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CHAPTER 1

Path Integrals and
Point Particles

1.1  Why Strings?

One of the greatest scientific challenges of our time is the struggle to unite the
two fundamental theories of modern physics, quantum field theory and gen-
eral relativity, into one theoretical framework. Remarkably, these two theories
together embody the sum total of all human knowledge concerning the most
fundamental forces of Nature. Quantum field theory, for example, has had
phenomenal success in explaining the physics of the microcosm, down to dis-
tances less than 10~'° cm. General relativity, on the other hand, is unrivaled in
explaining the large-scale behavior of the cosmos, providing a fascinating and
compelling description of the origin of the Universe itself. The astonishing suc-
cess of these two theories is that together they can explain the behavior of matter
and energy over a staggering 40 orders of magnitude, from the subnuclear to
the cosmic domain.

The great mystery of the past five decades, however, has been the total
incompatibility of these two theories. It’s as if Nature had two minds, each
working independently of the other in its own particular domain, operating
in total isolation of the other. Why should Nature, at its deepest and most
fundamental level, require two totally distinct frameworks, with two sets of
mathematics, two sets of assumptions, and two sets of physical principles?

Ideally, we would want a unified theory to unite these two fundamental
theories:

Quantum field theory

ified field theory.
General relativity } Unified field theory

However, the history of attempts over the past decades to unite these two
theories has been dismal. They have inevitably been riddled with infinities or
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have violated some of the cherished principles of physics, such as causality.
The powerful techniques of renormalization theory developed in quantum field
theory over the past decades have failed to eliminate the infinities of quantum
gravity. Apparently, a fundamental piece of the jigsaw puzzle is still missing.

Although quantum field theory and general relativity seem totally incom-
patible, the past two decades of intense theoretical research have made it
increasingly clear that the secret to this mystery most likely lies in the power
of gauge symmetry. One of the most remarkable features of Nature is that its
basic laws have great unity and symmetry when expressed in terms of group
theory. Unification through gauge symmetry, apparently, is one of the great
lessons of physics. In particular, the use of local symmetries in Yang—Mills
theories has had enormous success in banishing the infinities of quantum field
theory and in unifying the laws of elementary particle physics into an elegant
and comprehensive framework. Nature, it seems, does not simply incorporate
symmetry into physical laws for aesthetic reasons. Nature demands symmetry.

The problem has been, however, that even the powerful gauge symmetries
of Yang—Mills theory and the general covariance of Einstein’s equations are
insufficient to yield a finite quantum theory of gravity.

At present, the most promising hope for a truly unified and finite description
of these two fundamental theories is superstring theory and its latest formu-
lation, M-theory. [1-12]. Superstrings possess by far the largest set of gauge
symmetries ever found in physics, perhaps even large enough to eliminate all
divergences of quantum gravity. Not only does the superstring’s symmetry in-
clude that of Einstein’s theory of general relativity and the Yang—Mills theory,
it also includes supergravity and the Grand Unified Theories (GUTs) [13] as
subsets.

Roughly speaking the way in which superstring theory solves the riddle of
infinities can be visualized as in Fig. 1.1, where we calculate the scattering
of two point particles by summing over an infinite set of Feynman diagrams
with loops. These diagrams, in general, have similarities that correspond to
“pinching” one of the internal lines until the topology of the graph is altered.

FIGURE 1.1. Single-loop Feynman diagram for four-particle scattering. The ultra-
violet divergence of this diagram corresponds to the pinching of one internal leg,

i.e., when one internal line shrinks to a point.
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FIGURE 1.2. Two-loop Feynman diagram for closed string scattering. The diagram
is ultraviolet finite because it cannot be pinched as in the point particle case. From
topological arguments alone, we can see that string theory is less divergent than point
particle theory. Infrared divergences, however, may still exist.

By contrast, in Fig. 1.2 we have the single-loop contribution to the scattering
of two closed string states. Notice that we cannot “pinch” one of the internal
lines as in the point particle case. Thus, we naively expect that the superstring
theory is less divergent or even finite because of the symmetries that forbid
this topological deformation.

Any theory that can simultaneously eliminate the infinities of the S-matrix
and incorporate quantum mechanics, the general theory of relativity, GUT
theory, and supergravity obviously possesses mathematics of breathtaking
beauty and complexity. In fact, even the mathematicians have been startled
at the mathematics emerging from the superstring theory, which links together
some of the most dissimilar, far-ranging fields of mathematics, such as Kac—
Moody algebras, Riemann surfaces and Teichmiiller spaces, modular groups,
and even Monster group theory.

The great irony of string theory, however, is that the theory itself is not
unified. To someone learning the theory for the first time, it is often a frustrating
collection of folklore, rules of thumb, and intuition. At times, there seems to
be no rhyme or reason for many of the conventions of the model. For a theory
that makes the claim of providing a unifying framework for all physical laws,
it is the supreme irony that the theory itself appears so disunited! The secrets
of the model, at its most fundamental level, are still being pried loose.

Usually, when we write down a quantum theory, we start with the geometry
or symmetry of the theory and then write down the action. From the action, in
turn, we derive all the predictions of the model, including the unitary S-matrix.
Thus, a second quantized action is the proper way in which to formulate a
quantum field theory. The fundamental reason why superstring theory seems,
at times, to be a loose collection of apparently random conventions is that it is
usually formulated as a first quantized theory. Because of this, we must appeal
to intuition and folklore in order to construct all the Feynman diagrams for
a unitary theory. We hope that M-theory (or perhaps evern a more advanced
theory) will be able to unify superstring theory into a simple, coherent formal-
ism. Already, M-theory can unify the five different superstring theories into
a single theory. Ultimately, there may be a single equation (perhaps no more
than an inch long) which will unify the entire theory.
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Unfortunately, the geometry of the superstring and membranes are some
of the last features of the model to be developed. In fact, as seen from this
perspective, the model has been developing backward for the past 30 years,
beginning with the accidental discovery of its quantum theory in 1968!

By contrast, when Einstein first discovered general relativity, he started with
physical principles, such as the equivalence principle, and formulated it in the
language of general covariance. Once the geometry was established, he then
wrote down the action as the unique solution to the problem. Later, classical
solutions to the equations were discovered in terms of curved manifolds, which
provided the first successful theoretical models for the large-scale behavior of
the Universe. Finally, the last step in the evolution of general relativity is the
development of a quantum theory of gravity. The crucial steps in the historical
evolution of general relativity can thus be represented as

Geometry — Action — Classical theory — Quantum theory.

Furthermore, both general relativity and Yang—Mills theory are mature
theories: they both can be formulated from first principles, which stresses
the geometry and the physical assumptions underlying the theory. Superstring
theory and M-theory are just beginning to reach that stage of development.

Remarkably, Yang—Mills theory and gravity theory are the unique solution
to two simple geometric statements:

(1) Global Symmetry
The free theory must propagate pure ghost-free spin-1 and spin-2 fields

transforming as irreducible representations of SU(N) and the Lorentz
group.

(2) Local Symmetry
The theory must be locally SU(N) and generally covariant.

What i1s remarkable is that the coupled Yang—Mills gravity action is the
unique solution of these two simple principles

] ]' v
L = -——iﬁf—gFﬂuFH‘ - ﬂ'z'-\f_gRﬂugﬂ . (111)

(The first principle contains the real physics of the theory. It cannot be
included as a subset of the second principle. There is an infinite number of
generally covariant and SU(N) symmetric invariants, so we need the first prin-
ciple to input the physics and select the irreducible representations of the
basic fields. By “pure” fields, we mean ghost-free fields that have at most two
derivatives, which rules out R* and F* higher derivatives theories.)

The question remains: What is the counterpart to these two simple principles
for superstring theory and M-theory?

The plan of this book, of course, must reflect the fact that the theory has
been evolving backward. For pedagogical reasons, we will mostly follow the
historical development of the theory. Thus, Part I of the book, which introduces
the first quantized theory, will at times appear to be a loose collection of
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However, the Yukawa theory could not explain the avalanche of “ele-
mentary” particles that were being discovered in particle accelerators.
J. Robert Oppenheimer even suggested that the Nobel Prize in Physics
should go to the physicist who didn 't discover a particle that year. Fur-
thermore, the quark model, which seemed to fit data much better than it
had any right to, was plagued with the fact that quarks were never seen
experimentally.

(3) The gravitational force. Gravity research was totally uncoupled from re-
search in the other interactions. Classical relativists continued to find more
and more classical solutions in isolation from particle research. Attempts
to canonically quantize the theory were frustrated by the presence of the
tremendous redundancy of the theory. There was also the discouraging re-
alization that even if the theory could be successfully quantized, it would
still be nonrenormalizable.

This bleak landscape changed dramatically in the early 1970s with the com-
ing of the gauge revolution. One of the great achievements of the past 25 years
has been the development of a fully renormalizable theory of spin-1 gauge par-
ticles in which, for the first time, physicists could actually calculate realistic
S-matrix elements. Thus, it took over 100 years to advance beyond the original
gauge theory first proposed by Maxwell in the 1860s! (See the Appendix for
an elementary introduction to gauge theories and group theory.)

Apparently the key to eliminating the divergences of relativistic quantum
mechanics is to go to larger and more sophisticated gauge groups. Symmetry,
instead of being a purely aesthetic feature of a particular model, now becomes
its most important feature.

For example, Maxwell’s equations, which provided the first unification of
the electric force with the magnetic force, has a gauge group given by U(1).
The unification of the weak and electromagnetic forces into the electroweak
force requires SU(2) ® U(1). The forces that bind the quarks together into
the hadrons, or quantum chromodynamics (QCD), are based on SU(3). All of
elementary particle physics, in fact, is compatible with the minimal theory of
SU3) ® SU(2) ® U(1).

Although the verdict is still not in on the GUTs, which are supposed to unite
the electroweak force with the strong force, once again the unifying theme is
gauge symmetry, with such proposals as SU(5), O(10), etc., symmetry.

Although the gauge revolution is perhaps one of the most important devel-
opments in decades, it is still not enough. There is a growing realization that
the Yang—Mills theory by itself cannot push our understanding of the physical
universe beyond the present level. Not only do the GUTs fail to explain im-
portant physical phenomena, but also there is the crucially important problem
of formulating a quantum theory of gravity.

Grand Unified Theories, first of all, cannot be the final word on the
unification of all forces. There are several features of GUTs that are still
unresolved:
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If we set
h
27
there still remains a dimensional constant even in the Newtonian theory of
gravity, the gravitational constant G:

=1, c=1, (1.2.3)

mym,
rt

F=0G, (1.2.4)
which has dimensions of centimeters squared. When we power expand the
metric tensor g, around a flat square with the metric n,, = (= + + +), we
introduce the coupling constant x, which has dimensions of centimeters:

g‘il' = q.ﬂlJ + Khl,“n (1.2.5)
Therefore
G ~ «%. (1.2.6)

In this system of units, where the only unit is the centimeter, this coupling
constant ¥ becomes the Planck length, 1073 em or 10" GeV, which is far
beyond the reach of experimentation!

Renormalization theory, however, is founded on the fundamental premise
that we can eliminate all divergences with an infinite redefinition of certain
constants. Having a negative dimensional coupling constant means that this
complicated reshuffling and resuming of graphs is impossible. Negative cou-
pling constants mean that we can always insert the interaction term into a
Feynman diagram and increase its power of divergence. This means that any
graph can be made arbitrarily divergent by multiple insertions. This means
that general relativity cannot be a renormalizable theory. The amplitude for
graviton—graviton scattering, for example, is now a power expansion in a
dimensional parameter (see Fig. 1.3):

o0
A= ZK"A,,, (1.2.7)

n=2

where we are no longer able to shuffle graphs in the usual manner to cancel the
infinities, which is the heart of renormalization theory. Thus, renormalization
theory breaks down.

