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Introduction to

Mathematical Philosophy

CHAPTER I
THE SERIES OF NATURAL NUMBERS

MaTHEMATICS is a study which, when we start from its most
familiar portions, may be pursued in either of two opposite
directions. The more familiar direction is constructive, towards
gradually increasing complexity : from integers to fractions,
real numbers, complex numbers; from addition and multi-
plicétion to differentiation and integration, and on to higher
mathematics. The other direction, which is less familiar,
proceeds, by analysing, to greater and greater abstractness
and logical simplicity ; instead of asking what can be defined
and deduced from what is assumed to begin with, we ask instead
what more general ideas and principles can be found, in terms
of which what was our starting-point can be defined or deduced.
It is the fact of pursuing this opposite direction that characterises
mathematical philosophy as opposed to ordinary mathematics.
But it should be understood that the distinction is one, not in
the subject matter, but in the state of mind of the investigator.
Early Greek geometers, passing from the empirical rules of
Egyptian land-surveying to the general propositions by which
those rules were found to be justifiable, and thence to Euclid’s
axioms and postulates, were engaged in mathematical philos-
ophy, according to the above definition; but when once the
axioms and postulates had been reached, their deductive employ-
ment, as we find it in Euclid, belonged to mathematics in the
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ordinary sense. The distinction between mathematics and
mathematical philosophy is one which depends upon the interest
inspiring the research, and upon the stage which the research
has reached ; not upon the propositions with which the research
is concerned.

We may state the same distinction in another way. The
most obvious and easy things in mathematics are not those that
come logically at the beginning; they are things that, from
the point of view of logical deduction, come somewhere in the
middle. Just as the easiest bodies to see are those that are
neither very near nor very far, neither very small nor very
great, so the easiest conceptions to grasp are those that are
neither very complex nor very simple (using “simple” in a
logical sense). And as we need two sorts of instruments, the
telescope and the microscope, for the enlargement of our visual
powers, so we need two sorts of instruments for the enlargement
of our logical powers, one to take us forward to the higher
mathematics, the other to take us backward to the logical
foundations of the things that we are inclined to take for granted
in mathematics. We shall find that by analysing our ordinary
mathematical notions we acquire fresh insight, new powers,
and the means of reaching whole new mathematical subjects
by adopting fresh lines of advance after our backward journey.
It is the purpose of this book to explain mathematical philos-
ophy simply and untechnically, without enlarging upon those
portions which are so doubtful or difficult that an elementary
treatment is scarcely possible. A full treatment will be found
in Principia Mathematica ;' the treatment in the present volume
is intended merely as an introduction.

To the average educated person of the present day, the
obvious starting-point of mathematics would be the series of
whole numbers,

1,2, 3, 4 ... etc.

! Cambridge University Press, vol. i., 1910; vol.ii., 1911 ; vol. ii,, 1913,
By Whitehead and Russell.
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Probably only a person with some mathematical knowledge
would think of beginning with o instead of with 1, but we will
presume this degree of knowledge ; we will take as our starting-
point the series :

0111213,"'”:”"'1!““

and it is this series that we shall mean when we speak of the
“ series of natural numbers.”

It is only at a high stage of civilisation that we could take
this series as our starting-point. It must have required many
ages to discover that a brace of pheasants and a couple of days
were both instances of the number 2 : the degree of abstraction
involved is far from easy. And the discovery that 1 is a number
must have been difficult. As for o, it is a very recent addition ;
the Greeks and Romans had no such digit. If we had been
embarking upon mathematical philosophy in earlier days, we
should have had to start with something less abstract than the
series of natural numbers, which we should reach as a stage on
our backward journey. When the logical foundations of mathe-
matics have grown more familiar, we shall be able to start further
back, at what is now a late stage in our analysis. But for the
moment the natural numbers seem to represent what is easiest
and most familiar in mathematics.

But though familiar, they are not understood. Very few
people are prepared with a definition of what is meant by
“number,” or “0,” or “ 1.” It is not very difficult to see that,
starting from o, any other of the natural numbers can be reached
by repeated additions of 1, but we shall have to define what
we mean by ‘““adding 1,” and what we mean by “ repeated.”
These questions are by no means easy. It was believed until
recently that some, at least, of these first notions of arithmetic
must be accepted as too simple and primitive to be defined.
Since all terms that are defined are defined by means of other
terms, it is clear that human knowledge must always be content
to accept some terms as intelligible without definition, in order
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to have a starting-point for its definitions. It is not clear that
there must be terms which are incapable of definition: it is
possible that, however far back we go in defining, we always
might go further still. On the other hand, it is also possible
that, when analysis has been pushed far enough, we can reach
terms that really are simple, and therefore logically incapable
of the sort of definition that consists in analysing. This is a
question which it is not necessary for us to decide; for our
purposes it is sufficient to observe that, since human powers
are finite, the definitions known to us must always begin some-
where, with terms undefined for the moment, though perhaps
not permanently.

All traditional pure mathematics, including analytical geom-
etry, may be regarded as consisting wholly of propositions
about the natural numbers. That is to say, the terms which
occur can be defined by means of the natural numbers, and
the propositions can be deduced from the properties of the
natural numbers—with the addition, in each case, of the ideas
and propositions of pure logic.

That all traditional pure mathematics can be derived from
the natural numbers is a fairly recent discovery, though it had
long been suspected. Pythagoras, who believed that not only
mathematics, but everything else could be deduced from
numbers, was the discoverer of the most serious obstacle in
the way of what is called the “ arithmetising ” of mathematics.
It was Pythagoras who discovered the existence of incom-
mensurables, and, in particular, the incommensurability of the
side of a square and the diagonal. If the length of the side is
1 inch, the number of inches in the diagonal is the square root
of 2, which appeared not to be a number at all. The problem
thus raised was solved only in our own day, and was only solved
completely by the help of the reduction of arithmetic to logic,
which will be explained in following chapters. For the present,
we shall take for granted the arithmetisation of mathematics,
though this was a feat of the very greatest importance,
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Having reduced all traditional pure mathematics to the
theory of the natural numbers, the next step in logical analysis
was to reduce this theory itself to the smallest set of premisses
and undefined terms from which it could be derived. This work
was accomplished by Peano. He showed that the entire theory
of the natural numbers could be derived from three primitive
ideas and five primitive propositions in addition to those of
pure logic. These three ideas and five propositions thus became,
as it were, hostages for the whole of traditional pure mathe-
matics. If they could be defined and proved in terms of others,
so could all pure mathematics. Their logical “ weight,” if one
may use such an expression, is equal to that of the whole series
of sciences that have been deduced from the theory of the natural
numbers ; the truth of this whole series is assured if the truth
of the five primitive propositions is guaranteed, provided, of
course, that there is nothing erroneous in the purely logical
apparatus which is also involved. The work of analysing mathe-
matics is extraordinarily facilitated by this work of Peano’s.

