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CHAPTER 1

Path Integrals
and Point Particles

§1.1. Why Strings?

One of the greatest scientific challenges of our time is the struggle to unite
the two fundamental theories of modern physics, quantum field theory and
general relativity, into one theoretical framework. Remarkably, these two
theories together embody the sum total of all human knowledge concerning
the most fundamental forces of nature. Quantum field theory, for example,
has had phenomenal success in explaining the physics of the microcosm, down
to distances less than 107'% cm. General relativity, on the other hand, is
unrivaled in explaining the large-scale behavior of the cosmos, providing a
fascinating and compelling description of the origin of the universe itself. The
astonishing success of these two theories is that together they can explain the
behavior of matter and energy over a staggering 40 orders of magnitude, from
the subnuclear to the cosmic domain.

The great mystery of the past five decades, however, has been the total
incompatibility of these two theories. It’s as if nature had two minds, each
working independently of the other in its own particular domain, operating
in total isolation of the other. Why should nature, at its deepest and most
fundamental level, require two totally distinct frameworks, with two sets of
mathematics, two sets of assumptions, and two sets of physical principles?

Ideally, we would want a unified field theory to unite these two fundamental
theories:

Quantum field theory

General relativity }Umﬁed field theory

However, the history of attempts over the past decades to unite these two
theories has been dismal. They have inevitably been riddled with infinities or
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have violated some of the cherished principles of physics, such as causality.
The powerful techniques of renormalization theory developed in quantum
field theory over the past decades have failed to eliminate the infinities of
quantum gravity. Apparently, a fundamental piece of the jigsaw puzzle is still
missing.

Although quantum field theory and general relativity seem totally incom-
patible, the past two decades of intense theoretical research have made it
increasingly clear that the secret to this mystery most likely lies in the power
of gauge symmetry. One of the most remarkable features of nature is that its
basic laws have great unity and symmetry when expressed in terms of group
theory. Unification through gauge symmetry, apparently, is one of the great
lessons of physics. In particular, the use of local symmetries in Yang—Mills
theories has had enormous success in banishing the infinities of quantum field
theory and in unifying the laws of elementary particle physics into an elegant
and comprehensive framework. Nature, it seems, does not simply incorporate
symmetry into physical laws for aesthetic reasons. Nature demands symmetry.

The problem has been, however, that even the powerful gauge symmetries
of Yang—Mills theory and the general covariance of Einstein’s equations are
insufficient to yield a finite quantum theory of gravity.

At present, the most promising hope for a truly unified and finite descrip-
tion of these two fundamental theories is the superstring theory [1-12].
Superstrings possess by far the largest set of gauge symmetries ever found in
physics, perhaps even large enough to eliminate all divergences of quantum
gravity. Not only does the superstring’s symmetry include that of Einstein’s
theory of general relativity and the Yang—Mills theory, it also includes super-
gravity and the Grand Unified Theories (GUTs) [13] as subsets.

Roughly speaking the way in which superstring theory solves the riddle of
infinities can be visualized as in Fig. 1.1, where we calculate the scattering
of two point particles by summing over an infinite set of Feynman diagrams
with loops. These diagrams, in general, have singularities that correspond to
“pinching” one of the internal lines until the topology of the graph is altered.
By contrast, in Fig. 1.2 we have the single-loop contribution to the scattering

F_igure 1.1. Single-loop Feynman diagram for four-particle scattering. The ultraviolet
divergence of this diagram corresponds to the pinching of one internal leg, i.e., when
one internal line shrinks to a point.
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Figure 1.2. Two-loop Feynman diagram for closed string scattering. The diagram is
ultraviolet finite because it cannot be pinched as in the point particle case. From
topological arguments alone, we can see that string theory is less divergent than point
particle theory. Infrared divergences, however, may still exist.

of two closed string states. Notice that we cannot “pinch” one of the internal
lines as in the point particle case. Thus, we naively expect that the superstring
theory is less divergent or even finite because of the symmetries that forbid
this topological deformation.

Any theory that can simultaneously eliminate the infinities of the S-matrix
and incorporate quantum mechanics, the general theory of relativity, GUT
theory, and supergravity obviously possesses mathematics of breathtaking
beauty and complexity. In fact, even the mathematicians have been startled
at the mathematics emerging from the superstring theory, which links together
some of the most dissimilar, far-ranging fields of mathematics, such as Kac—
Moody algebras, Riemann surfaces and Teichmiiller spaces, modular groups,
and even Monster group theory.

The great irony of string theory, however, is that the theory itself is not
unified. To someone learning the theory for the first time, it is often a frustrat-
ing collection of folklore, rules of thumb, and intuition. At times, there seems
to be no rhyme or reason for many of the conventions of the model. For a
theory that makes the claim of providing a unifying framework for all physical
laws, it is the supreme irony that the theory itself appears so disunited! The
secrets of the model, at its most fundamental level, are still being pried loose.

Usually, when we write down a quantum theory, we start with the geometry
or symmetry of the theory and then write down the action. From the action,
in turn, we derive all the predictions of the model, including the unitary
S-matrix. Thus, a second quantized action is the proper way in which to
formulate a quantum field theory. The fundamental reason why superstring
theory seems, at times, to be a loose collection of apparently random conven-
tions is that it is usually formulated as a first quantized theory. Because of
this, we must appeal to intuition and folklore in order to construct all the
Feynman diagrams for a unitary theory.

Unfortunately, the second quantized action and the geometry of the super-
string are some of the last features of the model to be developed. In fact, as
seen from this perspective, the model has been developing backward for the
past 20 years, beginning with the accidental discovery of its quantum theory
in 1968!
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By contrast, when Einstein first discovered general relativity, he started
with physical principles, such as the equivalence principle, and formulated it
in the language of general covariance. Once the geometry was established, he
then wrote down the action as the unique solution to the problem. Later,
classical solutions to the equations were discovered in terms of curved mani-
folds, which provided the first successful theoretical models for the large-scale
behavior of the universe. Finally, the last step in the evolution of general
relativity is the development of a quantum theory of gravity. The crucial steps
in the historical evolution of general relativity can thus be represented as

Geometry — Action — Classical theory — Quantum theory

Furthermore, both general relativity and Yang—Mills theory are mature
theories: they both can be formulated from first principles, which stresses the
geometry and the physical assumptions underlying the theory. Superstring
theory is just beginning to reach that stage of development.

Remarkably, Yang—Mills theory and gravity theory are the unique solution
to two simple geometric statements:

(1) Global Symmetry
The free theory must propagate pure ghost-free spin-one and spin-two
fields transforming as irreducible representations of SU(N) and the Lorentz
group.

(2) Local Symmetry
The theory must be locally SU(N) and generally covariant.

What is remarkable is that the coupled Yang—Mills—gravity action is the
unique solution of these two simple principles:

1
L= —3/=gF F* = 55/~ gRug" (1.L1)

(The first principle contains the real physics of the theory. It cannot be
included as a subset of the second principle. There is an infinite number of
generally covariant and SU(N) symmetric invariants, so we need the first
principle to input the physics and select the irreducible representations of the
basic fields. By “pure” fields, we mean ghost-free fields that have at most two
derivatives, which rules out R? and F* higher derivative theories.)

The question remains: What is the counterpart to these two simple principles
for superstring theory? Much work still has to be done to formulate a truly
geometric theory of strings, but the most promising candidate is presented in
Chapter 8, where I discuss the geometric formulation of string field theory.

The plan of this book, of course, must reflect the fact that the theory has
been evolving backward. For pedagogical reasons, we will mostly follow the
historical development of the theory. Thus, Part I of this book, which intro-
duces the first quantized theory, will at times appear to be a loose collection
of conventions without any guiding principle. That is why we have chosen, in
Part I, to emphasize the path integral or functional approach to string theory.
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Only with Feynman path integrals do we have a formalism in which we can
derive the other formalisms, such as the harmonic oscillator formalism. Al-
though the path integral formulation of a first quantized theory is still woefully
inadequate compared to a genuine second quantized theory, it is the most
convenient formalism in which to tie together the loose ends of the first
quantized theory.

In Part II of the book we will discuss the field theory itself, from which we
can derive all the results of the theory from one action. However, once again
we have followed historical order and presented the field theory backward.
We begin with the broken theory, and then present a candidate for the
geometric one.

Finally, in Part IIT we present the “phenomenology™ of strings. Although
it may be presumptuous to do phenomenology starting at 10'° GeV, it is
important to establish the kinds of predictions that the theory makes.

However, to really appreciate the successes and possible defects of the
superstring theory, we must first try to understand the historical problems
that have plagued physicists for the past five decades. Let us now turn to a
quick review of the development of gauge theories in order to appreciate the
difficulty of constructing a finite theory of gravity. We will also briefly sketch
the historical development of the superstring theory.

§1.2. Historical Review of Gauge Theory

In the 1960s, elementary particle physics seemed hopelessly mired in confu-
sion. The weak, electromagnetic, strong, and gravitational forces were each
studied separately, largely in isolation of the others. Moreover, investigations
into each force had reached a fundamental roadblock:

(1) The weak interactions. Theoretical models of the weak interactions had
progressed embarrassingly little beyond the Fermi theory first proposed
three decades earlier in the 1930s:

LFermi ~ (pprAlllrld;erva (12])

where the I' represents various combinations of Dirac matrices. The next
major step, a theory of W bosons, was plagued with the problem of
infinities. Furthermore, no one knew the underlying symmetry among the
leptons, or whether there was any.

(2) The strong interactions. In contrast to weak interactions, the Yukawa
meson theory provided a renormalizable theory of the strong interactions:

LYukawa ~ QIEQW (122)

However, the Yukawa theory could not explain the avalanche of “elemen-
tary” particles that were being discovered in particle accelerators. J. Robert
Oppenheimer even suggested that the Nobel Prize in physics should go
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to the physicist who didn’t discover a particle that year. Furthermore,
the quark model, which seemed to fit the data much better than it had
any right to, was plagued with the fact that quarks were never seen
experimentally.

(3) The gravitational force. Gravity research was totally uncoupled from
research in the other interactions. Classical relativists continued to find
more and more classical solutions in isolation from particle research. At-
tempts to canonically quantize the theory were frustrated by the presence
of the tremendous redundancy of the theory. There was also the dis-
couraging realization that even if the theory could be successfully quan-
tized, it would still be nonrenormalizable.

This bleak landscape changed dramatically in the early 1970s with the
coming of the gauge revolution. One of the great achievements of the past 15
years has been the development of a fully renormalizable theory of spin-1
gauge particles in which, for the first time, physicists could actually calculate
realistic S-matrix elements. Thus, it took fully 100 years to advance beyond
the original gauge theory first proposed by Maxwell in the 1860s! (See the
Appendix for an elementary introduction to gauge theories and group theory.)

