joxed() flatMap(r -> perms(minus(todo,

Jav

THIRD EDITION

'
Peter Sestoft

Java Precisely
Third Edition

The MIT Press
Cambridge, Massachusetts
London, England

(© 2016 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in
writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use.

This book was set in Times by the author using IZTEX and was printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data

Names: Sestoft, Peter.

Title: Java precisely / Peter Sestoft.

Description: Third edition. | Cambridge, MA : The MIT Press, [2016] | Includes bibliographical references
and index.

Identifiers: LCCN 2015038522 | ISBN 9780262529075 (pbk. : alk. paper)

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.J38 S435 2015 | DDC 005.13/3—dc23 LC record available at
http://lcen.loc.gov/2015038522

109 8 7 6 5 4 3 21

Contents

Preface

Notational Conventions

1

Running Java: Compilation, Loading, and Execution
Names and Reserved Names
Java Naming Conventions

Comments and Program Layout

Types

5.1 Primitive TYPeS o o e e e e e e e e e e e
5.2 Reference Types e e e
53 Amay TYPES . . . o o e e e e e e e e e e e
5.4 Boxing: Wrapping Primitive Types as Reference Types
5.5 Subtypes and Compatibility
5.6 Signatures and Subsumption L L L L e
5.7 TypeConversion 0 e e e e e e e e e e e e
Variables, Parameters, Fields, and Scope

6.1 Values Bound to Variables, Parameters,or Fields
6.2 Variable Declarations
6.3 Scope of Variables, Parameters,and Fields
Strings

7.1 String Formatting e e e e e e e e e e e e e e e e
Arrays

8.1 Array Creationand ACCESS v vttt e e
8.2 Array Initializers
8.3 Multidimensional Arrays L L e e e e e e
8.4 The Utility Class AITays o vttt it et e e e e
Classes

9.1 Class Declarationsand Class Bodies
9.2 Top-Level Classes, Nested Classes, Member Classes, and Local Classes
9.3 Class Modifiers e e e e e
9.4 The Class Modifiers public, final, abstract
9.5 Subclasses, Superclasses, Class Hierarchy, Inheritance, and Overriding
9.6 Field Declarations in Classes v v v v e e e e e e e
9.7 The Member Access Modifiers private, protected, public
9.8 Method Declarations

9.9 Parameter Arrays and Variable-Arity Methods L.

xi

xii

16
16
16
18
18

22
22
22
22
24

26
28
30

vi

10

11

12

13

14
15

16

Contents

9.10 Constructor Declarations

9.11 Nested Classes, Member Classes, Local Classes, and Inner Classes

9.12 AnonymousClasses
9.13 Initializer Blocks, Field Initializers, and Initializers .

Classes and Objects in the Computer
10.1 WhatlsaClass?

10.3 TInnerObjects

Expressions

11.1 Table of Expression Forms
11.2 Arithmetic Operators
11.3 Logical Operators
11.4 Bitwise Operators and Shift Operators
11.5 Assignment Expressions
11.6 Conditional Expressions
1.7 Object Creation Expressions
11.8 Instance Test Expressions
11.9 Field Access Expressions
11.10 The Current Object Reference this
11.11 Type Cast Expression
11.12 Method Call Expressions
11.13 Lambda Expressions (Java 8.0)
11.14 Method Reference Expressions (Java8.0)

Statements

12.1 Expression Statements
12.2 Block Statements,
12.3 The Empty Statement
12.4 Choice Statements
12.5 Loop Statements
12.6 Returns, Labeled Statements, Exits, and Exceptions
12.7 The Try-with-Resources Statement
12.8§ The assert Statement

Interfaces

13.1 Interface Declarations
13.2 Classes Implementing Interfaces
13.3 Default and Static Methods on Interfaces (Java 8.0) .
13.4 Annotation Type Declarations

Enum Types
Exceptions, Checked and Unchecked

Compilation, Source Files, Class Names, and Class Files

30
32
32
32

34
34
34
34

36
36
38
38
38
40
40
40
40
42
42
42
44
48
48

52
52
52
52
54
56
60
64
64

66
66
66
68
68

70
72

74

17
18
19
20

21

22

23

Contents vii
Packages and Jar Files 74
Mathematical Functions 76
String Builders and String Buffers 78
Threads, Concurrent Execution, and Synchronization 80
20.1 Threads and Concurrent Executiont 80
20.2 Locks and the synchronized Statement v i vttt e 82
20.3 Operationson Threads L 84
20.4 Operations on Locked Objects 84
20.5 The Java Memory Model and Visibility Across Threads 86
Generic Types and Methods 88
21.1 Generics: Safety, Generality, and Efficiency L. 88
21.2 Generic Types, Type Parameters, and Type Instances 88
21.3 How Can Type Instances Be Used? 88
214 Generic Classes v v v i i e e e e e e e e e 90
21.5 Constraints on Type Parameters o v i e e 92
21.6 How Can Type Parameters Be Used? 92
21.7 Generic Interfaces L 94
21.8 GenericMethods e 96
21.9 Wildcard Type Arguments o 0 it e e e e 98
2110 The Raw TYPE . . . o o o o o e e e e e e e e e e e e 100
21.11 The Implementation of Generic Types and Methods 100
Generic Collections and Maps 102
22.1 Interface Collection<T> 104
22.2 Interface List<T> and Its Implementations LinkedList<T> and ArrayList<T> 105
22.3 Interface Set<T> and Its Implementations HashSet<T> and LinkedHashSet<T>. 106
22.4 Interface SortedSet<T> and Implementation TreeSet<T> 106
22.5 Interface Map<K,V> and Implementation HashMap<K,V> 108
22.6 Interface SortedMap<K,V> and Implementation TreeMap<K,V> 110
227 Going through a Collection: Interfaces Iterator<T> and Iterable<T> 112
22.8 Interface Listlterator<T> e 114
22.9 Equality, Hash Codes, and Comparison 114
22.10 The Comparator<T>Interface 116
22.11 The Utlity Class Collections e et 118
22.12 Choosing the Right Collection Class orMap Class 120
Functional Interfaces (Java 8.0) 122
23.1 Functional Programming i e e e e e e e e e 122
23.2 Generic Functional Interfaces 124
23.3 Primitive-Type Specialized Functional Interfaces 124
23.4 Covariance and Contravariance in Functional Interfaces 126
23.5 Imterface Function<T,R> 126
23.6 Interface UnaryOperator<T> o v v i e e it e e e e e e e 126