Because general relativity is hopelessly outside the domain of conventional
renormalization theory, we must reconsider Dirac’s fundamental objection. It
was Dirac who said that the success of quantum mechanics was based on ap-
proximation schemes where each correction term was increasingly small. But
renormalization theory is flawed because it maximally violates this principle
and manipulates infinite quantities and discards them at the end.

One solution might be to construct a theory of gravity that is finite to every
order in the coupling constant, with no need for renormalization at all. For a
while, one bright hope was supergravity [14, 15], based on the local gauge
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+ K‘X + K4>O< + waw
+ Ku)z( + Kg)i@-( + oo

FIGURE 1.3. Scattering amplitude for graviton—graviton scattering. Because the
coupling constant has negative dimension any graph can be made arbitrarily diver-
gent, thereby requiring an infinite number of counterterms. Thus, theories containing
quantum gravity must be either divergent or completely finite order-by-order. Pure
quantum gravity has been shown on computer to diverge at the two-loop level. Coun-
terterms have also been found for quantum gravity coupled to lower-spin particles.

Thus, superstring theory is the only candidate for a finite theory.

group Osp(N /4) (see Appendix), which was the first nontrivial extension of
Einstein’s equations in 60 years. The hope was that this gauge group would
offer us a large enough set of Ward—Takahashi identities to cancel a large class
of divergent diagrams. The larger the gauge group, the more likely troublesome
infinities would cancel (see Fig. 1.4):

— e m—

Theory Gauge group
Electromagnetism  U(1)
Electroweak SU(2) ® U(1)
Strong SU(3)

GUT(?) SU(5), O(10)
Gravity(?) GL#4), 03, 1)

Supergravity(?) Osp(N /4)

The basic strategy being pursued was

Gauge symmetry — Ward—Takahashi identities
— Cancellation of graphs — Renormalizable theory.

For example, even Einstein’s theory of gravity can be shown to be triv-
ially finite at the first loop level. There exists a remarkable identity, called the

Gauss—Bonnet identity, which immediately shows that all one-loop graphs in
general relativity (which would take a computer to write down) sum to zero.
In fact, the super-Gauss—Bonnet identities eliminate many of the divergences
of supergravity, but probably not enough to make the theory finite.

The largest and most promising of the supergravities, the O(8) supergravity,
is probably divergent. Unfortunately, it is possible to write down locally super-
symmetric counterterms at the seventh loop level. It is highly unlikely that the
coefficients of this and probably an infinite number of other counterterms can
all vanish without appealing to an even higher symmetry. This is discourag-
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Electricity
u(1)

Magnetism SU(2) 0 U(1)

Weak Force SU(B), 0(10) ?

Strong Force Superstrings ?

Gravitation

FIGURE 1.4. Chart showing how gauge theories based on Lie groups have united the
fundamental forces of Nature. Maxwell’s theory, based on U(1), unites electricity
and magnetism. The Weinberg—Salam model, based on SU(2) ® U(1), unites the
weak force with the electromagnetic force. GUTs (based on SU(5), O(10), or larger
groups) are the best candidate to unite the strong force with the electroweak force.
Superstring theory is the only candidate for a gauge theory that can unite gravity
with the rest of the particle forces.

ing, because it means that the gauge group of the largest supergravity theory,
Osp(8/4), 1s still too small to eliminate the divergences of general relativity.

Furthermore, the O(8) gauge group is too small to accommodate the minimal
SU(3) ® SU(2) @ U(1) of particle physics. If we go to higher groups beyond
O(8), we find that we must incorporate higher and higher spins into the theory.
However, an interacting spin-3 theory is probably not consistent, making one
suspect that O(8) is the limit to supergravity theories.

In conclusion, supergravity must be ruled out for two fundamental reasons:

(1) It i1s probably not a finite theory because the gauge group is not large
enough to eliminate all possible supersymmetric counterterms. There is a
possible counterterm at the seventh loop level.

(2) Its gauge group O(8) is not large enough to accommodate the minimal
symmetry of particle physics, namely, SU(3) ® SU(2) & U(1); nor can the
theory accommodate chiral fermions.

Physicists, faced with these and other stumbling blocks over the years, have
concluded that perhaps one or more of our cherished assumptions about our
Universe must be abandoned. Because general relativity and quantum me-
chanics can be derived from a small set of postulates, one or more of these
postulates must be wrong. The key must be to drop one of our commonsense
assumptions about Nature on which we have constructed general relativity and
quantum mechanics. Over the years, several proposals have been made to drop
some of our commonsense notions about the Universe:

(1) Continuity
This approach assumes that space—time must be granular. The size of these
grains would provide a natural cutoff for the Feynman integrals, allowing



1.2 Historical Review of Gauge Theory 13

us to have a finite S-matrix. Integrals like

fm d*x (1.2.8)

would then diverge as £~", but we would never take the limit as £ goes to
zero. Lattice gravity theories are of this type. In Regge calculus [16], for
example, we latticize Riemannian space with discrete four-simplexes and
replace the curvature tensor by the angular deficit calculated when moving
in a circle around a simplex:

|
2k?

(In flat space, there is no angular deficit when walking around a closed
path, and the action collapses.) Usually, in lattice theories, we take the
limit as the lattice length goes to zero. Here, however, we keep it fixed at a
small number [17]. At present, however, there is no experimental evidence
to support the idea that space—time is granular. Although we can never
rule out this approach, it seems to run counter to the natural progression
of particle physics, which has been to postulate larger and more elegant
groups.
(2) Causality

This approach allows small violations in causality. Theories that incor-
porate the Lee—Wick mechanism [18] are actually renormalizable, but
permit small deviations from causality. These theories make the Feynman
diagrams converge by adding a fictitious Pauli—Villars field of mass M that
changes the ultraviolet behavior of the propagator. Usually, the Feynman
propagator converges as p~~ in the ultraviolet limit. However, by adding
a fictitious particle, we can make the propagator converge even faster, like

p~

+~/—gR — angular deficit.

1 1 1
—_ —_ —
pPr+m pr+Mr  pt

(1.2.9)

Notice that the Pauli—Villars field is a ghost because of the — 1 that appears
in the propagator. (This means that the theory will be riddled with negative
probabilities.) Usually, we let the mass of the Pauli—Villars field tend to
infinity. However, here we keep it finite, letting the pole go out onto the
unphysical sheet. Investigations of the structure of the resulting Feynman
diagrams show, however, that causality is violated; that is, you can meet
your parents before you are born.
(3) Unitarity

We can replace Einstein’s theory, which is based on the curvature tensor,
with a conformal theory based on the Weyl tensor:

V=gR.E" = V=8Ch s (1.2.10)
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Newton Einstein Quantum Gravity

Superstrings

FIGURE 1.5. Steps in the evolution of the theory of gravitation. Each step in this
chart builds on the successes of the previous step. Newton thought gravity was a
force that acted instantly over a distance. Einstein proposed that gravitation was
caused by the curvature of space—time. The naive merger of general relativity and
quantum mechanics produces a divergent theory, quantum gravity, which assumes
that gravitation 1s caused by the exchange of particle-like gravitons. Superstring
theory proposes that gravitation 1s caused by the exchange of closed strings.

Superstring theory, however, is quite unlike its predecessors in its historical
development. Unlike other physical theories, superstring theory has perhaps
one of the strangest histories in science, with more twists and turns than a roller
coaster.

First, two young physicists Veneziano and Suzuki [21, 22], independently
discovered its quantum theory when they were thumbing through a math-
ematics book and accidentally noted that the Euler Beta function satisfied
all the postulates of the S-matrix for hadronic interactions (except unitarity).
Neveu, Schwarz, and Ramond [23-25] quickly generalized the theory to in-
clude spinning particles. To solve the problem of unitarity, Kikkawa, Sakita,

and Virasoro [26] proposed that the Euler Beta function be treated as the Born
term to a perturbation series. Finally, Kaku, Yu, Lovelace, and Alessandrini

[27-33] completed the quantum theory by calculating bosonic multiloop dia-
grams. The theory, however, was still formulated entirely in terms of on-shell
S-matrix amplitudes.

Next, Nambu and Goto [34, 35] realized that lurking behind these scattering
amplitudes was a classical relativistic string. In one sweep, they revolution-
1zed the entire theory by revealing the unifying, classical picture behind the
theory. The relationship between the classical theory and the quantum theory
was quickly made by Goldstone, Goddard, Rebbi, and Thorn [36] and further
developed by Mandelstam [37]. The theory, however, was still formulated as a
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self-consistent. The symmetries of the superstring theory, by a series of
“miracles,” can cancel all of its potential anomalies.

(3) Powerful arguments from the theory of Riemann surfaces indicate that the
theory is finite to all orders in perturbation theory (although a rigorous
proof is still lacking).

(4) There 1s very little freedom to play with. Superstring models are no-
toriously difficult to tinker with without destroying their miraculous
properties. Thus, we do not have the problem of 19 arbitrary coupling
constants.

(5) The theory includes GUTs, super-Yang—Mills, supergravity, and Kaluza—
Klein theories as subsets. Thus, many of the features of the phenomenology
developed for these theories carry over into the string theory.

Superstring theory, crudely speaking, unites the various forces and particles
in the same way that a violin string provides a unifying description of the
musical tones. By themselves, the notes A, B, C, etc., are not fundamental.
However, the violin string is fundamental; one physical object can explain
the varieties of musical notes and even the harmonies we can construct from
them. In much the same way, the superstring provides a unifying description of
elementary particles and forces. In fact, the “music” created by the superstring
1s the forces and particles of Nature.

Although superstring theory, because of its fabulously large set of symme-
tries, has “miraculous” cancellations of anomalies and divergences, we must
also present a balanced picture and point out its shortcomings. To be fair we
must also list the potential problems of the theory that have been pointed out
by critics of the model:

(1) It 1s impossible experimentally to reach the tremendous energies found
at the Planck scale. Therefore, the theory is in some sense untestable. A
theory that is untestable is not an acceptable physical theory.

(2) Not one shred of experimental evidence has been found to confirm the
existence of supersymmetry, let alone superstrings.

(3) Itis presumptuous to assume that there will be no surprises in the “desert”
between 100 and 10'” GeV. New, totally unexpected phenomena have al-
ways cropped up when we have pushed the energy scale of our accelerators.
Superstring theory, however, makes predictions over the next 17 orders of
magnitude, which 1s unheard of in the history of science.

(4) The theory does not explain why the cosmological constant is zero. Any
theory that claims to be a “theory of everything” must surely explain
the puzzle of a vanishing cosmological constant, but it is not clear how
superstrings solve this problem.

(5) The theory has an embarrassment of riches. There are apparently millions
of ways to break down the theory to low energies. Which is the correct
vacuum? Although the superstring theory can produce the minimal theory
of SU(3)® SU(2) ® U(1), it also predicts many other interactions that have
not yet been seen.
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(6) No one really knows how to break a 10-dimensional theory down to four
dimensions.

Of these six objections to the model, the most fundamental is the last, the
inability to calculate dimensional breaking. The reason for this is simple: to ev-
ery order in perturbation theory, the dimension of space—time is stable. Thus, in
order to have the theory spontaneously curl up into four- and six-dimensional
universes, we must appeal to nonperturbative, dynamical effects, which are
notoriously difficult to calculate. This is why the search for the geometry under-
lying the theory is so important. The geometric formulation of the model may
give us the key insight into the model that will allow us to make nonperturbative
calculations and make definite predictions with the theory.

Thus, the criticism that the model cannot be tested at the Planck length is
actually slightly deceptive. The superstring theory, if it could be successfully
broken dynamically, should be able to make predictions down to the level of
evervday energies. For example, it should be able to predict the masses of the
quarks. Therefore, we do not have to wait for several centuries until we have
accelerators that can reach the Planck length.