Apparently the key to eliminating the divergences of relativistic quantum
mechanics is to go to larger and more sophisticated gauge groups. Symmetry,
instead of being a purely aesthetic feature of a particular model, now becomes
its most important feature.

For example, Maxwell’s equations, which provided the first unification of
the electric force with the magnetic force, has a gauge group given by U(1).
The unification of the weak and electromagnetic forces into the electro-weak
force requires SU(2) ® U(1). The forces that bind the quarks together into the
hadrons, or quantum chromodynamics (QCD), are based on SU(3). All of
elementary particle physics, in fact, is compatible with the minimal theory of
SUGB)® SU(2)® U(1).

Although the verdict is still not in on the GUTs, which are supposed to
unite the electroweak force with the strong force, once again the unifying
theme is gauge symmetry, with such proposals as SU(5), O(10), etc. symmetry.

Although the gauge revolution is perhaps one of the most important
developments in decades, it is still not enough. There is a growing realization
that the Yang—Mills theory by itself cannot push our understanding of the
physical universe beyond the present level. Not only do the GUTs fail to
explain important physical phenomena, but also there is the crucially impor-
tant problem of formulating a quantum theory of gravity.

Grand Unified Theories, first of all, cannot be the final word on the
unification of all forces. There are several features of GUTs that are still
unresolved:

(1) GUTs cannot resolve the problem of why there are three nearly exact
copies or families of elementary particles. We still cannot answer Rabi’s
question, “Who ordered the muon?”
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(2) GUTs still have 20 or so arbitrary parameters. They cannot, for example,
calculate the masses of the quarks, or the various Yukawa couplings. A
truly unified field theory should have at most one arbitrary parameter.

(3) GUTs have difficulty solving the hierarchy problem. Unless we appeal to
supersymmetry, it is hard to keep the physics of incredibly massive parti-
cles from mixing with everyday energies and destroying the hierarchy.

(4) The unification of particle forces occurs around 1072% cm which is very
close to the Planck length of 107*® ¢m, where we expect gravitational
effects to become dominant. Yet GUTs say nothing whatsoever about
gravitation.

(5) So far, proton decay has not been conclusively observed, which already
rules out minimal SU(5). There is, therefore, still no compelling experimen-
tal reason for introducing the theory.

(6) It is difficult to believe that no new interactions will be found between
present-day energies and the unification scale. The “desert” may very well
bloom with new interactions yet unknown.

The most perplexing and the most challenging of these problems, from a
foundational point of view, has been to find a way of quantizing Einstein’s
theory of general relativity. Although Yang—Mills theories have had spectacu-
lar successes in unifying the known laws of particle physics, the laws of gravity
are curiously different at a fundamental level. Clearly, Yang—Mills theory and
conventional gauge theory are incapable of dealing with this problem. Thus,
GUTs are faced with formidable experimental and theoretical problems when
pushed to their limits.

General relativity is also plagued with similar difficulties when pushed to
its limits:

(1) Classically, it has been established that Einstein’s equations necessarily
exhibit pointlike singularities, where we expect the laws of general rela-
tivity to collapse. Quantum corrections must dominate over the classical
theory in this domain.

(2) The action is not bounded from below, because it is linear in the curvature
tensor. Thus, it may not be stable quantum mechanically.

(3) General relativity is not renormalizable. Computer calculations, for exam-
ple, have now conclusively shown that there is a nonzero counterterm in
Einstein’s theory at the two-loop level.

Naive attempts to quantize Einstein’s theory of gravitation have met with
disappointing failure. One of the first to point out that general relativity would
be incompatible with quantum mechanics was Heisenberg, who noted that
the presence of a dimensional coupling constant would ruin the usual re-
normalization program.

If we set

— =1 c=1 (1.2.3)
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there still remains a dimensional constant even in the Newtonian theory of
gravity, the gravitational constant G:

m1m2
l"

F=G6—12 (1.2.4)

which has dimensions of centimeters squared. When we power expand the
metric tensor g,,, around flat space with the metric n,, = (—+ ++), we intro-
duce the coupling constant x, which has dimensions of centimeters:

Gy = My + Ky, (1.2.5)

Therefore:
G~ k2 (1.2.6)

In this system of units, where the only unit is the centimeter, this coupling
constant x becomes the Planck length, 10733 cm or 10'° GeV, which is far
beyond the reach of experimentation!

Renormalization theory, however, is founded on the fundamental premise
that we can eliminate all divergences with an infinite redefinition of certain
constants. Having a dimensional coupling constant means that this compli-
cated reshuffling and resumming of graphs is impossible. Unlike standard
renormalizable theories, in quantum gravity we cannot add diagrams that
have different powers of the coupling constant. This means that general rela-
tivity cannot be a renormalizable theory. The amplitude for graviton—graviton
scattering, for example, is now a power expansion in a dimensional parameter
(see Fig. 1.3):

- i (127)

>( o o
Figure 1.3. Scattering amplitude for graviton—graviton scattering, Because the coupl-
ing constant has dimensions, graphs of different order cannot be added to renormalize
the theory. Thus, theories containing quantum gravity must be either divergent or
completely finite order-by-order. Pure quantum gravity has been shown on computer
to diverge at the two-loop level. Counterterms have also been found for quantum
gravity coupled to lower-spin particles. Thus, superstring theory is the only candidate
for a finite theory.
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Electricity
ui1)

Magnetism SU(2) ® U1)
———

Weak Force SuU(5), 0(10) ?

Strong Force Superstrings ?

Gravitation

Figure 1.4. Chart showing how gauge theories based on Lie groups have united the
fundamental forces of nature. Maxwell’s theory, based on U(1), unites electricity and
magnetism. The Weinberg—Salam model, based on SU(2) ® U(1), unites the weak force
with the electromagnetic force. GUT theories (based on SU(5), O(10), or larger groups)
are the best candidate to unite the strong force with the electro-weak force. Superstring
theory is the only candidate for a gauge theory that can unite gravity with the rest of
the particle forces.

where we are no longer able to shuffle graphs with different values of n to
cancel the infinities, which is the heart of renormalization theory. Thus,
renormalization theory breaks down.

Because general relativity is hopelessly outside the domain of conventional
renormalization theory, one must reconsider Dirac’s fundamental objection.
It was Dirac who said that the success of quantum mechanics was based on
approximation schemes where each correction term was increasingly small.
But renormalization theory is flawed because it maximally violates this princi-
ple and manipulates infinite quantities and discards them at the end.

One solution might be to construct a theory of gravity that is finite to every
order in the coupling constant, with no need for renormalization at all. For
a while, one bright hope was supergravity [14, 15], based on the local gauge
group Osp(N/4) (see Appendix), which was the first nontrivial extension of
Einstein’s equations in 60 years. The hope was that this gauge group would
offer us a large enough set of Ward—Takahashi identities to cancel a large
class of divergent diagrams. The larger the gauge group, the more likely
troublesome infinites would cancel (see Fig. 1.4):

Theory Gauge group
Electromagnetism u(@)
Electro-weak SU2)® U(1)
Strong SU(3)
GUT(?) SuU(5), O(10)
Gravity (?) GL@4), 0(3,1)

Supergravity () Osp(N/4)
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The basic strategy being pursued was
Gauge symmetry —» Ward — Takahashi identities

— Cancellation of graphs — Renormalizable theory

For example, even Einstein’s theory of gravity can be shown to be trivially
finite at the first loop level. There exists a remarkable identity, called the
Gauss—Bonnet identity, which immediately shows that all one-loop graphs in
general relativity (which would take a computer to write down) sum to zero.
In fact, the super-Gauss—Bonnet identities eliminate many of the divergences
of supergravity, but probably not enough to make the theory finite.

The largest and most promising of the supergravities, the O(8) supergravity,
is probably divergent. Unfortunately, it is possible to write down locally
supersymmetric counterterms at the seventh loop level. It is highly unlikely
that the coefficients of this and probably an infinite number of other counter-
terms can all vanish without appealing to an even higher symmetry. This is
discouraging, because it means that the gauge group of the largest super-
gravity theory, Osp(8/4), is still too small to eliminate the divergences of
general relativity.

Furthermore, the O(8) gauge group is too small to accommodate the
minimal SU(3) ® SU(2) ® U(1) of particle physics. If we go to higher groups
beyond O(8), we find that we must incorporate higher and higher spins into
the theory. However, an interacting spin-3 theory is probably not consistent,
making one suspect that O(8) is the limit to supergravity theories.

In conclusion, supergravity must be ruled out for two fundamental reasons:

(1) Tt is probably not a finite theory because the gauge group is not large
enough to eliminate all possible supersymmetric counterterms. There is a
possible counterterm at the seventh loop level.

(2) Its gauge group O(8) is not large enough to accommodate the minimal
symmetry of particle physics, namely SU(3) ® SU(2) ® U(1).

Physicists, faced with these and other stumbling blocks over the years, have
concluded that perhaps one or more of our cherished assumptions about
our universe must be abandoned. Because general relativity and quantum
mechanics can be derived from a small set of postulates, one or more of these
postulates must be wrong. The key must be to drop one of our commonsense
assumptions about nature on which we have constructed general relativity
and quantum mechanics. Over the years, several proposals have been made
to drop some of our commonsense notions about the universe:

(1) Continuity
This approach assumes that space—time must be granular. The size of these
grains would provide a natural cutoff for the Feynman integrals, allowing
us to have a finite S-matrix. Integrals like

f * a4 (1.2.8)
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would then diverge as ¢ ", but we would never take the limit as ¢ goes to
zero. Lattice gravity theories are of this type. In Regge calculus [16], for
example, we latticize Riemannian space with discrete four-simplexes and
replace the curvature tensor by the angular deficit calculated when moving
in a circle around a simplex:

1
o / —gR — angular deficit

(In flat space, there is no angular deficit when walking around a closed
path, and the action collapses.) Usually, in lattice theories, we take the
limit as the lattice length goes to zero. Here, however, we keep it fixed at
a small number [17]. At present, however, there is no experimental evi-
dence to support the idea that space—time is granular. Although we can
never rule out this approach, it seems to run counter to the natural
progression of particle physics, which has been to postulate larger and
more elegant groups.
(2) Causality

This approach allows small violations in causality. Theories that incor-
porate the Lee—Wick mechanism [18] are actually renormalizable, but
permit small deviations from causality. These theories make the Feynman
diagrams converge by adding a fictitious Pauli—Villars field of mass M
that changes the ultraviolet behavior of the propagator. Usually, the
Feynman propagator converges as p~2 in the ultraviolet limit. However,
by adding a fictitious particle, we can make the propagator converge even
faster, like p~*:

1 1 1
—_— —}7
p2 + mz pz + Mz p4

(1.2.9)

(Notice that the Pauli—Villars field is a ghost because of the —1 that
appears in the propagator. (This means that the theory will be riddled with
negative probabilities.) Usually, we let the mass of the Pauli—Villars field
tend to infinity. However, here we keep it finite, letting the pole go onto the
unphysical sheet. Investigations of the structure of the resulting Feynman
diagrams show, however, that causality is violated; that is, you can meet
your parents before you are born.

