lterating
Infusion

Clearer Views of Objects, Classes, and Systems

Greg Anthony

Apress-

Iterating Infusion: Clearer Views of Objects, Classes, and Systems

Copyright © 2012 by Greg Anthony
Originally published by Apress in 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current
version, and permission for use must always be obtained from Springer. Permissions for use may be obtained
through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the
respective Copyright Law.

ISBN 978-1-4302-5104-0 ISBN 978-1-4302-5105-7 (eBook)
DOI110.1007/978-1-4302-5105-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

President and Publisher: Paul Manning

Lead Editor and Technical Reviewer: Jonathan Hassell

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan
Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Kari Brooks-Copony

Copy Editor: Elizabeth Berry

Compositor: Kinetic Publishing Services, LLC

Indexer: Brenda Miller

Artist: Kinetic Publishing Services, LLC

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm. com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

Contents at a Glance

P A .. iX
ADOUEThE AURNOE commmvmmimm s son i p oy 00 503 008 O s i 50 £2 0 Xiii
INTOAUCTION ot svnimnnismsnmmsn s oo RS R Ta eSS TR 1Bt B S TEr XV

PART | Whole Consistency

CHAPTER ONE OHEMANON =oovinn o s vmremmsmsms v o sosvessr S 3
CHAPTER TWO 1| T T — 25
GHAPTER THREE Untangled Web:....c.ovvivvviiiscns vos o snsunnninns 45
PART Il Derived Simplicity

CHAPTER FOUR XS W e on oo v rermnesn s 30 e 71
CHAPTER FIVE Liveand InSeripted o vo cosmmemmien s s 87
CONCLUSION .o 123
APPENDIX A 129
APPENDIX B .. 143
APPENDIX G .. 151
DATA-ORIENTED DICTIONARY 153
INDEX oo o ammrmamrsessst 0% v Svos s aniniscians an mvsmies s 179

Contents

PrBTaCE . . iX
ADOUEThE AURNOE commmvmmimm s son i p oy 00 503 008 O s i 50 £2 0 Xiii
INPOAUCHON s viinmmmm s s o R R ST AT G ST A T XV

PART | Whole Consistency

CHAPTER ONE Orientation............... 3
Some Other Ramifications. i i 3

Related to Programmingo i 5

SO L R oo sevomsmessmomatns: s i G50 ST SRS 11

Some Hardware and Software Manufacturers 20

SOMeDther LANGUENBS .o vnnuinmumeo o i sayimbiymyass 21

Incremental Adaptation 23

CHAPTER TWO BISION oo o oo s su wisasainiinie 25
ANAIYZING. . ..o 25

DESIgNING . 28

Mechanism Characteristics 29

Network Charactenistics «wx easwvemmsnms s sos s 34

ADplying PRIOSOPOY: s convvnmmnnmmmnenses e ivnssmssmeas 35

Very:Broad Philosophyic o ao o vvvnnvmsrnins oo onvssanmmins 42

General Recommendation. i 44

CHAPTER THREE UntangledWeb.. 45
Overal Processing.FIOWS. ... cuscwvmesmmmmssss ass ssmsnmmm s 45

Keyboard-Only Interaction 45

Visual Object INEraciono s v svassmmnnnss 49

Network BIOWSETS: covvv v srivvissionsoamics o o s s 52

JustText and Picttres . v onvvnnvmemnins oo s sengs 52

Added Interaction and Manageability. 55

vi CONTENTS

Network Site Servers ... 57
MO Javao e 57
Storage Interaction 59
Preprocessing forVariability. cuw e con snmsamsmmm 59
Variable: MarkUp: s cmannmmssmmmmmmses wmn snoamsammmmsas 60
Storage Interaction with a New Subcontext 62
Standardized ODjECES «: cov v o oo i vnnyegs 63
MuchMore Java 63
Standardized Distributed Objects 64

Server Processing Reorganization 65
The Foundation............. . .. 65
Building on Managemento vains vt av s i 66
Refinement'.coowsaes v smnsrpommnnny e sy oo svunsannies 67
Visual Object Implementationina New Context................. 67

The Variety of Syntax 68

PART Il Derived Simplicity
EHAPTER FOUR X=WMY¥...:ovonoo sovmmmnpmos oo sovmsmnmess 71

Function Set Network Representation.............................. 71
SYMEX . . 71
Identification Notation..................ol 76
Shorthandi s oanse: mumnmssmommsmmmnns e s 76
NameiNOtalON v inn imvsemmmmammmmr st s s Vs 77
COMMON BXAMples : «z: covmummnmmmen im sneyarames 78
Resulting General Observations 83

Database Representation............ 84
YNt .. 84
Shorthand 85
Resulting General Observations 85

