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Preface

Instructors have observed, when teaching junior level courses in
abstract algebra, number theory, or real variables, that many
students have difficulty out of proportion to the level of difficulty of
the material. In an abstract algebra course introducing groups and
rings, students’ struggles are not affected by the changing of texts,
instructors, or the order of presentation. Similarly, experimenting
with courses in real variables (say, by treating only functions of a
single variable instead of functions on euclidean n-space) offers
little relief. The cause of this problem is plain when one considers
the previous mathematics courses. The standard calculus
sequence is presented, nowadays, to students from various
disciplines who have different backgrounds, abilities, and goals,
with the aim of teaching them how to differentiate, how to
integrate, and how to use these techniques to solve problems.
Theorems are stated but usually not proved; hypotheses of
theorems are often not verified before applying the theorems (e.g.,
does one always check whether a given function is continuous?);
definitions are given (e.g., limit and convergence) but not taken
seriously. After two years of such “mathematics,” is it any wonder
that a junior-level student is woefully unprepared to read and do
real mathematics?

There are two possible solutions to this problem. The obvious
solution, revise the calculus sequence, is impractical. Many have
tried; many are trying. | wish success to those still fighting the
good fight, but | am pessimistic about there being a revolution in
undergraduate mathematics, and | am even more pessimistic
about there being such a revolution tomorrow. After all, scientists



and engineers cannot afford the extra time before using calculus
in their own domains, and so calculus courses are necessarily
compromises between teaching the techniques of calculus and
teaching an understanding of its principles.

My solution is a one semester intermediate course between
calculus and the first courses in abstract algebra and real
variables. This is not a new idea. There are many such “transition
courses” designed to prepare students for junior-level courses, but
they emphasize the elements of logic (from modus ponens and
truth tables through quantifiers) and set theory (from Boolean
operations through relations and functions). | find this material
rather dull and uninspiring, and | imagine that this feeling is shared
by most students. Of course, these things should be learned
eventually; as Hermann Weyl wrote, “Logic is the hygiene that the
mathematician practices to keep his ideas healthy and strong.” It
is cruel, however, to inflict an entire course comprised of such
things on defenseless students. And it doesn’t work; my
unscientific observations indicate that those students who survive
such tedious material do not fare any better in subsequent
courses than do those who were spared. George Pdlya wrote,
“When introduced at the wrong time or place, good logic may be
the worst enemy of good teaching.” | have attached an appendix,
Glossary of Logic, at the end of the book, covering much of this
material. Although this section is too brief an account to qualify as
a text for a standard course, it is a place where readers can look
to resolve the usual questions that tend to arise.

An introductory course should contain valuable material, it must
be interesting, and it must give a fairly accurate picture of what
mathematics really is and what mathematicians do. One learns
how to read and write proofs by reading and writing them; merely
reading about mathematics is not an adequate substitute for
actually doing mathematics. This book begins with some very
elementary mathematics — induction, binomial coefficients, and



polygonal areas — because, when starting out, readers must be
allowed to focus on the writing and reading of proofs without the
distraction of absorbing unfamiliar ideas at the same time. From
the outset, complete proofs are given to serve as models for the
reader. The presentation is a coherent story, with historical and
etymological asides, because it is more interesting and more
natural to watch a subject grow and develop. The journey
continues with elementary area problems, the irrationality of ¥2,
the Pythagorean theorem, Pythagorean triples after Diophantus,
and trigonometry. The Diophantine method of finding Pythagorean
triples by parametrizing the circle with rational functions is
extended to finding such parametrizations of other conic sections,
and this leads to a glimpse of elliptic integrals. Next, one passes
to disks, proving the area and circumference formulas (due to
Eudoxus and Archimedes, respectively) essentially in the classical
way. This early notion of approximation is subtle, but it is
digestible because one can see areas of inscribed polygons
approaching the area of the disk. One notes afterward, however,
that this early notion has defects. Seeing how convergence
remedies defects of the classical notion gives the reader a better
understanding and appreciation of the modem definition of limit.
We then see why (=1) x (=1) = +1, discuss the quadratic formula,
complex numbers, De Moivre’s theorem, the cubic formulas
(Cardano’s version in terms of radicals as well as Viete’s
trigonometric version), discriminants, and the quartic formula. The
text ends with proofs of the irrationality of e, the irrationality of
some specific values of sine and cosine, and the irrationality of 1.
Thus, geometry, algebra, number theory, and analysis are all
intertwined. The journey travels a road from humble beginnings to
a fairly sophisticated destination. | hope that students and
instructors will enjoy this text, and that it will serve the several
aims set forth for it.