viii Contents

23.7 Interfaces Predicate<T> and BiPredicate<T,U>
23.8 Interfaces Consumer<T> and BiConsumer<T,U> v v v v v v v i
23.9 Interface Supplier<T>
23.10 Interface BiFunction<TUR>
23.11 Interface BinaryOperator<T>

24 Streams for Bulk Data (Java 8.0)
241 Creating SITEAMS v v i it e e e e e e e e e e e e e e e e
242 Stream Builders L e
243 Methods on Streamso
24.4 Numeric Streams: DoubleStream, IntStream, and LongStream
24.5 Summary Statistics for Numeric Streamso
24,6 Collectors on Streams L L e e e e e e e e e e e e

25 Class Optional<T> (Java 8.0)

26 Input and Output
26.1 Creating an 10 Stream from AnotherOne
26.2 Kinds of Input and Output Methods
26.3 Imports, Exceptions, Thread Safety
26.4 Sequential Character Input: Readers oL
26.5 Sequential Character Output: Writers oo it
26.6 Printing Primitive Data to a Character Stream: PrintWriter
26.7 The Appendable Interface and the CharSequence Interface
26.8 Reading Primitive Data from a Character Stream: StreamTokenizer
26.9 Sequential Byte Input: InputStreamo
26.10 Sequential Byte Output: OutputStream o v v i
26.11 Binary Input-Output of Primitive Data: Datalnput and DataOutput
26.12 Serialization of Objects: ObjectInput and ObjectOutput
26.13 Buffered Inputand Output e
26.14 Random Access Files: RandomAccessFile
26.15 Files, Directories, and File Descriptors
26.16 Thread Communication: PipedInputStream and PipedOutputStream
26.17 Socket Communicationl e e

27 Reflection
27.1 Reflective Use of Types: The Class<T>Classo oo v v v i i i v v
27.2 Reflection: The Field Class
27.3 Reflection: The Method Class and the Constructor<T>Class
27.4 Exceptions Thrown When Using Reflection

28 Metadata Annotations
29 What Is New in Java 8.0

References

146

148
149
150
150
152
153
154
154
156
158
159
160
162
164
166
168
168
170

172
172
174
174
174

176

178

180

Contents 1x

Index 181

Copyrighted material

Java Precisely

2 Commenis and Program Layout

1 Running Java: Compilation, Loading, and Execution

Before a Java program can be executed, it must be compiled and loaded. The compiler checks that the Java
program is legal: that the program conforms to the Java syntax, that operators (such as +) are applied to
operands (such as 5 and x) of the correct type, and so on. If so, the compiler generates class files. Execution
may then be started by loading the class files. Thus running a Java program involves three stages: compilation
(checks that the program is well-formed), loading (1oads and initializes classes), and execution (runs the code).
This holds also for a program run from integrated development environments such as Eclipse or Intellil.

2 Names and Reserved Names

A legal name (of a variable, method. field, parameter, class, interface or package) starts with a letter or dollar
sign ($) or underscore (_), and continues with zero or more letters or dollar signs or underscores or digits (0-9).
Avoid dollar signs in class and interface names. Uppercase letters and lowercase letters are considered distinct.
A legal name cannot be one of the following reserved names:

abstract char else for interface protected switch try
assert class enum goto long public synchronized void
boolean const extends if native return this volatile
break continue false implements new short throw while
byte default final import null static throws

case do finally instanceof package strictfp transient

catch double float int private super true

3 Java Naming Conventions

The following naming conventions are often followed, although not enforced by Java:

e If a name is composed of several words, then each word (except possibly the first one) begins with an
uppercase letter. Examples: setLayout, addLayoutComponent.

o Names of variables, fields. and methods begin with a lowercase letter. Examples: vehicle, myVehicle.
o Names of classes and interfaces begin with an uppercase letter. Examples: Cube, ColorCube.

o Named constants (such as final static fields and enum values) are written entirely in uppercase, and
the parts of composite names are separated by underscores (_). Examples: CENTER, MAX_VALUE,

e Package names are sequences of dot-separated lowercase names. Example: java.awt.event. For
uniqueness, they are often prefixed with reverse domain names, as in com.sun.xml.util.

4 Comments and Program Layout

Comments have no effect on the execution of the program but may be inserted anywhere to help humans
understand the program. There are two forms: one-line comments and delimited comments.

Program layout has no effect on the computer’s execution of the program but is used to help humans
understand the structure of the program.