Interaction Algebraill..... cos sunvinvemesasumnrn va wovaessr 85

CHAPTER FIVE Liveand Unscripted..................................... 87

Mare Data Orientalion .. co: oo s o s avs vesind v 87

Data Relationship Management 89
Direct Effects on Programming............................... 90

ADream Language 91

Syntax of Do 92
General Formats: ... v s innsmns e sn v 93

Set Definitions vocos s s se s e srsrn mor 95

CONTENTS
Fundamental Body Statement................................ 96

Major Definitions (Header Statements) 96

Minor Definitions (Body Statements) 98

Interval-Oriemtation: sowrwmmsmasmesann win s, 110

ASPECLDABNAION: i cvnsmimsmsammmnmom i artsmRGe 115

Heserved Words <o v snnonmmnnnnsres son s s 17

an Bample ofd sveee o s v s 118

Possible D Design Stages.o il 120

Conclusion. 123
Reading Recommendations. oL, 124

Orientation. o 124

BizaeSIgN. s i, s A 125

Untangled Web:....c:ien son savvsmmsvmes s weesesarsis: 126

RPPENDIX Ao i ionsmsmvmmmrmniinn o i Caisissiirt 5o 1 s 129
STTAR-Bf DESEEIDY.. cuiin o s il i SR S G B 129

General Formats. 129

Management Definitions.o 130

Major Definitions (Header Statements) 130

Body: StABMENtS v i mmisnmmmmmnmmmmmans wn s 131

Interval Orientaltion :u: memermmnmmesrimans e seewrs s 136

Aspect Orientation.. ... vos vosmmsiseiiens s s e 139

ReservedWords. ... 140

RPPENDIX B oo vomnaninnis o b ma s as iinis i thedhainss 143
Syntax of DESC. ...t 143

ReservedWords, 144

AnExample of DESC 147

REEENDIXE oo o cossemmmnmsmensanssins s 5 Sme s 151
Procedure-Oriented to Data-Oriented TranslationKey 151

CHIBBOS caaincnin seisisnaaiies i Sadie s 151

Keyphrasesl 152

DATA-ORIENTED DICTIONARY i ... 153

vii

Preface

This book is directly aimed to eliminate exhausting amounts of frustration in getting to
know and working with software objects in the most effective ways. It is concise and
broad—and definitely not simplistic—specifically to strengthen each reader’s object-
oriented mentality and to mentally solidify individual pieces of information. This is
because conciseness is more compatible with memory, and broadness is more compati-
ble with understanding.

Very often, a book must be read once, just to get a general feeling for it; then, most or
all of it must be read a second time to begin to thoroughly absorb the details. That's because
each layer of the subject has been broken up into completely separate pieces of the book,
which go from the most general to the most specific information for each aspect. As a result,
the reader doesn’t know much about the overall structure and, therefore, doesn’t know how
the details fit into it.

This book uses the strategy of hierarchic conveyance of information—explaining the
most important components and how they relate to each other, then demonstrating how
the next most important components fit with the structure that has been established, and
continuing to build a solid mentality in that manner, including making recommendations
for further reading for further details. With a mental structure established, the details can
be taken in more individually, with the objective of directly understanding individual func-
tionality. And the other recommended books effectively cover multiple views of the same

PREFACE

topics; multiple views of any topic intersect in a strong overall feeling for it. But other books
can be recommended for only Part I of this book, because Part Il advances to places where
no other books go.

This book is driven by the fact that accuracy—consistently aligned mentality—has
fundamental and far-reaching benefits for beginners and veterans alike. Being accurate
translates into not cutting important corners, which translates into eliminating holes at all
levels of designs, causing them to flow much more smoothly. The end result is developers’
power over the software. After all, the entire object-oriented concept is based on clarity. It's
based on a flow of thinking. And it's the flow that provides something extra. This is a parallel
to the fact that aligned molecules produce a flow of energy that provides a magnetic force.

The explanations of this book leverage both straightforward logic and significant new
points of view to establish consistent orientation at all levels, eliminate bottlenecks in think-
ing and development, and create a single feel for the spectrum of object orientation. This is
an example of the fact that consistency in any endeavor eliminates complication. This book
was specifically written across concepts of object orientation, in order to establish context for
any focus. It explains some concepts and uses some vocabulary as other explanations don't,
allowing it to tie everything together as other explanations can't. Especially for a subject like
this, having a clear mentality for all of its ramifications, all at the same time, is integral to real
success. Without that, it's possible to make things work, but they're then far from optimal.
Having a clear mentality frees developers to concentrate their efforts on the most effective
solutions for each situation.

This book draws simple parallels between aspects of the entire development process.
Its explanations make other explanations easier to understand, explicitly providing the cohe-
sion and intuition that they don't. Also, it addresses explicitly points and concepts that are
commonly perceived only vaguely. Further, it introduces comprehensive tools to best
manage and work with object orientation; these actually further clarify the characteristics
of software and its development. All of this is immediately very useful to every member of
any software development team, at every level of responsibility. And the fact that it’s fun-
damentally easier to understand and manage systems through these approaches will make
them extremely valuable industrywide.