(3) Unitarity
We can replace Einstein’s theory, which is based on the curvature tensor,
with a conformal theory based on the Weyl tensor:

v —9R.g* =/ —gC,. (1.2.10)
where the Weyl tensor is defined as
Cuves = Ryype + 9 ueRop + 9o Ragu + $Rg ulpGalv (1.2.11)

where the brackets represent antisymmetrization. The conformal tensor
possesses a larger symmetry group than the curvature tensor, that is,
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invariance under local conformal transformations:

{g“" = Yy (1.2.12)

o o
Cvpa - Cvpa

The Weyl theory converges because the propagators go as p~#; that is, it
is a higher derivative theory. However, there is a “unitary ghost” that also
appears with a —1 in the propagator, for the same reasons cited above.
The most optimistic scenario would be to have these unitary ghosts
“confined” by a mechanism similar to quark confinement [19, 20].

(4) Locality
Over the years, there have also been proposals to abandon some of the
important postulates of quantum mechanics, such as locality. After all,
there is no guarantee that the laws of quantum mechanics should hold
down to distances of 10733 cm. However, there have always been problems
whenever physicists tried to deviate from the laws of quantum mechanics,
such as causality. At present, there is no successful alternative to quantum
mechanics.

(5) Point Particles
Finally, there is the approach of superstrings, which abandons the concept
of idealized point particles, first introduced 2000 years ago by the Greeks.

The superstring theory, because it abandons only the assumption that the
fundamental constituents of matter must be point particles, does the least
amount of damage to cherished physical principles and continues the tradition
of increasing the complexity and sophistication of the gauge group. Super-
string theory does not violate any of the laws of quantum mechanics, yet
manages to eliminate most, if not all, of the divergences of the Feynman
diagrams. The symmetry group of the superstring model, the largest ever
encountered in the history of physics, is probably large enough to make the
theory finite to all orders. Once again, it is symmetry, and not the breakdown
of quantum mechanics, that is the fundamental key to rendering a theory
finite.

In Fig. 1.5 we see diagrammatically the evolution of various theories of
gravity. First, there was Newton’s theory of action at a distance, where
gravitational interactions travel faster than the speed of light. Einstein re-
placed this with the classical interpretation of curved manifolds. Quantum
gravity, in turn, makes quantum corrections to Einstein’s theory by adding in
loops. Finally, the superstring theory makes further corrections to the point
particle quantum theory by summing over all possible topological configura-
tions of interacting strings.

Superstring theory, however, is quite unlike its predecessors in its historical
development. Unlike other physical theories, superstring theory has perhaps
one of the strangest histories in science, with more twists and turns than a
roller coaster.

First, two young physicists, Veneziano and Suzuki [21, 22], independently
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Newton Einstein Quantum Gravity

PR

Ot

Superstrings

Figure 1.5. Steps in the evolution of the theory of gravitation. Each step in this chart
builds on the successes of the previous step. Newton thought gravity was a force that
acted instantly over a distance. Einstein proposed that gravitation was caused by
the curvature of space—time. The naive merger of general relativity and quantum
mechanics produces a divergent theory, quantum gravity, which assumes that gravita-
tion is caused by the exchange of particle-like gravitons. Superstring theory proposes
that gravitation is caused by the exchange of closed strings.

discovered its quantum theory when they were thumbing through a math
book and accidentally noted that the Euler Beta function satisfied all the
postulates of the S-matrix for hadronic interactions (except unitarity). Neveu,
Schwarz, and Ramond [23-25] quickly generalized the theory to include
spinning particles. To solve the problem of unitarity, Kikkawa, Sakita, and
Virasoro [26] proposed that the Euler Beta function be treated as the Born
term to a perturbation series. Finally, Kaku, Yu, Lovelace, and Alessandrini
[27-33] completed the quantum theory by calculating bosonic multiloop
diagrams. The theory, however, was still formulated entirely in terms of
on-shell S-matrix amplitudes.

Next, Nambu and Goto [34-35] realized that lurking behind these scat-
tering amplitudes was a classical relativistic string. In one sweep, they revolu-
tionized the entire theory by revealing the unifying, classical picture behind
the theory. The relationship between the classical theory and the quantum
theory was quickly made by Goldstone, Goddard, Rebbi, and Thorn [36] and
further developed by Mandelstam [37]. The theory, however, was still formu-
lated as a first quantized theory, so that the measure, the vertices, the counting
of graphs, etc. all had to be postulated ad hoc and not deduced from first
principles.

The action (in a particular gauge) was finally written down by Kaku and
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Kikkawa [38]. At last, the model could be derived from one action strictly in
terms of physical variables, although the action did not have any symmetries
left. However, when it was discovered that the theory was defined only in 10
and 26 dimensions, the model quickly died. Furthermore, the rapid develop-
ment of QCD as a theory of hadronic interactions seemingly put the last nail
in the coffin of the superstring.

For 10 years, the model languished because no one could believe that a 10-
or 26-dimensional theory had any relevance to 4-dimensional physics. When
Scherk and Schwarz [39] made the outrageous (for its time) suggestion that
the dual model was actually a theory of all known interactions, no one took
the idea very seriously. The idea fell like a lead balloon.

Finally, the discovery in 1984 by Green and Schwarz [40] that the super-
string theory is anomaly-free and probably finite to all orders in pertur-
bation theory has revived the theory. The Eg; ® Eg “heterotic string” of
Gross, Harvey, Martinec, and Rohm [41] at present seems to be the best
candidate for unifying gravity with physically reasonable models of particle
interactions.

One of the active areas of research now is to complete the evolution of the
theory, to discover why all the “miracles” occur in the model. There has been
a flurry of activity in the direction of writing down the covariant action using
methods discovered in the intervening 10 years, such as BRST. However, there
is now a growing realization that the covariant BRST formalism itself is a
gauge-fixed formalism, much like the light cone formalism. Recently, however,
there has been work on a truly geometric field theory where all the features
of the theory can be deduced from simple physical principles. This is explained
in Chapter 8. This would truly complete the evolution of the theory, which
has been progressing backward for the past 20 years

Quantum theory — Classical theory — Action — Geometry

Let us summarize some of the promising positive features of the superstring
model:

(1) The gauge group includes Eg ® Eg, which is much larger than the minimal
group SU(3) ® SU(2) ® U(1). There is plenty of room for phenomenology
in this theory.

(2) The theory has no anomalies. These small but important defects in a
quantum field theory place enormous restrictions on what kinds of theories
are self-consistent. The symmetries of the superstring theory, by a series
of “miracles,” can cancel all of its potential anomalies.

(3) Powerful arguments from the theory of Riemann surfaces indicate that the
theory is finite to all orders in perturbation theory (although a rigorous
proof is still lacking).

(4) There is very little freedom to play with. Superstring models are noto-
riously difficult to tinker with without destroying their miraculous prop-
erties. Thus, we do not have the problem of 20 or more arbitrary coupling
constants.
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(5) The theory includes GUTs, super-Yang—Mills, supergravity, and Kaluza-
Klein theories as subsets. Thus, many of the features of the phenomenology
developed for these theories carry over into the string theory.

Superstring theory, crudely speaking, unites the various forces and parti-
cles in the same way that a violin string provides a unifying description of the
musical tones. By themselves, the notes 4, B, C, etc. are not fundamental.
However, the violin string is fundamental; one physical object can explain the
varieties of musical notes and even the harmonies one can construct from
them. In much the same way, the superstring provides a unifying description
of elementary particles and forces. In fact, the “music” created by the super-
string is the forces and particles of nature.

Although superstring theory, because of its fabulously large set of sym-
metries, has “miraculous” cancellations of anomalies and divergences, we
must also present a balanced picture and point out its shortcomings. To be
fair we must also list the potential problems of the theory that have been
pointed out by critics of the model:

(1) It is impossible experimentally to reach the tremendous energies found at
the Planck scale. Therefore, the theory is in some sense untestable. A
theory that is untestable is not an acceptable physical theory.

(2) Not one shred of experimental evidence has been found to confirm the
existence of supersymmetry, let alone superstrings.

(3) Itis presumptuous to assume that there will be no surprises in the “desert”
between 100 and 10'® GeV. New, totally unexpected phenomena have
always cropped up when we have pushed the energy scale of our accelera-
tors. Superstring theory, however, makes predictions over the next 17
orders of magnitude, which is unheard of in the history of science.

(4) The theory does not explain why the cosmological constant is zero. Any
theory that claims to be a “theory of everything” must surely explain the
puzzle of a vanishing cosmological constant, but it is not clear how
superstrings solves this problem.

(5) The theory has an embarrassment of riches. There are apparently thousands

of ways to break down the theory to low energies. Which is the correct

vacuum? Although the superstring theory can produce the minimal theory
of SU(3)® SU(2) ® U(1), it also predicts many other interactions that
have not yet been seen.

(6) No one really knows how to break a 10-dimensional theory down to 4
dimensions.

Of these six objections to the model, the most fundamental is the last, the
inability to calculate dimensional breaking. The reason for this is simple: to
every order in perturbation theory, the dimension of space—time is stable.
Thus, in order to have the theory spontaneously curl up into 4- and 6-
dimensional universes, we must appeal to nonperturbative, dynamical effects,
which are notoriously difficult to calculate. This is why the search for the
geometry underlying the theory is so important. The geometric formulation
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of the model may give us the key insight into the model that will allow us to
make nonperturbative calculations and make definite predictions with the
theory.

Thus, the criticism that the model cannot be tested at the Planck length is
actually slightly deceptive. The superstring theory, if it could be successfully
broken dynamically, should be able to make predictions down to the level of
everyday energies. For example, it should be able to predict the masses of the
quarks. Therefore, we do not have to wait for several centuries until we have
accelerators that can reach the Planck length.

Thus, the fundamental problem facing superstrings is not necessarily an
experimental one. It is mainly theoretical. The outstanding problem of the theory
is to calculate dynamical symmetry breaking, so that its predictions can be
compared with experimental data at ordinary energies.

A fundamental theory at Planck energies is also a fundamental theory at
ordinary energies. Thus, the main stumbling block to the development of the
theory is an understanding of its nonperturbative behavior. And the key to
this understanding probably lies in a second quantized, geometric formulation
of the model.

In Part I of this book, however, we will follow historical precedent and
present the first quantized formulation of the model. As we will stress through-
out this book, the first quantized theory seems to be a loose collection of
random facts. As a consequence, we have emphasized the path integral for-
mulation (first written down for the Veneziano model by Hsue, Sakita, and
Virasoro [42, 43]) as the most powerful method of formulating the first
quantized theory. Although the path integral approach cannot reveal the
underlying geometric formulation of the model, it provides the most compre-
hensive formulation of the first quantized theory.