| thank Paul Bateman, Richard Bishop, Peter Braunfeld, Everett



Dade, Heini Halberstam, Carl Jockusch, Daniel Saltz, Donald
Sherbert, and Kenneth Stolarsky for their excellent suggestions. |
give special thanks to Philippe Tondeur, whose notes on similar
material were the starting point of this text, and | also give special
thanks to J.-P Tignol, for permitting me to quote an excerpt from
his wonderful book about Galois’s theory of equations. | give extra
special thanks to John Wetzel and Leon McCulloh who made
many fine suggestions as they were teaching from a preliminary
version of this text; they generously allowed me to use the ones |
liked, and they did not complain in the rare cases when | did not
use one. It also gives me great pleasure to thank my daughter,
Ella Rose, for drawing and producing all the figures in the book.

| thank Joyce Woodworth for an excellent job of typing my
manuscript in LaTeX, and | thank Adam Lewenberg for his expert
help in the final stages of LaTeX typesetting. Lastly, | thank the
reviewers for their good suggestions:

Linda A. Bolte, Eastern Washington University
Thomas G. Clarke, North Carolina A&T State University
Donald Nowlin, Eastern Washington University
Michael Stecher, Texas A&M University
David Walnut, George Mason University.

Joseph Rotman



TO THE READER

Histories make men wise; poets, witty; the mathematics,
subtile; natural philosophy, deep; moral, grave; logic
and rhetoric, able to contend.

Francis Bacon

One of the main purposes of this book is to help you learn how
to read and write proofs. To further this aim, much of the early
material is familiar (even at the beginning, however, there are new
and interesting things) to allow you to focus on giving complete
and clear proofs without distractions.

A proof is an explanation why something is true. There is a
notion of formal proof, which is essentially an explanation to a
machine, but we are concerned here with giving proofs to
humans. Just as one does not give the same explanation to a ten-
year old that one gives to an adult, one’s proof, one’s explanation,
depends on whom one is speaking to. The audience for all of your
proofs is not your instructor (who already knows the reasons!);
your explanations are to be directed towards students in class,
one of whom is yourself. Adequate reasons must be given to
defend assertions against any possible objection; on the other
hand, there is no need to explain why 3 = 3. Try your best to say
enough to persuade, and try your best not to put others to sleep
by belaboring the obvious. One role of the proofs in the text is to
serve as models for your own proofs. Because one becomes more
sophisticated as one learns, the proofs in the text also change;



certain points made explicit in the beginning are later left unsaid.

Some people think that a proof must be full of symbols, looking
like ancient Egyptian hieroglyphics. Not so. Look in any
mathematics book, and you will find words. Your proofs should be
written in complete sentences. Of course, you may use symbols
and pictures if necessary, but remember that a symbol is like a
pronoun; it means nothing unless it is specified. Just as you
wouldn’t begin a story by saying, “He gave some of it to him

there,” you must not begin a proof by saying that x = y2 without
telling what x and y are (are they numbers? real? rational?
integers? positive?).

Even though the context of this course is largely elementary, do
not be lulled into thinking that it is an easy course with an
inevitable grade of A at its conclusion. There are challenges
within. If one wants the reward Bacon mentions, then there is no
alternative but to do some mathematics. The journey may have
some difficulties, but its goals are valuable. As Bacon says, the
reward is understanding, subtlety and, we may add, pleasure.



TO THE INSTRUCTOR

There are several aims of this text:

to teach students how to read and write proofs;
to teach some valuable mathematics:
to show how attractive mathematics is.

Divide the course into three parts. Part | covers the first two
chapters. Because students are learning the mechanics of writing
proofs, one should proceed slowly. Students write proofs from the
outset, using the proofs in the text, as well as the instructor's
exposition, as models for their own proofs. Each student is
assigned an exercise very early in the term that must be
presented before the class. He or she has several days to prepare
it, and prior discussion with other students and with me is
encouraged. | assign no grade to the performance, the student is
allowed to use any notes, and the class is allowed to heckle (I try
not to make any comments until the end of the presentation). This
exercise reinforces the notion that proofs are designed as
explanations to the class. Regular homework assignments should
be graded for presentation as well as for correctness.