With a strong mentality, training requirements are much less of an impediment to
choosing the best technology for the job at hand. The task is not about what exactly the
team members (and potential team members) have done before. It's not about making the
problem fit the solution. And it’s not about just rolling the dice and doing what's trendy. It’s
about the practical ability to jump into a project and learn just the relevant details, at every
level, very quickly; this is a parallel to the concept of a class structure and its extensions.
More fundamentally, it applies to unobstructed mentality and directed checklists, working
together to achieve optimal productivity. It’s ultimately an extension of the principle that
mental flexibility enables the best systems. Straightforward actions are just as helpful to
developers as they are to users; further, straightforward mentality allows developers to con-
tinually and comprehensively relate to users—which enables the best systems.

Now, explaining it in one paragraph doesn’t do it any kind of justice, but iterating infusion
describes the fact that any system has multiple coexisting levels and that, repeatedly,

PREFACE

separate but compatible technologies are brought together to create advancements. These
can be baby-steps or leaps, with little more effort or even less effort. In more general terms,
the same thing in a different context can take on much more power. And, actually, this
phenomenon is at the heart of object-oriented software.

Organization of This Book

Iterating Infusion has a comprehensive introduction and five chapters in two parts, each
feeding the next, building to the last. It is highly recommended that all be read, in order, by
any audience. Skimming or skipping around is not nearly as effective. It's the entire book
that demonstrates iterating infusion, a phenomenon that is independent of the subjects
that are examined explicitly.
The first segment of the book, “Introduction”, is crucial to the book as a whole. It’s

actually a set of introductions, one for each part of the book, all in one place. With this
device, the course through the entire book is made immediately thoroughly familiar.

Part I, “Whole Consistency”, contains the following:

* Chapter One, Orientation: Comparisons Among Objects and Structures, presents basic
object-oriented concepts in the context of more traditional views. It addresses designing
and programming properties and common language syntax—tools provided to signifi-

cantly ease further study.

* Chapter Two, Bi-design: Object-Oriented Designing Strategies, is very much
geared to a designing mind-set. It breaks down characteristics of object-oriented
systems and discusses strategies for gaining control of the overall development
effort.

* Chapter Three, Untangled Web: The Evolution of an Enterprise-Level Design, lays out
a very common example of how a framework of devices and classes evolves to accom-
modate a specific need. It ties together the previous abstract points concretely.

PartII, “Derived Simplicity”, consists of the following:

¢ Chapter Four, x = Why: Interaction Algebra for Analyzing and Designing,
explains a specialized mathematically-based notation for describing object interac-
tions. This highly structured technique helps to eliminate design holes and
illuminate characteristics of object relationships, both general and specific.

¢ Chapter Five, Live and Unscripted: Object Animation, a Clearer View of
Automation, establishes a revolutionarily simpler view of all software, especially
object-oriented, and delineates a different type of software language—data ori-
ented, as opposed to extended procedure oriented—that is derived from that
view and fundamentally serves development.

Xi

Xii

PREFACE

Finally, the “Conclusion” element is a very brief wrap-up. It clearly demonstrates how much
simpler and more advanced software development is with the understandings that the
rest of the book provides.

Also, this book uses visual techniques that are specifically designed to best reinforce con-
veyance. First and foremost, it presents each diagram before the text that applies to it. This
arrangement fosters mental focus, as opposed to trailing diagrams, which, ultimately, only
tame scattered thoughts. Because of the common parallel, this technique is called “picture
captioning”. Next, the book throws a “spotlight” on key points, in a bordered box with
a different font, immediately following the paragraph in which the point appears. Last, it
rearranges series of related information each into a list, immediately following the para-
graph in which the series appears. Additionally, it employs all of these visual attributes in
shades of gray, to contrast with the black text, for extra visual dimension.

A HELPFUL REMINDER

It should be kept in mind that many books, including the titles recommended by this one, have code
examples that can be fundamentally difficult to follow, in at least three ways.

First, most of them don't have any degree of explanation of the code until after it, even to explain
the basic functionality of other code that the example uses. They unfortunately don’t employ the tech-
nique of “telegraphing”—that is, explaining the basic flow of the example, then showing the code, and
then explaining it in detail. An effect of this is that interpreting the code can have a lot of gaps. In reading
untelegraphed code, skipping to the explanation and referencing the code along the way is the quickest
way to understanding the example.