We will now turn to the functional formulation [44] of point particle
theory, which can be incorporated almost directly into the string theory.

§1.3. Path Integrals and Point Particles

Let us begin our discussion by analyzing the simplest of all possible systems,
the classical nonrelativistic point particle. Surprisingly, much of the analysis
of this simple dynamical system carries over directly to the superstring theory.
The language we will use is the formalism of path integrals, which is so versatile
that it can accommodate both first quantized point particles and second
quantized gauge fields with equal ease.

As in classical mechanics, the starting point is the Lagrangian for a point
particle:

L =imx? — V(x) (1.3.1)

where the particle is moving in an external potential. The real physics is
contained in the statement that the action S must be minimized. The equations
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of motion can be derived by minimizing the action:
S = JL(xi, X;, t) dt

65=0

To calculate the equations of motion, let us make a small variation in the path
of the particle given by

(1.3.2)

Sxi % (1.33)

Under this small variation, the action varies as follows:

jd:{‘”‘ 8x; + 5—1‘5;&,} =0 (1.3.4)

0x; 0%;
Integrating by parts, we arrive at the Euler—Lagrange equations:

oL _dJL _, (135

ox; dt 0%,
For our point particle, the equations of motion become

2
mi % _OVG) (1.3.6)
dt ax;
which correspond to the usual classical Newtonian equations of motion.

In addition to the Lagrangian formulation of classical mechanics, there
is also the Hamiltonian form. Instead of introducing the position and the
velocities as fundamental objects, we now introduce the position and the
momentum:

oL
pi= EC: (1.3.7)
With this definition of the conjugate variable, we have
H = piii - L
p? (1.3.8)
H(p, x)=—+V
(pis ) = 25+ V()

Finally, the Poisson brackets between the momenta and the coordinates are
given by

Lo xj]PB = —9; (1.3.9)

A celebrated theorem in classical mechanics states that the equations of

motion of Newton and the action principle method can be shown to be

identical. Beginning with the action principle, we can derive Newton’s laws of
motion, and vice versa.

Equations of motion < Action principle



20 1. Path Integrals and Point Particles

This equivalence, however, breaks down at the quantum level. Quantum
mechanically, there is a fundamental difference between the two, with the
equations of motion being only an approximation to the actual quantum
behavior of matter. Thus, the action principle is the only acceptable framework
Sfor quantum mechanics.

Let us now reformulate the principles of quantum mechanics in terms of
Feynman path integrals [44]:

(1) The probability P(a, b) of a particle moving from point a to point b is the
square of the absolute value of a complex number, the transition function
K(a, b).

P(a, b) = |K(a, b)|? (1.3.10)

(2) The transition function is given by the sum of a certain phase factor, which
is a function of the action S, taken over all possible paths from a to b:

K(a,b)= Y ke'2"sih (1.3.11)

paths

where the constant k can be fixed by
K(a,c)= Y K(a, bK(b,c) (1.3.12)

paths
and the intermediate sum is taken over paths that go through all possible
intermediate points b.

The second principle says that a particle “sniffs out” all possible paths from
point a to point b, no matter how complicated the paths may be. We calculate
this phase factor for each of this infinite number of paths. Then the transition
factor for the path between a and b is calculated by summing over all possible
phase factors (see Fig. 1.6).

Remarkably, the essence of quantum mechanics is captured in these two
principles. All the profoundly important implications of quantum mechanics,
which represent a startling departure from classical mechanics, can be derived
from these two innocent-sounding principles! In particular, these two princi-
ples summarize the essence of the quantum interpretation of the double-slit
experiment, which, in turn, summarizes the essence of quantum mechanics
itself.

It is apparent at this point that the results of classical mechanics can be
reproduced from our two assumptions in a certain approximation. Notice
that, for values of S that are large compared to Planck’s constant, the phase
factor fluctuates rapidly, canceling out these contributions:

38 » LS Y e 0 (1.3.13)

2n paths

Thus, the only contributions to the path integral that survive are those for
which the deviations in the action from the classical path are on the order of



§1.3. Path Integrals and Point Particles 21

Classical Quantum
Mechanics Mechanics

Figure 1.6. The essential difference between classical mechanics and quantum
mechanics. Classical mechanics assumes that a particle executes just one path between
two points based either on the equations of motion or on the minimization of the
action. By constrast, quantum mechanics sums the contributions of probability func-
tions (based on an action) for all possible paths between two points. Although the
classical path is the one most favored, in principle all possible paths contribute to the
path integral. Thus, the action principle is more fundamental than the equations of
motion at the quantum level.

Planck’s constant:

h

08 ~ o (1.3.14)
We see that the Euler—Lagrange equations of motion are reproduced only in
a certain classical limit, that is, when Planck’s constant goes to zero. Therefore
the size of Planck’s constant ultimately determines the probability that a
particle will execute trajectories that are forbidden classically. We see the
origin of Heisenberg’s uncertainty principle embodied in these two principles.
Now let us try to reformulate this more precisely in terms of path integrals.

The second principle now reads

b
K{a, b) = J Dx ei2=Sih (1.3.15)
where
K(a, c)= JK(a, b)K(b, ¢) Dx, (1.3.16)
and
3 N
y —>ij= lim '[H [T dx:., (1.3.17)
paths N—-w i=1 n=1

where the index nlabels N intermediate points that divide the interval between
the initial and the final coordinate. We will take the limit when N approaches
infinity.
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It is absolutely essential to understand that the integration Dx is not the
ordinary integration over x. In fact, it is the product of all possible integrations
over all intermediate points x; , between points a and b. This crucial difference
between ordinary integration and functional integration goes to the heart of
the path integral formalism.

This infinite series of integrations, in turn, is equivalent to summing over
all possible paths between a and b. Thus, we will have to be careful to include
normalization factors when performing an integration over an infinite number
of intermediate points.

If we take the simple case where L = $mx?, all functional integrations can
actually be performed exactly. The integral in question is a Gaussian, which
is fortunately one of the small number of functional integrals that can actually
be performed. One of the great embarrassments of the method of path integrals
is that one of the few integrals that can actually be performed is

© 1
f dx x2me T = E(r’;—fﬁ—) (13.18)
¢
We will be using this formula throughout the entire book.

Let us now break up the path into an infinite number of intermediate
points, x; ,.. (Notice that the functional expression integrates over all possible
values of the intermediate point x; ,, so we cannot expect that x; , and x; ,,
are close to each other even for small time separations.) Let us write

dt > ¢
(1.3.19)

1,22 1 2.1
smx; dt — 3m(x, — X,.1)7e

In order to perform the functional integral over an infinite number of inter-
mediate points, we will repeatedly use the following Gaussian integration:

f " dxy exp[—alx, — x2)? — alx; — x3)?]

= \/—E—a exp[ — 4a(x; — x;3)*] (1.3.20)

One of the crucial points to observe here is that the integration over a
Gaussian in one of the intermediate points yields another Gaussian with that
intermediate point removed. This is the fundamental reason why we can
perform the functional integration over an infinite number of intermediate
points.

Finally, the path integral that we wish to perform is given by

K(a, b) = lim II---jdxl dx, dxy_;
e—0
2 —(1/2)N : N
x (ﬁ) exp {% ¥ (x, — x,,_l)z} (1.321)

m n=1
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(where we have suppressed the vector index i). Using the previous relation
(1.3.20), the final result is equal to

m

ity — xf
Zﬂ(tb - tu)

K(a, b) = ‘ (13.22)

tb-ta

The transition probability function K has some very interesting properties.
For example, it solves the wave equation:

-1 ¢

5 52 K@ b) = iiK(a, b) (1.3.23)

at,
when t, is greater than t,.

Later, we will generalize these expressions for the case of freely propagating
strings, and we will find that these expressions for the Green’s functions carry
over with only small, but important, changes.

To show the relationship between the Hamiltonian and Lagrangian for-
malisms in the path integral approach , it is helpful to insert a complete set of
intermediate states when we divide up the path from a to b. Let us treat the
variable x as an operator X acting on a set of eigenstates:

21x> = x|x) (1.3.24)

The |x) represents an eigenstate of the position operator, treating £ as an
operator whose eigenvalue is equal to the number x. Then completeness over
eigenstates for coordinates and for momenta can be represented as

1= j}x) dx {x|
(1.3.25)
1= jlp> dp {p|
We normalize our states as follows:
x|y =d(x —
{xlyy =d( ‘ y) (1326)
el.px

{plx) = NG

(Because of the infinite number of normalization constants that constantly
appear in the path integral formalism, we will often delete them for the sake
of clarity in this book. We do not lose any generality, because we can, of course,
reinsert them into the path integral if we desire.)

With these eigenstates, we can now rewrite the expression for the Green’s
function for going from point x, to xy:

K(1, N)y = {xy, t1|xx, ty) (13.27)

In order to derive the previous expression (1.3.22) for the transition amplitude,
let us insert a complete set of intermediate states at every intermediate point
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between x; and xy:

(xps byl X, ty) = (X, ty (X5, 1) jdxz (X3, L5 jdxz

| XN-1s t-1) J‘de_1<xN—1’ ty-1lxn, ty)  (1.3.28)
Now let us examine each infinitesimal propagator in terms of the Hamiltonian,
which we write as a function of the coordinates and derivatives:
H=H(x,0o,) (1.3.29)
Then the transition for an infinitesimal interval is given by
(xps tylXa, £ = <x1|e—imx,6,)&|x2>

— e—iH(x.é,,)&:(x NE

= g HEI X |py IdP<Pfx2>

= g iH(x.p)3t Jd_peip(xz —x4)
2n

— o iHE.P J dp il (1.3.30)
2n

It is very important to notice that path integrals have made it possible to
make the transition from classical to quantum commutators. The Hamiltonian
can be expressed either as a function of derivatives with respect to the position
or as a function of the canonical momenta because of the identity:

0,e'P* = ipe'?* (1.3.31)
This allows us to make the important identification:
H(x, p) <> H(x, d,)
) (1.3.32)
pe —15

In the functional formalism, the important correspondence between momenta
and partial derivatives arises because of this identity.

Putting everything together, we can now write the complete transition
amplitude as

Xy ty
{Xqy byl xp, tyy = f Dp Dxexpi J [px — H(p, x)]dt (1.3.33)
Xy 1
where

p?
H= m + V(x) (1.3.34)
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(As usual, we have dropped all the intermediate normalizations, which are just
factors of 2m.) Notice that the functional integral, which was once only a
function of the coordinates, is now a function of both the momenta and the
coordinates.

