. It is obvious
due to the fact that A was only introduced as an intermediate step in a calculation,
and so cannot survive uncancelled in the answer.

This resemblance is likely not accidental. It suggests that rather than consid-
ering a model’s classical lagrangian as something pristine or fundamental, it is
better regarded as an effective lagrangian obtained by integrating out still-more-
microscopic degrees of freedom. The cancellation of ultraviolet divergences within
the renormalization program is, within this interpretation, simply the usual removal
of an intermediate step in a calculation to whose microscopic part we are not privy.

This is the modern picture of what renormalization really means. When discover-
ing successful theories, what is found is not a ‘classical’ action, to be quantized and
compared with experiment. What is found is really a Wilsonian action describing
the low-energy limit obtained by integrating out high-energy degrees of freedom in
some more fundamental theory that describes what is really going on at much, much
higher energies.

It is this Wilsonian theory, itself potentially already containing many high-
energy quantum effects, whose low-energy states are quantized and compared with
observations. Physics progresses by successively peeling back layer after layer of
structure in nature, and our mathematics describes this through a succession of
Wilsonian descriptions with ever-increasing accuracy.

This is how real progress often happens in science. Efforts to solve concrete
practical questions — in this case, a desire to exploit hierarchies of scale as
efficiently as possible —can ultimately provide deep insights about foundational
issues — in this case, about what it is that is really achieved when new fundamental
theories (be it Maxwell’s equations, General Relativity or the Standard Model) are
discovered.

3.2 Power Counting and Dimensional Regularization ©
|

As previous sections make clear, there is a lot of freedom of definition when setting
up a Wilson action: besides the freedom to make field redefinitions, there are also
all the details of precisely how to differentiate between scales above and below A.
Physical results do not depend on any of these choices at all since observables are
independent of field redefinitions and are blind to the details of a regularization
scheme. This freedom should be exploited to make the Wilson action as useful as
possible for practical calculations. In particular, it should be used to optimize the
efficiency with which effective interactions and Feynman graphs can be identified
that completely capture the contributions to low-energy processes at any fixed order
in low-energy expansion parameters like g/ M.
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Though instructive, the power counting analysis of the previous section does
not yet do this, due to the appearance in all estimates of the cutoff A. Since A
ultimately cancels in all physical quantities, it is inconvenient to have to rely on
it when estimating the size of contributions from different interactions in the low-
energy Wilson action. For this reason most practical applications (and most of the
rest of this book) define the Wilson action using dimensional regularization rather
than cutofts [31, 32]. Dimensional regularization is useful because it is both simple
to use and preserves more symmetries than do other regularization schemes. This
section explores how this can be done.

3.2.1 EFTsin Dimensional Regularization

At first sight, it seems impossible to define a Wilson action in terms of dimensional
regularization at all. After all, the entire purpose of the Wilson action is to efficiently
encapsulate the high-energy part of a calculation, for later use in a variety of low-
energy applications. This seems to require something like A to distinguish high
energies from low energies. By contrast, although dimensional regularization is
designed to regulate UV-divergent integrals, it does not do so by cutting them off
at large momenta and energies. The regularization is instead provided by defining
the integral (including contributions from arbitrarily large momenta) for complex
dimension, D, taking advantage of the fact that the integral converges in the
ultraviolet if D is sufficiently small or negative. The result still diverges in the limit
D — 4, but usually as a pole or other type of isolated singularity when D is a positive
integer. The limit D — 4 is taken at the end of a calculation, after any singularities
are absorbed into the renormalization of the appropriate couplings.

This section describes how dimensional regularization can nonetheless be used to
define a Wilson action, despite it not seeming to explicitly separate high from low
energies. This is done first by briefly describing dimensional regularization itself,
followed by a presentation of the logic of constructing an effective theory using it.
(See also Appendix §A.2.4 for more details about dimensional regularization.)

What is Dimensional Regularization?

