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PREFACE

The present book is a partially modified and extended edition
of my book On Mathematical Logic and Deductive Method, which
appeared first in 1936 in Polish and then in 1937 in an exact
German translation (under the title: Einfihrung in die mathe-
malische Logik und in die Methodologie der Mathematik)., In its
original form it was Intended as a popular scientific book; its
aim was to present to the educated layman—in a manner which
would combine scientific exactitude with the greatest possible
intelligibility—a clear idea of that powerful trend of contemporary
thought which is concentrated about modern logic. This trend
arose originally from the somewhat limited task of stabilizing
the foundations of mathematics. In its present phase, however,
it has much wider aims. For it seeks to create a unified conceptual
apparatus which would supply a common basis for the whole of
human knowledge. Furthermore, it tends to perfect and sharpen
the deductive method, which in some sciences is regarded as the
sole permitted means of establishing truths, and indeed in every
domain of intellectual activity is at least an indispensable auxiliary
tool for deriving conclusions from accepted assumptions.

The response accorded to the Polish and German editions, and
especially some suggestions made by reviewers, gave rise to the idea
of making the new edition not merely a popular scientific book,
but also a textbook upon which an elementary college course in
logic and the methodology of deductive sciences could be based.
The experiment seemed the more desirable in view of a certain
lack of suitable elementary textbooks in this domain.

In order to carry out the experiment, it was necessary to make
several changes in the book.

Some very fundamental questions and notions were entirely
passed over or merely touched upon in the previous editions,
either because of their more technical character, or in order to
avoid points of a controversial nature. As examples may be cited
such topics as the difference between the usage of certain logical
notions in systematic developments of logic and in the language

ix
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of everyday life, the general method of verifying the laws of the
sentential calculus, the necessity of a sharp distinction between
words and their names, the concepts of the universal class and
the null class, the fundamental notions of the calculus of relations,
and finally the conception of methodology as a general science of
sciences, In the present edition all these topics are discussed
(although not all in an equally thorough manner), since it seemed
to me that to avoid them would constitute an essential gap in any
textbook of modern logic. Consequently, the chapters of the
first, general part of the book have been more or less extended;
in particular, Chapter II, which is devoted to the sentential
calculus, contains much new material. I have also added many
new exercises to these chapters, and have increased the number
of historical indications,

While in previous editions the use of special symbols was re-
duced to a minimum, I considered it necessary in the present
edition to familiarize the reader with the elements of logical
symbolism. Nevertheless, the use of this symbolism in practice
remains very restricted, and is limited mostly to exercises.

In previous editions the principal domain from which examples
were drawn for illustrating general and abstract considerations
was high-school mathematics; for it was, and still is, my opinion
that elementary mathematics, and especially algebra, because of
the simplicity of its concepts and the uniformity of its methods of
inference, is peculiarly appropriate for exemplifying various funda-
mental phenomena of a logical and methodological nature. Never-
theless, in the present edition, particularly in the newly added
passages, I draw examples more frequently from other domains,
especially from everyday life.

Independent of these additions, I have rewritten certain sections
whose mastery by students had been found somewhat difficult.

The essential features of the book remain unchanged. The pref-
ace to the original edition, the major part of which is reprinted
in the next few pages, will give the reader an idea of the general
cnaracter of the book, Perhaps, however, it is desirable to point
out explicitly at this place what he should not expect to find in it.
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First, the book contains no systematic and strictly deductive
presentation of logic; such a presentation would obviously not lie
within the framework of an elementary textbook. It was origi-
nally my intention to include, in the present edition, an additional
chapter entitled Logic as a Deductive Science, which—as an illus-
tration of the general methodological remarks contained in
Chapter VI—would outline a systematic development of some
elementary parts of logic. For a number of reasons this intention
could not be realized; but I hope that several new exercises on
this subject included in Chapter VI will to some extent compensate
for the omission.

Secondly, apart from two rather short passages, the book gives
no information about the traditional Aristotelian logic, and con-
tains no material drawn from it. But I believe that the space
here devoted to traditional logic corresponds well enough to the
small role to which this logic has been reduced in modern science;
and I also believe that this opinion will be shared by most con-
temporary logicians.

And, finally, the book is not concerned with any problems
belonging to the so-called logic and methodology of empirical
sciences. I must say that I am inclined to doubt whether any
special “logic of empirical sciences,’”’ as opposed to logic in general
or the “‘logic of deductive sciences,” exists at all (at least so long as
the word “logic” is used as in the present book—that is to say, as
the name of a discipline which analyzes the meaning of the con-
cepts common to all the sciences, and establishes the general laws
governing the concepts). But this is rather a terminological,
than a factual, problem. At any rate the methodology of empiri-
cal sciences constitutes an important domain of scientific research.
The knowledge of logic is of course valuable in the study of this
methodology, as it is in the case of any other discipline. It must
be admitted, however, that logical concepts and methods have
not, up to the present, found any specific or fertile applications
in this domain. And it is at least possible that this situation is
not merely a consequence of the present stage of methodological
researches, It arises, perhaps, from the circumstance that, for
the purpose of an adequate methodological treatment, an empirical
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science may have to be considered, not merely as a scientific theory
—that is, as a system of asserted statements arranged according
to certain rules—, but rather as a complex consisting partly of
such statements and partly of human activities. It should be
added that, in striking opposition to the high development of the
empirical sciences themselves, the methodology of these sciences
can hardly boast of comparably definite achievements—despite
the great efforts that have been made. Even the preliminary
task of clarifying the concepts involved in this domain has not
yet been carried out in a satisfactory way. Consequently, a
course in the methodology of empirical sciences must have a quite
different character from one in logic and must be largely confined
to evaluations and criticisms of tentative gropings and unsuccessful
efforts. For these and other reasons, I see little rational justifi-
cation for combining the discussion of logic and the methodology
of empirical sciences in the same college course.

A few remarks concerning the arrangement of the book and its
use as a college text.

The book is divided into two parts The first gives a general
introduction to logic and the methodology of deductive sciences;
the second shows, by means of a concrete example, the sort of
applications which logic and methodology find in the construction
of mathematical theories, and thus affords an opportunity to
assimilate and deepen the knowledge acquired in the first part.
Each chapter is followed by appropriate exercises. Brief historical
indications are contained in footnotes.

Passages, and even whole sections, which are set off by astensks
“¥’’ both at the beginning and at the end, contain more difficult
material, or presuppose familiarity with other passages containing
such material; they can be omitted without jeopardizing the
intelligibility of subsequent parts of the book. This also applies
to the exercises whose numbers are preceded by asterisks.

I feel that the book contains sufficient material for a full-year
course. Its arrangement, however, makes it feasible to use it in
half-year courses as well. If used as a text in half-year logic
courses in a department of philosophy, I suggest the thorough
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study of its first part, including the more difficult portions, with
the entire omission of the second part. If the book is used in a
half-year course in a mathematics department—for instance, in
the foundations of mathematics—, I suggest the study of both parts
of the book, with the omission of the more difficult passages.

In any case, I should like to emphasize the importance of work-
ing out the exercises carefully and thoroughly; for they not only
facilitate the assimilation of the concepts and principles discussed,
but also touch upon many problems for the discussion of which
the text provided no opportunity.

I shall be very happy if this book contributes to the wider
diffusion of logical knowledge. The course of historical events has
assembled in this country the most eminent representatives of
contemporary logic, and has thus created here especially favorable
conditions for the development of logical thought. These favor-
able conditions can, of course, be easily overbslanced by other
and more powerful factors. It is obvious that the future of logie,
as well as of all theoretical science, depends essentially upon
normalizing the political and social relations of mankind, and thus
upon a factor which is beyond the control of professional scholars.
I have no illusions that the development of logical thought, in
particular, will have a very essential effect upon the process of
the normalization of human relationships; but I do believe that
the wider diffusion of the knowledge of logic may contribute
positively to the acceleration of this process. For, on the one
hand, by making the meaning of concepts precise and uniform
in its own field and by stressing the necessity of such a precision
and uniformization in any other domain, logic leads to the possi-
bility of better understanding between those who have the will to
do so. And, on the other hand, by perfecting and sharpening the
tools of thought, it makes men more critical—and thus makes less
likely their being misled by all the pseudo-reasonings to which
they are in various parts of the world incessantly exposed today.

I gratefully acknowledge my indebtedness to Dr. O. HELMER,
who performed the translation of the German edition into English.
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I want to express my warmest gratitude to Dr. A. HOFSTADTER,
Mr. L. K. KraDER, Professor E. NAGEL, Professor W. V. QUINE,
Mr. M. G. WHITE and especially Dr. J. C. C. McKinNsEY and
Dr. P. P. WieNERr, who were unsparing in their advice and
assistance while I was preparing the English edition. I also owe
many thanks to Mr. K. J. Arrow for his help in reading proofs.

Alfred Tarski
Harvard University September 1940

The present book is a photographic reprint of the first English
edition, and no large-scale changes could be introduced in it.
Misprints, however, have been corrected, and a number of improve-
ments in detail have been made. I wish to thank readers and
reviewers for their helpful suggestions, and I am especially in-
debted to Miss Louise H. Chin for her assistance in preparing the
present edition for publication.