In order to retrieve the original Lagrangian, we can perform the p integra-
tion exactly, because it is a simple Gaussian integral, and we arrive at

XN ty
(xqs ty| Xy, ty) = j Dx expi f [Bmx} — V(x)]dt  (1.3.35)
xy t

We have thus made the transition between the Lagrangian and the Hamiltonian
formalism using functional methods. We can use either:

2
Pi

L=imxi} -V H=_——
2Mmx; (x) m

+ V(%) (1.3.36)

Functionally, the only difference between these two expressions is whether we
integrate over the coordinates or a combination of the coordinates and the
momenta. The transition probability can be represented as

K(a, b) = f "Dxexpi J‘ di[imx? — V(x)]

Xa a

X

Xp Iy 2
= j Dx Dpexpi 4[ dt [p;ti - ;—;l — V(x):| (1.3.37)

§1.4. Relativistic Point Particles

So far, our discussion has been limited to nonrelativistic particles, where all
degrees of freedom are physical. However, nontrivial complications occur
when we generalize our previous discussion to the case of relativistic particles.
In particular, the (— 1) appearing in the Lorentz metric will, in general, cause
nonphysical states to propagate in the theory. These nonphysical “ghost”
states, which have negative probability, must be eliminated carefully to ensure
a sensible causal theory free of negative norm states.

For the relativistic case, let us assume that the location of a point particle
is given by a four-vector:

x,(1) (14.1)

where parametrization t does not necessarily refer to the time. The action is
particularly simple, being proportional to the four-dimensional path length:

S=-m fds = —m(length) (14.2)

The path length ds can be written in terms of the coordinates:
ds=./—x2dt (1.4.3)

where the dot refers to differentiation with respect to the parameter t. This
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of second-order derivatives in the variable x,(t) and the field e. The “non-
linear” Lagrangian (1.4.3) is expressed only in terms of x, (7). It can be derived
from the second-order form by functionally integrating over the e field. And
finally, the “Hamiltonian” form contains both x,(r) and the canonical con-
jugate p,(7) (it is first-order in derivatives):

1st-order (Hamiltonian) form: L = p,x* — e(pZ + m?)
2nd-order form: L = 4(e™'%2 — em?) (1.4.16)
Non-linear form: L= —m.,/—x2

All three are invariant under reparametrization. Each of them has its own
distinct advantages and disadvantages. This exercise in writing the action of
the free relativistic particle in three different ways is an important one because
it will carry over directly into the string formalism. Expressed in terms of path
integrals, the point particle theory and the string theory are remarkably
similar.

§1.5. First and Second Quantization

In this section, we will quantize the classical point particle and then show the
relationship to the more conventional second quantized formalism of field
theory. The first quantization program, we shall see, is rather clumsy com-
pared to the second quantized formalism that most physicists are familiar
with, but historically the string theory evolved as a first quantized theory. The
great advantage of the second quantized formalism is that the entire theory
can be derived from a single action, whereas the first quantized theory requires
many additional assumptions.

The transition from the classical to the quantum system is intimately
linked with the question of eliminating redundant infinites. As we said before,
the path integral is formally ill-defined because we are summing over an in-
finite number of copies of the same thing. The trick is to single out just one
copy.

There are at least three basic ways in which the first quantized point particle
may be quantized: the Coulomb gauge, the Gupta—Bleuler formalism, and the
BRST formalism.

Coulomb Quantization

Here, we choose the gauge
Xg=t=1 (1.5.1)

In other words, we set the time component of the x variable equal to the real
time ¢, which now parametrizes the evolution of the string. In this gauge, the
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action reduces to

L= —mj 1—vidt (1.5.2)
In the limit of velocities small compared to the velocity of light, we have
L ~ imx? (1.5.3)
as before, so that the functional integral is modified to
JDx,‘ 8(xg — t)e's = J.Dx,- exp i J%mxf dt (1.5.4)

For the case of the string, this simple example will lay the basis for the light
cone quantization. The advantage of the Coulomb gauge is that all ghosts
have been explicitly removed from the theory, so we are dealing only with
physical quantities. The other advantage is that the zeroth component of
the position vector is now explicitly defined to be the time variable. The
parametrization of the point particle is now given in terms of the physical
time.

The disadvantage of the Coulomb formalism, however, is that manifest
Lorentz symmetry is broken and we have to check explicitly that the quantized
Lorentz generators close correctly. Athough this is trivial for the point particle,
surprising features will emerge for the quantum string, fixing the dimension
of space—time to be 26.

Gupta—Bleuler Quantization

This approach tries to maintain Lorentz invariance. This means, of course,
that particular care must be taken to prevent the negative norm states from
spoiling the physical properties of the S-matrix. The Gupta—Bleuler method
keeps the action totally relativistic, but imposes the constraint (1.4.8) on state
vectors:

[pi + m*]l¢> =0 (1.5.5)

(Notice that the above equation is a ghost-killing constraint, because we can
use it to eliminate p,.) This formalism allows us to keep the commutators fully
relativistic:

[p,ui xv] = _'in,u.v (156)

where we choose 1, = (—+++ ---). Notice that this gauge constraint natu-
rally generalizes to the Klein—Gordon equation:

[(O-m*1é(x)=0 (1.5.7)

The Gupta—Bleuler formalism is an important one because most of the cal-
culations in string theory have been carried out in this formalism.
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BRST Quantization

The advantage of the BRST formalism [45, 46] is that it is manifestly Lorentz-
invariant. But instead of regaining unitarity by applying the gauge constraints
on the Hilbert space, which may be quite difficult in practice, the BRST
formulation uses the Faddeev—Popov ghosts to cancel the negative metric
particles. Thus, although the Green’s functions are not unitary because of the
propagation of negative metric states and ghosts, the final S-matrix is unitary
because all the unwanted particles cancel among each other. Thus, the BRST
formalism manages to incorporate the best features of both formalisms, i.e.
the manifest Lorentz invariance of the Gupta—Bleuler formalism and the
unitarity of the Coulomb or light cone formalism. In order to study the BRST
formalism, however, we must first understand Faddeev—Popov quantization.

§1.6. Faddeev—Popov Quantization

Before we discuss the BRST method, it is essential to make a digression and
review the formalism developed by Faddeev and Popov [47]. As we said
earlier, the path integral measure Dx,, is ill-defined because it possesses a gauge
degree of freedom, so we are integrating over an infinite number of copies of
the same thing. Naively, one might insert the gauge constraint directly into
the path integral. If the constraint is given by some function F of the fields
being set to zero:

F(x,)=0 (1.6.1)
then we insert this delta functional directly into the path integral:
Z= JDx [16[F(x,)]e* (1.6.2)

However, this naive approach is actually incorrect because the delta functional
contributes a nontrivial measure to the functional integral.

The key to the Faddeev—-Popov method is to insert the number 1 into the
functional, which obviously has the correct measure. For our purposes, the
most convenient formulation of the number 1 is given by

1=Ap f Ded[F(x%)] (1.6.3)

where ¢ is the parametrization of the gauge symmetry of the coordinate, in
(1.4.6), x;; is the variation of the field with respect to this symmetry, and the
Faddeev-Popov determinant A is defined by the previous equation.

Notice that the integral appearing in the previous equation is an integration
over all possible parametrizations of the field. Since we are integrating out
over all parametrizations, then, by construction, the Faddeev—Popov deter-
minant is gauge independent of any particular parametrization:

Agp(x) = App(x®) (1.6.4)
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Let us now insert the number 1 into the functional integral and make a gauge
transformation to reabsorb the ¢ dependence in x:

Z= JDx Agp(x) J‘Ds S[F(x*)]e™s

= J Dx Agp(x) J De 5[F(x)]e™s (1.6.5)

Notice here that x* was gauge rotated back into the original variable x. Since
all other parts of the functional integral were already gauge independent, we
now have

Z= [JDE] J‘Dx Arpd[F(x)]e™ (1.6.6)

We can now extract out the integral over the gauge parameter, which measures
the infinite volume of the group space:

volume = IDa (1.6.7)

and obtain a new expression for the functional which no longer has this infinite
redundancy:

Z= ij Appd[F(x)]e™ (1.6.8)

Notice that a naive quantization of the path integral would simply insert the
F constraint and would omit the Faddeev—Popov determinant, which is a
new feature that makes the measure come out correctly.

Now let us calculate the Faddeev—Popov determinant, which carries all
the information concerning the ghosts of the theory. The trick is to change
variables from ¢ to F. We can do this because both ¢ and F have the same
number of degrees of freedom. Thus, the Jacobian can be calculated:

det [‘;—ﬂ De = DF (1.6.9)

We can therefore write

App = H De a(F)}_l
i § [orsol )"

= det [éi] (1.6.10)
F=0
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Thus, the Faddeev—Popov factor can be expressed as a simple determinant
of the variation of the gauge constraint. It is more convenient to introduce
this factor directly into the action by exponentiating it. We use the following
trick:

Agp = f DO DB ¢S (16.11)

where the new ghost contribution to the action is given by

—| 6F
Sin = jdr e[w] 0 (1.6.12)
oe F=0

where the 0 variables are anticommuting c-numbers called Grassmann numbers
(see Appendix). Normally, when performing functional integrations, we expect
to find the determinant of the inverse of a matrix. With functional integration
over Grassmann numbers, the determinant occurs in the numerator, not the
denominator. Grassmann numbers have the strange property that

In particular, this means
60>=0 (1.6.14)

Normally, this would mean that # vanishes. However, this is not the case for
a Grassmann number. Thus, we also have the strange identity

e=1+0 (1.6.15)

This identity makes the integration over exponentials of Grassmann-valued
fields in the functional integral rather easy, because they are simply poly-
nomials. More identities on Grassmann numbers are presented in the Ap-
pendix, where we show that

N _ N _
J.:ll db; do, exp I;_ jE=1 BiAiij:I = det(4y) (1.6.16)

This identity verifies that integration over Grassmann variables yields deter-
minant factors in the numerator, not the denominator, so that we can express
the Faddeev—Popov determinant in (1.6.11) as a Grassmann integral.

Now that we have developed the apparatus of Faddeev—Popov quantiza-
tion, let us return to the BRST approach, where we wish to impose the gauge
condition

e=1 (1.6.17)

(we omit some subtleties with respect to this gauge). In this gauge, we should
be able to recover the usual covariant Feynman propagator. To show this,
notice that our action (1.4.14) becomes

L =32 —m?) (1.6.18)
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be more conveniently represented as

N
Ay= Y, <exp iy kux;"> (1.7.4)
topologies i=1

Thus, we associate a factor e*** for each external particle coming from the
Fourier transform term. This path integral formula for the scattering ampli-
tude is important because it will carry over almost exactly into the string
formalism.

Notice how clumsy this description is. We must fix the set of all topologi-
cally allowed configurations and their weights by hand. Furthermore, unitarity
of the S-matrix is not at all obvious.