Consider the following integral over D-dimensional Euclidean momentum p#, where
P = Ouvp!p¥ (and similarly for g°).f [33, 34]

PPV A 0 P
10w [ o ]
1 F(A+2)r(B-A-2)] | asiope
T @mpr F(B)F(%) : (‘1 ) ) (3.37)

where I'(z) is Euler’s Gamma function, defined to satisfy zI'(z) = I'(z + 1) with
I'(n + 1) = n! when restricted to positive integers, n. This integral converges in the

% Such Euclidean expressions are given in Euclidean signature, obtained by Wick rotating with d4p =
id4p5, meaning that the Minkowski-signature result has an additional factor of i. Notice that there are
no additional explicit signs in continuing positive ¢° from Euclidean to Minkowski signature because
of the wisdom of using conventions with a (— + ++) metric.
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and
o [T k dk
I ._j; (k) ET Mz)[ ] (3.42)
oWyl 1 _1 M
=n [ €+O(e)] = [ €+ln(} )+O(e)]

The approximate equality starting the second line for both of these formulae drops
all subdominant terms in powers of m/M. Notice that the pole 1/e arises due to a
UV divergence in 7* as € — 0, while it corresponds to the IR divergence in " as
€ — (. Notice also that these poles cancel in the sum I = 7" + I'*, after which the
limit € — 0 can be taken, revealing agreement with (3.40).

The surprise in this exercise was that it was not important to explicitly separate
out the region with k < A and k¥ > A when defining 7" and 7**, which nevertheless
reproduce the correct dependence on m/M once summed to give the full integral.
This works because any cutoff-dependence in the definition of these integrals is
guaranteed to cancel in any case, and so although including the cutoff-dependence
could be done, it is wasted effort.

Several concrete examples of the use of dimensional regularization when matching
between underlying and effective theories are examined in more detail (for relativistic
theories) in Chapter 7, which also explores a modification to minimal subtraction
called ‘decoupling subtraction’ that proves useful when matching is done at or above
one-loop accuracy. Nonrelativistic examples of beyond-leading-order matching are
similarly studied in §12 and §15.

3.2.2 Matching vs Integrating Out

Matching — the fixing of low-energy couplings by comparing the predictions of the
full theory with the predictions of its low-energy Wilsonian approximation — is often
much easier to carry out than is the process of explicitly integrating out a heavy
state using a cut-off path integral. This is partly because the comparison can be made
for any physical quantity, and, in particular, this quantity can be chosen to make the
comparison as simple as possible. Furthermore, because the comparison is made at
the level of renormalized interactions, for both the full and low-energy theories, there
are no UV divergences to worry about.

Example: The Toy Model

As usual, the toy model helps make the above statements more concrete. For the toy
model the heavy mass scale is m, and the full theory describing the physics of the
two fields y and & above this scale is given by the action S[x, £] of Eq. (1.24) and
(1.25) (repeated for convenience here):

1 X 2
d*x | = 9, xd x+(1+) A EME+ VD), (3.43)
f 5 2 \/Ev L
with
Av? Av A
Vix)=—x* X+ =t (3.44)

2 VTSN T e
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One-loop graphs that contribute to the 9, 3+ £ kinetic term in the Wilson and 1LPI actions using the
interactions of Eqs. (3.43) and (3.44). Solid (dotted) lines represent x (and &) fields.

One could equivalently use the fields ¢, and ¢, with the action S[¢,,d,] of
Egs. (1.1) and (1.2), and renormalization is actually easier using these variables.
This chapter sticks to } and & to keep the symmetries of the problem more manifest.
UV divergences in this theory are handled using dimensional regularization, and
where necessary divergences are renormalized using modified minimal subtraction
(see Appendix A.2.4 for details).

The low-energy Wilson action in this case is S, [£] (or S,(.[qa,]), depending only on
the single light field, with UV divergent integrals again defined using dimensional
regularization. Renormalization is again based on minimal subtraction, though with
the difference that the finite part of the coupling is fixed by matching to predictions
of the full theory (rather than again using modified minimal subtraction).