Thus, the fundamental problem facing superstrings is not necessarily an
experimental one. It is mainly theoretical. The outstanding problem of the
theory is to calculate dynamical symmetry breaking, so that its predictions
can be compared with experimental data at ordinary energies.

A fundamental theory at Planck energies is also a fundamental theory at
ordinary energies. Thus, the main stumbling block to the development of the
theory is an understanding of its nonperturbative behavior.

In Part I of this book, however, we will follow historical precedent and
present the first quantized formulation of the model. As we will stress through-
out this book, the first quantized theory seems to be a loose collection of random
facts. As a consequence, we have emphasized the path integral formulation
(first written down for the Veneziano model by Hsue, Sakita, and Virasoro [42,
43]) as the most powerful method of formulating the first quantized theory.
Although the path integral approach cannot reveal the underlying geometric
formulation of the model, it provides the most comprehensive formulation of
the first quantized theory.

We will not turn to the functional formulation [44] of point particle theory,
which can be incorporated almost directly into the string theory.

1.3 Path Integrals and Point Particles

Let us begin our discussion by analyzing the simplest of all possible systems,
the classical nonrelativistic point particle. Surprisingly, much of the analysis of
this simple dynamical system carries over directly to the superstring theory. The
language we will use is the formalism of path integrals, which is so versatile that
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it can accommodate both first quantized point particles and second quantized
gauge fields with equal ease.

As in classical mechanics, the starting point is the Lagrangian for a point
particle:

L =3mx; — V(x), (1.3.1)

where the particle is moving in an external potential. The real physics is con-
tained in the statement that the action § must be minimized. The equations of
motion can be derived by minimizing the action:

S=fL(I;,i;,I)dI,
55 = 0. (13.2)

To calculate the equations of motion, let us make a small variation in the path
of the particle given by

8x;, 8X;. (1.3.3)
Under this small variation, the action varies as follows:
df [—5.]?, P ','] = 0. (1.3.4)
dX;
Integrating by parts, we arrive at the Euler—Lagrange equations:
L d L
—— = 0. 1.3.
dX; dt dx; (1.3.5)
For our point particle, the equations of motion become
d’x; dVi(x)
m— o = 3% (1.3.6)

which correspond to the usual classical Newtonian equations of motion.

In addition to the Lagrangian formulation of classical mechanics, there is
also the Hamiltonian form. Instead of introducing the position and the velocities
as fundamental objects, we now introduce the position and the momentum:

oL

pi = —. (1.3.7)
5.1:,'
With this definition of the conjugate variable, we have
H = Pr’if o L1
p?
H(pi, xi) = — + V(x). (1.3.8)
2m

Finally, the Poisson brackets between the momenta and the coordinates are
given by

[ pi, Xjlp = —0&ij. (1.3.9)
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A celebrated theorem in classical mechanics states that the equations of
motion of Newton and the action principle method can be shown to be identical.

Beginning with the action principle, we can derive Newton’s laws of motion,
and vice versa

Equations of motion <> Action principle.

This equivalence, however, breaks down at the quantum level. Quantum
mechanically, there is a fundamental difference between the two, with the
equations of motion being only an approximation to the actual quantum be-
havior of matter. Thus, the action principle is the only acceptable framework
for quantum mechanics.

Let us now reformulate the principles of quantum mechanics in terms of
Feynman path integrals [44]:

(1) The probability P(a, b) of a particle moving from point a to point b is the
square of the absolute value of a complex number, the transition function
K(a, b):

P(a,b) = |K(a, b)|*. (1.3.10)

(2) The transition function is given by the sum of a certain phase factor, which
1s a function of the action §, taken over all possible paths from a to b:

K(a,b) =Y ke*/" (1.3.11)

paths

where the constant £ can be fixed by

K(a,c)=) K(a,b)K(b,c), (1.3.12)
paths

and the intermediate sum is taken over paths that go through all possible
intermediate points b.

The second principle says that a particle “sniffs out™ all possible paths from
point a to point b, no matter how complicated the paths may be. We calculate
this phase factor for each of this infinite number of paths. Then the transition
factor for the path between a and b is calculated by summing over all possible
phase factors (see Fig. 1.6).

Remarkably, the essence of quantum mechanics is captured in these two
principles. All the profoundly important implications of quantum mechanics,
which represent a startling departure from classical mechanics, can be derived
from these two innocent-sounding principles! In particular, these two princi-
ples summarize the essence of the quantum interpretation of the double-slit
experiment, which, in turn, summarizes the essence of quantum mechanics
itself.

It 1s apparent at this point that the results of classical mechanics can be
reproduced from our two assumptions in a certain approximation. Notice that,
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and

Z‘*f x—Jﬂfﬂ]'[dx,,,. (1.3.17)

paths i=] n=l

where the index n labels N intermediate points that divide the interval between
the initial and the final coordinate. We will take the limit when N approaches
infinity.

[t 1s absolutely essential to understand that the integration Dx is not the
ordinary integration over x. In fact, it 1s the product of all possible integrations
over all intermediate points x; , between points a and b. This crucial difference
between ordinary integration and functional integration goes to the heart of the
path integral formalism.

This infinite series of integrations, in turn, is equivalent to summing over all
possible paths between a and b. Thus, we will have to be careful to include
normalization factors when performing an integration over an infinite number
of intermediate points.

[f we take the simple case where L = %m,fcf, all functional integrations can
actually be performed exactly. The integral in question 1s a Gaussian, which is
fortunately one of the small number of functional integrals that can actually be
performed. One of the great embarrassments of the method of path integrals
is that one of the few integrals that can actually be performed 1s

o (n + 2
f dxxer = LT3 (1.3.18)

2n+1
00 ren

We will be using this formula throughout the entire book.
Let us now break up the path into an infinite number of intermediate points,
x; ». (Notice that the functional expression integrates over all possible values

of the intermediate point x; ,, so we cannot expect that x; , and x; ,, are close
to each other even for small time separations.) Let us write

dt — ¢
1

smiydt — Im(x, — xp00)je" " (1.3.19)

In order to perform the functional integral over an infinite number of
intermediate points, we will repeatedly use the following Gaussian integration:

fm dx; exp[—a(x; — x3)° — a(x; — x3)°]

o0

T
2a

One of the crucial points to observe here is that the integration over a Gaussian
in one of the intermediate points yields another Gaussian with that interme-
diate point removed. This is the fundamental reason why we can perform the
functional integration over an infinite number of intermediate points.

— exp [—3a(x; — x3)°]. (1.3.20)



24 1. Path Integrals and Point Particles

With these eigenstates, we can now rewrite the expression for the Green’s
function for going from point x, to xy.

K(l,N)= (X1, 0| xN, IN). (1.3.27)

In order to derive the previous expression (1.3.22) for transition amplitude,
let us insert a complete set of intermediate states at every intermediate point
between x, and xy:

(X1, Xy, ty) = (xl,fllxz.fz)fdxz (Iztlefdxz

e et tyo) f dxy_1 (Xn1s Ivot|xn. i), (13.28)

Now let us examine each infinitesimal propagator in terms of the Hamiltonian,
which we write as a function of the coordinates and derivatives:

H = H(x, d,). (1.3.29)
Then the transition for an infinitesimal interval is given by

(X1, 01|x2, ) = (x;] e 000 | xy)
— e—lH{I.Hi}ﬁr (I] IxZ)

= f"‘"‘”‘a"’”’{xnlp)fdP(Plxz}

— o~ H(x.p)bt f ﬂ’_eip(_tz—xu)
2

= g HPM f 9P gipisr (1.3.30)
2n

[t is very important to notice that path integrals have made it possible to
make the transition from classical to quantum commutators. The Hamiltonian
can be expressed either as a function of derivatives with respect to the position
or as a function of the canonical momenta because of the identity:

9. = ipe'’*. (1.3.31)
This allows us to make the important identification:

H(x, P) «> H(x, a.l')t
0 (1.3.32)

< —]—,
g dx
In the functional formalism, the important correspondence between momenta

and partial derivatives arises because of this identity.
Putting everything together, we can now write the complete transition

amplitude as

(xy, hlxy, ty) = /.IH DpDx exp [t' frﬁ[pi - H(p, x)]drl . (1.3.33)

X1
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where

p}
H= 2m
(As usual, we have dropped all the intermediate normalizations, which are
just factors of 2r.) Notice that the functional integral, which was once only
a function of the coordinates, is now a function of both the momenta and the
coordinates.
In order to retrieve the original Lagrangian, we can perform the p integration
exactly, because it is a simple Gaussian integral, and we arrive at

+ V(x). (1.3.34)

XN In

{(x1, hlxn, ty) = [ Dx exp [i f [§mi] — V(x)] dz} . (1.3.35)
Xy n

We have thus made the transition between the Lagrangian and the Hamiltonian

formalism using functional methods. We can use either:

2
L=imd-V@ o H=2iv. (13.36)

m
Functionally, the only difference between these two expressions is whether
we integrate over the coordinates or a combination of the coordinates and the
momenta. The transition probability can be represented as

K(a,b):fq’ Dxexp[if[bdt [imx? — V(x)]}

Xp Iy 2
:f DxDpexp{i[ dt [px, _ A V(m)] (1.3.37)
Y o 2m

1.4 Relativistic Point Particles

So far, our discussion has been limited to nonrelativistic particles, where all
degrees of freedom are physical. However, nontrivial complications occur
when we generalize our previous discussion to the case of relativistic par-
ticles. In particular, the (—1) appearing in the Lorentz metric will, in general,
cause nonphysical states to propagate in the theory. These nonphysical “ghost”
states, which have negative probability, must be eliminated carefully to ensure
a sensible causal theory free of negative norm states.

For the relativistic case, let us assume that the location of a point particle is
given by a four-vector:

x, (1), (1.4.1)

where parametrization t does not necessarily refer to the time. The action is
particulary simple, being proportional to the four-dimensional path length:

S=-m fds = —m (length). (1.4.2)



26 1. Path Integrals and Point Particles

The path length ds can be written in terms of the coordinates:
ds = /—x2 dt, (1.4.3)

where the dot refers to differentiation with respect to the parameter .
This action, unlike the previous nonrelativistic action, is invariant under
reparametrizations of the fictitious parameter t. Let us make a change of
coordinates from t to 7:

T — (7). (1.44)
Then we find
dt
dt = “—dt,
T df T
dx dxdt
yrabrr (145)

()} ()]

Thus, the action is invariant under an arbitrary reparametrization of the variable
T.
This can be written infinitesimally as

T— T+0T1,
) (1.4.6)
8x, = x,8t.
As before, we can now introduce canonical conjugates:
sL mx
Pu= 50 = = (1.4.7)
X —x2
m

The crucial difference, however, from our previous discussion of the non-
relativistic point particle is that not all the canonical momenta are independent.
In fact, we find a constraint among them:

pp +m* = 0. (1.4.8)

Thus, the mass shell condition arises as an exact constraint among the momenta.
If we calculate the Hamiltonian associated with this system, we find that

H=p'i, —L=0. (1.4.9)

The Hamiltonian vanishes identically.

These unusual features, the vanishing of the Hamiltonian and the constraints
among the momenta, are typical of systems with redundant gauge degrees of
freedom. The invariance under reparametrization, for example, tells us that the
path integral that we wrote earlier actually diverges:

[ Dxé's = oo, (1.4.10)



1.4 Relativistic Point Particles 27

This is because there is a separate contribution from each particular param-
etrization. But since Dx is parametrization invariant, this means that we are
summing over an infinite number of copies of the same thing. Thus, the integral
must diverge.