In a second quantized description, however, we introduce a field y(x)
and quantization relations between the fields themselves, not between the
coordinates:

Second quantization: [7(x), Y(¥)Icy=y, = —i6P(x; — y;)  (1.7.5)

The advantage of the second quantized approach is that the interacting
Hamiltonian can be written explicitly, without having to introduce sums over
topologies. Showing that the Hamiltonian is Hermitian is sufficient to fix the
weights of all diagrams and to demonstrate the unitarity of the S-matrix.

In summary, the pros and cons of first and second quantizations are as
follows:

First Quantization

(1) Interactions must be added in by hand, order by order in the coupling
constant.

(2) Unitarity of the final S-matrix is not obvious. This must be explicitly
checked order by order.

(3) The formalism is necessarily a perturbative one, since the expansion in
topologies is intimately tied to the expansion in terms of the coupling
constant.

(4) It is difficult to describe the theory off-shell.

Second Quantization

(1) The interactions are explicit in the action itself.

(2) Unitarity is guaranteed if the Hamiltonian is Hermitian.

(3) The theory can be formally written nonperturbatively as well as per-
turbatively.

(4) The theory is necessarily off-shell.

The transition from the first to the second quantized theory can also be
performed most easily in the path integral formalism in the Coulomb gauge.
Earlier, we showed that the Green’s function for a propagating free point
particle can be explicitly evaluated:

m }1"2 m(x, — x,)?

exp i 20, 1) (1.7.6)

Ko~ {am=
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This Green’s function can also be written in a second quantized fashion. Let
us start with the Hamiltonian:

H= -_é—lﬁvz 1.7.7)
The Green’s function satisfies
(i6, — H)K(x, t; x', t') = §®(x — x")é(t — ) (1.7.8)
Solving for this Green’s function, we find
K(a, b) = [i6, — HI: . xp (1.7.9)

where we are treating the inverse Green’s function as if it were a discrete matrix
in (x, f) space, and we have dropped trivial normalization factors. This allows
us to write the integral in second quantized language. To demonstrate this,
we will use the following identities throughout this book:

N N N
J:l:! dx; exp{ Y —xAyx; + i;} Jix,-}

i,j=1

2N {1 i
= ————€XpP13
det| Ayl *

i,j=1

J;(A”I)i,-l,} (1.7.10)

(This integral can easily be derived using our earlier formula for the Gaussian
integral (1.3.18). We simply diagonalize the 4 matrix by making a change of
variables in x. Thus, the quadratic term in the integral becomes a function of
the eigenvalues of the 4 matrix. Because all the modes have now decoupled,
the Gaussian integral can be performed exactly by completing the square.
Finally, we make another similarity transformation to convert the eigenvalues
of A back into the A matrix itself.)
From this, we can also derive the following:

N N N
Ix,,xm I dx; exp{z — X Ayx;+ Y J,-x,-}
i=1 i=1 i=1
o o . . -
~ [3}: E cXp {4-’;‘(44 )ij-Ij}:IJ:O det|A4;|
~ (A7 )umldet | A) 7 (1.7.11)

These are some of the most important integrals in this book. Using these
equations, we can now write the Green’s function totally in terms of second
quantized fields:

K(a, b) = j W*(x, E)W (X, ;) DY* DY exp i J dxdt L(y) (1.7.12)

where

L(y) = y*@io, — H)y (1.7.13)
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where we are again treating K(a, b) as if it were a matrix in discretized (x, t)
space.

In summary, we now have two complementary descriptions of the point
particle. We can write the theory either in terms of the particle’s coordinates
x; or in terms of its fields y/(x).

At the free level, both descriptions are totally equivalent, both in ease of
description and also in mathematics. However, at the interacting level, distinct
differences appear. For example, it is easy to write

Li~¢% ~¢* (1.7.14)

and we are guaranteed to get a unitary description of an interacting field.
However, in the first quantized approach, the sum over topologies:

2: (1.7.15)
topologies

is a clumsy way in which to describe a unitary theory. We must check unitarity
order by order in increasingly complicated diagrams. Furthermore, we are
forced to adopt a totally perturbative description for the first quantized
description. The sum over topologies in the first quantized path integral is a
sum over perturbative Feynman diagrams, so the formulation is necessarily
perturbative from the very beginning. That is the fundamental reason why we
have divided this book into first quantization and second quantization.

§1.8. Harmonic Oscillators

One example that will illustrate the relationship between first and second
quantizations is the harmonic oscillator problem. This example will prove
helpful in introducing the harmonic oscillator representation, which we will
use extensively for the string model. Let us begin with a point particle governed
by the following Hamiltonian:

H=2 4 1pe (1.8.1)

where k is the spring constant. Because the momenta and coordinates are
conjugates, we can use the same arguments presented earlier in our discussion
of path integrals to set

[p,x]=—i (1.8.2)

We can now redefine our coordinates and momenta in terms of harmonic
oscillators:
1 1/2
p = (3mw)**(a + a")

1.8.3
x = i(2mw) Y?(a — a") (183)
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where

k = mw? (1.8.4)
In order to satisfy the canonical commutation relation (1.8.2), we must have
[a,al]=1 (1.8.5)

If we insert this expression back into the Hamiltonian, we find
H = w(aa’ + a'a) (1.8.6)
By extracting a c-number term, we can write this in normal ordered fashion:
H = o(a'a + hy) (1.8.7)

where h,, is the zero point energy. We can now introduce the Hilbert space of
harmonic oscillators. Let us define the vacuum as

al0y =0 (1.8.8)

Then an element of the Fock space of the harmonic oscillator Hamiltonian is
given by

@@y

=

such that the states form an orthonormal basis:

10> (1.8.9)

{nim) = 4,, (1.8.10)
The energy of the system is quantized and given by
E,=(@n+3o (1.8.11)

So far, the system has been presented only in a first quantized formalism.
We are quantizing only a single point particle at any time. We would now like
to make the transition to the second quantized wave function by introducing

) = 2) 4,n> (18.12)

where we power expand in the basis states of the harmonic oscillator. Thus,
instead of describing a single excited state of a point particle, we are now
introducing the wave function, which will be a superposition of an arbitrary
number of excited states.

Let us make the important definition

{x|®) = O(x) (1.8.13)
This can be calculated explicitly. Notice that we now have two independent
basis states, the harmonic oscillator basis |n) and the position eigenvectors

|x>. We must now calculate how to go back and forth between these two bases.
Let us first analyze the simplest matrix element:

0o(x) = {x|0)> (1.8.14)
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This matrix element satisfies the equation
0 = {x|al0)
— imwx

=(x | \/ﬂ_ 10>
(2maw)™? (-—% - imwx) {x|0>

= —i(2mw)™1? (% + ma)x) 00(x) (1.8.15)
This last equation can be solved exactly:
0o(x%) = (ma/m) e 128 (1.8.16)
where
& = (mw)*2x (1.8.17)
It is now a straightforward step to calculate all such matrix elements. Let
0,(x) = {x|n)

= (x| (n!)™*2a™|0)
= (n)" 2 2mw) "V x|[p + imwx]"|0)

= (n!)'”z(me)"”z)"(— ié% + imcax) Go(x) (1.8.18)
The solution is therefore

a,(x) = i"(2"n!) " (mw/m)"* (é - a—é}é)“cf“’z’é2 (1.8.19)

In general, these are nothing but Hermite polynomials H,. In terms of these
polynomials, we can express the eigenstate |x) and |n) in terms of each other:

[y = 3 Innlxy = 3. nda, )
(1.8.20)
In> = x> fdx<xln> = fdx 0,(x) | x>
Thus, using (1.8.12) and (1.8.20), we have the power expansion of the wave

function in terms of a complete set of orthogonal polynomials, the Hermite
polynomials:

O(x) = (x|®) = (x| 21¢n|n> - Z:las,H,,(«:)e-“mﬁ’ (1.821)

Similarly, it is not difficult to calculate the Green’s function for the propaga-
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Under this change, the volume element of the integral changes as
0dPx = d"xayéx" (1.9.14)

Therefore, the variation of the action under this change is

oS = j dPx[L3,6x* + SL]

5L 5L (1.9.15)
= dx* —8¢p + ——96
oL = éx a“L+5¢ ¢+5aﬂ¢ 9,9
Now, if we assume that the equations of motion are satisfied, we have
88 = | dPxd,<| +Lé* — iEmaqu ax¥ (1.9.16)
K 80,4
If we now define the energy—momentum tensor as
oL
T, = W@,,qﬁ — L (1.9.17)
then we have the equation
08 = J‘d"xau(T“"éx,,) (1.9.18)

So if the action is invariant under this change, then the energy—momentum
tensor is conserved:

8,T™ =0 (1.9.19)

For example, for the scalar particle action, the energy—momentum tensor
becomes

T;lv = a,u¢av¢ - "uvL (1920)

which is conserved if the equations of motion hold.

Lastly, it is instructive to investigate how the various quantization pro-
cedures treat the Yang—Mills field (see Appendix). Let us begin with the SU(N)
invariant action:

L= —1i[F] (1.9.21)
where
F?, = 0,4% — 8,A4% — [ AbAS (19.22)
The action is invariant under
044 =d,A" - f abe AL A€ (1.9.23)

where A“ is a gauge parameter.
The path integral method begins with the functional

Z= IH dA,(x)ei 1445~ (F, (1.9.24)
H, X
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Now we consider the three methods of quantization:

Coulomb Quantization

The gauge invariance permits us to take the gauge:

V;4: =0
We can integrate over the 4, component because it has no time derivatives,
so the Coulomb formulation is explicitly ghost-free. (The price we pay for this,

of course, is the loss of manifest Lorentz invariance, which must be checked
by hand.) In this gauge, the action becomes

L= +30A})* — 4(Fp)* + - (1.9.25)

where all fields are transverse. This is the canonical form for the Lagrangian.

Gupta—Bleuler Quantization

The advantage of the Gupta—Bleuler formulation is that we can keep manifest
Lorentz symmetry without violating unitarity. For example, let us take the
gauge

0,4 =0 (1.9.26)
In this gauge, the propagator for massless vector particles becomes
% (1.9.27)

Notice that the propagator explicitly contains a ghost. The timelike excitation
has a coefficient of — 1 in the propagator, which represents a ghost. However,
we are free to quantize in this covariant approach beause we will impose the
ghost-killing constraint on the Hilbert space:

(#l,A**|¢y> =0 (1.9.28)
This constraint allows us to solve for and hence eliminate the ghost modes.

Thus, although the free propagator will allow ghosts to propagate, the Hilbert
space is ghost-free, so the theory itself is both Lorentz invariant and ghost-free.