A.T.
University of California,

Berkeley, August 1945



FROM THE PREFACE TO THE
ORIGINAL EDITION

In the opinion of many laymen mathematics is today already a
dead science: after having reached an unusually high degree of
development, it has become petrified in rigid perfection. This is
an entirely erroneous view of the situation; there are but few
domains of scientific research which are passing through a phase
of such intensive development at present as mathematics. More-
over, this development is extraordinarily manifold : mathematics is
expanding its domain in all possible directions, it is growing in
height, in width, and in depth. It is growing in height, since, on
the soil of its old theories which look back upon hundreds if not
thousands of years of development, new problems appear again
and again, and ever more perfeet results are being achieved. It
is growing in width, since its methods permeate other branches of
sciences, while its domain of investigation embraces increasingly
more comprehensive ranges of phenomena and ever new theories
are being included in the large circle of mathematical disciplines.
And finally it is growing in depth, since its foundations become
more and more firmly established, its methods perfected, and its
principles stabilized.

It has been my intention in this book to give those readers who
are interested in contemporary mathematics, without being ac-
tively concerned with it, at least a very general idea of that third
line of mathematical development, i.e. its growth in depth. My
aim has been to acquaint the reader with the most important con-
cepts of a discipline which is known as mathematical logic, and
which has been created for the purpose of a firmer and more
profound establishment of the foundations of mathematics; this
discipline, in spite of its brief existence of barely a century, has
already attained a high degree of perfection and plays today a role
in the totality of our knowledge that far transcends its originally
intended boundaries. It has been my intention to show that the
concepts of logic permeate the whole of mathematics, that they
comprehend all specifically mathematical concepts as special cases,
and that logical laws are constantly applied—be it consciously or

XV
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unconsciously—in mathematical reasonings. Finally, I have tried
to present the most important principles in the construction of
mathematical theories—principles which form the subject matter
of still another discipline, the methodology of mathematics—and
to show how one sets about using those principles in practice.

It has not been easy to carry this whole plan through within
the framework of a relatively small book without presupposing
on the part of the reader any specialized mathematical knowledge
or any specific training in reasonings of an abstract character.
Throughout the book a combination of the greatest possible intel-
ligibility with the necessary conciseness had to be attempted, with
a constant care for avoiding errors or cruder inexactitudes from
the scientific standpoint. A language had to be used which
deviates as little as possible from the language of everyday life.
The employment of a special logical symbolism had to be given
up, although this symbolism is an invaluable tool which permits
us to combine conciseness with precision, removes to a large degree
the possibility of ambiguities and misunderstandings, and is
thereby of essential service in all subtler considerations. The idea
of a systematic treatment had to be abandoned from the begin-
ning. Of the abundance of questions which present themselves
only a few could be discussed in detail, others could only be
touched upon superficially, while still others had to be passed
over entirely, with the consciousness that the selection of topics
discussed would inevitably exhibit a more or less arbitrary char-
acter. In those cases in which contemporary science has as yet
not taken any definite stand and offers a number of possible and
equally correct solutions, it was out of the question to present
objectively all known views. A decision in favor of a definite
point of view had to be made. When making such a decision I
have taken care, not primarily to have it conform to my personal
inclinations, but rather to choose a method of solution which
would be as simple as possible and which would lend itself to a
popular mode of presentation.

I do not have the illusion that I have entirely succeeded in
overcoming these and other difficulties.
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ON THE USE OF VARIABLES

1. Constants and variables

Every scientific theory i1s a system of sentences which are
accepted as true and which may be called LAWS or ASSERTED
STATEMENTS or, for short, simply sTATEMENTS. In mathematics,
these statements follow one another in a definite order according
to certain principles which will be discussed in detail in Chapter
VI, and they are, as a rule, accompanied by considerations in-
tended to establish their validity. Considerations of this kind
are referred to as PROOFs, and the statements established by them

are called THEOREMS,
Among the terms and symbols occurring in mathematical
theorems and proofs we distinguish CONSTANTS and VARIABLES.
In arithmetic, for instance, we encounter such constants as

“number”, éa0m0’’ (“OH), “one’’ (“1”), ‘oum’’ (“"l‘”), and many
others.! Each of these terms has a well-determined meaning

which remains unchanged throughout the course of the considera-
tions.

As variables we employ, as a rule, single letters, e.g. in arith-
metic the small letters of the English alphabet: “a’’, “b”, ‘“¢”,

1 By ‘“‘arithmetic’’ we shall here understand that part of mathematics
which is concerned with the investigation of the general properties of
numbers, relations between numbers and operations on numbers, In
place of the word “arithmetic’’ the term ‘‘algebra’ is frequently used,
particularly in high-school mathematics. We have given preference to the
term ‘“‘arithmetic’’ because, in higher mathematics, the term ‘‘algebra’
is reserved for the much more special theory of algebraic equatione. (In
recent years the term ‘‘algebra’’ has obtained a wider meaning, which is,
however, still different from that of ‘“‘arithmetic’’.)—The term ‘‘number’’
will here always be used with that meaning which is normally attached to
the term ‘‘real number’’ in mathematics; that is to say, it will coverintegers
and fractions, rational and irrational, positive and negative numbers, but
not imaginary or complex numbers.

3



4 ON THE USE OF VARIABLES

o Y27, Yy, Y97, As opposed to the constants, the variables
do not possess any meaning by themselves. Thus, the question:

does gero have such and such a properiyf
e.g. !
48 gero an integer?

can be answered in the affirmative or in the negative; the answer
may be true or false, but at any rate it is meaningful. A question
concerning z, on the other hand, for example the question:

18 2 an inleger?
cannot be answered meaningfully.

In some textbooks of elementary mathematics, particularly the
less recent ones, one does occasionally come across formulations
which convey the impression that it is possible to attribute an
independent meaning to variables. Thusit is said that the symbols
“”, "y’ ... also denote certain numbers or quantities, not
‘““constant numbers” however (which are denoted by constants
like ‘0", 1", +.. ), but the so~called ‘‘variable numbers’’ or rather
‘““variable quantities’’. Statements of this kind have their source
in a gross misunderstanding. The ‘“variable number’’ z could not
possibly have any specified property, for instance, it could be
neither positive nor negative nor equal to zero; or rather, the
properties of such a number would change from case to case, that
is to say, the number would sometimes be positive, sometimes
negative, and sometimes equal to zero. But entities of such a
kind we do not find in our world at all; their existence would
contradict the fundamental laws of thought. The classification
of the symbols into constants and variables, therefore, does not
have any analogue in the form of a similar classification of the
numbers.

2. Expressions containing variables—sentential and designatory
functions

In view of the fact that variables do not have a meaning by
themselves, such phrases as:

z 18 an inleger
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are not sentences, although they have the grammatical form of
sentences; they do not express a definite assertion and can be
neither confirmed nor refuted. From the expression:

z 18 an tnleger

we only obtain a sentence when we replace ‘2’ in it by a constant
denoting a definite number; thus, for instance, if ‘2’ is replaced
by the symbol ‘1”, the result is a true sentence, whereas a false
sentence arises on replacing ‘2’ by “4”’. An expression of this
kind, which contains variables and, on replacement of these
variables by constants, becomes a sentence, is called a SENTENTIAL
FUNCTION. But mathematicians, by the way, are not very fond
of this expression, because they use the term ‘‘function’” with a
different meaning. More often the word ““conpITION’ is employed
in this sense; and sentential functions and sentences which are
composed entirely of mathematical symbols (and not of words of

everyday language), such as:
& <+ y = §,

are usually referred to by mathematicians as ForRMULAS. In place
of ‘‘sentential function’ we shall sometimes simply say ‘‘sentence’’

~but only in cases where there is no danger of any mis-
understanding. |

The role of the variables in a sentential function has sometimes
been compared very adequately with that of the blanks left in &
questionnaire; just as the questionnaire acquires a definite content
only after the blanks have been filled in, a sentential function
becomes a sentence only after constants have been inserted in
place of the variables. The result of the replacement of the
variables in a sentential function by constants—equal constants
taking the place of equal variables—may lead to a true sentence;
in that case, the things denoted by those constants are said to
SATISFY the given sentential function. For example, the numbers
1, 2 and 2} satisfy the sentential function:

r < 3,
but the numbers 3, 4 and 43 do not.
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Besides the sentential functions there are some further expres-
sions containing variables that merit our attention, namely, the
so-called DESIGNATORY or DESCRIPTIVE FUNCTIONS. They are ex-
pressions which, on replacement of the variables by constants,
turn into designations (‘‘descriptions’) of things. For example,
the expression:

2z + 1

is a designatory function, because we obtain the designation of s
certain number (e.g., the number 5), if in it we replace the variable
‘2 by an arbitrary numerical constant, that is, by a constant
denoting a number (e.g., ‘2”).

Among the designatory functions occurring in arithmetic, we
have, in particular, all the so-called algebraic expressions which
are composed of variables, numerical constants and symbols of
the four fundamental arithmetical operations, such as:

z 4+ 1
x_y! y+21

Algebraic equations, on the other hand, that is to say, formulas
consisting of two algebraic expressions connected by the symbol
“="are sentential functions. As far as equations are concerned,
a special terminology has become customary in mathematics;
thus, the variables occurring in an equation are referred to as the
unknowns, and the numbers satisfying the equation are called the
roots of the equation. E.g., in the equation:

x4+ 6 = 5z

the variable ‘“z” is the unknown, while the numbers 2 and 3 are
roots of the equation.

2.(z + y — 2).