The three primitive ideas in Peano’s arithmetic are :

o, number, successor.

By “successor” he means the next number in the natural
order. That is to say, the successor of o is 1, the successor of
11is 2, and so on. By “ number ” he means, in this connection,
the class of the natural numbers.! He is not assuming that
we know all the members of this class, but only that we know
what we mean when we say that this or that is a number, just
as we know what we mean when we say “ Jones is a man,”
though we do not know all men individually.
The five primitive propositions which Peano assumes are :

(1) ois a number.
(2) The successor of any number is a number.
(3) No two numbers have the same successor.

1 We shall use “ number ™ in this sense in the present ehapter. After.
wards the word will be used in a more general sense.
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(4) o is not the successor of any number.

(5) Any property which belongs to o, and also to the successor
of every number which has the property, belongs to all
numbers.

The last of these is the principle of mathematical induction.
We shall have much to say concerning mathematical induction
in the sequel ; for the present, we are concerned with it only
as it occurs in Peano’s analysis of arithmetic.

Let us consider briefly the kind of way in which the theory
of the natural numbers results from these three ideas and five
propositions. To begin with, we define 1 as * the successor of 0,”
2 as “the successor of 1,” and so on. We can obviously go
on as long as we like with these definitions, since, in virtue of
(2), every number that we reach will have a successor, and, in
virtue of (3), this cannot be any of the numbers already defined,
because, if it were, two different numbers would have the same
successor ; and in virtue of (4) none of the numbers we reach
in the series of successors can beo. Thus the series of successors
gives us an endless series of continually new numbers. In virtue
of (5) all numbers come in this series, which begins with o and
travels on through successive successors: for (2) o belongs to
this series, and (b) if a number 7 belongs to it, so does its successor,
whence, by mathematical induction, every number belongs to
the series,

Suppose we wish to define the sum of two numbers. Taking
any number m, we define m-+o0 as m, and m-(n+41) as the
successor of m-+n. In virtue of (5) this gives a definition of
the sum of m and n, whatever number # may be, Similarly
we can define the product of any two numbers. The reader can
easily convince himself that any ordinary elementary proposition
of arithmetic can be proved by means of our five premisses,
and if he has any difficulty he can find the proof in Peano.

It is time now to turn to the considerations which make it
necessary to advance beyond the standpoint of Peano, who
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represents the last perfection of the * arithmetisation” of
mathematics, to that of Frege, who first succeeded in  logicising ”
mathematics, 7.e. in reducing to logic the arithmetical notions
which his predecessors had shown to be sufficient for mathematics.
We shall not, in this chapter, actually give Frege’s definition of
number and of particular numbers, but we shall give some of the
reasons why Peano’s treatment is less final than it appears to be.

In the first place, Peano’s three primitive ideas—namely, “o,”
“number,” and “ successor ”’—are capable of an infinite number
of different interpretations, all of which will satisfy the five
primitive propositions. We will give some examples.

(1) Let “0” be taken to mean 100, and let “ number” be
taken to mean the numbers from 100 onward in the series of
natural numbers. Then all our primitive propositions are
satisfied, even the fourth, for, though 100 is the successor of
99, 99 is not a “ number ” in the sense which we are now giving
to the word “ number.” It is obvious that any number may be
substituted for 100 in this example.

(2) Let “o” have its usual meaning, but let *“number”
mean what we usually call “even numbers,” and let the
“successor ” of a number be what results from adding two to
it. Then “1” will stand for the number two, “ 2’ will stand
for the number four, and so on; the series of “ numbers ” now
will be

o, two, four, six, eight . ..
All Peano’s five premisses are satisfied still.

(3) Let “0” mean the number one, let “ number” mean

the set

l’ %’ i’ *I TI'B'! e
and let “successor” mean ‘“half.” Then all Peano’s five
axioms will be true of this set.

It is clear that such examples might be multiplied indefinitely.
In fact, given any series

Koy Xyy Xy Xgy o o o Xpy o o o
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which is endless, contains no repetitions, has a beginning, and
has no terms that cannot be reached from the beginning in a
finite number of steps, we have a set of terms verifying Peano’s
axioms. This is easily seen, though the formal proof is some-
what long. Let “0” mean x, let “ number ” mean the whole
set of terms, and let the ““ successor ” of x,, mean x,,,. Then

(1) “ois a number,” i.e. x5 i3 2 member of the set.

(2) “ The successor of any number is a number,” 7.e. taking
any term x,, in the set, x,,,, is also in the set.

(3) “No two numbers have the same successor,” 1.e. if x,,
and x, are two different members of the set, x,,,, and x,,, are
different ; this results from the fact that (by hypothesis) there
are no repetitions in the set.

(4) “o is not the successor of any number,” f.c. no term in
the set comes before x,.

(5) This becomes: Any property which belongs to %, and
belongs to #,,; provided it belongs to x,, belongs to all the x’s.

This follows from the corresponding property for numbers.