Second, many complex examples present the code in fragments, between sets of explanation text,
with very little visual assistance. These fragments are from both the same class and differing classes,
again with very little visual differentiation. Even something as simple as separation lines between the
text and the code, and a note-font class name header for each fragment, help to make all of the parts
immediately distinctive. This has an effect of losing conveyance of the organization of the code—the
whole point of object orientation. The only compensation for this is reviewing the example, mentally
combining the fragments in the appropriate ways.

And third, some of the examples ultimately seem functionally pointless, specifically because they
use hard-coded values in places where variables make more sense. They do this, of course, to make
the examples shorter—not requiring database access—nbut they usually don't mention it; an effect is
that actual purpose is not conveyed. They could refer to variables that they explain come from an unseen
database access, but they often don't. In these cases, a mental substitution of variables from a database
helps to establish purpose.

About the Author

GREG ANTHONY is a near-lifelong systems analyst who has been designing and program-
ming software since he was 8 years of age, professionally since he was 12. In over 15 years,
he has worked in all areas of development and systems management, often as a consultant,
in environments from PC to mid-range to mainframe, and in industries including finance,
insurance, retail, and transportation.

Throughout his career, he has also created utilities of all sizes to automate development
tasks, especially code generators (fourth-generation tools), code analyzers (diagnostic tools),
version-control facilities, and system software interface redesigns, enabling both extreme
user friendliness and extreme efficiency—in both execution and development.

He is an alumnus of the Johns Hopkins University’s Center for Talented Youth, the
landmark organization for gifted children 8 to 18. He has compiled interlocking philoso-
phies mostly through independent studying and experimentation. And his ability to explain
things in plain language, and in many ways, has taken him from tutoring to training to
dedicated writing.

xiii

Introduction

This is a comprehensive introduction to each part of the book, preceded by a very brief
history, for complete context.

A Very Brief History

Computer software development has been occurring for decades. Everyone knows that the
purpose of computer software is to help them to accomplish things. Software is applied to
a variety of tasks, processes, and methods—for example, documentation (word processing),
accounting, and picture manipulation—so each of these is called an application.

On first thought, the best way to create an application is to arrange all of it in one big
group, but when an application has several major tasks, it’s better to break up them into
multiple units (programs), one for each major task. Further, it seems that the best way to
arrange each program is consecutively, from beginning to end; this is known as procedural
or fall-through code.

But software is fundamentally changeable, as opposed to hardware, which is funda-
mentally unchangeable, or firmware, which is hardware with switches (for logical options).
And software has never occurred in completely consecutive steps; that began with the basic
concept of branching—selecting the next step based on a condition while the program is
running (executing). Over time, the more flexible software needed to be, the more complex
branching became, and changing an application came to require a lot of searching through
code to figure out execution paths—the actual order of the steps.

To manage branching, the concept of structuring software came about. Most succinctly
put, this grouped the steps between the branches, creating a logical organization, with each
branch referencing a group. Further, this created modules, isolated pieces of software, and
even categorized them, meaning that different modules could accomplish the same types
of things. It reduced searching significantly, but changing an application still required
making changes in multiple pieces of code to accomplish a single functional change and
figuring out how to improve one function without harming another.

To manage branching better, and especially to manage changes, the concept of
organizing the groups into functional units became popularized, effectively extending
modularization, isolation, and categorization. These units are commonly called objects,
and the functional grouping is commonly called object orientation. This organization
essentially helped to centralize code changes and make the pieces more independent of
each other. With it, a functional change became much more self-contained (encapsulated)
and safe.

xv

xvi

INTRODUCTION

Whole Consistency (Part I)

The principles of object orientation have made the processes of software development
simpler. But, from its most introductory teaching, the principles themselves have com-
monly been made too complex. Further, this has led to the exponential complexity that
comes with trying to have an off-the-shelf approach to every conceivable situation; so
development is again becoming more and more of an effort, instead of less and less. This
is because of the overhead of extensive conformity—and the fact that required closely related
code modules effectively result in just structured software with more referencing. (This is
also the fundamental flaw that many structured software veterans see, causing them to stay
away from newer technologies.)

The vast benefits of object-oriented software require investments of managing and
working with complex designs, which include many interdependent and dynamic com-
ponents. Misunderstandings, large and small, about these complexities detract from the
designs’ effectiveness, blatantly and esoterically. And, compared with the earlier orienta-
tions, most of the techniques of object orientation are each only a slightly different approach
to a task, with a different name; sometimes, the name is the only thing that is different. But
a few things are significantly different, and the complication is that these are what the rest
fall around. Over the years, as the popularity of object orientation has spread, designers
and engineers have developed many pointed strategies for improving their effectiveness.
But more comprehensive—more fundamentally effective—strategies tend to elude them,
and far too many projects still fail, because knowing only technical devices is not enough.