BRST Quantization

The BRST approach begins by calculating the Faddeev—Popov determinant
(1.6.10). Let us calculate the determinant of the matrix:

oy 90,47()
MO =TSR

SA*(x)
OA’(y)
= 3,D*(6*(x — y)6%) (1.9.29)

= 8,D*
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As before, we can write the determinant of M by exponentiating it into the
action using (1.6.10):

1
L=—3Fi+ 5(6‘,,4‘“’)2 + T M*®cb (1.9.30)
where the anticommuting Faddev—Popov ghost fields are represented by ¢
and ¢. This action is invariant under the following BRST transformation:
oA = (V,c)e

dc® = —%f“"“c"c"s

BRST: (1.9.31)

—a 1 a
62" = = (3, 4" e

Once again, it is important to notice that the BRST transformation is
nilpotent. The BRST symmetry is not connected to the conservation of any
observable quantity. From the previous invariance, we can extract out the
generator of this transformation Q such that

0%>=0 (1.9.32)
The physical states of the theory then satisfy
Q|phy)> =0 (1.9.33)

§1.10. Summary

The great irony of string theory, which is supposed to provide a unifying
framework for all known interactions, is that the theory itself is so dis-
organized. String theory is often frustrating to the beginner because it is full
of folklore, conventions, and arbitrary rules of thumb. The fundamental
reason for this is that string theory has historically evolved backward as a first
quantized theory, rather than as a second quantized theory, where the entire
theory is defined in terms of a fundamental action. The disadvantages of the
first quantized approach are that

(1) The interactions of the theory must be introduced by hand. They cannot
be derived from a single action.

(2) Unitarity is not obvious in this approach. The counting of graphs must
be checked tediously.

(3) The formulation is perturbative, so that crucial nonperturbative calcula-
tions, such as dimensional breaking, are beyond its scope.

(4) The formulation is basically on-shell, rather than off-shell.

By contrast, the advantage of the second quantized approach is precisely
that everything can be derived from a single off-shell action, where unitarity
is manifest and nonperturbative calculations can, in principle, be performed.
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Unfortunately, string theory evolved historically as a first quantized theory.
Thus, string theory has been evolving backward, with the second quantized
geometric theory still in its infancy. For pedagogical reasons, we have intro-
duced string theory from a semihistorical point of view, beginning with the
first quantized theory and later developing the second quantized theory and
the underlying geometry. We hope that future accounts of string theory will
reverse this sequence.

To reduce the level of arbitrariness in the first quantized theory as much
as possible, in this chapter we have tried to lay the groundwork for string
theory in the formalism of path integrals. This functional formalism has the
great advantage that we can express the first and second quantized gauge
theories with equal ease. We find, in fact, that large portions of the path
integral formulation of point particles can be incorporated wholesale into
string theory.

The path integral method postulates two fundamental principle that ex-
press the essence of quantum mechanics:

(1) The probability P(a, b) of a particle going from point a to point b is given
by the absolute value squared of a transition function K(a, b):

P(a, b) = |K(a, b)*
(2) The transition function is given by the sum of a phase factor ¢, where S
is the action, taken over all possible paths from a to b:
K(a,b)= Y ke*

paths

In the limit of continuous paths, we have

b
K(a, b) = J Dx 'S

a

where
3 N

Dx = lim [] [] dx;.

N-w i=1 n=1
The action S of the first quantized point particle is given by the length of
the path that the particle sweeps out in space-time. We can represent the
Lagrangian for the point particle in three ways:
1st-order (Hamiltonian) form: L = p,%* — e(p2 + m?)
2nd-order form: L = (e”'x2 — em?) (1.10.1)
Non-linear form: L = —m,/—%}

Unfortunately, because all three forms of the action are parametrization-

invariant, the path integral diverges. Thus, the quantization procedure must

break this gauge symmetry and yield the correct measure in the functional.
These actions can be quantized in three ways, each with its own advantages
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and disadvantages:

(1) Coulomb Quantization
By explicitly fixing the value of some of the fields, such as

x0=t==1.'

we can eliminate the troublesome negative metric states and the Lagrangian
becomes 4mv?. The Coulomb quantization method is therefore manifestly
ghost-free. However, the disadvantage of this method is that it is very
awkward because manifest Lorentz symmetry is broken and must be
checked at every level.
(2) Gupta—Bleuler Quantization

The advantage of the Gupta—Bleuler quantization method is that we have
a manifestly covariant quantization program. Of course, negative metric
ghosts are now allowed to circulate in the theory, but they are eventually
eliminated by imposing the gauge constraints directly onto the Hilbert
space:

[p2+m*]|¢>=0

Thus, the S-matrix is ultimately ghost-free. The disadvantage of this ap-
proach, however, is that the imposition of these gauge constraints, es-
pecially at the interacting level, is frequently quite difficult.
(3) BRST Quantization

This method of quantization keeps the good features of both approaches.
The theory is manifestly covariant, but the S-matrix is still unitary because
the addition of ghost fields in the theory cancels precisely against the
negative metric states. The BRST method imposes the gauge e = 1 in the
first-order form and then inserts the Faddeev—Popov term Ag, into the
functional to get the correct measure. We can exponentiate this deter-
minant into the action by using Grassman variables:

App = det|d,| = fdg dBe!f 0.8

The resulting gauge-fixed action has a residual symmetry, called the BRST
symmetry, which is generated by Q, the BRST charge. (This new symmetry
does not result in the elimination of more fields).

When we generalize these methods to the interacting case, the path integral
formulation begins with the fundamental formula for the transition function
for N-particle scattering:

A(klak29---s kN) = Z g" ij AFP

topologies
N

X eXp {i J.dt Ley+i}) k,,x,!‘}
i=1

= ¥ fpx<e12ﬁ1*-*¥> (1.10.2)

topologies



CHAPTER 2

Nambu—Goto Strings

§2.1. Bosonic Strings

String theory, at first glance, seems divorced from the standard techniques
developed over the past 40 years for second quantized field theories. This is
because string theory was first historically discovered as a first quantized
theory. This is the reason why string theory at times appears to be a random
collection of arbitrary conventions. Although a second quantized field theory
can be derived completely from a single action, a first quantized theory
requires additional assumptions. In particular, the vertices, the choice of
interactions, and the weights of these perturbation diagrams must be postulated
by hand and checked to be unitary later.

Fortunately, the path integral formalism for the first quantized point
particle has been generalized for the string by J. L. Gervais and B. Sakita,
which enables us to write down the dynamics of interacting strings with
remarkable ease.

In the previous chapter, we laid the crucial mathematical groundwork
for a discussion of the first quantized point particle theory. Surprisingly,
almost all of the main features of the Nambu—Goto string have some form
of analogue in the first quantized point particle theory. Of course, entirely
new features are found in the string theory, such as the existence of powerful
symmetries on the world sheet, but the basic methods of quantization can
be carried over directly from the point particle case studied in the previous
chapter.

We saw that the usual formulation of second quantized field theory can be
rewritten in first quantized form. Thus, the traditional covariant Feynman
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propagator (1.6.19) can be written via (1.3.28), (1.3.30), (1.3.37) as

1
Ap(xy, x5) = <x1|ﬂ|xz>
= (x4 J- dr e 0™ |x,
0

- r dr j Dx e~ (/2 [ ditiZ-m?) @2.1.1)

0 x4

where we integrate over all possible trajectories of a particle located at x,(t)
which start at x, and end at point x,. The interactions, we saw, were intro-
duced by hand into the theory by postulating a particular set of topologies
over which this particle can roam. The scattering amplitude, for example, is

A(kl’ kz, ceny kN) = Z Dx e_ILdt+iE:"‘=lkilxiAFP

topologies

= 3 <ﬁ e“‘""‘i> (2.1.2)
topologies i=1

where we integrate over topologies that form the familiar Feynman diagrams
for ¢* or ¢* theory.

It is important to notice that the resulting Feynman diagram is a graph,
not a manifold. At the interaction point, the local topology is not R”, so it
cannot be a manifold. There is no correlation between the internal lines and
the interaction points. This means that we can introduce arbitrarily high spins
at the interaction point of the first quantized relativistic point particle. Thus,
the first quantized point particle theory has an infinite degree of arbitrariness,
corresponding to the different spins and masses we can place at the interaction
point. Furthermore, the ultraviolet singularities of each Feynman diagram
correspond to the number of ways we can “pinch” the diagram by shrinking
an internal line to zero, thus deforming the local topology.

This picture, however, totally changes with the string. Although the path
integral formalism looks almost identical, there are profoundly important
differences. In particular, the sum over histories becomes a sum over all
possible tubes or sheets that one can draw between two different strings (see
Fig. 2.1). This world sheet, in turn, is a genuine manifold, a Riemann surface,
so the set of interactions consistent with the propagator is severely limited.
Thus, we expect to find a very small number of string theories, in contrast to
the infinite number of point particle theories one can write. Furthermore, the
superstring theory does not suffer from ultraviolet divergences caused by
shrinking one of the internal lines to zero. You cannot “pinch” the string world
sheet to obtain an ultraviolet divergence. Thus, string theory is free of ultra-
violet divergences from strictly topological arguments. (We must be careful
to point out that this pinched diagram, however, can be reinterpreted as
an infrared divergence representing the emission of massless, spin-zero par-
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Figure 2.1. Vertex functions for point particles and strings. A large number of point
particle theories are possible, based on different spins and isospins, because the Fey-
nman diagrams are graphs. Only a few string theories are known, however, because
the interactions are restricted to be manifolds, not graphs. Conformal symmetry,
modular invariance, and supersymmetry place enormous restrictions on the manifolds
one may use to construct superstring theories that have no counterpart in point particle
theory.

Figure 2.2. The two-dimensional world sheet swept out by a string. When a string,
which is parametrized by o, moves in space-time, it sweeps out a two-dimensional
surface parametrized by ¢ and 7. The string variable X (o, 7)is just a vector that extends
from the origin to a point on this two-dimensional manifold.

ticle into the vacuum. Fortunately, supersymmetry eliminates these infrared
divergences.)

In summary, although the path integral formalism can treat both the first
quantized point particle and the first quantized string theory with relative
ease, there are profoundly important physical differences between the two
theories that arise from strictly topological arguments.

We begin our discussion of strings by first introducing the coordinate of a
string vibrating in physical space—time. Let the points along the string be
parametrized by the variable 4, and then let the string propagate in time. Let
the vector

X,(0,7) (2.1.3)

represent the space—time coordinates of this string (see Fig. 2.2) parametrized
by two variables. When the string moves, it sweeps out a two-dimensional
surface, which we call the “world sheet.” We will parametrize this world sheet
with two variables, ¢ and 1. The vectors that are tangent to the surface are
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given by the derivatives of the coordinate:

X, 1i).¢
T tvectors = —*£;  —F 214
angent vectors 3 P ( )
The contraction of two of these tangent vectors yields a metric:
Gab = 8aXyabXn (2.1.5)

where we have now replaced the two variables (t, g) with the set (a, b), where
a,b can equal either 0 or 1. The infinitesimal area on this surface can be written
simply as

d Area ~ . /det |g,;| do dt (2.1.6)

In analogy to the point particle case, where the action is the length swept out
by the point, we now define our action to be the surface area of this world
sheet. Our Lagrangian is therefore [1-4]:
1 . —
L=-—.X2X" — (X X"} (2.1.7)
270
where the prime represents o differentiation and the dot represents  differen-
tiation. The action is just the Lagrangian integrated over the world sheet,
which is the total area of the two-dimensional surface:

S= fda dt L(o, 7) 2.1.8)

The Green’s function for the propagation of a string from configuration X, at
“time” 7, to configuration X, at “time” 1,, as well as the path integral over a
surface that expresses the topology of several interacting strings, can be
represented as

Xb -
K(X,, X;) = J DX e JodeL

Xﬂ

(2.1.9)
Z= Y ja‘,u DX e

Topologies
where DX = [],.,..dX,(0, t), du represents the measure of integeration over
the location of the external legs, and where we have made a Wick rotation in
the 7 variable (t — —it) so the integral converges.