Comments and Program Layout

Example 1 Comments

class Comment {
// This is a one-line comment; it extends to the end of the line.
/* This is a delimited comment,
extending over several lines.
*/

int /* This delimited comment extends over part of a line */ x = 117;

Example 2 Recommended Program Layout Style
For reasons of space this layout style is not always followed in this book.

class Layout f{ // Class declaration
int x;

Layout (int x) {

this.x = x; // One-line body
1
int sum(int y) { // Multi-line body
if (x > 0) { // If statement
return x + y; // Single statement
} else if (x < 0) { // Nested if-else, block statement
int res = -x + y;
return res * 117;
} else { // x == // Terminal else, block statement
int sum = 0;
for (int i=0; i<10; i++) { // For loop

sum += (y - i) * (y - 1i);
)

return sum;

static boolean checkdate(int mth, int day) {

int length;

switch (mth) { // Switch statement

case 2: // Single case
length = 28; break;

case 4: case 6: case 9: case 11: // Multiple case

length = 30; break;

case 1: case 3: case 5: case 7T: case 8: case 10: case 12:
length = 31; break;

default:
return false;

}

return (day >= 1) && (day <= length);

4 Types

5 Types

A type is a set of values and operations on them. A type is either a primitive type or a reference type.

5.1 Primitive Types

A primitive type is either boolean or one of the numeric types char, byte, short, int, long, float, or
double. The primitive types, example literals (that is, constants), size in bits (where 8 bits equals 1 byte), and
value range, are shown in the table opposite. For readability, a number constant may contain underscores (_)
anywhere except as the first and last character of the constant.

The integer types are exact within their range. They use signed 2's complement representation (except for
char), so when the most positive number in a type is max, then the most negative number is —max — 1. The
floating-point types are inexact and follow IEEE7 54, with the number of significant digits indicated by “sigdig”
in the table. For character escape sequences such as \u0000, see page 10.

5.2 Reference Types

A reference type is a class type defined by a class declaration (section 9.1), or an interface type defined by an
interface declaration (section 13.1), or an array type (section 5.3), or an enum type (chapter 14).

A value of reference type is either null or a reference to an object or array. The special value null denotes
“no object.” The literal null, denoting the null value, can have any reference type.

5.3 Array Types

An array type has the form t [], where t is any type. An array type t [] is a reference type. Hence a value of
array type t [] is either null or a reference to an array whose element type is precisely t (when t is a primitive
type), or is a subtype of t (when t is a reference type).

5.4 Boxing: Wrapping Primitive Types as Reference Types

For every primitive type there is a corresponding wrapper class, which is a reference type. The wrapper classes
are listed in the table opposite. An object of a wrapper class contains a single value of the corresponding
primitive type.

A wrapper class must be used when a value of primitive type is passed to a method that expects a reference
type, or is stored in a variable or field of reference type. For instance, to store an int in a collection (chapter 22)
one must wrap it as an Integer object.

The conversion from primitive type to wrapper class is called boxing, and the opposite conversion is called
unboxing. Boxing and unboxing are performed automatically when needed. Boxing and unboxing may also
be performed explicitly using operations such as new Integer (i) to box the integer i, and o.intValue()
or (int)o to unbox the Integer object o. If o is null, then unboxing of o will fail at run-time by throwing
NullPointerException. Because of automatic unboxing, a Boolean value may be used in conditional statements
(if, for, while, and do-while) and in logical operators (such as !, &&, ?: and so on); and Integer and other
integer type wrapper classes may be used in switch statements.

A boxed value can be unboxed only to a value of the boxed type, or to a supertype. Thus an Integer object
can be unboxed to an int or a long because long is a supertype of int, but not to a char, byte, or short.

The wrapper classes Byte, Short, Integer, Long, Float, and Double have the common superclass Number.

Types 5

Primitive Types

Type Kind Example Literals Size Range Wrapper
boolean logical false, true 1 Boolean
char integer " ', '0', "A', ... 16 \u0000 ... \uFFFF (unsigned) Character
byte integer 0,1, -1,117,... 8 max =127 Byte
short integer 0,1,-1,117,2_117,... 16 max= 32767 Short

int integer 0,1,-1,117,2_117,... 32 max = 2147483647 Integer
long integer 0L, 1L, -1L, 1171, 2_117L, ... 64 max =9223372036854775807 Long
float floating -1.0f, 0.49f, 3E8F, ... 32 410738 4+ 10%, sigdig 6-7 Float
double floating -1.0,0.49, 3E8, ... 64 £1073% . £10%%8, sigdig 15-16 Double

Integer Literals Integer literals (of type byte, char, short, int, or long) may be written in four bases:

Notation Base Distinction Example Integer Literals

Decimal 10 No leading 0 1_234_567_890, 127, -127
Binary 2 Leading Obor 0B 0b10, 0b111_1111, -0b111_1111
Octal 8 Leading 0 01234567, 0177, -0177

Hexadecimal 16 Leading 0x or 0¥ 0xAB_CDEF_0123, 0x7F, -0x7F

Example 3 Automatic Boxing and Unboxing

Boolean bbl = false, bbZ = !bbl; // Boxing to [false] [true]

Integer bil = 117; // Boxing te [117]

Double bdl = 1.2; // Boxing to [1.2]

boolean bl = bbl; // Unboxing, result false

if (bbl) I Unboxing, result false
System.out.println("Not true");

int il = bil + 2; // Unboxing, result 119

// short s = bil; // Illegal

long 1 = bil; // Legal: int is subtype of long

Integer bi2 = bil + 2; // Unboxing, boxing, result [119]