A series of the form

xo,xl,xs,ta-x",'-o

in which there is a first term, a successor to each term (so that
there is no last term), no repetitions, and every term can be
reached from the start in a finite number of steps, is called a
progression. Progressions are of great importance in the princi-
ples of mathematics. As we have just seen, every progression
verifies Peano’s five axioms. It can be proved, conversely,
that every series which verifies Peano’s five axioms is a pro-
gression. Hence these five axioms may be used to define the
class of progressions: * progressions’ are “ those series which
verify these five axioms.” Any progression may be taken as
the basis of pure mathematics: we may give the name “o”
to its first term, the name “ number ” to the whole set of its
terms, and the name “ successor ’ to the next in the progression.
The progression need not be composed of numbers : it may be
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composed of points in space, or moments of time, or any other
terms of which there is an infinite supply. Each different
progression will give rise to a different interpretation of all the
propositions of traditional pure mathematics; all these possible
interpretations will be equally true.

In Peano’s system there is nothing to enable us to distinguish
between these different interpretations of his primitive ideas.
It is assumed that we know what is meant by “o,” and that
we shall not suppose that this symbol means 100 or Cleopatra’s
Needle or any of the other things that it might mean.

This point, that “o0” and “ number” and “successor”
cannot be defined by means of Peano’s five axioms, but must
be independently understood, is important. We want our
numbers not merely to verify mathematical formul®, but to
apply in the right way to common objects. We want to have
ten fingers and two eyes and one nose. A system in which “17”
meant 100, and “ 27’ meant 101, and so on, might be all right
for pure mathematics, but would not suit daily life. We want
“o0? and “ number ” and “ successor ’ to have meanings which
will give us the right allowance of fingers and eyes and noses.
We have already some knowledge (though not sufficiently
articulate or analytic) of what we mean by “1” and “2” and
so on, and our use of numbers in arithmetic must conform to
this knowledge. We cannot secure that this shall be the case
by Peano’s method ; all that we can do, if we adopt his method,
is to say “ we know what we mean by ‘o’ and ‘ number’ and
¢ successor,” though we cannot explain what we mean in terms
of other simpler concepts.” It is quite legitimate to say this
when we must, and at some point we all must; but it is the
object of mathematical philosophy to put off saying it as long
as possible. By the logical theory of arithmetic we are able to
put it off for a very long time.

It might be suggested that, instead of setting up “o” and
“number ” and “ successor” as terms of which we know the
meaning although we cannot define them, we might let them
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stand for any three terms that verify Peano’s five axioms. They
will then no longer be terms which have a meaning that is definite
though undefined : they will be *variables,” terms concerning
which we make certain hypotheses, namely, those stated in the
five axioms, but which are otherwise undetermined. If we adopt
this plan, our theorems will not be proved concerning an ascer-
tained set of terms called * the natural numbers,” but concerning
all sets of terms having certain properties. Such a procedure
is not fallacious; indeed for certain purposes it represents a
valuable generalisation. But from two points of view it fails
to give an adequate basis for arithmetic. In the first place, it
does not enable us to know whether there are any sets of terms
verifying Peano’s axioms; it does not even give the faintest
suggestion of any way of discovering whether there are such sets.
In the second place, as already observed, we want our numbers
to be such as can be used for counting common objects, and this
requires that our numbers should have a definste meaning, not
merely that they should have certain formal properties. This
definite meaning is defined by the logical theory of arithmetic.



CHAPTER 1I

DEFINITION OF NUMBER

Tue question “What is a number ? 7 is one which has been
often asked, but has only been correctly answered in our own
time. The answer was given by Frege in 1884, in his Grundlagen
der Arithmetik2  Although this book is quite short, not difficult,
and of the very highest importance, it attracted almost no
attention, and the definition of number which it contains re-
mained practically unknown until it was rediscovered by the
present author in 1901.

In seeking a definition of number, the first thing to be clear
about is what we may call the grammar of our inquiry. Many
philosophers, when attempting to define number, are really
setting to work to define plurality, which is quite a different
thing. Nwumber is what is characteristic of numbers, as man
is what is characteristic of men. A plurality is not an instance
of number, but of some particular number. A trio of men,
for example, is an instance of the number 3, and the number
3 is an instance of number; but the trio is not an instance of
number. This point may seem elementary and scarcely worth
mentioning ; yet it has proved too subtle for the philosophers,
with few exceptions.

A particular number is not identical with any collection of
terms having that number: the number 3 is not identical with

1 The same answer is given more fully and with more development in
his Grundgeseize der Arithmetik, vol. i., 1893.
1
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the trio consisting of Brown, Jones, and Robinson. The number
3 is something which all trios have in common, and which dis-
tinguishes them from other collections. A number is something
that characterises certain collections, namely, those that have
that number.

Instead of speaking of a “ collection,” we shall as a rule speak
of a “class,” or sometimes a ‘“set.”” Other words used in
mathematics for the same thing are “ aggregate” and “ mani-
fold.” We shall have much to say later on about classes, For
the present, we will say as little as possible. But there are
some remarks that must be made immediately.

A class or collection may be defined in two ways that at first
sight seem quite distinct. We may enumerate its members, as
when we say, “The collection I mean is Brown, Jones, and
Robinson.” Or we may mention a defining property, as when
we speak of “ mankind ” or “ the inhabitants of London.” The
definition which enumerates is called a definition by * exten-
sion,” and the one which mentions a defining property is called
a definition by “intension.” Of these two kinds of definition,
the one by intension is logically more fundamental. This is
shown by two considerations : (1) that the extensional defini-
tion can always be reduced to an intensional one; (2) that the
intensional one often cannot even theoretically be reduced to
the extensional one. Each of these points needs a word of
explanation.

(1) Brown, Jones, and Robinson all of them possess a certain
property which is possessed by nothing else in the whole universe,
namely, the property of being either Brown or Jones or Robinson.
This property can be used to give a definition by intension of
the class consisting of Brown and Jones and Robinson. Con-
sider such a formula as *“ x is Brown or x is Jones or x is Robinson.”
This formula will be true for just three x’s, namely, Brown and
Jones and Robinson. In this respect it resembles a cubic equa-
tion with its three roots. It may be taken as assigning a property
common to the members of the class consisting of these three
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men, and peculiar to them. A similar treatment can obviously
be applied to any other class given in extension.