For present purposes the first step when matching is to write down all possible
interactions in S, up to some order in 1/m,, since this identifies the effective
couplings whose value matching is meant to determine. For the toy model we know
from §2.5 that all 1/m? interactions are redundant, and the most general interactions
(consistent with Lorentz invariance and the symmetry under constant shifts in &) are
given to order 1/m? by:

s, =—fd4x [Fa.come-a, @000+ (3.45)

where on dimensional grounds z,, is dimensionless while @, o« 1/m; and terms not
explicitly written are suppressed by at least 1/m® (see §2.5).

Whereas earlier sections use the freedom to rescale & to set z, = 1 (ie to
canonically normalize &), writing (3.45) recognizes this has only been done at the
classical level and not exactly, so at one loop z, = 1 + zﬂ” with z,(,.” ~ O(A/16m2)
due to graphs like those of Fig. 3.3.

The contributions to z.’ found by Wick rotating these graphs, evaluating them in

dimensional regularization and matching them to the contribution of (3.45) are

1 id*p, i i _
- _(1) _: E _ (0,1)
o =i{-33) [ G o = a0 G40
and
.2 .
- w1 IEARYERS
<t =32 (-5, (54 ()
.d4 . _ 3
P = 2 [ my) (3.47)

Qr)* pP2+m? m



70

Power Counting and Matching

while z'" = 0 because its dimensionally regularized loop evaluates to I,(,"“(O)

w3.3(c)
and so vanishes. Here the integrals If,o‘”(m) and If,l'”(m) are defined in (3.37), and

the nonzero result evaluates to

2 2 (D-4)/2
10D (m) = LF(I - 9) (ﬂ)
(4m)P/? 2 )\ p?

2 1

I
T lem2 | (D227

2

2

1+ln( m )+0(D4)]. (3.48)
4

Summing these contributions (using m? = Av?) gives the one-loop prediction

2

1 1 1 n
[D—4 + i(y— 1)+§ ln(4n#2) +O(D—4)].
(3.49)

L _ Iéo‘])(mx) _ A
o 242 1672

These corrections to z, can again be absorbed into a rescaling of & — i.e. & is
‘re-normalized’ by defining £ — 2;1/25, — leading to the following rescaled version
of (3.45):

Sy = —fd“x B B8,& 0 E - Z—z (0,& 01 &) +- ] . (3.50)

The remainder of the matching calculation computes another observable using
(3.50) and (3.49) and compares the result to the calculation of the same quantity in
the full theory to read off the coefficient a,. It is relatively simple to do this with the
same quantity as used at lowest order in §1.2.1: the amplitude for E(p) + E(gq) —
E(p") + £(q’) scattering, keeping only terms up to order 1/m?, Since this calculation
is already performed in chapter 1 at leading order in A, it suffices here to sketch how
things change once subdominant contributions are included.

To this end, write the coefficients in S, as a series in A,

0) (n

(1
Ay = dy " + ay

e and =14z, +--, (3.51)
for which z!" is given in (3.49). Starting on the Wilson side of the calculation,
for £ — & scattering the required graphs up to one loop order are given by (a), (b)
and (c) of Fig. 2.5. Of these, graphs (b) and (c) and their crossed counterparts both
evaluate to give a contribution to £& — &£ scattering that is suppressed by more than
just four powers of 1/m,. This is easy to see in dimensional regularization because
the coefficients of the interactions are suppressed by more than 1/m? and the loop
integrals only involve massless states and so cannot introduce compensating factors
of m, into the numerator. If one wishes to work only to lowest order in 1/m, but to
higher order in A, it suffices to work with the tree contribution, graph (a), within the
Wilsonian theory, but with A-corrected effective coefficients a,(,,” and Zf,.l ).
Evaluating graph (a) using the Wilsonian coupling a,/z2 expanded out to

subdominant order in A, a'" — Zaﬂmzf,“, then gives:

w(a) S (0) (1) 0y _(1)
A t=81(a[y + ay _zau Ly )

&L

|- 9@ )+ - PP+ (g |+ (352



n

3.2 Power Counting and Dimensional Regularization

Field-theory aficionados will recognize the zf,.” term as the wave-function renormal-
ization counter-term that cancels UV divergences due to the loops of Fig. 3.3 inserted
into the external lines of the tree-level scattering graphs. (These graphs are not drawn
explicitly in Fig. 2.4.)