Integer(] biarr = { 2, 3, 5, 7, 11 };

int sum = 0;
for (Integer bi : biarr)
sum += bi; // Unboxing in loop body
for (int i : biarr) // Unboxing in loop header
sum += i;
int i = 1934;
Integer bid4 = i, bib = i;
// Prints true true true false; bi4==bi5 is a reference comparison:
System.out.format ("$b %b %b %b%n", i==i, bid==i, i==bi5, bid==bi5);
Boolean bbn = null;
boolean b = bbn; // Compiles OK, fails at run-time
if (bkn) // Compiles OK, fails at run-time
System.out.println("Not true");
Integer bin = null;
Integer bi6 = bin + 2; /{ Compiles OK, fails at run-time

8 Variables, Parameters, Fields, and Scope

6 Variables, Parameters, Fields, and Scope

A variable is declared inside a method, constructor, initializer block, or block statement (section 12.2). The
variable can be used only in that block statement (or method or constructor or initializer block), and only after
its declaration.

A parameter is a special kind of variable: it is declared in the parameter list of a method or constructor,
and is given a value when the method or constructor is called. The parameter can be used only in that method
or constructor.

A field is declared inside a class, but not inside a method or constructor or initializer block of the class. It
can be used anywhere in the class, also textually before its declaration.

6.1 Values Bound to Variables, Parameters, or Fields

A variable, parameter, or field of primitive type holds a value of that type, such as the boolean false, the
integer 117, or the floating-point number 1.7. A variable, parameter, or field of reference type t either has the
special value null or holds a reference to an object or array. If it is an object, then the run-time class of that
object must be t or a subclass of t.

6.2 Variable Declarations

The purpose of a variable is to hold a value during the execution of a block statement (or method or constructor
or initializer block). A variable-declaration has one of the forms

variable-modifier type varnamel, varname2, ... ;
variable-modifier type varnamel = initializer!, ... ;

A variable-modifier may be final or absent. If a variable is declared final, then it must be initialized
or assigned at most once at run-time (exactly once if it is ever used): it is a named constant. However, if the
variable has reference type, then the object or array pointed to by the variable may still be modified. A variable
initializer may be an expression or an array initializer (section 8.2).

Execution of the variable declaration will reserve space for the variable, then evaluate the initializer, if
any, and store the resulting value in the variable. Unlike a field, a variable is not given a default value when
declared, but the compiler checks that it has been given a value before it is used.

6.3 Scope of Variables, Parameters, and Fields

The scope of a name is that part of the program in which the name is visible. The scope of a variablc extends
from just after its declaration to the end of the innermost enclosing block statement. The scope of a method
or constructor parameter is the entire method or constructor body. For a control variable x declared in a for
statement

for (int x = ...; ...; ...) body

the scope is the entire for statement, including the header and the body.

Within the scope of a variable or parameter x, one cannot redeclare x, However, one may declare a variable
x within the scope of a field x, thus shadowing the field. Hence the scope of a field x is the entire class, except
where shadowed by a variable or parameter of the same name, and except for initializers preceding the field’s
declaration (section 9.1).

Variables, Parameters, Fields, and Scope 9

Example 6 Variable Declarations

public static void main(String[] args) {
int a, b, c¢;
int x =1, v =2, z = 3;
int ratie = z/x;
final double PI = 3,141592653589;
boclean found = false;
final int maxyz;
if (z > y) maxyz = z; else maxyz = y;

Example 7 Scope of Fields, Parameters, and Variables
This program declares five variables or fields, all called x, and shows where each one is in scope (visible). The
variables and fields are labeled #1, . .., #5 for reference.

class Scope {

.. //
void ml (int x) { // Declaration of parameter x (#1)
.- // % #1 in scope
} 1/
1/

void m2(int v2) { I/
e // % #5 in scope
1 1/
.. I/
void m3(int v3) { //
- // x #5 in scope
int x; // Declaration of wvariable x (#2)
. // x #2 in scope
1 1/

void m4 (int v4) { I/
. // % #5 in scope
{ //
int x; // Declaration of variable x (#3)

// % #3 in scope

// x #5 in scope

int x; // Declaration of wariable x (#4)
// x #4 in scope

// x #5 in scope

int x; // Declaration of field x (#5)
// x #5 in scope

10 Strings

7 Strings

A string is an object of the predefined class String. It is immutable: once created it cannot be changed. A
string literal is a sequence of characters within double quotes: "New York", "A38", "", and so on. Internally,
a character is stored as a number using the Unicode [1] character encoding, whose character codes 0-127
coincide with the old ASCITencoding. String literals and character literals may use character escape sequences:

Escape Code Meaning

\b backspace

\t horizontal tab

\n newline

\f form feed (page break)

\r carriage return

\" the double quote character

\’ the single quote character

\A the backslash character

\ddd the character whose character code is the three-digit octal number ddd
\udddd the character whose character code is the four-digit hexadecimal number dddd

A character escape sequence represents a single character. Since the letter A has code 65 (decimal), which is
written 101 in octal and 0041 in hexadecimal, the string literal "A\101\u0041" is the same as "ARA". If sl
and s?2 are expressions of type String and v is an expression of any type, then

sl.length () of type int is the length of s1, that is, the number of characters in s1.

sl.equals(s2) of type boolean is true if sl and s2 contain the same sequence of characters, and
false otherwise; equalsIgnoreCase is similar but does not distinguish lowercase and uppercase.
sl.charAt (i) of type char is the character at position i in s1, counting from 0. If the index 1 is less
than 0, or greater than or equal to s1.1length (), then StringIndexOutOfBoundsException is thrown.
sl.toString() of type String is the same object as s1.