There is a growing movement to simplify—to keep systems as simple as possible, as
often as possible—to minimize developmental overhead. Much the way systems have
historically needed to be overhauled, at a higher level, there is a growing movement to
fundamentally overhaul the world of object-oriented software and its development. This
higher level of overhaul becomes more necessary because of the open nature of the indus-
try’s evolution, specifically facilitated and intensified by the self-contained changeability
of object orientation, which allows one group’s changes to be plugged into several others’.
Very effectively, however, this higher level of overhaul incorporates the newer technology
of “hot swapping”, because it must be driven by mental shifting—seeing existing, functional
systems in new ways. This maximizes derived practical effectiveness. (It also allows all of
those structured veterans to make the leap that they haven't yet.) And understanding how
the spectrum of concepts fits together allows simplification without loss of power.

Orientation: Comparisons Among Objects and Structures
(Chapter One)

Forget the fancy vocabulary. Forget the structure bashing. Forget the idea that object-
oriented software is completely different from structured software. It is different thinking,
but it really just requires a solid overview to clearly see how they are very much the same
behind the scenes. And structured software veterans can leverage what they already under-
stand from structures.

INTRODUCTION

Accuracy

Known Unknown

Further, there are established keywords and explanations of some aspects of object orien-
tation that are misleading, so they unnecessarily complicate overall comprehension. For
example, ambiguous meanings show a lack of accuracy: commonly in object orientation,
“parent” and “child” are used to describe both object definition relationships and object
collection relationships, and these relationships entail very different things. Most directly
here, instead of the leap that is commonly required to get the feeling of object orientation,
accuracy provides an easy bridge. This book delineates both the standard and more accurate
vocabularies, so whenever the standard words are misleading, the more accurate words
can simply be mentally substituted.

Sometimes, differing words for the same thing are reasonably driven by differing points
of view—differing contexts. In fact, the history of software has had many instances of one
entity being seen in multiple ways. Among many other benefits, being able to understand
everything from a consistent point of view eliminates the frequent need for extra effort at
figuring out context.

And two things should be kept in mind:

* Procedure orientation was the prestructured orientation.

» The structured software development process has created a great deal of excellent
software.

Related to Designing

Structured Designing

Overall
Objective
Objective Objective
A B
Objective Objective Objective Objective

Al A2 B1 B2

xvii

xviil

INTRODUCTION

The first thing that is needed in this overview is a comparable overview of the structured
software development process. Ultimately, the structured process requires a system analy-
sis that arrives at a design of a hierarchic structure of objectives, from the most general to
the most specific. At all levels, this defines data items and what happens to them (processes).
With each level of the hierarchy ordered chronologically, the system functions are clear. At
that point, scenarios (also known as use cases) can be run through the structure, chaining
the components in execution sequence, as a cross-check to make sure that nothing is
missed. The structure also directly accommodates data flow diagrams (and process flow
diagrams, which aren't really necessary when data flow diagrams are geared to low-enough
levels of the system structure—but that'’s a later subject). It even includes the code-level
objectives; structured programs are contiguous subsets of the overall system structure.
Common functions are usually repeated and tailored to each particular usage.

Similarities and Differences

Objective Objective
B3 E3
Objective Objective Objective Objective Objective | Objective ;
B3a B3b B3c E3a E3b - _E_3£: o _:

B3c and E3c differ.

The object-oriented software development process requires a system analysis that arrives
at a design of a network of sefs of abjectives. This puts more focus on the functions than
just how they fit into the system. The object-oriented process actually can continue from
the point of the scenarios running through the structure. Objects are defined by the similari-
ties and differences between the execution scenarios. This includes varying degrees of likely
future scenarios, both common and system-specific. The combinations of similarities and
differences define how code can be shared. A parallel to this can be found with conditional
combinations—“and” and “or” conditions, sometimes with multiple sets of parentheses,
in an “if” test—in their separation into progressing segments—with individual tests. Objects
can then be further separated by whether shared segments are (very) closely related.

Of course, there are very different ways of looking at the object-oriented development
process, especially as familiarity brings feeling for objects. Other views prove to be more
direct, but this one can always serve as context for them. Universally, the most critical skill,
in any orientation, is the ability to recognize patterns—commonalities, differentiations,
and dependencies.

Taking a good look, it can be seen that any application of an object-oriented network
still requires the structured linking of objects; in other words, the practical usage of object
orientation still fundamentally requires an aspect of structured development. In many

INTRODUCTION Xix

cases, no code, in any form, is written without an application in mind; there, at the very
least, code can be created more independently than in pure structured development. This
even allows pieces of systemwide functionality to be explicitly coded. Before this approach,

the only way to handle pieces of functionality was with standard methods (protocols).

Ultimately, object orientation is a very thorough way of approaching the traditional sepa-
ration of shared code into utility programs.