(2) It is obvious that in practice we can often know a great
deal about a class without being able to enumerate its members.
No one man could actually enumerate all men, or even all the
inhabitants of London, yet a great deal is known about each of
these classes. This is enough to show that definition by extension
is not mecessary to knowledge about a class. But when we come
to consider infinite classes, we find that enumeration is not even
theoretically possible for beings who only live for a finite time.
We cannot enumerate all the natural numbers : they are o, 1, 2,
3, and so on. At some point we must content ourselves with
“and soon.” We cannot enumerate all fractions or all irrational
numbers, or all of any other infinite collection. Thus our know-
ledge in regard to all such collections can only be derived from a
definition by intension.

These remarks are relevant, when we are seeking the definition
of number, in three different ways. In the first place, numbers
themselves form an infinite collection, and cannot therefore
be defined by enumeration. In the second place, the collections
having a given number of terms themselves presumably form an
infinite collection : it is to be presumed, for example, that there
are an infinite collection of trios in the world, for if this were
not the case the total number of things in the world would be
finite, which, though possible, seems unlikely. In the third
place, we wish to define “ number > in such a way that infinite
numbers may be possible; thus we must be able to speak of
the number of terms in an infinite collection, and such a collection
must be defined by intension, s.e. by a property common to all
its members and peculiar to them.

For many purposes, a class and a defining characteristic of
it are practically interchangeable. The vital difference between
the two consists in the fact that there is only one class having a
given set of members, whereas there are always many different
characteristics by which a given class may be defined. Men
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may be defined as featherless bipeds, or as rational animals,
or (more correctly) by the traits by which Swift delineates the
Yahoos. It is this fact that a defining characteristic is never
unique which makes classes useful; otherwise we could be
content with the properties common and peculiar to their
members.! Any one of these properties can be used in place
of the class whenever uniqueness is not important.

Returning now to the definition of number, it is clear that
number is a way of bringing together certain collections, namely,
those that have a given number of terms. We can suppose
all couples in one bundle, all trios in another, and so on. In
this way we obtain various bundles of collections, each bundle
consisting of all the collections that have a certain number of
terms. Each bundle is a class whose members are collections,
i.e. classes; thus each is a class of classes. The bundle con-
sisting of all couples, for example, is a class of classes: each
couple is a class with two members, and the whole bundle of
couples is a class with an infinite number of members, each of
which is a class of two members. :

How shall we decide whether two collections are to belong
to the same bundle ? The answer that suggests itself is : * Find
out how many members each has, and put them in the same
bundle if they have the same number of members.” But this
presupposes that we have defined numbers, and that we know
how to discover how many terms a collection has. We are so
used to the operation of counting that such a presupposition
might easily pass unnoticed. In fact, however, counting,
though familiar, is logically a very complex operation; more-
over it is only available, as a means of discovering how many
terms a collection has, when the collection is finite. Our defitti-
tion of number must not assume in advance that all numbers
are finite ; and we cannot in any case, without a vicious circle,

1 As will be explained later, classes may be regarded as logical fictions,
manufactured out of defining characteristics. But for the present it will
simplify our exposition to treat classes as if they were real.
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use counting to define numbers, because numbers are used in
counting. We need, therefore, some other method of deciding
when two collections have the same number of terms.

In actual fact, it is simpler logically to find out whether two
collections have the same number of terms than it is to define
what that number is. An illustration will make this clear.
If there were no polygamy or polyandry anywhere in the world,
it is clear that the number of husbands living at any moment
would be exactly the same as the number of wives. We do
not need a census to assure us of this, nor do we need to know
what is the actual number of husbands and of wives. We know
the number must be the same in both collections, because each
husband has one wife and each wife has one husband. The
relation of husband and wife is what is called *“ one-one.”

A relation is said to be ““ one-one ” when, if x has the relation
in question to ¥, no other term x’ has the same relation to ¥,
and x does not have the same relation to any term y’ other
thany. When only the first of these two conditions is fulfilled,
the relation is called “one-many ”; when only the second is
fulfilled, it is called “ many-one.” It should be observed that
the number 1 is not used in these definitions.

In Christian countries, the relation of husband to wife is
one-one ; in Mahometan countries it is one-many; in Tibet
it i many-one. The relation of father to son is one-many ;
that of son to father is many-one, but that of eldest son to father
is one-one. If 7 is any number, the relation of 7 to n+1 is
one-one ; so is the relation of # to 2z or to 3n. When we are
considering only positive numbers, the relation of n to #n? is
one-one ; but when negative numbers are admitted, it becomes
two-one, since # and —» have the same square. These instances
should suffice to make clear the notions of one-one, one-many,
and many-one relations, which play a great part in the princi-
ples of mathematics, not only in relation to the definition of
numbers, but in many other connections.

Two classes are said to be “ similar ”” when there is a one-one
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relation which correlates the terms of the one class each with
one term of the other class, in the same manner in which the
relation of marriage correlates husbands with wives. A few
preliminary definitions will help us to state this definition more
precisely. The class of those terms that have a given relation
to something or other is called the domain of that relation:
thus fathers are the domain of the relation of father to child,
husbands are the domain of the relation of husband to wife,
wives are the domain of the relation of wife to husband, and
husbands and wives together are the domain of the relation of
marriage. The relation of wife to husband is called the converse
of the relation of husband to wife. Similarly less is the converse
of greater, later is the converse of earlier, and so on. Generally,
the converse of a given relation is that relation which holds
between y and x whenever the given relation holds between
x and y. The converse domain of a relation is the domain of
its converse: thus the class of wives is the converse domain
of the relation of husband to wife. We may now state our
definition of similarity as follows :—

One class is said to be “ similar” to another when there is a
one-one relation of which the one class is the domain, while the
other is the converse domain.

It is easy to prove (1) that every class is similar to itself, (2)
that if a class a is similar to a class B, then B is similar to a, (3)
that if a is similar to 8 and B to v, then a is similar to y. A
relation is said to be reflexive when it possesses the first of these
properties, symmetrical when it possesses the second, and transi-
tive when it possesses the third. It is obvious that a relation
which is symmetrical and transitive must be reflexive throughout
its domain. Relations which possess these properties are an
important kind, and it is worth while to note that similarity is
one of this kind of relations.