Of the variables “z”, ““y’’, ... employed in arithmetic 1t is
sald that they STAND FOR DESIGNATIONS OF NUMBERS or that
numbers are VALUES of these variables. Thereby approximately
the following is meant: a sentential function containing the
symbols “z”, “y”, ... becomes a sentence, if these symbols are
replaced by such constants as designate numbers (and not by
expressions designating operations on numbers, relations between

numbers or even things outside the field of arithmetic like geomet-~
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rical configurations, animals, plants, etc.). Likewise, the vari-
ables occurring in geometry stand for designations of points and
geometrical figures. The designatory functions which we meet in

arithmetic can also be said to stand for designations of numbers.
Sometimes it is simply said that the symbols “z”, “y”, ... them-
selves, as well ag the designatory functions made up out of them,
denote numbers or are designations of numbers, but this is then

a merely abbreviative terminology.

3. Formation of sentences by means of variables—universal and
existential sentences

Apart from the replacement of variables by constants there is
still another way in which sentences can be obtained from sen-
tential functions. Let us consider the formula:

x4+ Yy =9yt 2

It is a sentential function containing the two variables “z’’ and
‘““9”” that is satisfied by any arbitrary pair of numbers; if we put
any numerical constants in place of “z” and “‘y’’, we always ob-
tain a true formula. We express this fact briefly in the following

manner:

for any numbersz andy, x4+ y =y + =.

The expression just obtained is already a genuine sentence and,
moreover, a true sentence; we recognize in it one of the funda-
mental laws of arithmetic, the so-called commutative law of addi-
tion. The most important theorems of mathematics are formu-
lated similarly, namely, all so-called UNIVERSAL SENTENCES, or
SENTENCES OF A UNIVERSAL CHARACTER, which assert that arbi-
trary things of a certain category (e.g., in the case of arithmetic,
arbitrary numbers) have such and such a property. It has to be
noticed that in the formulation of universal sentences the phrase
“for any things (or numbers) z, y, -+« »’ is often omitted and has
to be inserted mentally; thus, for instance, the commutative law
of addition may simply be given in the following form:

TTY=YyY-T2
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This has become a well accepted usage, to which we shall gener-
ally adhere in the course of our further considerations.

Let us now consider the sentential function:

x>y + 1.

This formula fails to be satisfied by every pair of numbers; if, for
instance, ‘3’ is put in place of “z”’ and ‘4’ in place of “y”, the
false sentence:

3>4+1
is obtained. Therefore, if one says:

for any numberszandy, = > y + 1,

one does undoubtedly state a meaningful, though obviously false,
sentence. There are, on the other hand, pairs of numbers which
satisfy the sentential function under constderation; if, for example,

“z” and “‘y”’ are replaced by ‘‘4” and ‘2", respectively, the result
is the true formula:

4> 24 1.
This situation is expressed briefly by the following phrase:
for some numberszand y, z > y + 1,
or, using a more frequently employed form:

there are numbers x and y such that z= > y -+ 1.

The expressions just given are true sentences; they are examples
of EXISTENTIAL SENTENCES, Or SENTENCES OF AN EXISTENTIAL
CHARACTER, stating the existence of things (e.g., numbers) with a
certain property.

With the help of the methods just described we can obtain
sentences from any given sentential function; but it depends on
the content of the sentential function whether we arrive at a true
or a false sentence. The following example may serve as a
further illustration. The formula:

z=z4+1
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is satisfied by no number; hence, no matter whether the words
“for any number 2" or ‘‘there 18 @ number z such that’ are pre-
fixed, the resulting sentence will be false.

In contradistinetion to sentences of a universal or existen_tial
character we may denote sentences not containing any variables,
such as:

3 4 2 =2 <+ 3,

as SINGULAR SENTENCES. This classification is not at’'all exhaus-
tive, since there are many sentences which cannot be counted
among any of the three categories mentioned. An example is
represented by the following statement:

for any numbers z and y there 18 a number 2 such that
Z =y - 2

Sentences of this type are sometimes called CONDITIONALLY
EXISTENTIAL SENTENCES (as opposed to the existential sentences
considered before, which may also be called ABSOLUTELY EXISTEN«
TIAL SENTENCES); they state the existence of numbers having &
certain property, but on condition that certain other numbers
exist.

4. Universal and existential quantifiers: free and bound variables

Phrases like:

forany z, y, +
and

there are z, y, -~ such that

are called QUANTIFIERS; the former is said to be a UNIVERsAL, the
latter an EXISTENTIAL QUANTIFIER. Quantifiers are also known
as OPERATORS; there are, however, expressions counted likewise
among operators, which are different from quantifiers. In the
preceding section we tried to explain the meaning of both quanti-
fiers. In order to emphasize their significance it may be pointed

out that, only by the explicit or implicit employment of
operators, can an expression containing variables occur as a
sentence, that is, as the statement of a well-determined assertion.
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Without the help of operators, the usage of variables in the
formulation of mathematical theorems would be excluded.

In everyday language 1t is not customary (though quite possible)
to use variables, and quantifiers are also, for this reason, not in
use. There are, however, certain words in general usage which
exhibit a very close connection with quantifiers, namely, such
words as “‘every’, “all”’, “a certain’, ‘““‘some’’. The connection
becomes obvious when we observe that expressions like:

all men are mortal
or

some men are wise

have about the same meaning as the following sentences, form-
ulated with the help of quantifiers:

for any z, if ¢ 18 a man, then z s mortal
and

there 18 an z, such that x is both a man and wrse,

respectively.

+ For the sake of brevity, the quantifiers are sometimes replaced
by symbolic expressions. We can, for instance, agree to write in
place of:

for any things (or numbers) z, y, - - .
and
there exist things (or numbers) z, y, - - - such that

the following symbolic expressions:

A and E

- % T P -2 i

respectively (with the understanding that the sentential functions
following the quantifiers are put in parentheses). According to
this agreement, the statement which was given at the end of the
preceding section as an example of a conditionally existential
sentence, for instance, assumes the following form:

(I) AlE(z =y + 2)]

Y 8
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A sentential function in which the variables “2”’, “y”, “2", ...

occur automatically becomes a sentence as soon as one prefixes
to it one or several operators containing all those variables. If,
however, some of the variables do not occur in the operators, the
expression in question remains a sentential function, without be-
coming & sentence. For example, the formula:

r=y-+2z
changes into a sentence if preceded by one of the phrases:
for any numbers z, y and 2,
there are numbers z, y and z such that,
for any numbers xz and y, there is a number z such that,;
and so on. But if we merely prefix the quantifier:

there 18 a number z such that or E

we do not yet arrive at a sentence; the expression obtained,
namely:

(11) E@ =y + 2

is, however, undoubtedly a sentential function, for it immediately
becomes a sentence when we substitute some constants in the
place of “z’’ and ‘“y’”’ and leave ‘2"’ unaltered, or else, when we
prefix another suitable quantifier, e.g.:

for any numbers z andy or A
Y

It is seen from this that, among the variables which may occur
in a sentential function, two different kinds™can be distinguished.
The occurrence of variables of the first kind—they will be called
FREE Or REAL VARIABLES—is the decisive factor in determining
that the expression under consideration is a sentential function
and not a sentence; in order to effect the change from a sentential
function to a sentence it is necessary to replace these variables
by constants or else to put operators in front of the sentential
function that contain those free variables. The remaining, so-
called BOUND or APPARENT VARIABLES, however, are not to be



12 ON THE USE OF VARIABLES

changed in such a transformation. In the above sentential fune-
tion (II), for instance, “z’” and “y’’ are free variables, and the
symbol ‘2"’ occurs twice a8 a bound variable; on the other hand,

the expression (I) is a sentence, and thus contains bound variables
only.

*It depends entirely upon the structure of the sentential func-
tion, namely, upon the presence and position of the operators,
whether any particular variable oceurring in it is free or bound.
This may be best seen by means of a concrete example. Let us,
for instance, consider the following sentential function:

(III)  for any number z,i4f =0 or y =+ 0, then
there exists a number z such that = = y.z.

This function begins with a universal quantifier containing the
variable ‘2", and therefore the latter, which occurs three times
in this function, occurs at all these places as a bound variable;
at the first place it makes up part of the quantifier, while at the
other two places it is, as we say, BOUND BY THE QUANTIFIER. The
situation is similar with respect to the variable 2"’. For, although
the initial quantifier of (III) does not contain this variable, we
can, nevertheless, recognize a certain sentential function forming
a part of (III) which opens with an existential quantifier con-
taining the variable ‘‘z”; this is the function:

(IV) there exists a number z such that z = y.z.

Both places at which the variable “z’’ occurs in (III) belong to
the partial function (IV) just stated. It is for this reason that
we say that ‘‘2”’ occurs everywhere in (III) as a bound variable;
at the first place it makes up part of the existential quantifier,
and at the second place it is bound by that quantifier. As for
the variable ‘‘y’’ also occurring in (III), we see that there is no
quantifier in (III) containing this variable, and therefore it occurs
in (III) twice as a free variable.

The fact that quantifiers bind variables—that is, that they
change free into bound variables in the sentential functions which
follow them—constitutes a very essential property of quantifiers.
Several other expressions are known which have an analogous
property; with some of them we shall become acquainted later
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(in Sections 20 and 22), while some others—such as, for instance,
the integral sign—play an important role in higher mathematics.
The term “operator’” is the general term used to denote all ex~
pressions having this property.*

5. The importance of variables in mathematics

As we have seen in Section 3 variables play & leading role
in the formulation of mathematical theorems. From what has
been said it does not follow, however, that it would be impossible
in principle to formulate the latter without the use of variables,
But in practice it would scarcely be feasible to do without them,
since even comparatively simple sentences would assume & com-
plicated and obscure form. As an illustration let us consider the
following theorem of arithmetic:

for any numberszandy, z*— = (z —y). (2 4+ 2y + Y?).
Without the use of variables, this theorem would look as follows:

the difference of the third powers of any two numbers i8 equal to
the product of the difference of these numbers and a sum of three
terms, the first of which 18 the square of the first number, the
second the product of the two numbers, and the third thesquare
of the second number.