The well-known idea of software objects is that they model objects that physically
exist in the real world. Their data and processes are seen to be characteristics. But one
reality of software objects is that they can also model objects that don't (yet) physically exist
in the real world; these are conceptual objects. Looking at that more broadly, every built
object that does physically exist was a conceptual object first; in other words, every physical
object was a mental object first. And, often, there’s no justification for building the physi-
cal object; but software is more flexible. This includes that a conceptual object can be shared
with—in other words, implicitly duplicated for—other objects.

Modeling
Real Object Orientation
Object and Object and
Own Functions All Related
Functions

Serving Serving
Function Function

However, in an even more fundamental way, each object isn't really based on a real object;
it's more based on functions that a real object needs. The significant practical difference
between the two concepts is that interobject checks and balances are needed in the real
world because of the factor of a lack of object integrity, but this factor doesn’t exist in soft-
ware. A very good example is that, in the real world, an employee can’t be relied on to do
his or her own payroll with complete integrity, but this is a perfect function to have in an
employee object, simply because it serves the employee. This understanding is commonly
utilized but not much mentioned. Commonly, a description of a particular class is that it
“represents” a particular real object; here, it can be helpful to mentally substitute the word
“serves”,

Bi-design: Object-Oriented Designing Strategies (Chapter Two)

The inanimate components of any field of designing can have characteristics of being
alive. The most effective designing requires feeling that phenomenon. It requires deeply

XX

INTRODUCTION

understanding the components, individually and collectively, and balancing all of their
needs at the same time; it requires orchestration. And it requires a dedicated thought process.
As they are in many things, simple philosophies are the best guide through all levels of
designing. Also, the biggest reason why there is a gap between cutting-edge (research-
developed) designing techniques and everyday (business-practiced) ones is that the
organization and length of common teaching techniques make it too difficult both to see
the thinking that drives a comprehensive process and to understand how to apply it. This
results in an inability to manage the process. What's needed is a comprehensive set of simple

object-oriented designing philosophies and a dynamic overall strategy for applying them
in various situations.

Interaction Mechanisms

Variability

—=

Initial development requires creation of a network of classes before they can be combined
to create an application, although third-party sets can be acquired and tailored for common
functions. Combining sets to more easily create multiple applications requires areas of
flexibility. The degree of flexibility that any part of the software must have has a direct
impact on how complex its interaction mechanisms must be. Simply put, flexibility is served
by a mechanism of variability. This is where objects (and polymorphism) contribute; they
are used, in essence, as network variables—logically replacing hard-coded conditionals.
This entails some factor of separation (indirection) between interacting methods, which
is loose coupling, instead of tight coupling. The mechanism acts as a translator, typically
between parts of the class’s implementation or between its interface and its implementation.
A very simple example of indirection and loose coupling is a mathematical one. It’s
possible to programmatically convert a number from any base to any other base by con-
verting to and from a constant base. For example, instead of converting directly from base 2
(binary) to base 16 (hexadecimal), converting from base 2 to base 10 (decimal), and then

INTRODUCTION

base 10 to base 16, yields the same result. And, with this configuration, any beginning and
ending bases are possible with no further programming. (Because letters are used for digit
values above 9, the highest practical base is 36—10 numerals + 26 letters.) This concept also
relates to the properties of probabilities: the possible permutations—combinations consid-
ering sequence—of two factors are the possibilities of each, multiplied by the other; being
able to deal with them separately is usually much less overall work. It's also why digital
(representative individualized) processing has much more power than analog (quantitative
overall) processing.

These loosely coupled parts are each a type of class (or part of a class); they each
specialize in a particular type of role. This understanding brings object-oriented design-
ing up another level. It's then fairly easy to see how individual parts of the same type can
be swapped for each other, and how a team (an interdependent collection) of types of parts
can be needed to build a whole logical function. While a usage of loose coupling is more
difficult to comprehend, a usage of tight coupling is more difficult to change. Tight cou-
pling means that parts are directly dependent on each other, which means that changes
in one part are more likely to adversely affect other parts and thus require more changes.
So, tight coupling (direct dependence) cascades the effects of changes.

It’s very enlightening, here, to take a look at a bit of software history. When there was
very little memory available for any one program, programs were very restricted in size;
each was, therefore, a functional module. As memory availability grew, so did programs;
few developers recognized the value of the interdependent pieces of code. The most pop-
ular thing to do was the easier thing, which didn’t include the extra considerations of the
ability to directly swap one piece of code for another; consequently, the inherent modularity
was lost. Tt can easily be seen that those extra considerations at that time could have caused
object orientation to become popular much earlier in software’s history; it can easily
be seen that the trends of software designing might actually have just gone in the wrong
direction at that time.