It is obvious to common sense that two finite classes have
the same number of terms if they are similar, but not otherwise.
The act of counting consists in establishing a one-one correlation
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between the set of objects counted and the natural numbers
(excluding o) that are used up in the process. Accordingly
common sense concludes that there are as many objects in the
set to be counted as there are numbers up to the last number
used in the counting. And we also know that, so long as we
confine ourselves to finite numbers, there are just # numbers
from 1 up to n. Hence it follows that the last number used in
counting a collection is the number of terms in the collection,
provided the collection is finite. But this result, besides being
only applicable to finite collections, depends upon and assumes
the fact that two classes which are similar have the same number
of terms; for what we do when we count (say) 10 objects is to
show that the set of these objects is similar to the set of numbers
1 to 10. The notion of similarity is logically presupposed in
the operation of counting, and is logically simpler though less
familiar. In counting, it is necessary to take the objects counted
in a certain order, as first, second, third, etc., but order is not
of the essence of number: it is an irrelevant addition, an un-
necessary complication from the logical point of view. The
notion of similarity does not demand an order: for example,
we saw that the number of husbands is the same as the number
of wives, without having to establish an order of precedence
among them. The notion of similarity also does not require
that the classes which are similar should be finite. Take, for
example, the natural numbers (excluding o) on the one hand,
and the fractions which have 1 for their numerator on the other
hand : it is obvious that we can correlate 2 with 4, 3 with §, and
so on, thus proving that the two classes are similar.

We may thus use the notion of “ similarity ” to decide when
two collections are to belong to the same bundle, in the sense
in which we were asking this question earlier in this chapter,
We want to make one bundle containing the class that has no
members : this will be for the number o. Then we want a bundle
of all the classes that have one member: this will be for the
number 1. Then, for the number 2, we want a bundle consisting
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of all couples ; then one of all trios; and so on. Given any collec-
tion, we can define the bundle it is to belong to as being the class
of all those collections that are “similar” toit. It is very easy
to see that if (for example) a collection has three members, the
class of all those collections that are similar to it will be the
class of trios. And whatever number of terms a collection may
have, those collections that are * similar ” to it will have the same
number of terms. We may take this as a definition of ““ having
the same number of terms.” It is obvious that it gives results
conformable to usage so long as we confine ourselves to finite
collections.

So far we have not suggested anything in the slightest degree
paradoxical. But when we come to the actual definition of
numbers we cannot avoid what must at first sight seem a paradox,
though this impression will soon wear off. We naturally think
that the class of couples (for example) is something different
from the number 2. But there is no doubt about the class of
couples : it is indubitable and not difficult to define, whereas
the number 2, in any other sense, is a metaphysical entity about
which we can never feel sure that it exists or that we have tracked
it down. It is therefore more prudent to content ourselves with
the class of couples, which we are sure of, than to hunt for a
problematical number 2 which must always remain elusive.
Accordingly we set up the following definition :—

The number of a class is the class of all those classes that are
similar to it.

Thus the number of a couple will be the class of all couples.
In fact, the class of all couples will b¢ the number 2, according
to our definition. At the expense of a little oddity, this definition
secures definiteness and indubitableness ; and it is not difficult
to prove that numbers so defined have all the properties that we
expect numbers to have.

We may now go on to define numbers in general as any one of
the bundles into which similarity collects classes. A number
will be a set of classes such as that any two are similar to each
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other, and none outside the set are similar to any inside the set.
In other words, a number (in general) is any collection which is
the number of one of its members ; or, more simply still :

A number is anything which is the number of some class.

Such a definition has a verbal appearance of being circular,
but in fact it is not. We define  the number of a given class ”
without using the notion of number in general ; therefore we may
define number in general in terms of *“ the number of a given
class ” without committing any logical error,

Definitions of this sort are in fact very common. The class
of fathers, for example, would have to be defined by first defining
what it is to be the father of somebody ; then the class of fathers
will be all those who are somebody’s father. Similarly if we want
to define square numbers (say), we must first define what we
mean by saying that one number is the square of another, and
then define square numbers as those that are the squares of
other numbers. This kind of procedure is very common, and
it is important to realise that it is legitimate and even often
necessary.

We have now given a definition of numbers which will serve
for finite collections. It remains to be seen how it will serve
for infinite collections. But first we must decide what we mean
by “finite” and “infinite,” which cannot be done within the
limits of the present chapter.



CHAPTER III
FINITUDE AND MATHEMATICAL INDUCTION

THE series of natural numbers, as we saw in Chapter I., can all
be defined if we know what we mean by the three terms “o,”
“ number,” and “successor.” But we may go a step farther:
we can define all the natural numbers if we know what we mean
by “0” and “successor.” It will help us to understand the
difference between finite and infinite to see how this can be done,
and why the method by which it is done cannot be extended
beyond the finite. We will not yet consider how “ 0 and * suc-
cessor ”’ are to be defined : we will for the moment assume that
we know what these terms mean, and show how thence all other
natural numbers can be obtained.

It is easy to see that we can reach any assigned number, say
30,000. We first define “1” as * the successor of 0,” then we
define “ 2 as ¢ the successor of 1,” and so on. In the case of
an assigned number, such as 30,000, the proof that we can reach
it by proceeding step by step in this fashion may be made, if we
have the patience, by actual experiment: we can go on until
we actually arrive at 30,000. But although the method of
experiment is available for each particular natural number, it
is not available for proving the general proposition that all such
numbers can be reached in this way, 7.e. by proceeding from o
step by step from each number to its successor. Is there any
other way by which this can be proved ?

Let us consider the question the other way round. What are

the numbers that can be reached, given the terms “o” and
20
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“successor ” ! Is there any way by which we can define the
whole class of such numbers ! We reach 1, as the successor of 0}
2, as the successor of 1; 3, as the successor of 2; and so on. It
is this “ and so on” that we wish to replace by something less
vague and indefinite. We might be tempted to say that “ and
so on” means that the process of proceeding to the successor
may be repeated any finite number of times; but the problem
upon which we are engaged is the problem of defining “ finite
number,” and therefore we must not use this notion in our defini-
tion. Our definition must not assume that we know what a
finite number is.