An even more essential significance, from the standpoint of the
economy of thought, attaches to variables as far as mathe-
matical proofs are concerned. This fact will be readily confirmed
by the reader if he attempts to eliminate the variables in any of
the proofs which he will meet in the course of our further con-
siderations. And it should be pointed out that these proofs are
much simpler than the average considerations to be found in the
various fields of higher mathematics;attempts at carrying the latter
through without the help of variables would meet with very con-
siderable difficulties. It may be added that it is to the introduc-
tion of variables that we are indebted for the development of so0
fertile a method for the solution of mathematical problems as the
method of equations, Without exaggeration it can be said that
the invention of variables constitutes a turning point in the history
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of mathematics; with these symbols man acquired a tool that pre-
pared the way for the tremendous development of the mathema-

tical science and for the solidification of its logical foundations.?

Exercises

1. Which among the following expressions are sentential func-
tions, and which are designatory functions:

(a) z 78 divsible by 3,
(b) the sum of the numbers z and 2,

(0) y - 2,
d) ¥ = 2,

e) z4+ 2 <y +3,

) =+ 3) - @+ 9,
(g) the mother of z and z,
(h) x ¢s the mother of z ?

2. Give examples of sentential and designatory functions from
the field of geometry.

3. The sentential functions which are encountered in arith-
metic and which contain only one variable (which may, however,
occur at several different places in the given sentential function)
can be divided into three categories: (i) functions satisfied by
every number; (ii) functions not satisfied by any number; (iii)
functions satisfied by some numbers, and not satisfied by others.

? Variables were already used in ancient times by Greek mathematicians
and logicians,—though only in special circumstances and in rare cases.
At the beginning of the 17th century, mainly under the influence of the work
of the French mathematician F. Viera (1540-1603), people began to work
systematically with variables and to employ them consistently in mathe-
matical considerations. Only at the end of the 19th century, however,
due to the introduction of the notion of a quantifier, was the role of
variables in scientific language and especially in the formulation of mathe-
matical theorems fully recognized; this was largely the merit of the out-
standing American logician and philosopher Ca. 8. PEIrcE (1839-1914).
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To which of these categories do the following sentential funec-
tions belong:

(a) 2+ 2 = 5 + =,

(b) 2 = 49,

) ¥ + 2)-(y — 2) < 93

(d) ¥ + 24 > 36,

e) 2=0 or 2<0 or z>0,
f) 2424 > 2436 ?

4. GGive examples of universal, absolutely existential and condi-
tionally existential theorems from the fields of arithmetic and
geometry.

5. By writing quantifiers containing the variables ‘2’ and “y"”
in front of the sentential function:

>y
it is possible to obtain various sentences from it, for instance:
for any numbers z and y, = > y;
for any number z, there exists a number y such that = > y;
there i1s a number y such that, for any number z, x > y.

Formulate them all (there are six altogether) and determine which
of them are true.

6. Do the same as In Exercise 5 for the following sentential
funections:

z 4y >1
and

z 18 the father of ¥

(assuming that the variables “z’” and ‘“y” in the latter stand for
names of human beings).
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7. State a sentence of everyday language that has the same
meaning as:

for every z, if x ts a dog, then z has a good sense of smell
and that contains no quantifier or variables.
8. Replace the sentence:

some snakes are poisonous

by one which has the same meaning but is formulated with the
help of quantifiers and variables.

0. Differentiate, in the following expressions, between the free
and bound variables:

(8) z 18 divisible by y;
(b) foranyz, =z ~y =1z + (—y),

() if = < y, then there is a number z such that z < y
and y < z;

(d) for any number y, if y > 0, then there is a number z
such that z = y.z;

e)if z = y* and y > 0, then, for any number z,
z > —2z%

(f) f there exists a number y such that z= > y2, then, for
any number z, T > ~22,

Formulate the above expressions by replacing the quantifiers by
the symbols introduced in Section 4.

*10. If, in the sentential function (e) of the preceding exercise,
we replace the variable ‘2’ in both places by “y’’, we obtain an
expression in which ‘““y’’ occurs in some places as a free and in
others as a bound variable; in what places and why?

(In view of some difficulties in operating with expressions in
which the same variable occurs both bound and free, some logi-
cians prefer to avoid the use of such expressions altogether and
not to treat them as sentential functions.)
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*11. Try to state quite generally under which conditions a
variable occurs at a certain place of a given sentential function as
a free or as a bound variable.

12. Which numbers satisfy the sentential function:
there 18 a number y such that z = y?,
and which satisfy:

there 18 @ number y such that z.y =1 ?
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6. Logical constants; the old logic and the new logic

The constants with which we have to deal in every scientific
theory may be divided into two large groups. The first group
consists of terms which are specific for a given theory. In the
case of arithmetie, for instance, they are terms denoting either in-
dividual numbers or whole classes of numbers, relations between
numbers, operations on numbers, etec.; the constants which we
used in Section 1 as examples belong here among others. On
the other hand, there are terms of a much more general character
occurring in most of the statements of arithmetic, terms which are
met constantly both in considerations of everyday life and in
every possible field of science, and which represent an indispensable
means for conveying human thoughts and for carrying out in-
ferences in any field whatsoever; such wards as ‘“not”, “and”’,
“or’, ‘45", “‘every’’, “some’ and many others belong here. There
is a special discipline, namely Logic, considered the basis for all
the other sciences, whose concern it is to establish the precise
meaning of such terms and to lay down the most general laws in
which these terms gre involved.

Logic developed into an independent science long ago, earlier
even than arithmetiec and geometry. And yet it has only been
recently—after a long period of almost complete stagnation—
that this discipline has begun an intensive development, in the
course of which it has undergone a complete transformation with
the effect of assuming a character similar to that of the mathe-
matical disciplines; in this new form it is known 88 MATHEMATICAL
or DEDUCTIVE Or SYMBOLIC LOGIC, and sometimes it is also called
LoGgIsTIC. The new logic surpasses the old in many respects,—
not only because of the solidity of its foundations and the perfec-
tion of the methods employed in its development, but mainly on
account of the wealth of concepts and theorems that have been

18
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established. Fundamentally, the old traditional logic forms only
a fragment of the new, a fragment moreover which, from the
point of view of the requirements of other sciences, and of mathe-
matics in particular, is entirely insignificant. Thus, in regard
to the aim which we here have, there will in this whole book be
but very little opportunity to draw the material for our considera-
tions from traditional logic.}

7. Sentential calculus; negation of a sentence, conjunction and
disjunction of sentences

Among the terms of a logical character there is a small dis-
tinguished group, consisting of such words as ‘“‘not”, ‘‘and’”’, “or”,
“of oo, then «..”7, All these words are well-known to us from
everyday language, and serve to build up compound sentences
from simpler ones. In grammar, they are counted among the
so-called sentential conjunctions. If only for this reason, the
presence of these terms does not represent a specific property of
any particular science. To establish the meaning and usage of
these terms is the task of the most elementary and fundamental
part of logic, which is called SENTENTIAL CALCULUS, or sometimes
PROPOSITIONAL CALCULUS or (less happily) THEORY OF DEDUCTION.?

1 Logic was created by ArisTorLe, the great Greek thinker of the 4th
century B,C. (384-322); his logical writings are collected in the work
Organon. As the creator of mathematical logic we have to look upon the
great German philosopher and mathematician of the 17th century G. W.
LrreNiz (1646-1716). However, the logical works of Leisniz failed to
have a great influence upon the further development of logical investiga-
tions; there was even a period in which they sank into oblivion. A con-
tinuous development of matliematical logic began only towards the middle
of the 19th century, namely at the time when the logical system of the
English mathematician G. BooLE was published (1815-1864; principal work:
An Investigation of the Laws of Thought, London 1854). So far the new
logic has found its most perfect expression in the epochal work of the great
contemporary English logicians A. N. WauiTeneap and B. RusseLL:
Principia Mathematica (Cambridge, 1910-1913).

* The historically first system of sentential calculus is contained in
the work Begriffsschrift (Halle 1879) of the German logician G. FrEGE
(1848-1625) who, without doubt, was the greatest logician of the 19th
century, The eminent contemporary Polish logician and historian of logic
J. Lurasiewrcz succeeded in giving sentential calculus a particularly
simple and precise form and caused extensive investigations concerning
this calculus.



20 ON THE SBENTENTIAL CALCULUS

We will now discuss the meaning of the most important terms
of sentential calculus.

With the help of the word ‘not’’ one forms the NEGATION oOf
any sentence; two sentences, of which the first is a negation of
the second, are called CONTRADICTORY BSENTENCES. In sen-
téntial calculus, the word ‘“‘not’’ is put in front of the whole sen-
tence, whereas in everyday language it is customary to place it
with the verb; or should it be desirable to have it at the beginning
of the sentence, it must be replaced by the phrase ‘“it s not the
case that’. Thus, for example, the negation of the sentence:

1 78 a positive tnieger
reads as follows:
1 78 not a positive inleger,
or else:
vt 18 mot the case that 1 1s a positive tnieger.

Whenever we utter the negation of a sentence, we intend to express
the idea that the sentence is false; if the sentence is actually false,
ite negation is true, while otherwise its negation is false.