Across all of the object-oriented systems that have ever existed, all of the countless
interaction mechanisms have been of only a relatively few types; all of the interaction
mechanisms of any particular type have common characteristics (components and behav-
iors). These types are commonly known as design patterns, and learning them makes
designing simpler and smoother. Ultimately, they are standardized techniques for manip-
ulating interaction variables. But it should be clearly understood that these are design
patterns, not designing patterns, which are part of what are commonly known as method-
ologies. A pattern of designing needs and ways to serve them defines a designing pattern
(which includes an analyzing phase). There are many designing patterns, from many
sources, public and private—and the public designing patterns must be tailored to best
serve each (private) environment.

Software creation requires iterations of analyzing, then designing, and then program-
ming (which is really the lowest level designing). The best software design creation requires
thorough understanding of all of the levels and how to best manage them. To clarify how
the various types of mechanisms fit together, it's very helpful to understand that interaction

xxi

xxiv

24

“INTRODUCTION

Display Examples

80 ———p 1200 ——p

Fixed Characters Flexible Graphics

Also, user interfaces grew to include a degree of formatting. Each of the positions on each
of the lines of the screen became identified by its coordinates, so many pieces of informa-
tion could be addressed in one interface. Eventually, a graphical user interface (GUI) was
made possible through the much finer coordinates of picture elements (pixels).

Early on, computers were huge—taking up to entire warehouses. Over time, multiple-
user computers became much smaller, even as they became much more powerful. Again
independently, the idea of one user interface per very small (personal) computer grew;
over time, these computers went from having very little power to having more power than
the warehouse-sized computers of decades earlier. Their growing capabilities spawned the
idea of making the large computers even more powerful by using them in place of screens
and shifting some of the overall processing to them. So, each of the small computers became
a client of a large computer, which became a server of the application. Most directly, the
client and the server are not the computers but corresponding software on the computers.

The client and the server are software.

Eventually came the idea of connecting servers, to form a network; this distributed
processing and storage among many computers. Later came the idea of connecting net-
works, to form the internet. By comparison, this made an unconnected network an internal
network, or intranet. The internet has both public and private networks; a public subset of
the internet, the World Wide Web (WWW), is commonly referred to as the internet or “the
web”. Then, another version of both mouse and keyboard client interfaces, the network
browser, even gave the internet (and intranets) interaction capabilities that weren't avail-
able through any other configuration. Although networks can transmit any types of files,
the web is commonly thought of in the context of viewing through a browser.

INTRODUCTION

The 3-tier design can be applied on a single computer or a client/server configuration,
using the client for the presentation tier and the server for the core (middle) tier and the
storage tier. The storage tier can even have a separate server, to shift some heavy process-
ing; this is a level of indirection. (In a context focused on the core/storage relationship,

the software that manages the usage of this type of server has been called middleware.)
A computer that is used as a server can actually have an application that has existed for
along time—a legacy system—and might still have users.

n-Node 3-Tier Configuration

="
= |

=

L=y

Presentation Core Storage

Further, there can be multiple storage servers. That configuration can even be used for
multiple legacy systems, effectively combined by the core tier. Even further, the design can
be applied to distributed processing, as multiple core servers. So, a single tier can have many
instances; this is commonly called n-tier, but it’s still the 3-tier design, just with 7 nodes. The
term enterprise software refers to an application for shared data, typically among employ-
ees of a company; this can actually be applied to any shared configuration, but the term
was created for the 3-tier design on the client/server configuration, because of its complexity.

Occurring at the same time as object orientation, and adding to its uses, all of these tech-
nologies are also becoming more organized—and more extensive. The newer ones have
increasing infrastructure, fairly standardized, built by relatively few organizations. While
this significantly intensifies each learning curve, at the same time, it allows designers and
programmers to have more and more examples of (usually) very solid software to study
and, to varying degrees, pattern after, because the infrastructures are built by experts—
developers who are closest to the origin of the technologies or developers who have specific
insights. So, this aspect is a compensation; it diminishes the learning curve.

Increasing infrastructure both intensifies and diminishes each learning curve.

XXV

Xxvi

INTRODUCTION

The open nature of the industry defines the industry as a whole as the collection of
experts. On the other hand, the occurrences of lack of simple philosophy throughout the
industry cause this expertise to not be distributed as thoroughly as possible. Further, they
cause varying degrees of confusion—which then feeds errors being built on errors. But
understanding the various aspects of each design, and how the designs are related, cuts
through both of these issues.

For complete context, for a fundamentally thorough demonstration of examples of
designing and programming, and to serve simple philosophies, it's very important to under-
stand how user and storage interfaces have been implemented in various hardware and
software configurations—and the reasons behind the design decisions. And it’s especially
important to examine how the later approaches were built on the older ones, sometimes
directly, sometimes only logically.

Then, all of this provides strong feeling for possibilities.