The key to our problem lies in mathematical induction. It will
be remembered that, in Chapter I., this was the fifth of the five
primitive propositions which we laid down about the natural
numbers. It stated that any property which belongs to o, and
to the successor of any number which has the property, belongs
to all the natural numbers. This was then presented as a principle,
but we shall now adopt it as a definition. It is not difficult
to see that the terms obeying it are the same as the numbers
that can be reached from o by successive steps from next to
next, but as the point is important we will set forth the matter
in some detail.

We shall do well to begin with some definitions, which will be
useful in other connections also,

A property is said to be “ hereditary ” in the natural-number
series if, whenever it belongs to a number #, it also belongs to
n+1, the successor of #. Similarly a class is said to be “ heredi-
tary ” if, whenever n is a member of the class, so is 1. Itis
easy to see, though we are not yet supposed to know, that to say
a property is hereditary is equivalent to saying that it belongs
to all the natural numbers not less than some one of them, e.g.
it must belong to all that are not less than 100, or all that are
less than 1000, or it may be that it belongs to all that are not
less than o, 7.e. to all without exception.

A property is said to be “ inductive ” when it is a hereditary
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property which belongs to o. Similarly a class is “ inductive ”
when it is a hereditary class of which o is a member.

Given a hereditary class of which o is a member, it follows
that 1 is a member of it, because a hereditary class contains the
successors of its members, and 1 is the successor of 0. Similarly,
given a hereditary class of which 1 is a member, it follows that
2 is a member of it; and so on. Thus we can prove by a step-
by-step procedure that any assigned natural number, say 30,000,
is a member of every inductive class.

We will define the “ posterity ” of a given natural number
“immediate predecessor” (which
is the converse of “successor ) as all those terms that belong
to every hereditary class to which the given number belongs. It
is again easy to see that the posterity of a natural number con-

with respect to the relation

sists of itself and all greater natural numbers ; but this also we
do not yet officially know.

By the above definitions, the posterity of o will consist of those
terms which belong to every inductive class.

It is now not difficult to make it obvious that the posterity of
o is the same set as those terms that can be reached from o by
successive steps from next to next. For, in the first place, o
belongs to both these sets (in the sense in which we have defined
our terms) ; in the second place, if 7 belongs to both sets, so does
n41. It is to be observed that we are dealing here with the
kind of matter that does not admit of precise proof, namely, the
comparison of a relatively vague idea with a relatively precise
one. The notion of *“ those terms that can be reached from o
by successive steps from next to next ™ is vague, though it seems
as if it conveyed a definite meaning ; on the other hand, * the
posterity of o” is precise and explicit just where the other idea
is hazy. It may be taken as giving what we meant to mean
when we spoke of the terms that can be reached from o by
successive steps.

We now lay down the following definition :—

The “ natural numbers ™ are the posterity of o with respect to the
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relation “ tmmediate predecessor” (which is the converse of
* successor ).

We have thus arrived at a definition of one of Peano’s three
primitive ideas in terms of the other two. As a result of this
definition, two of his primitive propositions—namely, the one
asserting that o is a number and the one asserting mathematical
induction—become unnecessary, since they result from the defini-
tion. The one asserting that the successor of a natural number
is a natural number is only needed in the weakened form *“ every
natural number has a successor.”

We can, of course, easily define “ 0 ”” and “ successor ” by means
of the definition of number in general which we arrived at in
Chapter II. The number o is the number of terms in a class
which has no members, 1.¢. in the class which is called the * null-
class.” By the general definition of number, the number of terms
in the null-class is the set of all classes similar to the null-class,
t.e. (as is easily proved) the set consisting of the null-class all
alone, 7.z. the class whose only member is the null-class. (This
is not identical with the null-class: it has one member, namely,
the null-class, whereas the null-class itself has no members. A
class which has one member is never identical with that one
member, as we shall explain when we come to the theory of
classes.) Thus we have the following purely logical definition :—

o is the class whose only member is the null-class,

It remains to define ‘““successor.” Given any number n, let
a be a class which has n members, and let & be a term which
is not a member of a. Then the class consisting of a with x
added on will have n+1 members. Thus we have the following
definition :—

T he successor of the number of terms in the class a ts the number
of terms in the class consisting of a together with x, where x is any
term not belonging to the class.

Certain niceties are required to make this definition perfect,
but they need not concern us.! It will be remembered that we

! See Principia Mathematica, vol. ii. » 110,
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have already given (in Chapter II.) a logical definition of the
number of terms in a class, namely, we defined it as the set of all
classes that are similar to the given class.

We have thus reduced Peano’s three primitive ideas to ideas
of logic: we have given definitions of them which make them
definite, no longer capable of an infinity of different meanings,
as they were when they were only determinate to the extent of
obeying Peano’s five axioms. We have removed them from the
fundamental apparatus of terms that must be merely appre-
hended, and have thus increased the deductive articulation of
mathematics.

As regards the five primitive propositions, we have already
succeeded in making two of them demonstrable by our definition
of “ natural number.,” How stands it with the remaining three ?
It is very easy to prove that o is not the successor of any number,
and that the successor of any number is a number. But there
is a difficulty about the remaining primitive proposition, namely,
“no two numbers have the same successor.” The difficulty
does not arise unless the total number of individuals in the
universe is finite ; for given two numbers m and n, neither of
which is the total number of individuals in the universe, it is
easy to prove that we cannot have m-I1=n-1 unless we have
m=n. But let us suppose that the total number of individuals
in the universe were (say) 10; then there would be no class of
11 individuals, and the number 11 would be the null-class. So
would the number 12. Thus we should have 11=12; therefore
the successor of 10 would be the same as the successor of 11,
although 10 would not be the same as 11. Thus we should have
two different numbers with the same successor. This failure of
the third axiom cannot arise, however, if the number of indi-
viduals in the world is not finite. We shall return to this topic
at a later stage.!