String.valueOf (v) returns the string representation of v, which can have any primitive type (sec-
tion 5.1) or reference type. When v has reference type and is not null, then it is converted using
v.toString(); if it is null, then it is converted to the string "null". Any class C inherits from Object
adefault toString method that produces strings of the form C€2a5734, where 2a5734 is some memory
address, but toString may be overridden to produce more useful strings.

s1 + s2 has the same meaning as s1.concat (s2): it constructs the concatenation of s1 and s2, a new
String consisting of the characters of s1 followed by the characters of s2. Both s1 + vandv + sl are
evaluated by converting v to a string with String.value0Of (v), thus using v.toString () when v has
reference type, and then concatenating the resulting strings.

sl.compareTo(s2) returns a negative integer, zero, or a positive integer, according as s1 precedes,
equals, or follows s2 in the usual lexicographical ordering based on the Unicode [1] character encoding.
If s1 or 52 is null, then the exception NullPointerException is thrown. Method compareToIgnoreCase
is similar but does not distinguish lowercase and uppercase.

sl.substring(int i, int 7j) returnsanew String of the characters from s1 with indexes 1.. (j-1).
Throws IndexOutOfBoundsException if <0 or 1>j or j>sl.length.

sl.subSequence (int i, int 7) is like substring but returns a CharSequence (section 26.7).
More String methods are described in the Java class library documentation [2].

Strings 11

Example 8 Equality of Strings and the Subtlety of the (+) Operator

String sl = "abe";
String s2 = s1 + ""; // New object, but contains same text as sl
String s3 = s1; // Same cbject as sl

String s4 = sl.toString(); // Same cbject as sl

// The following statements print false, true, true, true, true:
System.out.println("sl and s2 identical objects: " + (sl == s2));
System.cut.println("sl and s3 identical objects: " (sl == s3));
System.out.println("sl and s4 identical objects: " (sl == gd));
System.cut.println("sl and s2 contain same text: (sl.equalsi(s2)));
System.out.println("sl and s3 contain same text: (sl.equalsi(s3)));

// These two statements print 35A and A1025 because (+) is left-associative:
System.out.println(10 + 25 + "A"); // Same as (10 + 25) + "A"
System.out.println("A"™ + 10 + 25); // Same as ("A" + 10) + 25

+ + + +

Example 9 Concatenating All Command Line Arguments
When concatenating many strings, use a string builder instead (chapter 19 and example 104).

public statie void main(String[] args) {
String res = "";
for (int i=0; i<arags.length; i++4)
res += argsl[i];
System.out.println(res);

}

Example 10 Counting the Number of e's in a String

static int ecount (String s) {
int ecount = 0;
for (int i=0; i<s.length(); i++)
if (s.charAt(i) == 'e")
ecount++;
return ecount;

Example 11 Determining Whether Strings Occur in Lexicographically Increasing Order

static boolean sorted(String[] a) {
for (int i=1; i<a.length; i++)
if (a[i-1].compareTo(a[i]) > 0)
return false;
return true;

}

Example 12 Using a Class That Declares a toString Method
The class Point (example 27) declares a toString method that returns a string of the point coordinates. The
operator (+) calls the toString method implicitly to format the Point objects.

Point pl = new Point (10, 20), Point p2 = new Point (30, 40);
System.out.println("pl is " + pl}; // Prints: pl is (10, 20}
System.out.println("p2 is " + p2); // Prints: p2 is (30, 40)
p2.move(7, 7T);

System.out.println("p2 is " + p2); // Prints: p2 is (37, 47)

12 Strings

7.1 String Formatting

Formatting of numbers, characters, dates, times, and other data may be done using a formatting string fmt
containing formatting specifiers, using one of these methods:

e String.format (fmt, v1, ..., vn) returns a String produced from fmt by replacing formatting
specifiers with the strings resulting from formatting the values v1, ..., vn.

e strm.format (fmt, v1, ..., vn), where strm is a PrintWriter or PrintStream (section 26.6), con-
structs a string as above, outputs it to strm, and returns strm.

e strm.printf(fmt, vl, ..., vn) behavesexactly as strm.format (fmt, v1, ..., vn).

These methods exist also in a version that take a Locale object as first argument; see examples 16 and 17.
Formatting specifiers are described in sections 7.1.1 and 7.1.2 below. If a value vi is of the wrong type for
a given formatting specifier, or if the formatting specifier is ill-formed, then a call to the above methods will
throw an exception of class IllegalFormatException or one of its subclasses.

7.1.1 Formatting of Numeric, Character, and General Types
A formatting specifier for numeric, character, and general types has this form:

% lindex$] [flags] [width] [. precision] conversion

The index is an integer 1,2, ... indicating the value v;, ., to format; the conversion indicates what operation is
used to format the value; the width indicates the minimum number of characters used to format the value; the
flags indicate how that width should be used (where “~" means left-justification, or padding on the right, and
“0” means padding with zero); and precision limits the output, such as the number of fractional digits. Each of
the four parts in brackets [] is optional; the only mandatory parts are the percent sign (%) and the conversion.
The documentation for Java API class java.util. Formatter gives the full details of number formatting. The
table below shows the legal conversions on numbers (I = integers, F = floating-point numbers, IF = both),
characters (C), and general types (G). An uppercase conversion such as X produces uppercase output.