Dirac, however, explained how to quantize systems with redundant gauge
degrees of freedom. For example, let us introduce canonical momenta p and
impose the constraint condition via a Lagrange multiplier as follows:

L = p.x* — le(p. +m?). (1.4.11)

The constraint equation (1.4.8) 1s imposed here as a classical equation of
motion. By varying e, we recover the constraint on the momenta. Quantum
mechanically, however, this constraint is imposed by functionally integrating
out over e. In the path integral, we have

f De exp [—i f dtie(p’ + mz)] ~ 8(p* +m?), (1.4.12)

where we have used the fact that the integral over e’** (or the Fourier transform
of the number 1) 1s equal to §(x). Notice that the new Lagrangian (1.4.11) still
possesses the gauge degree of freedom. It is invariant under

60X, = EX,,
0Py = €Py,

se = 20 (1.4.13)
dt

The advantage that this action has over the previous one is that all variables
occur linearly. We do not have to worry about complications caused by the
square root. (The field e that we have introduced will become the metric tensor
g.» When we generalize this action to the string.)

Letus now functionally integrate over the p variable. Because the integration
1s again a Gaussian, we have no problem in performing the p integration:

poexp{ifdr [p.i: - %e(p2+mz)]}

*-fexp{ fdr (e 'x* — em )I (1.4.14)

Thus, we have now obtained a third version of the point particle action. The
advantage of this action is that it is linear in the coordinates and is invariant

under

0X, = EX,,
d(ee) (1.4.15)
doe = :
dt

In summary, we have found three equivalent ways to express the relativistic
point particle. The “second-order” Lagrangian (1.4.14) is expressed in terms of
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action reduces to

L =—m[‘/1 —v? dr (1.5.2)

In the limit of velocities small compared to the velocity of light, we have

L~ imx} (1.5.3)

i

as before, so that the functional integral is modified to

fDx,,cS(xo —1)e's :fDx,- exp (zf %mifdt). (1.5.4)

For the case of the string, this simple example will lay the basis for the light
cone quantization. The advantage of the Coulomb gauge is that all ghosts have
been explicitly removed from the theory, so we are dealing only with physical
quantities. The other advantage is that the zeroth component of the position
vector is now explicitly defined to be the time variable. The parametrization
of the point particle is now given in terms of the physical time.

The disadvantage of the Coulomb formalism, however, is that manifest
Lorentz symmetry is broken and we have to check explicitly that the quan-
tized Lorentz generators close correctly. Although this is trivial for the point
particle, surprising features will emerge for the quantum string, fixing the
dimension of space—time to be 26.

Gupta—Bleuler Quantization

This approach tries to maintain Lorentz invariance. This means, of course, that
particular care must be taken to prevent the negative norm states from spoiling
the physical properties of the S-matrix. The Gupta—Bleuler method keeps the
action totally relativistic, but imposes the constraint (1.4.8) on state vectors:

(P +m’]le) = 0. (1.5.5)

(Notice that the above equation is a ghost-killing constraint, because we can
use it to eliminate py.) This formalism allows us to keep the commutators fully
relativistic:

[p}l’xu] = _h?;wv (1.5.6)

where we choose 7,, = (— + + + --). Notice that this gauge constraint
naturally generalizes to the Klein—-Gordon equation:

[0 - m?1¢(x) = 0. (1.5.7)

The Gupta—Bleuler formalism is an important one because most of the
calculations in string theory have been carried out in this formalism.
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determinant is gauge independent of any particular parametrization:
App(x) = App(x©). (1.6.4)

Let us now insert the number 1 into the functional integral and make a gauge
transformation to reabsorb the ¢ dependence 1n x:

Z = f Dx Agp(x) f DeS[F(x%))e'
=‘/‘DIQFP(I)‘/.DSS[F(I)]EES. (165)

Notice here the x* was gauge rotated back into the original variable x. Since
all other parts of the functional integral were already gauge independent, we
now have

7 = [ f De] f Dx Appd[ F(x)]e'S. (1.6.6)

We can now extract out the integral over the gauge parameter, which measures
the infinite volume of the group space:

volume = f De (1.6.7)

and obtain a new expression for the functional which no longer has this infinite
redundancy:

Z = f Dx Agppd[F(x)]e™. (1.6.8)

Notice that a naive quantization of the path integral would simply insert the
F constraint and would omit the Faddeev—Popov determinant, which is a new

feature that makes the measure come out correctly.

Now let us calculate the Faddeev—Popov determinant, which carries all the
information concerning the ghosts of the theory. The trick is to change variables
from ¢ to F. We can do this because both ¢ and F have the same number of
degrees of freedom. Thus, the Jacobian can be calculated:

det [i—i] De = DF. (1.6.9)

We can therefore write

A [f Dsa(p)}_'j UDFdet [;%] a(F)]-.

o€ o F
= ldet [ﬁ]&n] = det I:E]&o : (1.6.10)

Thus, the Faddeev—Popov factor can be expressed as a simple determinant of
the variation of the gauge constraint. It is more convenient to introduce this
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factor directly into the action by exponentiating it. We use the following trick:
App = [ DO D@e'S# (1.6.11)

where the new ghost contribution to the action is given by

-[§F
Son = /drB [—] 6, (1.6.12)
LI o

where the & variables are anticommuting c-numbers called Grassmann num-
bers. Normally, when performing functional integrations, we expect to find the
determinant of the inverse of a matrix. With functional integration over Grass-
mann numbers, the determinant occurs in the numerator, not the denominator.
Grassmann numbers have the strange property that

6,0, = —6,6;. (1.6.13)
In particular, this means
62 = 0. (1.6.14)

Normally, this would mean that & vanishes. However, this is not the case for a
Grassmann number. Thus, we also have the strange identity

e =1+06. (1.6.15)

This identity makes the integration over exponentials of Grassmann-valued
fields in the functional integral rather easy, because they are simply polyno-
mials. More identities on Grassmann numbers are presented in the Appendix,
where we show that

N N
f [ [ d6: d6; exp [Z é,-A,-,-e,} = det(A;;). (1.6.16)
i=1 ij=1

This identity verifies that integration over Grassmann variables yields deter-
minant factors in the numerator, not the denominator, so that we can express
the Faddeev—Popov determinant in (1.6.11) as a Grassmann integral.

Now that we have developed the apparatus of Faddeev—Popov quantiza-
tion, let us return to the BRST approach, where we wish to impose the gauge
condition

e=1 (1.6.17)

(we omit some subtleties with respect to this gauge). In this gauge, we should
be able to recover the usual covariant Feynmann propagator. To show this,
notice that our action (1.4.14) becomes

L =1l —m?). (1.6.18)
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Given this Lagrangian, our Green’s function for the propagation of a point
particle from one point to another 1s now given by

|
Ar(xy, x2) = (x1] lxz Ill[ dre ") | x,)

f drf Dxexp(——f dr(x —m)) (1.6.19)

Notice that this 1s the usual covariant Feynman propagator rewritten in first

quantized path integral language.
Originally, before gauge fixing, our action was invariant under

d(ee)
dr

Thus, the Faddeev—Popov determinant associated with the gauge choice e = 1

1s the determinant of the derivative. We now use a Gaussian integral over

Grassmann states to represent the determinant, using (1.6.10):

App = det |0, | =fD9D93xp( fdréﬂ 9) (1.6.21)

de =

(1.6.20)

(If we had used ordinary real fields instead of Grassmann-valued fields, the

determinant would have come out with the wrong power.)
Putting everything together, we find that our final action can be represented
as

L = p,x* — 3(p, +m*) — i68.6. (1.6.22)

The essence of the BRST approach is to notice that this gauge-fixed action has
the additional symmetry:

éx, = igbx,,
8pu = iebpy,
86 = iebh, (1.6.23)

50 = ief + se(p +m’).

At first, we may wonder why yet another symmetry appears after we have
already fixed the gauge degree of freedom. However, this extra symmetry is

global and hence does not allow us to impose any constraints on the theory.
This symmetry, therefore, is different from the ones found earlier and cannot
be used to eliminate gauge fields from the action.

We can summarize the BRST approach by extracting an operator Q that will
generate the symmetry found earlier:

5¢p = [eQ, @],
Q =6(0—m*), (1.6.24)
Q% = 0.
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The physical states satisfy
Ql¢) = 0. (1.6.25)

Notice that enforcing this constraint recovers the Klein—-Gordon equation for
on-shell particles:

(O —-m?)yp = 0. (1.6.26)

1.7 Second Quantization

So far, we have been analyzing only the first quantized approach to quantum
particles. We have quantized only the position and momentum vectors:

first quantization: [p;, x;] = —id;;. (1.7.1)

The limitations of the first quantized approach, however, will soon become
apparent when we introduce interactions. Let us say that we wish to describe
point particles that can bump into each other and split apart, rather than intro-
duce an external potential. We must now modify the generating functional to
include summing over Feynman graphs:

7 = Z foxe-'m"'. (1.7.2)

topologies

(Notice that we have Wick rotated the t integration so that the exponential
converges. It will be clear from the context when the Wick-rotated theory is
being used in this book because the exponential becomes real. We will not
discuss the delicate question of the convergence of path integrals.)

In other words, we must, by hand, sum over the various particle topologies
where point particles can split and reform. Each topology represents the history
of the trajectories of the various point particles as they interact. The amplitude
for N -particle scattering, with momenta given by ky, k2, . .., ky, can now be
represented as

A(I’(|.k2....,k~): Z: g"[DXAFp

topologies

N
x exp[—fdtL(t)+iZk,‘xf‘]. (1.7.3)
i=]

Notice that we are taking the Fourier transform of the Green’s function, so that
the amplitude is a function of the external momenta. This formula can be more
conveniently represented as

Av= ) g"<exp(iikux{‘)>. (1.7.4)
i=l1

topologies
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The Green’s function satisfies
(id, — H)K(x,t;x',t") = 8¥(x — x")8(t — ). (1.7.8)
Solving for this Green’s function, we find
K(a,b)=1[id, — H].' (1.7.9)

"Iﬂ 'rrﬂ ;'rb 1rb '

where we are treating the inverse Green’s function as if it were a discrete matrix
In (x, t) space, and we have dropped trivial normalization factors. This allows
us to write the integral in second quantized language. To demonstrate this, we
will use the following identities throughout this book:

N N N
-[l_[dx,— exp Z —XjAjjXx; + Z J,-x,—l

i=l i.j=I i=]
(/2N

~ det|A;;]

N
exp [% Y J;(A"'),—;Jj] . (1.7.10)
i j=I

(This integral can easily be derived using our earlier formula for the Gaussian
integral (1.3.18). We simply diagonalize the A matrix by making a change of
variables in x. Thus, the quadratic term in the integral becomes a function of the
eigenvalues of the A matrix. Because all the modes have now decoupled, the
Gaussian integral can be performed exactly by completing the square. Finally,
we make another similarity transformation to convert the eigenvalues of A

back into the A matrix itself.)
From this, we can also derive the following:

N N N
f XnXm ]_[ dx; exp Z —XiAjjxj + Z Jix; ]
i=l i=l i=l

) ]
| —— - J A-I iidi Af' -1
[5Jn A expl4.l( )JJJ}]J=0det[ il
~ (A um(det |A;; )7 (1.7.11)

These are some of the most important integrals in this book. Using these
equations, we can now write the Green’s function totally in terms of second

quantized fields:

K(a,b) = f U (Xa, 1)V (Xp, 1) DY ™ DY exp [f f dIdIL(lfI):I . (1.7.12)

where
L(Y) = y¥™(io, — H)Y, (1.7.13)

where we are again treating K (a, b) as if it were a matrix in discretized (x, 7)
space.
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In order to satisfy the canonical commutation relation (1.8.2), we must have
[a,a'] = 1. (1.8.5)
If we insert this expression back into the Hamiltonian, we find
H= %w(aa’r +a'a). (1.8.6)
By extracting a c-number term, we can write this in normal ordered fashion:
H = w(a'a + hy), (1.8.7)

where Ay is the zero point energy. We can now introduce the Hilbert space of
harmonic oscillators. Let us define the vacuum as

al0) =0. (1.8.8)

Then an element of the Fock space of the harmonic oscillator Hamiltonian is
given by

(a'y"
|n) = |0) 1.8.9
T ( )
such that the states form an orthonormal basis:
(nim} = &, (1.8.10)

The energy of the system is quantized and given by
E,=(n+ }o. (1.8.11)

So far, the systems has been presented only in a first quantized formalism.
We are quantizing only a single point particle at any time. We would now like
to make the transition to the second quantized wave function by introducing

)= ¢uln), (1.8.12)
n=0

where we power expand in the basis states of the harmonic oscillator. Thus,
instead of describing a single excited state of a point particle, we are now
introducing the wave function, which will be a superposition of an arbitrary
number of excited states.