Assuming that the number of individuals in the universe is
not finite, we have now succeeded not only in defining Peano’s

t See Chapter XIII
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three primitive ideas, but in seeing how to prove his five primitive
propositions, by means of primitive ideas and propositions belong-
ing to logic. It follows that all pure mathematics, in so far
as it is deducible from the theory of the natural numbers, is only
a prolongation of logic. The extension of this result to those
modern branches of mathematics which are not deducible from
the theory of the natural numbers offers no difficulty of principle,
as we have shown elsewhere.

The process of mathematical induction, by means of which
we defined the natural numbers, is capable of generalisation.
We defined the natural numbers as the  posterity ” of o with
respect to the relation of a number to its immediate successor.
If we call this relation N, any number m will have this relation
to m+41. A property is “ hereditary with respect to N,” or
simply ‘“ N-hereditary,” if, whenever the property belongs to a
number m, it also belongs to m+1, t.e. to the number to which
m has the relation N. And a number » will be said to belong to
the “ posterity ” of m with respect to the relation N if n has
every N-hereditary property belonging to m. These definitions
can all be applied to any other relation just as well as to N. Thus
if R is any relation whatever, we can lay down the following
definitions : # —

A property is called “ R-hereditary ” when, if it belongs to
a term x, and x has the relation R to y, then it belongs to y.

A class is R-hereditary when its defining property is R-
hereditary.

A term x is said to be an “ R-ancestor ” of the term y if y has
every R-hereditary property that x has, provided x is a term
which has the relation R to something or to which something
has the relation R. (This is only to exclude trivial cases.)

! For geometry, in so far as it is not purely analytical, see Principles of
Mathematics, part vi.; for rational dynamics, ibid., part vii.

* These definitions, and the generalised theory of induction, are due to
Frege, and were published so long ago as 1879 in his Begriffsschrift. In

spite of the great value of this work, I was, I believe, the first person who
ever read it—more than twenty years after its publication,
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The ““ R-posterity ”” of x is all the terms of which x is an R-
ancestor.

We have framed the above definitions so that if a term is the
ancestor of anything it is its own ancestor and belongs to its own
posterity. This is merely for convenience.

It will be observed that if we take for R the relation “ parent,”
““ ancestor ” and “ posterity 7 will have the usual meanings,
except that a person will be included among his own ancestors
and posterity. Itis, of course, obvious at once that “ ancestor ”
must be capable of definition in terms of * parent,” but until
Frege developed his generalised theory of induction, no one could
have defined * ancestor” precisely in terms of “ parent.” A
brief consideration of this point will serve to show the importance
of the theory. A person confronted for the first time with the
problem of defining “ ancestor” in terms of * parent” would
naturally say that A is an ancestor of Z if, between A and Z,

there are a certain number of people, B, C, . . ., of whom
B is a child of A, each is a parent of the next, until the last, who

is a parent of Z. But this definition is not adequate unless we
add that the number of intermediate terms is to be finite. Take,
for example, such a series as the following :—

-1, ""}: ""t’ w%) L &) i) %s I.

Here we have first a series of negative fractions with no end,
and then a series of positive fractions with no beginning. Shall
we say that, in this series, —% is an ancestor of § ? It will be
so according to the beginner’s definition suggested above, but
it will not be so according to any definition which will give the
kind of idea that we wish to define. For this purpose, it is
essential that the number of intermediaries should be finite,
But, as we saw, “finite” is to be defined by means of mathe-
matical induction, and it is simpler to define the ancestral relation
generally at once than to define it first only for the case of the
relation of # to n41, and then extend it to other cases. Here,
as constantly elsewhere, generality from the first, though it may
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require more thought at the start, will be found in the long run
to economise thought and increase logical power.

The use of mathematical induction in demonstrations was,
in the past, something of a mystery. There seemed no reason-
able doubt that it was a valid method of proof, but no one quite
knew why it was valid. Some believed it to be really a case
of induction, in the sense in which that word is used in logic.
Poincaré? considered it to be a principle of the utmost import-
ance, by means of which an infinite number of syllogisms could be
condensed into one argument. We now know that all such views
are mistaken, and that mathematical induction is a definition,
not a principle. There are some numbers to which it can be
applied, and there are others (as we shall see in Chapter VIII.)
to which it cannot be applied. We define the “ natural numbers ”
as those to which proofs by mathematical induction can be
applied, f.e. as those that possess all inductive properties. It
follows that such proofs can be applied to the natural numbers,
not in virtue of any mysterious intuition or axiom or principle,
but as a purely verbal proposition. If “ quadrupeds” are
defined as animals having four legs, it will follow that animals
that have four legs are quadrupeds; and the case of numbers
that obey mathematical induction is exactly similar.

We shall use the phrase *inductive numbers ”” to mean the
same set as we have hitherto spoken of as the “ natural numbers.”
The phrase “inductive numbers” is preferable as affording a
reminder that the definition of this set of numbers is obtained
from mathematical induction.

Mathematical induction affords, more than anything else,
the essential characteristic by which the finite is distinguished
from the infinite. The principle of mathematical induction
might be stated popularly in some such form as *
inferred from next to next can be inferred from first to last.”
This is true when the number of intermediate steps between
first and last is finite, not otherwise. Anyone who has ever

1 Science and Method, chap. iv,

¢ what can be
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watched a goods train beginning to move will have noticed how
the impulse is communicated with a jerk from each truck to
the next, until at last even the hindmost truck is in motion.
When the train is very long, it is a very long time before the last
truck moves. If the train were infinitely long, there would be
an infinite succession of jerks, and the time would never come
when the whole train would be in motion. Nevertheless, if
there were a series of trucks no longer than the series of inductive
numbers (which, as we shall see, is an instance of the smallest
of infinites), every truck would begin to move sooner or later
if the ‘engine persevered, though there would always be other
trucks further back which had not yet begun to move. This
image will help to elucidate the argument from next to next,
and its connection with finitude. When we come to infinite
numbers, where arguments from mathematical induction will
be no longer valid, the properties of such numbers will help to
make clear, by contrast, the almost unconscious use that is made
of mathematical induction where finite numbers are concerned.