The correspondence between the point particle path integral formalism
that we carefully developed in the previous chapter and the string formalism
is quite remarkable. We find that almost the entire point particle formalism
can be imported into the string formalism:

xu(t) X u (G', T)
length | _, area

[14dx,(x) [ dX,(o,7)

Io,t
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Similarly, the path integral for the point particle and the string theory have
surprising similarities. The N-point function for the N-string scattering ampli-
tude can also be written as a Fourier transform, similar to point particle path
integrals:

x; X;
j Dx e_ﬁf L(x)dt .[ DX e—j”,‘,dcj’:ir_(xu:

xi X;

Although there are remarkable similarities between point particle and string
theories when expressed in the language of path integrals, the crucial difference
between them emerges when we analyze the topologies over which the objects
can move. For the point particle case, the topologies are graphs, as in Feynman
graphs, whereas the topologies for string theories are manifolds:

Graphs — Manifolds

One of the crucial reasons why there are so many point particle actions (and
so few string actions) is the difference between graphs and manifolds. The
nontrivial restrictions placed on manifolds severely restrict the number of
consistent string theories.

Asin the case of the point particle, the choice of parametrization was totally
arbitrary. Thus, our action must be reparametrization invariant. To see this,
let us make an arbitrary change of variables:

= ag, T
ki (2.1.10)

T=1(0,1)
Under this reparametrization, the string variable changes as
SX* = X'"da + X*ot (2.1.11)
Because the area of a surface is independent of the parametrization, the action

is manifestly reparametrization invariant, which is easily checked.
As before, let us now write down the canonical conjugates of the theory:

P L 1 X?X,—(X,X")X,
f0XY 2nd | /det|0,X°0,X,]

As in the point particle case, these momenta are not all independent. In fact,
we find two identities that are satisfied by the canonical momenta:

1
P? + —X2=0
Constraints: U 2ma) (2.1.12)
PX"™=0

Thus, the canonical momenta are constrained by these two conditions. If we
calculate the Hamiltonian of the system, we find that it vanishes identically
as in (1.4.9):

H=PX"—L=0 (2.1.13)
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Notice that the X decomposition is given strictly in terms of cosines. This is
because, when we calculate the equations of motion of the string, we must
integrate by parts and hence obtain unwanted surface terms at ¢ = 7 and
o = 0. In order to eliminate these surface terms, we must impose

X, =0 (2.1.26)
at the boundary. This boundary condition eliminates all sine modes of the
string.

We will sometimes find it convenient to take advantage of this form of the
expansion. In particular, it means that

X, (0)=X,(—0)
X,(0) = —X,(—0)

(2.1.27)

The same applies for the modes of the canonical conjugate P,. This, in turn,
allows us to combine both constraints into one, using the properties of the
string under reflection from ¢ into —o. If we let the string parametrization
length be 7 we can define:

1 (" ; X, \?

L= L do f(o) ( /2¢/7P, + \/2“7) (2.1.28)
where f(o) is an arbitrary function defined from — = to n. Notice that both
constraints are now combined into one equation because of this reflection
symmetry. Using (2.1.21), we can show that these generators form a closed
algebra:

[L;, L] =L,, (2.1.29)
where
fxg=1g"—gf (2.1.30)
It is also possible to show that this algebra satisfies the Jacobi identities:
I:Lu-, [Lg, L}l]] = O (2.1.31)

where the brackets represent all possible cyclic symmetrizations. This algebra
is called the Virasoro algebra [6], which will turn out to be one of the most
powerful tools we have in constructing the string theory.
Asin (1.4.11), we can elevate the constraints into the action with Lagrange
multipliers A(c, 7) and p(o, 7):
12

. X
L=PX"+ A [Pj + (2n;')2] + pP, X" (2.1.32)

By functionally integrating out over these Lagrange multipliers, we arrive at
the previous set of constraints. Not surprisingly, this new action has its own
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reparametrization group parametrized by n and &:
0X, = 2no'eP, + nX,

EXI r
6P, = [—“, + nP]
. g (2.1.33)

A= —&+ANn—n'A+p'e— pe
dp=-—-n+Ne—A&' +p'n—7'p
The advantage of this form for the action is that it is first-order and does not
have the bothersome square roots of the original action. As in the point
particle case, this indicates that there exists yet one more form for the action,

expressed in terms of an auxiliary field. To find this third formulation of the
action, let us introduce a new independent field

Gap(0, T) (2.1.34)

which represents a metric on a two-dimensional surface. Unlike our previous
discussion, this metric is now totally independent of the string variable. Let
us write down the Polyakov form of the action [7] (g = |det g,,|):

—_ 1 ab w
L= HW\/;g 0,X, 0, X (2.1.35)

This is a generalization of the second-order point particle action (1.4.14).
Notice that the Polyakov action resembles an action with scalar fields inter-
acting with an external two-dimensional gravitational field. This action, too,
possesses manifest reparametrization invariance:

oX* =g, X*

g™ = £°0.9™ — g*0.8* — g*0.e” (2.1.36)

8./9 = 2.(6°\/9)
The action is also trivially invariant under Weyl rescaling:
8g° = Ag® (2.1.37)

The Polyakov action is entirely equivalent at the classical level to the earlier
Nambu-Goto action. As in the Nambu—Goto formalism, we can derive the
Virasoro algebra. By varying with respect to the metric tensor, we obtain the
energy—momentum tensor, which we can set to zero:

1 6L
T:Jb= —4mo _EQE (2138)

V9

Working this out explicitly, we find
Ty = 0,X,0,X" — $0,9°°0.X"3,X, (2.1.39)
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The moments of the energy—momentum tensor will correspond to the Virasoro
generators. Thus, we have another way of deriving the Virasoro generators
from this new but equivalent formalism.

Notice that the metric field g,, is not a propagating field. The metric tensor
does not have any derivatives acting on it. Thus, we can eliminate it via its
own equations of motion. This leads us to

5L _ 28,X,8,X"
T 999.X,0,X”

Substituting this value of the metric tensor back into the action, we rederive
the original Nambu-Goto action. Thus, at the classical level, the two actions
are identical.

In summary, as in the point particle case, we now have three different ways
in which to write down the action, all of which are equivalent classically. Each
has its own particular advantages and disadvantages when we make the transi-
tion to the quantum system. These string equations are direct generalizations
of the three point particle Lagrangians found in (1.4.16). As before, we have
the second-order formalism, which is expressed in terms of the string variable
X, as well as the metric tensor g,,; the non-linear formalism, which is expressed
entirely in terms of X,; and the Hamiltonian formalism, where we have X,
and its canonical conjugate P, (or the pair §,X, and P*):

(2.1.40)

72

1st-order (Hamiltonian) form: L = P, X* + no'A |:P,f + (TL’)E] + pp X"
ol

~ /gP%g,P* + P*9,X ./g/na’
V8P /9 (2.1.41)

-1
2nd-order form: L = yo \/agaba,,x L Op X*

. 1 . .
Non-linear form: L = ZI-E;(X X2 — (X, X))
At first, we suspect that these actions are totally equivalent, so that we can
choose one and drop the others. This is apparently not so, for two subtle
reasons:

(1) Because we are dealing with a first quantized theory, we have to take the
sum over all interacting topologies that are swept out by the string. For
the Nambu-Goto string, the precise nature of these topologies is ambigu-
ous and must be specified by hand. However, for the Polyakov form of the
action, which contains an independent metric tensor, we can eliminate
most of this ambiguity by specifying that we sum over all conformally and
modular inequivalent configurations. (These terms will be defined later.)
This will become a powerful constraint once we start to derive loops and
will determine the functional measure uniquely. The measure and the
topologies in the Nambu—Goto action, however, are not well defined. (We
must point out, however, that this rule of integrating over inequivalent
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surfaces does not automatically satisfy unitarity. This still must be checked
by hand.)

(2) The gauge fixing of Weyl invariance for the Polykov action, although
trivial classically, poses problems when we make the transition to quantum
mechanics. An anomaly appears when we carefully begin the quantiza-
tion process. In fact, this conformal anomaly will disappear only in 26
dimensions!

Let us now discuss the quantization of the string action. The strategy we
will take in quantizing the free theory to obtain the physical Hilbert space will
be first to extract the symmetry of the action, then the currents, and then the
algebra forimed by the generators of this symmetry. (For the string, the
symmetry will be reparametrization invariance and the algebra will be the
Virasoro algebra.) Then we must apply the constraints onto the Hilbert space,
which eliminates the ghosts and creates a unitary theory. It is important to
keep this strategy in mind as we begin the quantization of the string:

Action —» Symmetry — Current — Algebra — Constraints — Unitarity

As in the point particle case, we can begin the quantization program in
several ways. There are three formalisms in which to fix the gauge of the
theory: (1) Gupta—Bleuler (conformal gauge), (2) light cone gauge, and (3)
BRST formalism. The advantages and disadvantages of each are as follows:

(1) The Gupta-Bleuler is perhaps the simplest of the three formalisms. We
allow ghosts to appear in the action, which permits us to maintain manifest
Lorentz invariance. The price we must pay, however, is that we must
impose ghost-killing constraints on the Hilbert space. Projection operators
must be inserted in all propagators. For trees, this is trivial. For higher
loops, however, this is exceedingly difficult.

(2) The advantage of the light cone gauge formalism is that it is explicitly
ghost-free in the action as well as the Hilbert space. There are no compli-
cations when going to loops. However, the formalism is very awkward and
Lorentz invariance must be checked at each step of the way.

(3) The BRST formalism combines the best features of the previous two
formalisms. It is manifestly covariant, like the Gupta—Bleuler formalism,
and it is unitary, like the light cone formalism, because the negative metric
ghosts cancel against the Faddeev—Popov ghosts.

Let us now discuss each quantization scheme separately.

§2.2. Gupta—Bleuler Quantization

The Gupta—-Bleuler formalism will maintain Lorentz invariance by imposing
the Virasoro constraints on the state vectors of the theory:

BILsIY> =0 (2.2.1)