Let us make the important definition

(x|®) = D(x). (1.8.13)

This can be calculated explicitly. Notice that we now have two independent

basis states, the harmonic oscillator basis |n) and the position eigenvectors |x).

We must now calculate how to go back and forth between these two bases.
Let us first analyze the simplest matrix element:

oo(x) = (x]0). (1.8.14)



1.8 Harmonic Oscillators 39

This matrix element satisfies the equation

0= (x|al0)

— Imwx

= (x| == 10)
2mw

= 2mw)~""? (——% - imwx) (x]0)

d
= —i(2mw)~ "/ (E +- mcux) oo(x). (1.8.15)
This last equation can be solved exactly:
0o(x) = (mw/m)"/*e~(11D% (1.8.16)
where
£ = (mm)”zx. (1.8.17)

[t i1s now a straightforward step to calculate all such matrix elements. Let
on(x) = (x|n)
= (x| (n!)"*a™ |0)
= (n!)""?2mw)™"? (x| [p + imwx]" |0)

a n
+ imwx) oo(x). (1.8.18)
ax

= (n!)™"*2maw)~"/?" ( i
The solution 1s therefore

on(x) = i"(2"n!)""*(maw/m)"* (& - %) e (172" (1.8.19)

In general, these are nothing but Hermite polynomials H,. In terms of these
polynomials, we can express the eigenstate |x) and |n) in terms of each other:

X) =) In) (nlx) =) In) 0u(x),
n=| n=|\

= (1.8.20)
In) = Ix)fdx (x|n) =fdxau(x) 1x) .

Thus, using (1.8.12) and (1.8.20), we have the power expansion of the wave
function in terms of a complete set of orthogonal polynomials, the Hermite
polynomials:

O(x) = (x|®) = (x| Y ¢aln) =) ¢ H,(E)e™V*.  (1.821)
n=| n=|

Similarly, it is not difficult to calculate the Green’s function for the propaga-
tion of a point particle in a harmonic oscillator potential. The Green'’s function
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would be the same as if we had started with the second quantized formalism
with the action:

_ 1
L = ®(x) (:a, + ﬂv’- — %kxz) P(x). (1.8.22)

From this second quantized action, we can therefore derive the equations of
motion:

—1
10, P(x,1) = [2—”;‘6’2 + %kxz] D(x, 1)
= H®(x,1). (1.8.23)

From this, we can define the canonical momenta conjugate to ®(x, ) such that
the canonical quantization relations are satisfied:

[T1(x, 1), ®(x', )] = —id(x — x'). (1.8.24)

1.9 Currents and Second Quantization

Let us begin with a discussion of the relativistic second quantized theory, which,

as we have seen, is equivalent perturbatively to the first quantized theory. When
quantizing the point particle in the Gupta—Bleuler formalism, we were led to

the equations of motion:

(O —-m?l¢p =0 (1.9.1)
which can be derived from the second quantized action:
L = 3[0,¢0"¢ + m*¢?]. (1.9.2)

One of the most powerful techniques we used to explore the first quantized
theory was symmetry. We would now like to study the question of symmetries
within the second quantized formalism.

First, let us calculate the equations of motion by making a small variation
in the field and requiring that the action be invariant under this variation:

co= [an (s + 2sao)
5S_0...fd x(5¢a¢+83n¢aau¢ .. (1.9.3)

Let us now integrate by parts, using 3d,¢ = 9,0¢:

=[x (- aag) o+ [ o (i)
SS—fd x(5¢ a“BB#q!: 8¢ + | d”x0, 53u¢3¢ : (1.9.4)

If we temporarily ignore the surface term, the action is stationary if we have
the following equation of motion:

SL 8L
_%= 0 (1.9.5)

Y80, ¢

d
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If we insert the Lagrangian into this equation, we obtain the equations of
motion, which reproduce the constraint found earlier in the first quantized
formalism.

Let us now make a small change in the fields, parametrized by a small, as
yet unspecified, number £*:

8¢ = 6—¢86"‘. (1.9.6)
g%

If we insert this into the previous equation for the variation of the action, keep
the surface term intact, and assume that the equations of motion are satisfied,
then we have the following:

aL é¢
88 = [ d’xd — ) 8&”. 1.9.7
s=[an “(smasa) ’ —
Let us define the tensor in the parentheses as the current:
8L 8¢
M= —. 1.9.8
80,4 de ( )

Then we have the important equation
88 = [deB“J;‘SE". (1.9.9)
Thus, if the action § is stationary under this variation, we have a conserved
current JH%:
a,J" =0. (1.9.10)

We will use this equation over and over again in the discussion of strings when
we want to extract the current for supersymmetry and conformal invariance.
Finally, we note that the integrated charge Q“ associated with the current is
constant in time:

fd"xau.l““ = [dD"xBOJO“ + surface term. (1.9.11)
Thus,
Qu =de_IXJg,
d o
9 J"" =0 — cﬁ =0. (1.9.12)

Finally, we wish to construct yet another conserved current associated with
the action. Let us make a small variation in the space—time variable:

Sxk = ¢gh, (1.9.13)
Under this charge, the volume element of the integral changes as
8d’x = dPxd,6x". (1.9.14)
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Coulomb Quantization
The gauge invariance permits us to take the gauge

We can integrate over the A, component because it has no time derivatives, so
the Coulomb formulation is explicity ghost-free. (The price we pay for this, of
course, 1s the loss of manifest Lorentz invariance, which must be checked by
hand.) In this gauge, the action becomes

L = +3(30A{) — 3(F3)Y +---, (1.9.25)

where all fields are transverse. This is the canonical form for the Lagrangian.

Gupta—Bleuler Quantization

The advantage of the Gupta—Bleuler formulation is that we can keep manifest
Lorentz symmetry without violating unitarity. For example, let us take the
gauge

d, A" = 0. (1.9.26)
In this gauge, the propagator for massless vector particles becomes
3 (1.9.27)
P

Notice that the propagator explicitly contains a ghost. The timelike excitation
has a coefficient of —1 in the propagator, which represents a ghost. However,

we are free to quantize in this covariant approach because we will impose the
ghost-killing constraint on the Hilbert space:

(p| 3, A" |yr) = 0. (1.9.28)

This constraint allows us to solve for and hence eliminate the ghost modes.
Thus, although the free propagator will allow ghosts to propagate, the Hilbert
space is ghost-free, so the theory itself is both Lorentz invariant and ghost-free.

BRST Quantization

The BRST approach begins by calculating the Faddeev—Popov determinant
(1.6.10). Let us calculate the determinant of the matrix:

6(9, A (x))

ab .
M = TR0)

= 9, D"(8*(x — y)8). (1.9.29)
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Unfortunately, string theory evolved historically as a first quantized theory.
Thus, string theory has been evolving backward, with the second quantized ge-
ometric theory still in its infancy. For pedagogical reasons, we have introduced
string theory from a semihistorical point of view, beginning with the first quan-
tized theory and later developing the second quantized theory and M-theory.
We hope that future accounts of string theory will reverse this sequence.

To reduce the level of arbitrariness in the first quantized theory as much as
possible, in this chapter we have tried to lay the groundwork for string theory
in the formalism of path integrals. This functional formalism has the great ad-
vantage that we can express the first and second quantized gauge theories with
equal ease. We find, in fact, that large portions of the path integral formulation
of point particles can be incorporated wholesale into string theory.

The path integral method postulates two fundamental principles that express
the essence of quantum mechanics:

(1) The probability P(a, b) of a particle going from point a to point b is given
by the absolute value squared of a transition function K (a, b),

P(a, b) = |K(a, b)|*.

(2) The transition function is given by the sum of a phase factor ¢'>, where §
is the action, taken over all possible paths from a to b,

K(a,b) = Zkeis.
paths

In the limit of continuous paths, we have

b
K(a,b) = f Dxe',
a

where

The action § of the first quantized point particle is given by the length
of the path that the particle sweeps out in space—time. We can represent the
Lagrangian for the point particle in three ways:

first-order (Hamiltonian) form: L= p,x" — %e( pi -+ mz),

second-order form: L= %(e".i‘i —em?), (1.10.1)
nonlinear form: L= —m,/—x7.

Unfortunately, because all three forms of the action are parametrization-
invariant, the path integral diverges. Thus, the quantization procedure must
break this gauge symmetry and yield the correct measures in the functional.

These actions can be quantized in three ways, each with its own advantages
and disadvantages:
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(1) Coulomb Quantization
By explicitly fixing the value of some of the fields, such as

Xo=I=T71

we can eliminate the troublesome negative metric states and the Lagrangian
becomes 5 mv;. The Coulomb quantization method is therefore manifestly
ghost-free. However, the disadvantage of this method is that it is very awk-
ward because manifest Lorentz symmetry is broken and must be checked
at every level.
(2) Gupta—Bleuler Quantization

The advantage of the Gupta—Bleuler quantization method is that we have
a manifestly covariant quantization program. Of course, negative metric
ghosts are now allowed to circulate in the theory, but they are eventually
eliminated by imposing the gauge constraints directly onto the Hilbert

space:

[P} +m*] 1) = 0.

Thus, the S-matrix is ultimately ghost-free. The disadvantage of this
approach, however, is that the imposition of these gauge constraints,
especially at the interacting level, is frequently quite difficult.
(3) BRST Quantization

This method of quantization keeps the good features of both approaches.
The theory is manifestly covariant, but the S-matrix is still unitary because
the addition of ghost fields in the theory cancels precisely against the
negative metric states. The BRST method imposes the gauge ¢ = 1 in
the first-order form and then inserts the Faddeev—Popov term Agp into the
functional to get the correct measure. We can exponentiate this determinant
into the action by using Grassmann variables:

App = det 3, | = f do doe' | 7%
The resulting gauge-fixed action has a residual symmetry, called the BRST
symmetry, which is generated by Q, the BRST charge.

When we generalize these methods to the interacting case, the path integral
formulation begins with the fundamental formula for the transition function
for N -particle scattering:

A(kl,kz,,...,k,u)= Z g"fDxﬁpp

topologies

N
X exp{fdeL(r)+iZk“x§‘I

=1

— Z g" (¢! iz kuxl'y, (1.10.2)
topologies
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The first quantized description for the N-particle scattering amplitude 1s
clumsy because we must explicitly sum over certain topologies, which must be
put in by hand. This means that unitarity is not obvious in the first quantized
formalism. Later, we will see that this problem in the first quantized point
particle theory carries over directly into the first quantized string theory. In the
second quantized description, however, all topologies can be derived explicitly
from a single action.

The transition from a first to a second quantized description is straight-
forward in the path integral formulation. For example, the propagator can be
written in either first or second quantized language:

Xb
Xa

= f DY DY Y (x, )" (xp)e' | PHHD), (1.10.3)
where
(x|y¥r) = ¥(x),
L(t) = 3mx;, (1.10.4)

L(y) = ¥*(id, — H)Y.