This is to be compared with the one-loop contributions computed within the UV
theory, working out to subdominant order in A. The leading contribution comes from
the tree graphs of Fig. 1.3, which evaluate to the result given in Eq. (1.28):

full tree
A —

EE—EE T

2R -9 a)+ @ PP+ o) ]+, B
where the ellipses contain terms of higher order than 1/m?. Equating this to the
lowest-order part of (3.52) then gives the previously obtained tree-level result: aff” =
Al(dmd) = 1/(4Av*%).

Repeating this procedure including one-loop O(A/167%) corrections in the UV
theory is less trivial, but in principle proceeds in precisely the same manner. This
involves evaluating the graphs of Fig. 2.4, plus the ‘wave-function renormalization’
graphs obtained by inserting Fig. 3.3 into the external lines of the tree-level scattering
graphs of Fig. 1.3. The zf,.” contributions of (3.52) are important for reproducing the
effects of these latter graphs in the full theory. The final result is a prediction for atl
that is of order /\2/(167'{2:712) = 1/(4mv?)? in size.

This example shows how loops in the Wilsonian theory are not counted in the same
way as are loops in the UV theory. Loops in the Wilsonian theory necessarily involve
higher powers of E/m, (more about this below), while loops in the UV theory are
suppressed by factors of A/(167) only, with all powers of E/m, appearing at each
loop order.

3.2.3 Power Counting Using Dimensional Regularization

The previous section made assertions about the size of the contributions of loop
graphs — like graphs (b) and (c) of Fig. 2.5 in the toy model — which this section
explores more systematically. More generally, this section’s goal is to track how a
generic Feynman graph computed using the Wilsonian action depends on a heavy
scale like 1/my, given that this scale does not appear in the same way for all
interactions within £,,.

The logic here is much as used in §3.1.1, where dimensional analysis was
employed to track how the cutoff A appears in amplitudes. The only difference now
is to regulate the UV divergences in these graphs with dimensional regularization,
since the size of a dimensionally regulated integral is set by the physical scales (light
masses or external momenta) that appear in the integrand (rather than A). The power
counting rules obtained in this way are much more useful since they directly track
how amplitudes depend on physical variables, rather than unphysical quantities like
A that in any case cancel from physical quantities.

The basic observation is that dimensional analysis applied to a dimensionally
regulated integral estimates its size as
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d’p A p® L 4 DA+B-2C 3.54
Q2m)P (p* + g»)¢ “\4n a ’ (3.54)

with a dimensionless prefactor that depends on the dimension, D, of spacetime, and

which may well be singular in the limit that D — 4. Here, g represents the dominant
scale appearing in the integrand of the momentum integrations. If the light particles
appearing as external states in A,(g) should be massless, or highly relativistic, then
the typical external momenta are much larger than their masses and g in the above
expression represents these momenta.” If all masses and momenta are comparable,
then g is their common value. The important assumption is that there is only one low-
energy scale (the more complicated case of multiple hierarchies is examined in later
chapters, in particular in the nonrelativistic applications of Part III for which small
speed, v ~ Eyin/p, can be regarded as a ratio of two separate low-energy scales).

With this in mind, the idea is to repeat the steps of §3.1.1 and use the effective
action, S, = S,.0 + Sy.int» 0f (3.2) — repeated here for ease of reference:

T4
Sw0 = Ve fd4x [‘%ﬁb "o+ mzd)z]

= E”
Sum =1 Y, 3 | 4% 0u(@. (355)

n

to compute amputated Feynman amplitudes, Ag(g), having & external lines, 1
internal lines, £ loops and V, vertices coming from the effective interaction with
label ‘n’. Respectively denoting (as before) the number of derivatives and ficlds
appearing in this interaction as d, and f,,, the amplitude becomes proportional to
the following multiple integral:

ff de L pﬁ ~ L L 4L-2T+R (3 56)
eor) e’ \an) 1 ’ '

where R = 3, d,V, and the final estimate takes D — 4. Liberally using the
identities (3.4) and (3.5) then gives the following order of magnitude for Ag(qg):