Format conversion flags precision Type
Decimal d -+ 0, 1
Octal 0 -#0 I
Hexadecimal x or X -#0 I
Hexadecimal significand and exponent aorh -#+ 0 F
General: scientific or fractional gorG -#+ 0, (Max. significant digits IF
Fixed-point number f -#+ 0, (Fractional digits IF
Scientific notation e orE -4+ 0, (Fractional digits IF
Unicode character [1] corC - C
Boolean: "true" or "false" borB - Boolean
Hexadecimal hashcode of value, or "null" h or H - G
Determined by value’s formatTo method s0rs - G
A percent symbol (%) % (none)

Platform-specific newline n (none)

Strings 15

Example 15 Formatting Dates and Times as Strings
This example prints 2004-09-14 12:09; months are numbered from 0 in Java’s GregorianCalendar class.

GregorianCalendar date = new GregorianCalendar (2004, 8, 14, 12, 9, 28);
System.out.format ("1tF %15tR%n", date);

Example 16 Locale-Specific Formatting of Dates and Times
The formatting of date and time often depends on the locale: language and nationality. For instance, this is the
case for the formatting specifier $tc. The Locale class is in package java.util.

Date now = new Date();

System.out.format ("$te%n", now);
System.out.format (Locale.US, "%tc%n", now);
System.out.format (Locale.GERMANY, "%tc%n", now);

// default locale
// en_US locale
// de_DE locale

Example 17 Locale-Specific Formatting of Numbers

Number formatting is locale sensitive: different languages use different decimal separators (point or comma).
For instance, this example outputs 1,234,567.90 and 1.234.567, 90 and 1 234 567, 90 where the spaces in
the latter number are special non-breaking spaces (ISO Latinl character * \240").

double d = 1234567.9;

System.out.format (Locale.US, "%,.2£%n", d);
System.out. format (Locale.GERMANY, "%,.2f%n", d);
System.out.format (Locale.FRANCE, "%,.2f%n", d);

// en_US locale
// de_DE locale
// fr_FR locale

Some Date and Time Formatting Specifiers and Their Effect

Different languages and countries have very different conventions for writing dates, requiring different for-
matting specifiers for use with String.format. In general, the locale mechanism is not sufficient to write
locale-specific dates, except when using the %t c formatting specifier. To avoid misunderstandings, do give all
four digits of the year, and avoid formats such as 03/05/04 that may have different US and UK interpretations.

Formatting Specifier Result Locale Usage
Stc Fri Mar 05 21:06:07 CET 2004 en_Us US

gtc Fr Mrz 05 21:06:07 CET 2004 de_DE Germany
$tc ven. mars 05 21:06:07 CET 2004 fr_FR France
%£15tD 03/05/04 en_Us US
%15tm/%15td/%15ty 03/05/04 en_USs US
$15tm/%1std/%1Sty %1StI:%15tM %15tP 03/05/04 09:06 PM en_US US
$15td.515tm.%1StY F1StH:315tM 05.03.2004 21:06 en_US Germany
15td/%15tm/%15tY 05/03/2004 en_US UK
%15td-%15tbh-%15ty 05-Mar-04 en_USs US/UK
%15tB %1S5te, %1StY March 5, 2004 en_US US
$1StA $1S5tB %1Ste, %1StY Friday March 5, 2004 en_US US
$1StA, %1Ste %1StB %15ty Friday, 5 March 2004 en_Us UK
%15te. %1$tB %1StY 5. Mirz 2004 de_DE Germany
$1StA %15te. %1StB %15ty Freitag 5. Mdrz 2004 de_DE Germany
S1SEFTELSET 2004-03-05T21:06:07 en_US RFC3339

16 Arrays

8 Arrays

An array is an indexed collection of variables, called elements. An array has a given length { > 0 and a given
element type t. The elements are indexed by the integers 0, 1,....¢ — 1. The value of an expression of array

type u[] is either null or a reference to an array whose element type t is a subtype of u. If u is a primitive
type, then t must equal u.

8.1 Array Creation and Access
A new array of length ¢ with element type t is created (allocated) using an array creation expression:

new t[f]

where £ is an expression of type int. If type t is a primitive type, all elements of the new array are initialized
to 0 (when t is byte, char, short, int, or long) or 0.0 (when t is float or double) or false (when t is
boolean). If t is a reference type, all elements are initialized to null,

If ¢ is negative, then the exception NegativeArraySizeException is thrown.

Let a be a reference of array type u[], to an array with length ¢ and element type t. Then

e a.length of type int is the length ¢ of a, that is, the number of elements in a.

e The array access expression a[i] denotes element number 1 of a, counting from 0; this expression has
type u. The integer expression 1 is called the array index. If the value of 1 is less than O or greater than
or equal to a. length, then exception ArraylndexOutOfBoundsException is thrown.

e When t is a reference type, every array element assignmenta[i] = e checks that the value of e is null
or a reference to an object whose class C is a subtype of the element type t. If this is not the case, then the
exception ArrayStoreException is thrown., This check is made before every array element assignment at
run-time, but only for reference types.

8.2 Array Initializers

A variable or field of array type may be initialized at declaration, using an existing array or an array initializer
for the initial value. An array initializer is a comma-separated list of zero or more expressions enclosed in
braces { ... }:

L[] x = { expression, ..., expression }

The type of each expression must be a subtype of t. Evaluation of the initializer causes a distinct new array,
whose length equals the number of expressions, to be allocated. Then the expressions are evaluated from left
to right, their values are stored in the array, and finally the array is bound to x. Hence x cannot occur in the
expressions: it has not yet been initialized when they are evaluated.

Array initializers may also be used in connection with array creation expressions:

new t[] { expression, ..., expression }

Multidimensional arrays can have nested initializers (example 22). Note that there are no array constants: a
new distinct array is created every time an array initializer is evaluated.