The joining of two sentences (or more) by the word ‘“‘and”
results in their so-called CONJUNCTION Or LOGICAL PRODUCT; the
sentences joined in this manner are called the MEMBERS OF THE
CONJUNCTION or the FACTORS OF THE LOGICAL PRoDUCT. If, for
instance, the sentences:

2 18 a positive integer
and
2 <3

are joined in this way, we obtain the conjunction:

2 18 a poaitive tnieger and 2 < 3.

The stating of the conjunction of two sentences is tantamount
to stating that both sentences of which the conjunction is formed
are true, If this is actually the case, then the conjunction is
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true, but if at least one of its members is false, then the whole
conjunction is false.

By joining sentences by means of the word ‘‘or”’ one obtains the
pDISJUNCTION of those sentences, which is also called the LogIcAL
suM; the sentences forming the disjunction are called the MBM-
BERS OF THE DISJUNCTION or the SUMMANDS OF THE LOGICAL 8UM.
The word ‘“‘or’”’, in everyday language, possesses at least two
different meanings. Taken in the so-called NON-EXCLUSIVE
meaning, the disjunction of two sentences merely expresses that
at least one of these sentences is true, without saying anything
as to whether or not both sentences may be true; taken in another
meaning, the so-called EXcLUSIVE one, the disjunction of two
sentences asserts that one of the sentences is true but that the
other is false. Suppose we see the following notice put up in a
bookstore:

Customers who are teachers or college students are entitled
to a special reduction.

Here the word “or”’ is undoubtedly used in the first sense, since
it is not intended to refuse the reduction to a teacher who is at the

same time a college student. If, on the other hand, a child has
asked to be taken on a hike in the morning and to a theater in the
afternoon, and we reply:

no, we are going on a hike or we are going lo the thealer,

then our usage of the word ‘“or’’ is obviously of the second kind
since we intend to comply with only one of the two requests. In
logic and mathematics, the word ‘‘or”’ is always used in the first,
non-exclusive meaning; the disjunction of two sentences is con-
sidered true if both or at least one of its members are true, and
otherwise false. Thus, for instance, it may be asserted:

every number 18 positive or less than 3,

although it is known that there are numbers which are both
positive and less than 3. In order to avoid misunderstandings,
it would be expedient, in everyday as well as in scientific language,
to use the word ‘“‘or” by itself only in the first meaning, and to
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replace it by the compound expression ‘‘etther ... or ...” when-
ever the second meaning is intended.

* Even if we confine ourselves to those cases in which the word
““or’’ occurs in its first meaning, we find quite noticeable differences
between the usages of it in everyday language and in logic, In
common language, two sentences are joined by the word “or”’ only
when they are in some way connected in form and content. (The
same applies, though perhaps to alesser degree, to the usage of the
word ‘“‘and’”.) The nature of this connection is not quite clear,
and a detailed analysis and description of it would meet with
considerable difficulties. At any rate, anybody unfamiliar with
the language of contemporary logic would presumably be little
inclined to consider such a phrase as:

2:.2=0 or New York is a large city

as & meaningful expression, and even less so to accept it as a true
sentence. Moreover, the usage of the word “or” in everyday
English is influenced by certain factors of a psychological character.
Usually we affirm a disjunction of two sentences only if we believe
that one of them is true but wonder which one. If, for example,
we look upon a lawn in normal light, it will not enter our mind to
say that the lawn is green or blue, since we are able to affirm some-
thing simpler and, at the same time, stronger, namely that the
lawn is green. Sometimes even, we take the utterance of a
disjunction as an admission by the speaker that he does not know
which of the members of the disjunction is true. And if we later
arrive at the conviction that he knew at the time that one—and,
specifically, which—of the members was false, we are inclined to
look upon the whole disjunction as a false sentence, even should
the other member be undoubtedly true. Let us imagine, for
instance, that a friend of ours, upon being asked when he is leaving
town, answers that he is going to do so today, tomorrow or the
day after. Should we then later ascertain that, at that time, he
had already decided to leave the same day, we shall probably get
the impression that we were deliberately misled and that he
told us a lie.
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The creators of contemporary logic, when introducing the word
‘““or’’ into their considerations, desired, perhaps unconsciously, to
simplify its meaning and to render the latter clearer and independ-
ent of all psychological factors, especially of the presence or
absence of knowledge. Consequently, they extended the usage
of the word “or”, and decided to consider the disjunction of any
two sentences as & meaningful whole, even should no connection
between their contents or forms exist; and they also decided to
make the truth of a disjunction—Ilike that of a negation or con-
junction—dependent only and exclusively upon the truth of its
members. Therefore, a man using the word “or”’ in the meaning
of contemporary logic will consider the expression given above:

2.2=08 or New York vs a large city

as & meaningful and even a true sentence, since its second part is
surely true. Similarly, if we assume that our friend, who was
asked about the daté of his departure, used the word ‘‘or’’ in its
strict logical meaning, we shall be compelled to consider his
answer as true, independent of our opinion as to his intentions.*

8. Implication or conditional sentence; implication in material

meaning
')

If we combine two sentences by the words *‘2f ..., then ...”,
we obtain a compound sentence which is denoted as an 1mMPLICA-
TION Or & CONDITIONAL SENTENCE. The subordinate clause to
which the word ‘“4f”’ is prefixed is called ANTECEDENT, and the
principal clause introduced by the word ‘‘then’” is called con-
SEQUENT. By asserting an implication one asserts that it does
not occur that the antecedent is true and the consequent is false.
An implication is thus true in any one of the following three cases:
(i) both antecedent and consequent are true, (ii) the antecedent is
false and the consequent is true, (iii) both antecedent and conse-
quent are false; and only in the fourth possible case, when the
antecedent is true and the consequent is false, the whole implica-
tion is false. It follows that, whoever accepts an implication as
true, and at the same time accepts its antecedent as true, cannot
but accept its consequent; and whoever accepts an implication as
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true and rejects its consequent as false, must also reject its
antecedent.

* As in the case of disjunction, considerable differences between
the usages of implication in logic and everyday language manifest
themselves. Again, in ordinary language, we tend to join two
sentences by the words ‘“+f ..., then ...” only when there is some
connection between their forms and contents. This connection is
hard to characterize in a general way, and only sometimes is
its nature relatively clear. We often associate with this con-
nection the conviction that the consequent follows necessarily
from the antecedent, that is to say, that if we assume the ante-
cedent to be true we are compelled to assume the consequent, too,
to be true (and that possibly we can even deduce the consequent
from the antecedent on the basis of some general laws which we
might not always be able to quote explicitly). Here again, an
additional psychological factor manifests itself; usually we formu-
late and assert an implication only if we have no exact knowledge

as to whether or not the antecedent and consequent are true.
Otherwise the use of an implication seems unnatural and its sense
and truth may raise some doubt.

The following example may serve as an illustration. Let us
consider the law of physics:

every metal 13 malleable,
and let us put it in the form of an implication containing variables:
of x 18 a metal, then z 18 malleable.

If we believe in the truth of this universal law, we believe also
in the truth of all its particular cases, that is, of all implications
obtainable by replacing ‘“z’’ by names of arbitrary materials such
as iron, clay or wood. And, indeed, it turns out that all sentences
obtained in this way satisfy the conditions given above for a true
implication; it never happens that the antecedent is true while the
consequent is false. We notice, further, that in any of these
implications there exists a close connection between the antecedent
and the consequent, which finds its formal expression in the
coincidence of their subjects. We are also convinced that,
assuming the antecedent of any of these implications, for instance,
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‘“eron 18 a metal”, as true, we can deduce from it its consequent
““ron 23 mallea,ble”, for we can refer to the general law that every
metal is malleable.

Nevertheless, some of the sentences discussed just now seem
artificial and doubtful from the point of view of common language.
No doubt is raised by the universal implication given above, or by
any of its particular cases obtained by replacing ‘‘z’’ by the name
of a material of which we do not know whether it is a metal or
whether it is malleable. But if we replace “z’’ by ‘¢ron’’, we are
confronted with a case in which the antecedent and consequent
are undoubtedly true; and we shall then prefer to use, instead of an
implication, an expression such as

since iron 18 a metal, 1t 18 malleable.

Similarly, if for “‘2’’ we substitute “clay’’, we obtain animplication
with a false antecedent and a true consequent, and we shall be
inclined to replace it by the expression:

although clay 18 not a metal, 1t 28 malleable.

And finally, the replacement of ‘“2”” by “wood” results in an
implication with a false antecedent and a false consequent; if, in
this case, we want to retain the form of an implication, we should
have to alter the grammatical form of the verbs:

if wood were a metal, then 1t would be malleable.

The logicians, with due regard for the needs of scientific lan-
guages, adopted the same procedure with respect to the phrase
“f «.., then ...”” as they had done in the case of the word “‘or”.
They decided to simplify and clarify the meaning of this phrase,
and to free it from psychological factors. For this purpose they
extended the usage of this phrase, considering an implication as a
meaningful sentence even if no connection whatsoever exists
between its two members, and they made the truth or falsity of
an implication dependent exclusively upon the truth or falsity of
the antecedent and consequent. To characterize this situation
briefly, we say that contemporary logic uses IMPLICATIONS IN
MATERIAL MEANING, or simply, MATERIAL IMPLICATIONS; this is
opposed to the usage of IMPLICATION IN FORMAL MBANING
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or FORMAL IMPLICATION, in which case the presence of a cer-
tain formal connection between antecedent and consequent is
an indispensable condition of the meaningfulness and truth of the
implication. The concept of formal implication is not, perhaps,
quite clear, but, at any rate, it is narrower than that of material
implication; every meaningful and true formal implication is at
the same time a meaningful and true material implication, but
not vice versa.