CHAPTER 1V
THE DEFINITION OF ORDER

WE have now carried our analysis of the series of natural numbers
to the point where we have obtained logical definitions of the
members of this series, of the whole class of its members, and
of the relation of a number to its immediate successor. We
must now consider the serial character of the natural numbers
in the order o, 1, 2, 3, . . . We ordinarily think of the num-
bers as in this order, and it is an essential part of the work
of analysing our data to seek a definition of *“ order ” or * series ”
in logical terms.

The notion of order is one which has enormous importance
in mathematics. Not only the integers, but also rational frac-
tions and all real numbers have an order of magnitude, and
this is essential to most of their mathematical properties. The
order of points on a line is essential to geometry; so is the
slightly more complicated order of lines through a point in a
plane, or of planes through a line. Dimensions, in geometry,
are a development of order. The conception of a limit, which
underlies all higher mathematics, is a serial conception. There
are parts of mathematics which do not depend upon the notion
of order, but they are very few in comparison with the parts
in which this notion is involved.

In seeking a definition of order, the first thing to realise is
that no set of terms has just one¢ order to the exclusion of others.
A set of terms has all the orders of which it is capable. Some-
times one order is so much more familiar and natural to our

29
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our second. A relation having our second property is called
transitive.

(3) Given any two terms of the class which is to be ordered,
there must be one which precedes and the other which follows.
For example, of any two integers, or fractions, or real numbers,
one is smaller and the other greater ; but of any two complex
numbers this is not true. Of any two moments in time, one
must be earlier than the other; but of events, which may be
simultaneous, this cannot be said. Of two points on a line,
one must be to the left of the other. A relation having this
third property is called connected.

When a relation possesses these three properties, it is of the
sort to give rise to an order among the terms between which it
holds ; and wherever an order exists, some relation having these
three properties can be found generating it.

Before illustrating this thesis, we will introduce a few
definitions.

(1) A relation is said to be an aliorelative,! or to be contained
in or imply diversity, if no term has this relation to itself.,
Thus, for example, “ greater,” “ different in size,” ‘* brother,”
“ husband,” “ father” are aliorelatives; but “equal,” “ born
of the same parents,” “ dear friend ” are not.

(2) The square of a relation is that relation which holds between
two terms x and z when there is an intermediate term y such
that the given relation holds between x and y and between
y and 2. Thus “ paternal grandfather ” is the square of * father,”
¢ greater by 2 ” is the square of “ greater by 1,” and so on.

(3) The domain of a relation consists of all those terms that
have the relation to something or other, and the converse domain
consists of all those terms to which something or other has the
relation. These words have been already defined, but are
recalled here for the sake of the following definition :—

(4) The field of a relation consists of its domain and converse
domain together.

1 This term is due to C. S. Peirce.
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(5) One relation is said to contain or be implied by another if
it holds whenever the other holds.

It will be seen that an asymmetrical relation is the same thing
as a relation whose square is an aliorelative. It often happens
that a relation is an aliorelative without being asymmetrical,
though an asymmetrical relation is always an aliorelative. For
example, ““spouse” is an aliorelative, but is symmetrical,
since if x is the spouse of y, y is the spouse of x. But among
transitive relations, all aliorelatives are asymmetrical as well
as vice versa.

From the definitions it will be seen that a transitive relation
is one which is implied by its square, or, as we also say, “ con-
tains ” its square. Thus “ ancestor” is transitive, because
an ancestor’s ancestor i1s an ancestor; but ‘father” is not
transitive, because a father’s father is not a father. A transitive
aliorelative is one which contains its square and is contained
in diversity ; or, what comes to the same thing, one whose
square implies both it and diversity—because, when a relation
is transitive, asymmetry is equivalent to being an aliorelative.

A relation is connected when, given any two different terms
of its field, the relation holds between the first and the second
or between the second and the first (not excluding the possibility
that both may happen, though both cannot happen if the relation
is asymmetrical).

It will be seen that the relation ‘ ancestor,” for example,
is an aliorelative and transitive, but not connected ; it is because

13

it is not connected that it does not suffice to arrange the human
race in a series,

The relation “less than or equal to,” among numbers, is
transitive and connected, but not asymmetrical or an aliorelative,
The relation “greater or less” among numbers is an alio-
relative and is connected, but is not transitive, for if x is greater
or less than y, and y is greater or less than z, it may happen
that x and 2 are the same number.

Thus the three properties of being (1) an aliorelative, (2)
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twelve steps bring us back to our starting-point. Thus in such
a case, though the relation “ proper R-ancestor ” is connected,
and though R itself is an aliorelative, we do not get a series
because “ proper R-ancestor” is not an aliorelative. It is for
this reason that we cannot say that one person comes before
another with respect to the relation * right of ” or to its ancestral
derivative.

The above was an instance in which the ancestral relation was
connected but not contained in diversity. An instance where
it is contained in diversity but not connected is derived from the
ordinary sense of the word “ ancestor.” If x is a proper ancestor
of 4, x and ¥ cannot be the same person ; but it is not true that
of any two persons one must be an ancestor of the other.

The question of the circumstances under which series can be
generated by ancestral relations derived from relations of con-
secutiveness is often important. Some of the most important
cases are the following: Let R be a many-one relation, and let
us confine our attention to the posterity of some term x. When
so confined, the relation “ proper R-ancestor ”” must be connected ;
therefore all that remains to ensure its being serial is that it shall
be contained in diversity. This is a generalisation of the instance
of the dinner-table. Another generalisation consists in taking
R to be a one-one relation, and including the ancestry of x as
well as the posterity. Here again, the one condition required
to secure the generation of a series is that the relation “ proper
R-ancestor ” shall be contained in diversity.

The generation of order by means of relations of consecutive-
ness, though important in its own sphere, is less general than the
method which uses a transitive relation to define the order. It
often happens in a series that there are an infinite number of inter-
mediate terms between any two that may be selected, however
near together these may be. Take, for instance, fractions in order
of magnitude. Between any two fractions there are others—for
example, the arithmetic mean of the two. Consequently there is
no such thing as a pair of consecutive fractions. If we depended
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