Arrays 17

Example 18 Creating and Using One-Dimensional Arrays
The first half of this example rolls a die 1,000 times, then prints the frequencies of the outcomes. The second
half creates and initializes an array of String objects.

int[] freqg = new int[6]; // Bll initialized to 0
for (int i=0; i<1000; i++) | // Roll dice, count frequencies
int die = (int) (1 + 6 * Math.random());

freq(die-1] += 1;
l
for (int c=1; c<=6; c+4)
System.out.println(c + " came up " + freg[c-1] + " times");

String[] number = new String[20]; // Create array of null elements

for (int i=0; i<number.length; i++) // Fill with strings "AO", ..., "Al9"
number[i] = "A" + i;

for (int i=0; i<number.length; i++) // Print strings

System.out.println(number[i]);

Example 19 Array Element Assignment Type Check at Run-Time
This program compiles, but at run-time a[2]=d throws ArrayStoreException, since the class of the object
bound to d (that is, Double) is not a subtype of a’s element type (that is, Integer).

Number[] a = new Integer([10]; // Length 10, element type Integer
Double d = new Double(3.14); // Type Double, class Double
Integer i = new Integer(117); // Type Integer, class Integer
Number n = i; // Type Number, class Integer

al0] = i; // OK, Integer is subtype of Integer
all] = n; // OK, Integer is subtype of Integer
al2] = d; // No, Double not subtype of Integer

Example 20 Using an Initialized Array
Method checkdate here behaves the same as checkdate in example 2. The array should be declared outside
the method, as shown, otherwise a distinct new array is created for every call to the method.

static int[] days = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
static boolean checkdate(int mth, int day)
{ return (mth >= 1) && (mth <= 12) && (day >= 1) && (day <= days[mth-1]); }

Example 21 Creating a String from a Character Array

When replacing character c1 by character c2 in a string, the result can be built in a character array because its
length is known. This is 50 percent faster than example 105. which uses a string builder.

static String replaceCharChar(String s, char cl, char c2) {

char[] res = new char(s.length()];
for (int i=0; i<s.length(); i++)

if (s.charAt(i) == cl)
res[i] = e2;

else
res[i] = s.charAt (i);

return new String(res); // A string containing the characters of res

}

18 Arrays

8.3 Multidimensional Arrays

The types of multidimensional arrays are written t [1[], t[]1[][], and so on. A rectangular n-dimensional
array of size 1 x €y x --- x £, is created (allocated) using the array creation expression

new t[f1][f2]...[,]

A multidimensional array a of type t [][] is in fact a one-dimensional array of arrays; its component arrays
have type t[]. Hence a multidimensional array need not be rectangular, and one need not create all the
dimensions at once. To create only the first X dimensions of size £} X {3 X -+ x {; of an n-dimensional array,
leave the (n — k) last brackets empty:

new t[€][fa].. . [k] ... []

To access an element of an n-dimensional array a, use n index expressions: a[i;] [i2] ... [i;].

8.4 The Utility Class Arrays

Class Arrays from package java.util provides static utility methods to compare, fill, sort, and search arrays,
and to create a collection (chapter 22) or stream (chapter 24) from an array. The binarySearch, equals,
fill, parallelSort, and scrt methods are overloaded also on arrays with element type byte, char, short,
int, long, float, double, Object, and generic type parameter T; and the equals and £ill methods also
on type boolean. The Object versions of binarySearch and sort use the compareTo method of the array
elements, unless an explicit Comparator object (section 22.9) is given.

e static List<T> asList(T... a) returnsa List<T> view (section 22.2) of the elements of parameter
array a, in index order. The resulting list implements interface RandomAccess.

e static int binarySearch(byte[] a, byte k) returns an index i>=0 for which a[i]==k, if any;
otherwise returns 1<0 such that (-i-1) would be the proper position for k. The array a must be sorted,
as by sort (a), or else the result is undefined.

e static int binarySearch(Object[] a, Object k) works like the preceding method but com-
pares array elements using their compareTo method (section 22.9 and example 134).

e static int binarySearch(Object[] a, Object k, Comparator cmp) works like the preceding
method but compares array elements using the method cmp. compare (section 22.9).

e static boolean equals(byte[] al, byte[] a2) returns true if al and a2 have the same length
and contain the same elements, in the same order.

e static boolean equals(Object([] al, Object[] aZ2) works like the preceding method but com-
pares array elements using their equals method (section 22.9).

e static void fill (byte[] a, byte v) sets all elements of a to v.

e static void fill (byte[] a, int from, int to, byte wv) sets a[from.. (to-1)] tov.

Arrays 19

Example 22 Creating Multidimensional Arrays
Consider this rectangular 3-by-2 array and this two-dimensional “jagged” (lower triangular) array:

0.0 00 0.0
0.0 00 0.0 00
00 00 0.0 00 0.0

The following program shows two ways (r1, r2) to create the rectangular array, and three ways (t1, t2, t3) to
create the “jagged” array:

double[][] rl = new double[3][2];
double[][] r2 = new double[3][];
for (int i=0; 1i<3; i++)

r2[i] = new double[2];

double[][] tl = new double[3][];
for (int i=0; 1i<3; i++)
tl1[i] = new double[i+l];
double[][] t2 ={ { 0.0 }, { 0.0, 0.0}, { 0.0, 0.0, 0.0} };
double[][] t3 = new double[][] { { 0.0 }, { 0.0, 0.0 }, { 0.0, 0.0, 0.0 } };