The last equation is the Lagrangian for the Schrédinger wave equation, which
can be derived beginning with the postulates of path integrals and L = %muz

For the interactions, it is also possible to extract the second quantized vertices
from the first quantized theory in exactly the same fashion. We simply write
down the functional integral over a world sheet where the point particle splits
into other point particles, and then write this Green’s function as a functional
integral over second quantized fields.

We will shortly see the advantage of carefully working out the details of
point particle path integrals. We will find that almost all of this formalism
carried over directly into the string formalism!
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00
= (xllf dre ") | x,)
0

o 12 T =72 2
='/{; a’rf Dxe /D)y 4T —m*) (2.1.1)
X

where we integrate over all possible trajectories of a particle located at x, (1)
which start at x; and end at point x,. The interactions, we saw, were introduced
by hand into the theory by postulating a particular set of topologies over which
this particle can roam. The scattering amplitude, for example, is

Alky, ky, ... ky) = fDIﬁ e—f!..dr-HZ,_,k X;

tﬂpolnglcs-

= ) <]'[ e’ *‘) (2.1.2)

topologies \i

where we integrate over topologies that form the familiar Feynman diagrams
for ¢* or ¢* theory.

[t is important to notice that the resulting Feynman diagram is a graph, not a
manifold. At the interaction point, the local topology is not R”, so it cannot be a
manifold. There 1s no correlation between the internal lines and the interaction
points. This means that we can introduce arbitrarily high spins at the interaction
point of the first quantized relativistic point particle. Thus, the first quantized
point particle theory has an infinite degree of arbitrariness, corresponding to the
different spins and masses we can place at the interaction point. Furthermore,
the ultraviolet singularities of each Feynman diagram correspond to the number
of ways we can “pinch” the diagram by shrinking an internal line to zero, thus
deforming the local topology.

This picture, however, totally changes with the string. Although the path
integral formalism looks almost identical, there are profoundly important dif-
ferences. In particular, the sum over histories becomes a sum over all possible

FIGURE 2.1. Vertex functions for point particles and strings. A large number of
point particle theories are possible, based on different spins and isospins, because
the Feynman diagrams are graphs. Only a few string theories are known, however,
because the interactions are restricted to be manifolds, not graphs. Conformal sym-
metry, modular invariance, and supersymmetry place enormous restrictions on the
manifolds we may use to construct superstring theories that have no counterpart in
point particle theory.
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The contraction of two of these tangent vectors yields a metric:
Bab = aaXuabX#a (215)

where we have now replaced the two variables (7, o) with the set (a, b), where
a, b can equal either 0 or 1. The infinitesimal area on this surface can be written
simply as

d Area ~ \/det |g.| do dt. (2.1.6)

In analogy to the point particle case, where the action is the length swept out
by the point, we now define our action to be the surface area of this world

sheet. Our Lagrangian is therefore [1-4]:

l . -
- 2 viu2 T \2
L._—--—2 ,\/XnX# —(X#Xﬂ), (2.1.7)

where the prime represents o differentiation and the dot represents t differenti-
ation. (When we discuss M-theory, we will introduce the theory of membranes
in arbitrary dimensions in the same fashion. But instead of two coordinates

on a world sheet, we now have (p + 1)-coordinates on a world volume. The
action for the p-brane is still the same: the square root of the determinant of
the metric tensor. The action is just the volume of the membrane.) The action

is just the Lagrangian integrated over the world sheet, which is the total area
of the two-dimensional surface:

S = /da' dtL(o, 7). (2.1.8)

The Green’s function for the propagation of a string from configuration X, at
“time” 1, to configuration X, at “time” 7, as well as the path integral over
a surface that expresses the topology of several interacting strings, can be
represented as

X ] )
K(Xu, Xb)zf DXE_Lﬂbdrf“ 4:1':1!1{,,!b
X,
zZ= ) f duDXe v, (2.1.9)
topologies

where DX =[], , . dX, (0, T),du represents the measure of integration over
the location of the external legs, and where we have made a Wick rotation in
the t variable (t — —it) so the integral converges.

The correspondence between the point particle path integral formalism that
we carefully developed in the previous chapter and the string formalism is
quite remarkable. We find that almost the entire point particle formalism can
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be imported into the string formalism:

x,(7) #(cr T)
length

[ Tdx.(x) 1 dx#(a 7)
[T 4

.ot
Similarly, the path integral for the point particle and the string theory have
surprising similarities. The N-point function for the N-string scattering am-
plitude can also be written as a Fourier transform, similar to point particle path

integrals:
fx' Dxe_f': L(x)dt f DXe_f“ do f L(X)dt
l_[ E"k ix! eﬂ: Jt.”>

i=]
Although there are remarkable similarities between point particle and string
theories when expressed in the language of path integrals, the crucial difference
between them emerges when we analyze the topologies over which the objects
can move. For the point particle case, the topologies are graphs, as in Feynman
graphs, whereas the topologies for string theories are manifolds:

Graphs — Manifolds.

One of the crucial reasons why there are so many point particle actions (and so
few string actions) is the difference between graphs and manifolds. The nontriv-
1al restrictions placed on manifolds severely restrict the number of consistent
string theories.

As in the case of the point particle, the choice of parametrization was totally
arbitrary. Thus, our actions must be reparametrization invariant. To see this,
let us make an arbitrary change of variables:

= 1(0, 7). (2.1.10)
Under this reparametrization, the string variable changes as
SX* = X""8o + X"8t. (2.1.11)

Because the area of a surface is independent of the parametrization, the action
1s manifestly reparametrization invariant, which is easily checked.
As before, let us now write down the canonical conjugates of the theory:

SL I XX, — (X.X")X/,
Pﬂ = —_-— = ——————,

§X* 2ma’ Jdet|0,X"0,X,|
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As in the point particle case, these momenta are not all independent. In fact,
we find two identities that are satisfied by the canonical momenta:

]
P; X7 =0,
Constraints: w Qra’y? ¥ (2.1.12)

P, X" =0.

Thus, the canonical momenta are constrained by these two conditions. If we
calculate the Hamiltonian of the system, we find that it vanishes identically as

in (1.4.9):
H=PX"—L=0. (2.1.13)

The vanishing of the Hamiltonian and the presence of constraints among the
various momenta are indications that the system is a gauge system with an
infinite redundancy. The reparametrization invariance of the system is the ori-
gin of this redundancy. We can therefore write down the close correspondence
between the constraints of the point particle theory and the string theory:

|
P; X =0,
{PZ + mZ — 0] — ju + (23’1'0!")2 i
P X" = 0.

Before we begin a detailed discussion of the quantization of the string, it is
instructive to investigate the purely classical motions of this string. Let us first

classically set the parameter T equal to time, so that

X, =(1,v),
X, =(0,X)). (2.1.14)
Then let us factor out X" from the action (2.1.7):
I
L = X221 = vH)'2, (2.1.15)
2o
where v is the velocity component perpendicular to the string:
) Ve Xy o/
b = v — ;; X! (2.1.16)

The boundary conditions that we derive from this gauge-fixed action include
b2 = 1. (2.1.17)

i

This means that the ends of the classical string travel at the speed of light.

We can also calculate the energy of the classical string. Let us assume that
the string is in a configuration that maximizes its angular momentum, i.e., it is
a rigid rod that rotates with angular velocity @ around an axis labeled by the
unit vector r. The string can be parametrized as

X = or, (2.1.18)
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where

r=wXxr,
r-w=>0, (2.1.19)

and -/ <o < 1.
To calculate the energy and the angular momentum of the system, we must
first write down the Lorentz generators associated with the string:

M" = [da(P”X“ — PHXY). (2.1.20)

Notice that this generates the algebra of the Lorentz group if we impose the
Poisson brackets:

(X, (0), P,(c)] = nué(o —a’). (2.1.21)

We can now calculate the energy and the angular momentum from the
components of the Lorentz generator [5]:

L[ SNV
E do(l — wo”) /" ~ —

C 2ra’ ) 2e’
] " o?
J = Yo _,.da(l o) [r X (w x r)]
~ WEZQJ- (2 ] 22)

Thus, the angular momentum of the rotating string is proportional to the square
of the energy of the system:

J| ~ E°. (2.1.23)

If we plot the energy squared on the x-axis and the angular momentum on
the y-axis, then we obtain a curve called the Regge trajectory. The slope of the
Regge trajectory is given by &’ and the curve is linear. Thus, we have obtained
the leading Regge trajectory for the classical motion of a rigid rotator. We
will, throughout this book, take the normalization &’ = 3. This is an arbitrary

convention. However, we will see later that the intercept ay of the leading
trajectory must be equal to one, which is fixed by conformal invariance once

we quantize the theory. Thus, we set

g
o =3,

a0 = 1. (2.1.24)

When we quantize the system, we will find that there is an infinite number
of such parallel Regge trajectories, but with increasingly negative y-intercepts.
As we have stressed, there is a crucial difference between the point particle
case and the string, which is that the string system has a larger set of con-

straints that generate the gauge group of reparametrizations. For example, if
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where
fxg=/rg—gf. (2.1.30)
[t is also possible to show that this algebra satisfies the Jacobi identities:
(Lis, (L, Liy] =0, (2.1.31)

where the brackets represent all possible cyclic symmetrizations. This algebra
1s called the Virasoro algebra [6], which will turn out to be one of the most
powerful tools we have in constructing the string theory.

As in (1.4.11), we can elevate the constraints into the action with Lagrange

multipliers A(o, ) and p(o, 7):

‘ Xf? 7
L=PX"+ma')|P+—=|+pP.X". (2.1.32)

L Qra’)?

By functionally integrating out over these Lagrange multipliers, we arrive at
the previous set of constraints. Not surprisingly, this new action has its own
reparametrization group parametrized by n and &:

8X, =2na'eP, +nX,,

2o’
A =—+An—n'A+ p'e — pé,
bp=—-n+re—2re'+p'n—1np.

sXL ,
P, = [ +nPﬂ:|, (2.1.33)

The advantage of this form for the action is that it 1s first-order and does not

have the bothersome square roots of the original action. As in the point particle
case, this indicates that there exists yet one more form for the action, expressed
in terms of an auxiliary field. To find this third formulation of the action, let

us introduce a new independent field
gah(a: f) (2134)

which represents a metric on a two-dimensional surface. Unlike our previous
discussion, this metric is now totally independent of the string variable. Let us
write down the Polyakov form of the action [7] (g = | det g3 ]):

|
L = by X, 0, X", 2.1.35
411-&’&8 iYb ( )

This 1s a generalization of the second-order point particle action (1.4.14). No-
tice that the Polyakov action resembles an action with scalar fields interacting
with an external two-dimensional gravitational field. This action, too, possesses
manifest reparametrization invariance:

X" =¢g“9, X"

8g°" = £°9,8%" — g%9.e" — g"d,.6, (2.1.36)

52 = 3.(6°V3).
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At first, we suspect that these actions are totally equivalent, so that we can
choose one and drop the others. This is apparently not so, for two subtle reasons:

(1) Because we are dealing with a first quantized theory, we have to take the
sum over all interacting topologies that are swept out by the string. For the
Nambu—Goto string, the precise nature of these topologies 1s ambiguous
and must be specified by hand. However, for the Polyakov form of the
action, which contains an independent metric tensor, we can eliminate
most of this ambiguity by specifying that we sum over all conformally
and modular inequivalent configurations. (These terms will be defined
later.) This will become a powerful constraint once we start to derive
loops and will determine the function measure uniquely. The measure and
the topologies in the Nambu—Goto action, however, are not well defined.
(We must point out, however, that this rule of integrating over inequivalent
surfaces does not automatically satisfy unitarity. This still must be checked
by hand.)