In order to illustrate the foregoing remarks, let us consider the
following four sentences:

if 2.2 =4, then New York is a large city;
of 2.2 =105, then New York is a large city;
if 2.2 =4, then New York 1s a small city;
if 2.2 =05, then New York is a small city.

In everyday language, these sentences would hardly be considered
as meaningful, and even less as true. From the point of view of
mathematical logic, on the other hand, they are all meaningful,
the third sentence being false, while the remaining three are true.
Thereby it is, of course, not asserted that sentences like these are
particularly relevant from any viewpoint whatever, or that we
apply them as premisses in our arguments.

It would be a mistake to think that the difference between every-
day language and the language of logic, which has been brought to
light here, is of an absolute character, and that the rules, outlined
above, of the usage of the words ‘“4f ..., then ...” in common
language admit of no exceptions. Actually, the usage of these
words fluctuates more or less, and if we look around, we can find
cases in which this usage does not comply with our rules. Let us
imagine that a friend of ours is confronted with a very difficult
problem and that we do not believe that he will ever solve it. We
can then express our disbelief in a jocular form by saying:

of you solve this problem, I shall eat my hat.

The tendency of this utterance is quite clear. We affirm here an
implication whose consequent is undoubtedly false; therefore,
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gince we affirm the truth of the whole implication, we thereby,
at the same time, affirm the falsity of the antecedent; that is to
say, we express our conviction that our friend will fail to solve
the problem in which he is interested. But it is also quite clear
that the antecedent and the consequent of our implication are in
no way connected, so that we have a typical case of & material and
not of a formal implication.

L

The divergency in the usage of the phrase “if ..., then ...
in ordinary language and mathematical logic has been at the root
of lengthy and even passionate discussions,—in which, by the way,
professional logicians took only a minor part.? (Curiously
enough, considerably less attention was paid to the analogous
divergency in the case of the word ‘“or”.) It has been objected
that the logicians, on account of their employment of the material
implication, arrived at paradoxes and even plain nonsense. This
has resulted in an outery for a reform of logic to the effect of
bringing about a far-reaching rapprochement between logic and
ordinary language regarding the use of implication.

It would be hard to grant that these criticisms are well-founded.
There is no phrase in ordinary language that has a precisely
determined sense. It would scarcely be possible to find two people

who would use every word with exactly the same meaning, and
even in the language of a single person the meaning of the same

word varies from one period of his life to another. Moreover, the
meaning of words of everyday language is usually very compli-
cated; it depends not only on the external form of the word but
also on the circumstances in which it is uttered and sometimes
even on subjective psychological factors. If a scientist wants to

' It is interesting to notice that the beginning of this discussion dates
back to antiquity. It was the Greek philosopher PriLO oF MEGARA (in
the 4th century B.C.) who presumably was the first in the history of logic
to propagate the usage of material implication; this was in opposition
to the views of his master, Dioporus CroNUs, who proposed to use implica-
tion in a narrower sense, rather related to what is called here the formal
meaning. Somewhat later (in the 3d century B.C.)—and probably under
the influence of PrILo—various possible conceptions of implication were
discussed by the Greek philosophers and logicians of the Stoic School (in
whose writings the first beginnings of sentential calculus are to be
found).
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introduce a concept from everyday life into a science and to
establish general laws concerning this concept, he must always
make its content clearer, more precise and simpler, and free it
from inessential attributes; it does not matter here whether he
is & logician concerned with the phrase “if ..., then ...” or, for
instance, a physicist establishing the exact meaning of the word
“metal”., In whatever way the scientist realizes his task, the
usage of the term as it is established by him will deviate more or
less from the practice of everyday language. If, however, he
states explicitly in what meaning he decides to use the term, and
if he consistently acts in conformity to this decision, nobody
will be in a position to object that his procedure leads to nonsensi-
cal results. |
Nevertheless, in connection with the discussions that have taken
place, some logicians have undertaken attempts to reform the
theory of implication. They do not, generally, deny material
implication a place in logic, but they are anxious to find also &
place for another concept of implication, for instance, of such &

kind that the possibility of deducing the consequent from the
antecedent constitutes a necessary condition for the truth of an

implication; they even desire, 80 it seems, to place the new concept
in the foreground. These attempts are of a relatively recent date,
and it is too early to pass a final judgment as to their value.*
But it appears today almost certain that the theory of material
implication will surpass all other theories in simplicity, and, in
any case, it must not be forgotten that logic, founded upon this
simple concept, turned out to be a satisfactory basis for the most
complicated and subtle mathematical reasonings.*

9. The use of implication in mathematics

The phrase “2f ..., then ...” belongs to those expressions of
logic which are used most frequently in other sciences and, espe-
cially, in mathematics. Mathematical theorems, particularly
those of a universal character, tend to have the form of implica-
tions; the antecedent is called in mathematics the HYPOTHESIS,
and the consequent is called the concLusION.

¢ The first attempt of this kind was made by the contemporary American
philosopher and logician C. I. Lrwis.
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As a simple example of a theorem of arithmetie, having the form
of an implication, we may quote the following sentence:

if = 18 a positive number, then 2z 18 a positive number

in which “z 18 a positive number’’ is the hypothesis, while ‘2z 1s a
positive number”’ is the conclusion.

Apart from this, so to speak, classical form of mathematical
theorems, there are, occasionally, different formulations, in
which hypothesis and conclusion are connected in some other way
than by the phrase “4f «.., then ...”., The theorem just men-
tioned, for instance, can be paraphrased in any of the following
forms:

from: z 18 a positive number, ut follows: 2z s a positive number;

the hypothesis: x 18 a positive number, implies (or has as a
consequence) the conclusion: 2z 18 a positive number;

the condition: z is a posttive number, 18 suffictent for 2z to be a
positive number,

for 2z to be a positive number it 18 sufficient that x be a positive
number,

the condition: 2z 18 a positive number, 18 necessary for x to be a
positive number;

Jor x to be a positive number vt 18 necessary that 2z be a positive
number.

Therefore, instead of asserting a conditional sentence, one might
usually just as well say that the hypothesis 1MpLIES the conclusion
or HAS it AS A CONSEQUENCE, or that it is a SUFFICIENT CONDITION
for the conclusion; or one can express it by saying that the conelu-
sion FOLLOWS from the hypothesis, or that it is a NECESSARY CONDI=
TION for the latter. A logician may raise various objections
against some of the formulations given above, but they are in gen-
eral use in mathematics.

* The objections which might be raised here concern those of the
above formulations in which any of the words ‘‘hypothesis”,
“conclusion’’, “‘consequence’, ‘“follows”, ‘“‘implies’ oceur,
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In order to understand the essential points in these objections,
we observe first that those formulations differ in content from the
ones originally given. While in the original formulation we talk only
about numbers, properties of numbers, operations upon numbers
and so on—hence, about things with which mathematics is con-
cerned—, in the formulations now under discussion we talk about
hypotheses, conclusions, conditions, that is about sentences or
sentential functions occurring in mathematics., It might be
noted on this occasion that, in general, people do not distinguish
clearly enough the terms which denote things dealt with in a given
science from those which denote various kinds of expressions
occurring within it. This can be observed, in particular, in the
domain of mathematics, especially on the elementary level.
Presumably only few are aware of the fact that such terms as
““equation’’, “‘inequality’”’, ‘‘polynomial”’ or ‘“‘algebraic fraction’,
which are met at every turn in texthooks of elementary algebra,
do not, strictly speaking, belong to the domain of mathematics or
logic, since they do not denote things considered in this domain;
equations and inequalities are certain special sentential functions,
while polynomials and algebraic fractions—especially as they are
treated in elementary textbooks—are particular instances of
designatory functions (cf. Section 2). The confusion on this
point is brought about by the fact that terms of this kind are
frequently used in the formulation of mathematical theorems.
This has become a very common usage, and perhaps it is not worth
our while to put up a stand against it, since it does not present any
particular danger; but it might be worth our while to get to
recognize that, for every theorem formulated with the help of
such terms, there is another formulation, logically more correct,
in which those terms do not occur at all. For instance, the
theorem:

the equation: z? 4 azx + b = 0 has at most two roots
can be expressed in & more correct manner as follows:
there are at most two numbers x such that z* + ax 4+ b = 0.

Returning to the questionable formulations of an implication,
we must emphasize one still more important point. In these
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formulations we assert that one sentence, namely the antecedent
of the implication, has another—the consequent of the implica-
tion—as a consequence, or that the second follows from the first.
But ordinarily when we express ourselves in this way, we have in
mind that the assumption that the first sentence is true leads us,
80 to speak, necessarily to the same assumption concerning the
second sentence (and that possibly we are even able to derive the
gsecond sentence from the first). As we already know from
Section 8, however, the meaning of an implication, as it was
established in contemporary logic, does not depend on whether
its consequent has any such connection with its antecedent.
Anyone shocked by the fact that the expression:

of 2.2 =4, then New York ¢s a large city

18 considered in logic as a meaningful and even true sentence
will find it still harder to reconcile himself with such a trans-
formation of this phrase as:

the hypothesis that 2.2 = 4 has as a consequence that
New York is a large city.

We see, thus, that the manners discussed here of formulating
or transforming a conditional sentence lead to paradoxical sound-

ing utterances and make yet more profound the discrepancies
between common language and mathematical logic. It is for this

reason that they repeatedly brought about various misunder-
standings and have been one of the causes of those passionate and
frequently sterile discussions which we mentioned above.