Example 23 Using Multidimensional Arrays

The genetic material of living organisms is held in DNA, conceptually a string AGCTTTTCA of nucleotides
A, C, G, and T. A triple of nucleotides, such as AGC, is called a codon; a codon may code for an amino acid.
This program counts the frequencies of the 4-4 -4 = 64 possible codons, using a three-dimensional array freq.
The auxiliary array fromNuc translates from the nucleotide letters (A,C,G,T) to the indexes (0,1,2,3) used in
freq. The array toNuc translates from indexes to nucleotide letters when printing the frequencies.

static void codonfreq(String s) {

int[] fromNuc = new int[128];
for (int i=0; i<fromNuc.length; i+t+)

fromNuc[i] = -1;
fromNuc[’a’"] = fromNuc['A'] = 0; fromNuc[’c’] = fromNuc['C’] = 1;
frombluc[’g’] = fromNuc[’'G'] = 2; fromNuc[’'t'] fromNuc['T'] 3;
int[][][] freg = new int[4]([4][4];
for (int i=0; it+2<s.length(); i+=3) {

int nuecl = fromNuc[s.charAt(i)];

int nucZ = fromNuc[s.charAt (i+l)];

int nuc3 = fromluc|[s.charAt (i+2)];

freq[nucl] [nuc2] [nuc3] += 1;
1
final char[] toNuc = { 'A', 'C", 'G", "T" };
for (int i=0; i<4; i++)

for (int j=0; j<4; Jj++) {

for (int k=0; k<d4; k++)
System.out.print (" "+toNuc[i]+toNuc[j]l+toNuc[k]+": " + freqg[i]l[j][k]);
System.out.println(};
}

r

22 Classes

9 C(lasses

9.1 Class Declarations and Class Bodies

A class-declaration of class C has the form

class-modifiers class C extends-clause implements-clause
class-body

A declaration of class C introduces a new reference type C. The class-body may contain declarations of fields,
constructors, methods, nested classes, nested interfaces, and initializer blocks. A class declaration may take
type parameters and be generic; see section 21.4. The declarations in a class may appear in any order:

{
field-declarations
constructor-declarations
method-declarations
class-declarations
interface-declarations
enum-type-declaration
initializer-blocks

}

A field, method, nested class, nested interface, or nested enum type is called a member of the class. A member
may be declared static. A non-static member is also called an instance member.

The scope of a member is the entire class body, except where shadowed by a variable or parameter or
by a member of a nested class or interface. The scope of a (static) field does not include (static) initializers
preceding its declaration, but the scope of a static field does include all non-static initializers. There can be no
two nested classes, interfaces, or enum types with the same name, and no two fields with the same name, but a
field, a method, and a class (or interface or enum type) may have the same name.

By static code we mean expressions and statements in static field initializers, static initializer blocks,
and static methods. By non-static code we mean expressions and statements in constructors, non-static field
initializers, non-static initializer blocks, and non-static methods. Non-static code is executed inside a current
object, which can be referred to as this (section 11.10). Static code cannot refer to non-static members or to
this, only to static members.

9.2 Top-Level Classes, Nested Classes, Member Classes, and Local Classes

A top-level class is a class declared outside any other class or interface declaration. A nested class is a class
declared inside another class or interface. There are two kinds of nested classes: a local class is declared inside
a method, constructor, or initializer block; a member class is not. A non-static member class, or a local class
in a non-static member, is called an inner class, because an object of the inner class will contain a reference to
an object of the enclosing class. See also section 9.11.

9.3 Class Modifiers

For a top-level class, the class-modifiers may be a list of public and at most one of abstract or final. Fora
member class, they may be a list of static, at most one of abstract or final, and at most one of private,
protected, or public. For a local class, they may be at most one of abstract or final.

Classes 23

Example 27 Class Declaration
The Point class is declared to have two non-static fields x and y, one constructor, and two non-static methods.
It is used in examples 12 and 52.

class Point {
int x, v;

Point (int x, int y) { this.x = x; this.y = vy; }
void move (int dx, int dy) { x += dx; y += dy; }

public String teString() { return "(" + x + ", "+ y + ")"; }

}

Example 28 Class with Static and Non-static Members
The SPoint class declares a static field allpoints and two non-static fields x and y. Thus each SPoint object
has its own x and vy fields, but all objects share the same allpoints field in the SPoint class.

The constructor inserts the new object (this) into the ArrayList object allpoints (section 22.2). The
non-static method get Index returns the point’s index in the array list. The static method get Size returns the
number of SPoints created so far. The static method getPoint returns the i’th SPoint in the array list. Class
SPoint is used in example 59.

class SPoint |
static ArrayList<SPeint> allpoints = new ArrayList<SPoint>{();
int x, v;

SPoint (int x, int y) { allpoints.add(this); this.x = x; this.v = vy; }
void move (int dx, int dy) { x += dx; y += dy; }

public String toString() { return "(" + x + ", "+ vy + ")7"; |}

int getIndex() { return allpoints.indexOf (this); }

static int getSize() { return allpoints.size(); }

static SPoint getPoint(int i) { return allpoints.get(i); }

Example 29 Top-Level, Member, and Local Classes
See also examples 42 and 47.

class TLC { // Top-level class TLC
static class SMC { ... } // Static member class
class NMC { ... } // Non-static member (inner) class
void nm() | // Non-static method in TLC
class NLC { ... } // Local (inner) class in method
1
static void sm() { // Static method in TLC

class SLC { ... } // Local class in method
1