(2) The gauge fixing of Weyl invariance for the Polyakov action, although triv-
ial classically, poses problems when we make the transition to quantum
mechanics. An anomaly appears when we carefully begin the quantiza-
tion process. In fact, this conformal anomaly will disappear only in 26
dimensions!

Let us now discuss the quantization of the string action. The strategy we will
take in quantizing the free theory to obtain the physical Hilbert space will be
first to extract the symmetry of the action, then the currents, and then the algebra
formed by the generators of this symmetry. (For the string, the symmetry will
be reparametrization invariance and the algebra will be the Virasoro algebra.)
Then we must apply the constraints onto the Hilbert space, which eliminates
the ghosts and creates a unitary theory. It is important to keep this strategy in
mind as we begin the quantization of the string.

Action — Symmetry — Current — Algebra — Constraints — Unitarity.

As in the point particle case, we can begin the quantization program in several
ways. There are three formalisms in which to fix the gauge of the theory:
(1) Gupta—-Bleuler (conformal gauge), (2) light cone gauge, and (3) BRST
formalism. The advantages and disadvantages of each area as follows:

(1) The Gupta—Bleuler is perhaps the simplest of the three formalisms. We
allow ghosts to appear in the action, which permits us to maintain manifest
Lorentzinvariance. The price we must pay, however, is that we must impose
ghost-killing constraints on the Hilbert space. Projection operators must
be inserted in all propagators. For trees, this is trivial. For higher loops,
however, this i1s exceedingly difficult.

(2) The advantage of the light cone gauge formalism is that it is explicitly
ghost-free in the action as well as the Hilbert space. There are no com-
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plications when going to loops. However, the formalism is very awkward
and Lorentz invariance must be checked at each step of the way.

(3) The BRST formalism combines the best features of the previous two for-
malisms. It is manifestly covariant, like the Gupta—Bleuler formalism, and
it is unitary, like the light cone formalism, because the negative metric
ghosts cancel against the Faddeev—Popov ghosts.

Let us now discuss each quantization scheme separately.

2.2 Gupta—Bleuler Quantization

The Gupta—Bleuler formalism will maintain Lorentz invariance by imposing
the Virasoro constraints on the state vectors of the theory:

(@I Lyly) =0, (2.2.1)

where (¢| and |¢) represent states of the theory. This constraint will eliminate
ghosts in the state vectors, allowing us to keep nonphysical negative metric
ghosts intact in the action.

Classically, the metric tensor has three degrees of freedom that we can
gauge away, two arising from reparametrization invariance and one from Weyl
invariance. Since the metric tensor has three degrees of freedom, we can gauge
all of its components away:

-1 0
8ab = Oap = 0 1 ) (2.2.2)

which we call the conformal gauge. (There are complications, as we have said,
in taking the conformal gauge for the quantum theory and for higher loops.)
Our action reduces to

— I § v2 2
$=— [o do f dr(X3 - X2). (223)

This is exceptionally simple because the action now corresponds to an
uncoupled free string. This action yields the free equations of motion:

32_32 X o,1)=0 2.2.4
907 3 ) Xule D)= (224)

with the boundary condition:
X,0,7)=X,(7,7)=0 (2.2.5)

which we need to enforce when we integrate by parts and eliminate the surface
term. The solutions of the equations of motion are arbitrary functions of o 4+t
and o — 1:

X“o,1)=X{ (0 + 1)+ X5(o — 7). (2.2.6)
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The canonical commutation relations are now

[Pu(0). X,(0)]) = —in,8(c — o), (2.2.7)
where
(o —0o') = ! (1 + 2 Zcos no cos na') : (2.2.8)
T n=I|

There is, of course, an infinite number of possible representations of the path
integral. However, as in the point particle case, we can always choose the
simplest one, the harmonic oscillator basis 8], where the Hamiltonian becomes
diagonal. Unlike the point particle case, however, we now have an infinite
number of oscillators, one set for each normal mode:

X:‘ — %EVZQ'(G# - HE,,),
I

P! = (a" + a”,). (2.2.9)
Jaan )
where we can satisfy the canonical commutation relations if we set
[an,ur ﬂ:w] = Opm Nyv- (2.2.10)
It 1s also conventional to introduce an equivalent set of oscillators:
al = /mak, m > 0,
ok, =/ma*,  m>0,
al .
Xo, 1) =x" 4+ 2a' pl't + ivV2a’ E —’:-e"”" cosno. (2.2.11)
n#0

Written in this basis, the Hamiltonian takes on an especially simple form (see
(1.3.37)):

4
H = f do(P, X" — L)
0

n |
— 1o P32 X?%\d
’”‘fo (“(20:'::)2 ) 7

=) nalal+a'pl, o =v2a'p,. (2.2.12)
n=I|

R n

where we have made an infinite shift in the zero point energy. At this point,
the mass of the lowest-order particle is not well defined because we made
this infinite shift, but we will later show that this lowest particle is actually a
tachyon. We will show that the intercept of the model is fixed at 1.

Notice that each oscillator mode is basically uncoupled from the other oscil-
lator modes. In fact, the Hamiltonian is diagonal in the Fock space of harmonic
oscillator excitations. Taking this specific representation of the string function
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!

Spin

a,"al"10>

a”l0>

. 2
0> k, a;*0>1k,a5"10> [ y—

FIGURE 2.3. Regge trajectories for the open string. The x-axis corresponds to the
energy squared and the y-axis to the spin. The particle farthest to the left is the
tachyon, which corresponds to the vacuum of the Fock space. The massless spin-1
particle is the Maxwell or Yang—Mills field, which corresponds to a single creation
operator acting on the vacuum. There is an infinite number of Regge trajectories,
corresponding to the infinite excitations of a relativistic string or the infinite number
of states in the Fock space.

from the infinite number of possibilities is a great advantage because the al-
lowed eigenstates of our Hamiltonian are now simply the products of the Fock
spaces of all possible harmonic oscillators:

eigenstates: ]_[{a:‘nl 10) . (2.2.13)
.l

where the vacuum is defined as
a, |0) =0, n>0. (2.2.14)
The spectrum of the lower lying states can be categorized as (see Fig. 2.3):
tachyon — |0) ,

massless vector — a,*” 10) ,

massless scalar — kua;" 10}, (2.2.15)

massive spin-2 — a,“a," |0)

massive vector —» a;” 10) .

(The fact that the string theory is so simple to quantize can be traced to
the fundamental fact that the Hamiltonian is quadratic in the string variables;
this means that it decomposes into an infinite series of free particles. A vast
collection of vacuum solutions to string theory can be constructed because, in
essence, it is a free theory. However, this simplicity breaks down completely
when we analyze membranes in M-theory. We will find that the Hamiltonian
1s now quartic, making the quantization intractable. In contrast to the simplic-
ity of string theory, there is still no satisfactory method for quantizing free
membranes.)

As expected, we recover the leading Regge trajectory that we obtained earlier
from classical arguments, and also an infinite number of daughter trajectories
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The oscillator decomposition is given by

#(G') —x, + IIZZ (an —ino +anemﬂr +ﬂ1' mr: "-"f -”"J)H
(2.2.21)
P,(o) = Jn(—ia,e™"—ia,e"+ia' e+ ia'e "
u(0) = 52+ = ,......Za Zj ( ). 1

The Hamiltonian for the closed string is

2 X'Z
H = Jrf do | o 1‘:’2 -
0 4Jr2a

— Z(m;a,, +naja,) + o' pl. (2.2.22)
=]

Again, the Fock space consists of all elements created out of harmonic oscil-
lators, but this time there is an extra constraint that is not found for the open

string:
(Ly — Lo)|¢) = 0. (2.2.23)

(The interpretation of this constraint is that the closed string must be indepen-
dent of the origin of the o -coordinate. For example, the operator [ doe”(-o~Lo)
can be interpreted in two ways. First, it generates rotations in o-space, so we
average over a rotation of 2 in o-space. Second, if we perform the integral,
we have 8(Lo — L), which is constraint (2.2.23) when applied to the Hilbert
space. We will return to this constraint later.)

The Fock space consists of (see Fig. 2.4):

tachyon — |0),
massless spin-2 — a;"a!" |0), (2.2.24)

0>k k,ath3rio>

FIGURE 2.4. Regge trajectories for the closed string. The Fork space is built out
of two commuting sets of harmonic oscillators. The massless spin-2 particle is the
graviton, which corresponds to the product of both types of operators acting on the

vacuum.
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of quantization necessarily destroys the locality of Virasoro generators in the
variable o, and hence the c-number central term occurs. Thus, the quantization
scheme and regularization scheme used to extract finite information from the
model are actually inconsistent with conformal symmetry. Fortunately, this
inconsistency can be eliminated if we fix the dimension of space-time to be
26.

That there are ghosts in the theory is due to the fact that the zeroth component
of the harmonic oscillator has negative metric:

ghost = {a 4} 10) . (2.2.29)

Thus, the coefficient of the Green’s function occurs with a negative sign. In
addition, there are zero norm states and negative norm states that must be taken
into account.

To analyze the spectrum, let us define a spurious state | §) to be one that is
orthogonal to all physical real states | R). Spurious states can be written as

1Sy =L_nlx), n >0,
(RIS) =0,

for some integer n and some state |x). (If we take the matrix element of this
state with a physical state, the scalar product always vanishes because L,
destroys a physical state.) Now let us construct the spurious state:

W) = [Los +aL?,]|¢) . (2.2.30)

We do not want this state to be part of the physical Hilbert space. However, let
us see the conditions under which it might be part of the physical spectrum.
Let us set

L) =Ly |y)=0. (2.2.31)
This fixes the following:
3-2a=0, 3D—-4-6a=0, (2.2.32)
which, in turn, fixes
D = 26, a= (2.2.33)

Thus, this spurious state satisfies (2.2.26) and hence is part of the physical
Fock space. At first, this seems disastrous. We want our physical Hilbert space
to be ghost-free. But notice that in 26 dimensions this state has zero norm (not
negative norm). Since |¢) was arbitrary, we have constructed an infinite class of
states |y ) that are simultaneously spurious and physical. If we take the norm of
this higher-order state, we find that it also vanishes in 26 dimensions, making
it a null spurious state. This state is still acceptable because the norm of the
state is nonnegative. Thus, in 26 dimensions we have an acceptable spectrum
for this set of states.

Similar analyses of the state vectors of the theory show that a physical state
|#) can be constructed which actually has negative norm if D is greater than

(o] LF
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26;
6) = (aa®, + bk -a_y + c(k - 2_1)*)|0).

Imposing L, |6) = L,|8) = 0, we find that b = a(D — 1)/5 and ¢ =
a(D + 4)/10. We find that the norm of the state is

(610) = £a*(D — 1)(26 — D).

Thus, the dimension of space-time cannot exceed 26 or else negative norm
states exist as part of the physical states. In general, we find that the spectrum
is ghost-free if the dimension of space—time is less than or equal to 26:

a=1, D =26.
a<l, D<?25.