Derived Simplicity (Part Il)

Structured software is very application specific. Object-oriented software is less application
specific and very function specific. In fact, structured software could comparably be called
application oriented. And, looking deeper, objects are actually logical sets of functions;
object-oriented software could, more completely, be called “function-set oriented” or,
more fundamentally, function oriented. (Calling the software function oriented is the
subject of some debate, because objects have data outside of functions also, but these are
separated into function sets by functionality and shared by the functions and separate
executions of the same function.) And each complex logical function is still structured, in
multiple code functions. For conceptual clarity (and fundamental benefits throughout the
concepts), function orientation is the name that is generally used in this book.

Structured software could comparably be called “application oriented”. And object-ariented software could,
more fundamentally, be called “function oriented”; each function is still structured.

INTRODUCTION

Function Organizations

Structure Function Orientation

Function-oriented thinking sees application-oriented thinking as fragmenting logical sets
of functions and, additionally, unnecessarily duplicating many of those fragments. Without
the duplication of fragments, each function—data and processing—is owned by a set;
other sets must interact with that set to use the function. Developers must know what
parameters each function requires and what all of its external effects are; but this has
always been true of utilities. (And, actually, the best designs separate any side effect into
its own function, allowing selective combination.) The most organized function-oriented
approach is to have a database of the functions with “uses” and “is used by” references—
as part of an integrated development environment (IDE). These added efforts allow each
logical function to occur physically only once, so changes are centralized—and distributed
by the computer; ongoing development is facilitated, so the added efforts are an investment
in the future.

The main point of function orientation is easing of the ongoing development effort.

Functions are the heart of applications, so building multiple applications is more organized
with a well-organized function set network (as is changing a single application). The key
is that each set needs to be well defined, because poorly defined sets actually make chang-
ing them more complex. This means that each set should have a cohesive purpose, and
a fairly limited one. A good guide is that a piece of code that benefits from a comment can
actually be separated into its own function, or even its own function set, with a name that
serves as the comment. A very straightforward example is that input and output for a partic-
ular record type should be in a dedicated set; these create what are known as data objects. It
can be seen that when sets are too large, the structure of the functions dominates the
network of the sets—so the system is actually application oriented.

Xovii

Xxviii

INTRODUCTION

Whereas application-oriented sets perform deep processing on a narrow spectrum
of data, function-oriented sets perform shallow processing on a wide spectrum of data.
In fact, to application-oriented veterans, function-oriented code can look unreasonably
simplistic, so its jumping from module to module can seem pointless. But the limited pur-
pose promotes function independence and, therefore, code swapability; this allows more
possible recombinations of sets and, therefore, more possible applications, so that no
application is overcommitted. An advantage of a whole logical function over just pieces of
application-oriented code is that it is a complete unit; it ensures operational integrity. The
ideal for building multiple applications is for there to be very little new design necessary
for each new application; that would be like prefabricated development (with adjustable
components). That's the whole idea: there’s no magic in objects.

Class Structure
Child
Parent
Foundation

For perspective, it is very important to remember that both application-oriented and
function-oriented systems are only logical views of a system. The actual system occurs at
execution, in a sequence, and that is essentially the same for both. (This understanding is
also very important for debugging and optimizing efforts.) Additional perspective requires
some design-level vocabulary. It includes understanding that the word “object” is less-
frequently appropriate in function-oriented development than the word “class”. (This
overusage is partly a product of overfocus on “object” orientation.) A class defines an
object; it’s a classification. So, mostly, a class is a function set in its definition form, and
an object is a function set in its usage form. Further, in various ways, a class is thought of
internally, and an object is thought of externally. Any object—real-world or software—can
easily be represented by another object—a symbol or a piece of code—but that's external;
that object is still served by the internal.

CHAPTER ONE

Orientation

Comparisons Among Objects
and Structures

1-1115 chapter presents several important concepts, old and new, geared to common
programming languages.

Some Other Ramifications

In addition to those delineated in the Introduction, another mechanism that goes into

the definition of a class is composition, which means that that class has a collection of
parts, any of which can have a collection of other parts. A composition structure is, there-
fore, a true hierarchy. Also, this is a dynamic system, because each piece can be a part of

multiple collections. Comparing the two, inheritance and composition are both one class’s

usage of another class (and composition can even be one class’s recursive usage of itself),
but composition requires instantiation of the used class; in other words, it requires an
object. This means that inheritance allows modification of the used class (in that usage),

but composition does not. It means that inheritance is an open usage, while composition
is a closed usage; it means that inheritance uses a class as a “white box”, and composition
uses it as a “black box". (More abstractly, it’s like inheritance opens a class for update, and
composition opens it read-only.) But composition also “wraps” its used classes in function-
ality, allowing for a reasonable degree of functional modification, without the compound
static restrictions of inheritance. In the class structure sense, a “wrapper” is just an added
layer. By the way, the fact that composition is a hierarchy is a direct clue to the fact that that

aspect of function orientation is actually still application oriented.