From the purely logical point of view we can obviously avoid
all objections raised here by stating explicitly once and for all
that, in using the formulations in question, we shall disregard
their usual meaning and attribute to them exactly the same
content as to the ordinary conditional sentence, But this would
be inconvenient in another respect; for there are situations—
though not in logic itself, but in a field closely related to it, namely,
the methodology of deductive sciences (ef. Chapter VI)—in which
we talk about sentences and the relation of consequence between
them, and in which we use such terms as ‘““mplies” and “follows”
in a different meaning more closely akin to the ordinary one.
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It would, therefore, be better to avoid those formulations al-
together, all the more since we have several formulations at our
disposal which are not open to any of these objections.*

10. Equivalence of sentences

We shall consider one more expression from the field of sentential
calculus. It is one which is comparatively rarely met in every-
day language, namely, the phrase ‘‘¢f, and only if”’. If any two
sentences are joined up by this phrase, the result is a compound
sentence called an EQUIVALENCE. The two sentences connected
in this way are referred to as the LEPT and RIGHT SIDE OF THE
EQUIVALENCE. By asserting the equivalence of two sentences,
it 1s intended to exclude the possibility that one is true and the
other false; an equivalence, therefore, is true if its left and right
sides are either both true or both false, and otherwise the equiva-
lence is false.

The sense of an equivalence can also be characterized in still

another way. If, in a conditional sentence, we interchange
antecedent and consequent, we obtain a new sentence which, in
its relation to the original sentence, is called the CONVERSE SEN-
TENCE (or the CONVERSE OF THE GIVEN SENTENCE). Let us take,
for instance, as the original sentence the implication:

(I) 4f z is a positive number, then 2z is a positive number;
the converse of this sentence will then be:

(II) if 2z 78 a positive number, then x is a positive number.

As is shown by this example, it occurs that the converse of a true
sentence is true. In order to see, on the other hand, that this is
not a general rule, it is sufficient to replace “2z” by “z?’ in (I)
and (II): the sentence (I) will remain true, while the sentence (II)
becomes false. If, now, it happens that two conditional sen-
tences, of which one is the converse of the other, are both true,
‘then the fact of their simultaneous truth can also be expressed by
joining the antecedent and consequent of any one of the two sen-
tences by the words ‘‘4f, and only if’’. Thus, the above two
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implications—the original sentence (I) and the converse sentence
(II)-may be replaced by a single sentence:

z 18 a positive number if, and only if, 2z 18 a positive number

(in which the two sides of the equivalence may yet be inter-
changed).

There are, incidentally, still a few more possible formulations
which may serve to express the same idea, e.g.:

from: z 18 a positive number, it follows:' 2z 18 a positive number,
and conversely;

the conditions that x 18 a positive number and that 2z 18 a positive
number are equivalent with each other;

the condition that x 18 a positive number 18 both necessary and
sufficient for 2z to be a positive number;

for z to be a posttive number it 18 necessary and sufficient that
22 be a positive number.

Instead of joining two sentences by the phrase ‘‘if, and only 7f”,
it is therefore, in general, also possible to say that the RELATION
OF CONSEQUENCE holds between these two sentences IN BOTH

DIRECTIONS, or that the two sentences are EQUIVALENT, or, finally,
that each of the two sentences represents a NECESSARY AND

SUFFICIENT CONDITION for the other.

11. The formulation of definitions and its rules

The phrase ‘“if, and only if’ is very frequently used in laying
down DEFINITIONS, that is, conventions stipulating what meaning
is to be attributed to an expression which thus far has not occurred
in a certain discipline, and which may not be immediately compre-
hensible. Imagine, for instance, that in arithmetic the symbol
““<” has not as yet been employed but that one wants to introduce
it now into the considerations (looking upon it, as usual, as an
abbreviation of the expression ‘“is less than or equal to’’). For
this purpose it is necessary to define this symbol first, that is, to
explain exactly its meaning in terms of expressions which are
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already known and whose meanings are beyond doubt. To
achieve this, we lay down the following definition,~—assuming
that >’ belongs to the symbols already known:

we say that « Sy 1f, and only if, i1t 18 not the case that 2 > y.

The definition just formulated states the equivalence of the two
sentential functions:

TSy
and
1t 18 not the case that = > y;

it may be said, therefore, that it permits the transformation of the
formula “z £ ¥’ into an equivalent expression which no longer
contains the symbol “=<” but is formulated entirely in terms
already comprehensible to us. The same holds for any formula
obtained from “z £ y”’ by replacing “2” and “y’’ by arbitrary
symbols or expressions designating numbers. The formula:

3+ 2 =5,
for instance, is equivalent with the sentence:
2t 18 not the case that 3 + 2 > §;

since the latter is a true assertion, so is the former. Similarly,
the formula:

4 241
is equivalent with the sentence:
ot 18 not the case that 4 > 2 + 1,

both being false assertions. This remark applies also to more
complicated sentences and sentential functions; by transforming,
for instance, the sentence:

f 22y and y Sz then 2 S 2
we obtain:

of it 18 not the case that z > y and if 1t 18 not the case that
y > 2, then it 18 not the case that = > 2.
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In short, by virtue of the definition given above, we are in a
position to transform any simple or compound sentence containing
the symbol <" into an equivalent one no longer containing it;
in other words, so to speak, to translate it into a language in which
the symbol “ =’ does not occur. And it is this very fact which
constitutes the role which definitions play within the mathe-
matical disciplines.

If a definition is to fulfil its proper task well, certain precau-
tionary measures have to be observed in its formulation. To
this effect special rules are laid down, the so-called RULES oF
DEFINITION, which specify how definitions should be constructed
correctly. Since we shall not here go into an exact formulation
of these rules, it may merely be remarked that, on their basis,
every definition may assume the form of an equivalence; the first
member of that equivalence, the pErINIENDUM, should be a short,
grammadtically simple sentential function containing the constant
to be defined; the second member, the DEFINIENS, may be a
sentential function of an arbitrary structure, containing, however,
only constants whose meaning either is immediately obvious or
has been explained previously. In particular, the constant to be
defined, or any expression previously defined with its help, must
not occur in the definiens; otherwise the definition i1s incorrect, it
contains an error known as a VICIOUS CIRCLE IN THE DEFINITION
(just as one speaks of a VICIOUS CIRCLE IN THE PROOF, if the
argument meant to establish a certain theorem is based upon that
theorem itself, or upon some other theorem previously proved with
its help). In order to emphasize the conventional character of a
definition and to distinguish it from other statements which have
the form of an equivalence, it is expedient to prefix it by words
such as “we say that”’. It is easy to verify that the above defini-
tion of the symbol “<” satisfies all these conditions; it has the
definiendum:

T S Y,
whereas the definiens reads:

1t 18 not the case that = > y.
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It is worth roticing that mathematicians, in laying down
definitions, prefer the words ‘2"’ or ‘‘4n case that’’ to the phrase
‘“f, and only 1f”’. If, for example, they had to formulate the
definition of the symbol ¢ S”, they would, presumably, give it the
following form:

we say that = S y, 1f it 18 not the case that = > y.

It looks as if such a definition merely states that the definiendum
follows from the definiens, without emphasizing that the relation
of consequence also holds in the opposite direction, and thus fails
to express the equivalence of definiendum and definiens. But
what we actually have here is a tacit convention to the effect that
‘" or ‘“4n case that', if used to join definiendum and definiens,
are to mean the same as the phrase ‘“‘if, and only if"’ ordinarily
does.~It may be added that the form of an equivalence is not the
only form in which definitions may be laid down.

12. Laws of sentential calculus

After having come to the end of our discussion of the most
important expressions of sentential calculus, we shall now try
to clarify the character of the laws of this calculus.

Let us consider the following sentence:

of 1 18 a positive numberand 1 < 2, then 118 a positive
number.

This sentence is obviously true, it contains exclusively constants
belonging to the field of logic and arithmetic, and yet the idea of
listing this sentence as a special theorem in a textbook of mathe-
matics would not occur to anybody. If one reflects why this is so,
one comes to the conclusion that this sentence is completely
uninteresting from the standpoint of arithmetic; it fails to enrich
in any way our knowledge about numbers, its truth does not at
all depend upon the content of the arithmetical terms occurring
in it, but merely upon the sense of the words “and’’, ‘“¢f”’, “then”,
In order to make sure that this is so, let us replace in the sentence
under consideration the components:

1 28 a positive number
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and
1 < 2

by any other sentences from an arbitrary field; the result is a series
of sentences, each of which, like the original sentence, is true; for

example:

of the given figure 18 a rhombus and if the same figure 18 a
rectangle, then the given figure 18 a rhombus;

if today 18 Sunday and the sun 18 shining, then today 18 Sunday.

In order to express this fact in & more general form, we shall
introduce the variables ‘‘p"” and ‘‘¢", stipulating that these
symbols are not designations of numbers or any other things,
but that they stand for whole sentences; variables of this kind are
denoted as SENTENTIAL VARIABLES., Further, we shall replace
in the sentence under consideration the phrase:

1 18 a posttive number

by “p" and the formula:
1 <2

by ‘g’’: in this manner we arrive at the sentential function:
of pandq, then p.

This sentential function has the property that only true sentences
are obtained if arbitrary sentences are substituted for “p”’ and

““¢”’. This observation may be given the form of a universal

statement:

Forany pand q, % pand q, then p.

We have here obtained a first example of a law of sentential
calculus, which will be referred to as the LAW OF SIMPLIFICATION
for logical multiplication. The sentence considered above was
merely a special instance of this universal law—just as, for in-
stance, the formula;:

2:3 = 3.2
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is merely a special instance of the universal arithmetical theorem:
for arbitrary numbers z and y, .y = y.2.