1 & Mg 2L q 245, (dn=2)Vy
As(q) ~i* () (ML (_) _ 3.57
o1 (1) () (2 a3

This last formula is the main result, used extensively in many applications
considered later. Its utility lies in the fact that it links the contributions of the various

effective interactions in the effective lagrangian, (3.55), with the dependence of
observables on small ratios of physical scales such as g/M. Notice in particular
that more and more complicated graphs — for which £ and V,, become larger and
larger — are generically suppressed in their contributions to the graphical expansion if
g is much smaller than the other scales M and {2/ M. This suppression assumes only
that the powers appearing in (3.57) are all non-negative, and this is true so long as
d, = 2. The special cases where d,, = 0, 1 are potentially dangerous in this context,
and require examination on a case-by-case basis.

9 Any logarithmic dependence on ¢ and infrared mass singularities that might arise in this limit are
ignored here (for now), since the main interest is in following powers of ratios of the light and heavy
mass scales.
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propagator is order 1/g, and so is suppressed by ¢ relative to the bosonic propagator
1/¢>. The second equality trades the dependence on Z, for &, using (3.63).

The factor (g/M) /% in (3.64) might also seem problematic at low energies,
indicating as it does that more external lines necessarily imply more factors of the
large ratio M /q. However, because such factors are fixed for all graphs contributing
to any explicit process with a given number of external legs they usually do not in
themselves undermine the validity of a perturbative expansion.

Furthermore, for the specific case where Ag, g, (g) represents a scattering ampli-
tude each external fermion line corresponds to an initial-state or final-state spinor —
Uy s OF Uiy ; — or the corresponding antiparticle spinor — vy ; or v ; — labelled by the
corresponding state’s momentum and spin. But each of these is itself proportional
to an external particle — and so low-energy, O(g) — scale, as can be seen from
their appearance in spin-averaged expressions like Y, u, 4, = m — 1§ and
Yo Vga Vqo = —m—i f5. This ¢'/? scaling of each external fermion line systematically
cancels the factor ¢~¢/? in the amplitude Ag,g,(g). leading to non-singular
predictions for scattering process at low energies. The same is true for effective
couplings in S, if these are obtained by matching to scattering processes.

Dangerous Interactions

As usual, interactions with the same number of fields and derivatives as the kinetic
terms — either f,, = 0 and d,, = 2 (for bosons) or f,, = 2 and d,, = 1 (for fermions) —
are unsuppressed by powers of g/ M, beyond the usual loop factor. Interactions with
more fields or derivatives than the kinetic terms additionally suppress a graph each
time they are used. But interactions with no derivatives and two or fewer fermions
can be potentially dangerous at low energies, introducing as they do negative powers
of the small ratio ¢/ M.

The kinds of interactions that are dangerous in this way are terms in a scalar
potential (d,, = f,, = 0) and Yukawa couplings (d,, = 0 and f,, = 2). In principle,
these kinds of interactions can be genuine threats to the consistency of the low-energy
expansion, and whether such interactions are consistent with low-energy physics
depends on the details.

What can make these interactions benign at low energies is if they do not carry
too much energy for generic field configurations, ¢ ~ v, and ¢ ~ vf’/ 2, For instance,
suppose, following the discussion around Eq. (3.17), that the scalar potential only
carries energy density f# < {* when fields are order ¢ ~ v, in size, such as if

V() ~ T e (?) : (3.66)

In particular, the r = 2 term represents a mass for the field ¢» of order m? ~ /v, s0
a natural criterion for ¢ to survive into the low-energy theory might be that i ~ m2v?
with m, < g for g a typical (possibly relativistic) momentum in the low-energy sector.

If this is the case then — assuming the couplings g, are order unity — all the
dimensionless couplings ¢, of Eq. (3.61) for these particular interactions are secretly
suppressed, with ¢, (d, = 0) ~ g, (3/i*) ~ g, (m2v2/i*). The contributions of these
particular d,, = f,, = 0 interactions to (3.64) then become