This exercise was done only for a piece of the Fock space. But can ghosts
be eliminated to all orders in the string model? We will return to the difficult
problem of ghost elimination in the Gupta—Bleuler formalism at the end of this
chapter, when we actually construct the physical Hilbert space and show that
it has no negative norm states in 26 dimensions.

ghost-free: [ (2.2.34)

2.3 Light Cone Quantization

Choosing the light cone gauge, where all unphysical degrees of freedom are
explicitly removed from the very beginning, is possible because we have two
gauge degrees of freedom, and hence two gauge-fixing conditions can be in-
serted into our path integral. One of these gauge-fixing constraints can be the
elimination of nonphysical modes from the Hilbert space, as in the Coulomb
gauge. Thus the elimination of ghost states, which is quite involved for the
Gupta—Bleuler formalism (as we shall see at the end of this chapter), becomes
trivial in the light cone gauge.
Let us choose the notation

]
X+— Z[Xﬁ_i_xﬂ—]]

7
l
X = —-—[XG—XD_I . 2.3.1
7 ] ( )
then
A,B" = A;B; — ATB- — A B™, (2.3.2)

Depending on which version of the action in (2.1.41) we use, we will have
different gauge constraints. If we start with the original Nambu—Goto action,
for example, the gauge conditions in the path integral are

7 = f DXMAp [ [8(X*(0) = pr1)8(X2 + X2 — 2X,X")e™5, (2.3.3)
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where M 1s a measure term that must be added to have a unitary theory, and
the two delta-functions represent the gauge-fixing constraints. The remark-
able feature of the second constraint is that the Nambu—Goto action, which is
expressed as a highly nonlinear square root, completely linearizes [12]

JXIX2 = (X, Xm) ~ (X2 - XP). (2.3.4)

(Because the light cone action is no longer a square root, we have a well-
behaved action that can be canonically quantized.)

The constraint X* = p*r means that the o dependence within X* has
completely disappeared and that the “time” T now beats in synchronism with
X *. We can use the second constraint, in turn, to eliminate the X ~ modes, and
hence all longitudinal modes have completely disappeared. The action can now
be expressed totally in terms of transverse ones.

Next, we will solve the constraints in the first action in (2.1.41). Let us
integrate over the Lagrangian multipliers p and A in the Hamiltonian form of
the action, and then impose the gauge-fixing constraints:

7 = f DXDP HB(X"'(J) ~ pT1)8 (P+(a') — p?"‘)

XZ
x 8 (Pﬁ + n—;‘) S(Pyx"™)e™>. (2.3.5)

Because the covariant Hamiltonian (2.1.13) is equal to zero, the only term in
the Lagrangian is P, X# (the X~ term drops out):

L = f do P, X" =f do(P, X' — p* P~ (0)). (2.3.6)

0 0
There are several remarkable features to this formalism. First, we can apply
four, not two, constraints onto our Hilbert space, two from gauge fixing and
two by integrating over A and p. Second, because the covariant Hamiltonian is
equal to zero, the action only consists of P, X*, but the light cone Hamiltonian
emerges out of the decomposition of (2.3.6):

H = p"'] do P (o). (2.3.7)
0
On the other hand, we can solve the constraint for P
_ T 2 Xiz
P (o) = T (P} + F) : (2.3.8)

Plugging the value for P~ into the definition of the light cone Hamiltonian
(2.3.7), we now have

2 T2

i Xl
H=L f (P,? + —') do (2.3.9)
0
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which is the just the Hamiltonian (2.2.12) defined over physical transverse
states.
Similarly, we can also eliminate the X ~ modes by solving another constraint:

P X" = (2.3.10)

which can be solved for X, yielding
X~(0) :/ do’' = [P.X)). 2.3.11)
0 p*
Putting everything together, our functional now becomes
:/DXiDP'_eifdtfdn(P,X’,—H)’ (2.3.12)

where H is the light cone Hamiltonian density. The great advantage of the light
cone gauges is that the Virasoro constraints have been explicitly solved, so there
is no need to impose them on states. All + modes have been gauged away from
the start, and the — modes have been eliminated in terms of transverse states
because the Virasoro conditions have been solved exactly through (2.3.8) and
(2.3.11). Instead of imposing the Virasoro constraints on the Hilbert space, we
simply solve them exactly and eliminate the — modes.

However, the great disadvantage of the formalism is that we must tediously
check for Lorentz invariance at each step of the calculation. Normally, the
generators of the Lorentz group are given by

M* = f da[X*P" — X" P*]
0
=1
=xtp' —x'pt =iy —[atal —a’ak].  (23.13)
n=I n
It is easy to check from (2.2.7) that this satisfies the correct commutation
relations for the Lorentz group:

[M'w, Maﬂ] =in#0MUﬁ +en, (23[4)

However, Lorentz invariance has to be checked once again in light of the fact
that we have explicitly all ghost modes. Most of the commutators are trivial to
check, because they are linear. The troublesome term comes from X, which
is highly nonlinear and is written as

oo
1 .
X~ =x‘+p‘r+z‘2;an‘e“"’cosno, (2.3.15)
n#0

where

1 D-2

o, o [l o) —2aé,,] (2.3.16)

MS

]

i=l m=—o0
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8b = e[cd.b + 20,cb — 30, X,0. X"],
8b = e[¢a:b + 20:ch — 30: X ,0:X"].

From this variation and (1.9.8), we can extract out the nilpotent BRST op-
erator Q. However, it is also important to note that in general, given any
Lie algebra with commutation relations [A,,, A,] = f72 A,, it is possible to
construct a nilpotent operator Q [10] out of anticommuting operators ¢, and
b,,:

o0

Q=) coulhn—3fhcomby]. (2.4.6)
n=-—00
where
(Cns b)) = 81 —m. (2.4.7)

Thus, our nilpotent BRST operator can be written in this form:

o0
Q=) (LY +3iL¥ —as,o)
n==00
1 o0

= co(Lo — a) + Z:[c_,,L,, + L_,c,] — 5 Z ComCoanbpim:(m — n),
n=1| n.m=—0og
(2.4.8)

where L equals the X-dependent Virasoro generator, and L% is the ghost
contribution to the generator. At this point, there are two unspecified parameters
in the above equation, the value of the intercept a and the dimension of space—
time. Let us calculate the square of 0, which should be zero:

2

m=—0C

0’ = l i (%(m3 —m)+ %(m — 13m’) + 2am) CmC_m- (2.4.9)

For this to vanish, we must fix the dimension of space—time to be 26 and the

intercept to be equal to 1.
As in the point particle case, we find that the physical states of the theory

are given by

Q |phy) = 0. (2.4.10)
When we separate out the modes, we find that the lowest state satisfies
(Lo — 1)|¢) =0,

as before.
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3 4

FIGURE 2.5. Duality of the Veneziano model. The four-point amplitude can be
decomposed in terms of either s-channel or 7-channel poles. This is in contrast to

standard point particle field theory, which sums over both s- and 7-channel poles.
This property of duality extends to the N-point function. For this reason, it was once

thought that a field theory of strings was impossible. A field theory of strings would
be plagued by overcounting, especially at higher orders.

This expression simplifies considerably if we take the conformal gauge. In
particular, we get

—1 N
fd,u[DXexp{mf(a,:x#ag)(”)dzz+i2ka“|

i=]|

N
» f du (]'[ e“‘-"‘f> . (2.5.2)

topologies

Ay

In Fig. 2.6 we show how to simplify the string interaction diagram. By letting
the string interaction length to go to zero for the external tachyons, we see that
the string interaction surface can be reduced to an infinite horizontal strip in
the complex plane, extending fromo = 0too = 7 and T = +00.

Notice that the action, although it is no longer reparametrization invari-
ant because we have fixed g,, = 8., 1s still conformally invariant. Thus, to
avoid overcounting of conformally equivalent surfaces, we will take the set of
topologies over which we must sum to be the set of all conformally inequivalent
two-dimensional complex surfaces.
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Q

FIGURE 2.6. Conformal surfaces for open string propagation. In the p-plane, the
surface over which a string propagates is a horizontal strip of width 7. The wavy
lines at the bottom corresponds to “zero width” strings or external tachyons. In the

z-plane, the surface becomes the upper half complex plane. The mapping from one
surface to the other i1s given by the exponential.

Let the world sheet of the N-point tree be a horizontal strip of width z that

extends horizontally in the complex plane. The x-axis corresponds to t and the
y-axis corresponds to o. Let us now change coordinates to complex variables:

7 =e""", (2.5.3)

This mapping takes this infinite strip, which describes the world sheet of the
interacting string (with zero width tachyons), into the upper half of the complex

plane.
Fortunately, the functional integral is a Gaussian that can be evaluated with

the i1dentities presented in the previous chapter. Let us define X jagica @s the
solution to the classical equations of motion:

VX, a = —2ind' J,. (2.5.4)

where
N
Ju(2) =) kiud(z = 2:), (2.5.5)
i=l

where z; are points on the real axis of the complex plane that correspond to the
external zero width tachyons interacting with the string. After a Wick rotation



2.5 Trees 75

in the t variable, this is just Poisson’s equation for electrostatics. To solve this,
we need the Green’s function:

V’G(z,7) = 2n8(z — 7). (2.5.6)

We must calculate the Green’s function, with Neumann boundary conditions,
for the upper half-plane. The easiest way to calculate this is to borrow a trick
from the theory of electrostatics, namely the method of images. Let us place

a point charge at the point z’ in the upper half-plane. Consider another point
charge at the point z' that 1s symmetrically reflected through the x-axis; z’
1s in the lower half-plane. HIf we are sitting on a point charge z in the upper
half-plane, then the potential at that point is proportional to

G(iz,Z)=In|z—-7Z|+In|z - 7. (2.5.7)

Notice that if we are sitting on the x-axis so that z 1s real, then the derivative
of the Green’s function normal to the x-axis is zero. Thus, these boundary
conditions are precisely what we want, so (by the uniqueness theorem) this is
the Green’s function for the upper half-plane.

We can now insert this Green’s function back into the integral. The classical
value of X that solves (2.5.4) 1s

Xg = —id’ f G(z,2)J()dz. (2.5.8)

Let us now make a shift in the integration variable:
X, —= Xpa+ X, (2.5.9)
We find, therefore, that the functional integrals can be performed using (1.7.10):

1
fDXexp{ 4}1’&’fa;X”afxﬂd2z+ifJ#X#d2zl

= expl% f -’n(z)G(z,z’)J”(z’)dzdz’]

= nexp {a'k) - kjIn|z; — z;]}
i#]

— 11z — 2%+, (2.5.10)

where

J'z) =) 8z — 2k},
J
Putting everything together in (2.5.11), we find

Ay =[du [T 1z —zP%". (2.5.11)
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(Notice that we have explicitly removed the “self-energy” term for i = j,
which would be divergent. We can truncate the integral and still maintain the
conformal properties of the theory. We will find that this truncation will also
have to be performed in the harmonic oscillator method.)

Now we must complete the last step, which is to fix the measure d .

Our first guess is that, when the amplitude is expressed in terms of z;, the
measure 1s simply equal to one. This is the correct choice that is compatible
with conformal invariance. To prove it, recall that earlier we said we must
sum over all conformally inequivalent surfaces. Consider the set of conformal
transformations that map the upper half-plane into itself, such that the real axis
1Is mapped into itself. In general, the points on the real axis that are mapped
into each other transform under a subset of the conformal transformations, the
projective or Mobius transformations:

, ay-+b
cy +d

forreal a, b, c and d such thatad — bc = 1. This set of four parameters defines
a real matrix with unit determinant:

a b
(c d)' (2.5.13)

In general, the group defined by the set of all real 2 x 2 matrices that has
unit determinant is SL(2, R). Notice that this group of transformations can be
generated by making successive transformations:

(2.5.12)

y = y+ b,

y = “";y* (2.5.14)

y— —.
y
Thus, we wish the amplitude, including the contribution of the measure, to be
projectively invariant.
Let us make a projective transformation on the integrand to see how it
transforms:

[T =z =] -2 % [ @ —ezp). (2.5.15)

i<j I<j k

We want our measure to cancel out the noninvariant term in the above expres-
sion. Let us take our measure to be the number 1 and the integration region to
be fixed by z; > z;;,. Then there is one last complication. We must still “fix
the gauge” for projective transformation or else we will have overcounting. We
must integrate once and only once over each projectively distinct configuration
of the z; variables. If the external momentum flows into the upper half-plane at
points given by z;, then we are allowed to fix three of these points at random.
This corresponds to “gauge fixing” the projective invariance, which selects out
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