In a similar way, other laws of sentential calculus can be ob-
tained. We give here a few examples of such laws; in their
formulation we omit the universal quantifier “‘for any », q, + « +’'—
in accordance with the usage mentioned in Section 3, which be-
comes almost a rule throughout sentential calculus.

If p, then p.

If p, then q or p.

If pimpliesq and qimpliesp, then pif, and onlyif,q.
If pimpliesq and qimpliesr, then pimpliesr.

The first of these four statements is known as the LAw oF
IDENTITY, the second as the LAw oF siMpLIFICATION for logical

addition, and the fourth as the LAW OF THE HYPOTHETICAL
SYLLOGISM,

Just as the arithmetical theorems of a universal character state
something about the properties of arbitrary numbers, the laws of
sentential calculus assert something, so one may say, about the
properties of arbitrary sentences. The fact that in these laws
only such variables occur as stand for quite arbitrary sentences
is characteristic of sentential calctilus and decisive for its great
generality and the scope of its applicability. |

13. Symbolism of sentential calculus; truth functions and
truth tables

There exists a certain simple and general method, called METHOD
OF TRUTH TABLES Oor MATRICES, which enables us, in any particular
case, to recognize whether a given sentence from the domain of the
sentential calculus is true, and whether, therefore, it can be
counted among the laws of this calculus.®

 This method originates with PEirRcE (who has already been cited at
an earlier occasion; ¢f. footnote 2 on p. 14).
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In describing this method it is convenient to apply a special
symbolism. We shall replace the expressions:

not; and; or;, if «.., then «..; of, and only if
by the symbols:

~y Ay VY & ; «

respectively. The first of these symbols is to be placed in front
of the expression whose negation one wants to obtain; the remain-
ing symbols are always placed between two expressions (‘‘—"’
stands therefore in the place of the word ‘‘then’’, while the word
‘“ is simply omitted). From one or two simpler expressions
we are, in this way, led to a more complicated expression; and if
we want to use the latter for the construction of further still more
complicated expressions, we enclose 1t in parentheses.

With the help of variables, parentheses and the constant sym-
bols listed above (and sometimes also additional constants of a
similar character which will not be discussed here), we are able to
write down all sentences and sentential functions belonging to the
domain of sentential calculus. Apart from the individual sen-
tential variables the simplest sentential functions are the ex-
pressions:

~D, p» A g, PV g, b — q, b q

(and other similar expressions which differ from these merely in
the shape of the variables used). As an example of a compound
sentential function let us consider the expression:

(Vag-—@®Ar),
which we read, translating symbols into common language:
of porg, then pandr.

A still more complicated expression is the law of the hypothetical
syllogism given above, which now assumes the form:

(p—14q) A (g—=1)]— (p—r1).

We can easily make sure that every sentential function occur-
ring in our calculus is & so-called TRUTH FUNCTION. This means to
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say that the truth or falsehood of any sentence obtained from that
function by substituting whole sentences for variables depends
exclusively upon the truth or falsehood of the sentences which
have been substituted. As for the simplest sentential functions
“~p"”, “p A ¢, and so on, this follows immediately from the re-
marks made in Sections 7, 8 and 10 concerning the meaning
attributed in logic to the words ‘“not”’, ““and’’, and so on. But the
same applies, likewise, to compound functions. Let us consider,
for instance, the function “(p V ¢) — (p A 7)”’. A sentence ob-
tained from it by substitution is an implication, and, therefore, its
truth depends on the truth of its antecedent and consequent only;
the truth of the antecedent, which is a disjunction obtained from
“pV ¢, depends only on the truth of the sentences substituted
for “p’” and “¢”’, and similarly the truth of the consequent de-
pends only on the truth of the sentences substituted for ‘»’’ and
“r”, Thus, finally, the truth of the whole sentence obtained from
the sentential function under consideration depends exclusively
on the truth of the sentences substituted for ‘‘p”’, ‘¢’ and *”’.

In order to see quite exactly how the truth or falsity of a sen-
tence obtained by substitution from a given sentential function
depends upon the truth or falsity of the sentences substituted for
variables, we construct what is called the TRUTH TABLE or MATRIX
for this function. We shall begin by giving such a table for the
function “‘~p”:

D ~p

T F

F T

And here is the joint truth table for the other elementary func-

B B 11

tions “p A ¢”, “p V ¢’’, and so on:

pAg pVg p—gq peg
T T T T
F T T F
F T F F
F F T T

The meaning of these tables becomes at once comprehensible if
we take the letters “T”’ and “F’’ to be abbreviations of “‘true

SR RS R
o e
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sentence’’ and “‘false sentence’’, respectively. In the second table,
for instance, we find, in the second line below the headings “p”’,
“9’ and “p — ¢”, the letters “F”’, “T" and “T”, respectively.
We gather from that that a sentence obtained from the implica-
tion “p — ¢’ is true if we substitute any false sentence for ‘‘p”
and any true sentence for ‘“¢’’; this, obviously, is entirely con-
sistent with the remarks made in Section 8.—The variables ‘“p”’
and ‘“‘¢” occurring in the tables can, of course, be replaced by
any other variables.

With the help of the two above tables, called FUNDAMENTAL
TRUTH TABLES, we can construct DERIVATIVE TRUTH TABLES for
any compound sentential function. The table for the function
“p V q) — (p A ), for instance, looks as follows:

_pVg pAr _(pVq) = (pAT)

ek o R Ikt
b b ] g B b ] e
'ﬁ’ﬁ’#"d'ﬁ'ﬂ"i'ﬂl‘*
SRR R R R R B
brj =i i b b e P g
= o

In order to explain the construction of this table, let us concen-
trate, say, on its fifth horizontal line (below the headings). We
substitute true sentences for ‘“p” and “q” and a false sentence
for “r”’. According to the second fundamental table, we then
obtain from ‘“p V ¢’ a true sentence and from “p A r”’ a false
sentence. From the whole function “(pVq) — (p Ar)”’ we obtain
then an implication with a true antecedent and a false consequent;
hence, again with the help of the second fundamental table (in
which we think of “p” and “¢”’ being for the moment replaced by
“pV ¢’ and “p A ”’), we conclude that this implication is a false
sentence.

The horizontal lines of a table that consist of symbols “T” and
“F’’ are called rows of the table, and the vertical lines are called
cOLUMNS. Each row or, rather, that part of each row which is
on the left of the vertical bar represents a certain substitution
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of true or false sentences for the variables. When constructing
the matrix of a given function, we take care to exhaust all possible
ways in which a combination of symbols *“T"’ and “F”’ could be
correlated to the variables; and, of course, we never write in a
table two rows which do not differ either in the number or in the
order of the symbols “T” and “F”. It can then be seen very
easily that the number of rows in a table depends in a simple way
on the number of different variables occurring in the function; if
a function contains 1, 2, 3, ... variables of different shape, its
matrix consists of 2! = 2,22 = 4,28 = 8, ... rows. As for the
number of columns, it is equal to the number of partial sentential
functions of different form contained in the given funetion (where
the whole function is also counted among its partial functions).

We are now in a position to say how it may be decided whether
or not a sentence of sentential calculus is true. As we know, in
sentential calculus, there is no external difference between sen-
tences and sentential functions; the only difference consisting in
the fact that the expressions considered to be sentences are always
completed mentally by the universal quantifier. In order to
recognize whether the given sentence is true, we treat it, for the
time being, as a sentential function, and construct the truth table
for it. If, in the last column of this table, no symbol “¥"’ oceurs,
then every sentence obtainable from the function in question by
substitution will be true, and therefore our original universal sen-
tence (obtained from the sentential function by mentally prefixing
the universal quantifier) is also true. If, however, the last column
contains at least one symbol “F”’, our sentence is false.

Thus, for instance, we have seen that in the matrix constructed
for the function “(p V ¢) = (p A r)”’ the symbol “F’’ occurs four
times in the last column. If, therefore, we considered this ex-
pression as a sentence (that is, if we prefixed to it the words
“for any p, g and r’), we would have a false sentence. On the
other hand, it can be easily verified with the help of the method
of truth tables that all the laws of sentential calculus stated in
Section 12, that is, the laws of simplification, identity, and so on,
are true sentences. The table for the law of simplification:

(2 A Q) — b,
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for instance, is as follows:

p ¢ | PAhg @PAQ—pP
T T T T
F T F T
T F F T
F F 1) T

We give here a number of other important laws of sentential
calculus whose truth can be ascertained in a similar way:

~[p A (~p)], p V (~p),
(» A D) < p,  (pVopenp,
» A g (g A D), VeV,

PA@ARNel@AAr], [V@VNle[®VoVr]

The two laws in the first line are called the LAW OF CONTRADICTION
and the LAW OF EXCLUDED MIDDLE;, we next have the two
rLAws oF TauToLoGY (for logical multiplication and addition); we
then have the two COMMUTATIVE LAWS, and finally the two Asso-
CIATIVE LAWS. It can easily be seen how obscure the meaning
of these last two laws becomes if we try to express them in ordinary
language. This exhibits very clearly the value of logical sym-
bolism as a precise instrument for expressing more complicated
thoughts.

*It occurs that the method of matrices leads us to accept
sentences as true whose truth seemed to be far from obvious
before the application of this method. Here are some examples
of sentences of this kind:

p — (¢ — p),
("‘“’P) - (P""‘) Q):
(p—1q) V (g—Dp).

That these sentences are not immediately obvious is due mainly
to the fact that they are a manifestation of the specific usage of
implication characteristic of modern logic, namely, the usage of
implication in material meaning.