Part Il of the course covers Chapter 3. Some of the synthetic
geometry in proving the area and circumference formulas can be
done lightly, if desired. The basic idea of the chapter is to
introduce convergence of sequences only after students have
acquired some geometric experience with the simpler classical



notion of limit.

Part Il covers Chapter 4; the most important material is
complex numbers and their application, via De Moivre’s theorem,
to real numbers.

There will not be sufficient time in most courses to cover all the
material in the text. The instructor should decide on what material
to omit consistent with his or her goals for the course. | have found
that students (and I) enjoy the historical and etymological asides,
but | do not discuss them in class unless a question arises.



Chapter 1

Setting Out

INDUCTION

So, naturalists observe, a flea

Hath smaller fleas that on him prey;
And these have smaller still to bite 'em;
And so proceed ad infinitum.

Jonathan Swift

There are many styles of proof, and mathematical induction is
one of them. We begin by saying what mathematical induction is
not. In the natural sciences, inductive reasoning is based on the
principle that a frequently observed phenomenon will always
occur. Thus, one says that the sun will rise tomorrow morning
because, from the dawn of time, the sun has risen every morning.
This is not a legitimate kind of proof in mathematics, for even
though a phenomenon occurs frequently, it may not occur always.

Inductive reasoning is valuable in mathematics, because seeing
patterns often helps in guessing what may be true. On the other
hand, inductive reasoning is not adequate for proving theorems.
Before we see examples, let us make sure we agree on the
meaning of some standard terms.



Definition. An integeris one of 0,1,-1,2,-2,3,-3, .---

Definition. An integer p = 2 is called a prime number! if its only
positive divisors are 1 and p. An integer m = 2 which is not prime
is called composite.

A positive integer m is composite if it has a factorization m = ab,
where a < m and b < m are positive integers; the inequalities are
present to eliminate the uninteresting factorization m=mx 1.
Notice that a = 2: since a is a positive integer, the only other
option is a = 1, which implies b = m (contradicting b < m); similarly,
bz2.

The first few primes are 2, 3, 5,7, 11,13, 17, 19, 23, 29, 31, 37,
41. That this sequence never ends is proved in Exercise 2.10.

Consider the statement:

f(n) = n“-n+41isa prime number for every n = 1

(this is really a whole family of statements, one for each positive
integer n). As we evaluate fin)forn=1, 2, 3, 4, --- , 40, we obtain
the following values:

41,43,47,53,61,71, 83,97, 113, 131,

151, 173,197, 223, 251, 281, 313, 347, 383, 421,

461, 503, 547, 593, 641, 691, 743, 797, 853, 911,

071, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601.

It is tedious but not difficult (see Exercise 1.7) to prove that every
one of these numbers is prime. Can we now conclude that all the



numbers of the form f(n) are prime? For example, is the next
number f(41) = 1681 prime? The answeris no: f(41) =412 — 41 +

41 = 412, which obviously factors, and hence f(41) is not prime.

Here is a more spectacular example (which | first saw in an
article by W. Sierpinski). A perfect square is an integer of the
form a2 for some positive integer a, the first few perfect squares

are: 1, 4,9, 16, 25, 36, 49. Consider the statements S(n), one for
eachn=1:

S(n) : 991n? + 1 is not a perfect square.

It turns out that many of the statements S(n) are true. In fact, the
smallest number n for which S(n) is false is

n = 12,055, 735,790, 331, 359, 447, 442, 538, 767
~ 1.2 x 1048,

The original problem is a special case of Pell’s equation (given a

prime p, when are there integers m and n with m? = pn2 + 1), and
there is a way of calculating all possible solutions of it. In fact, an
even more spectacular example of Pell’s equation involves the

prime p =1, 000, 099; the smallest n for which 1, 000, 099n? + 1
is a perfect square has 1116 digits.) The latest scientific estimate
of the age of the earth is 20 billion (20,000,000,000) years, or

about 7.3 x 1012 days, a number very much smaller than 1.2 x

1028, let alone 101112 If, starting on the very first day, mankind
had verified statement S(n) on the nth day, then there would be,
today, as much evidence of the general truth of these statements
as there is that the sun will rise tomorrow morning. And yet some



statements S(n) are false!

As a final example, let us consider the following statement,
known as Goldbach’s Conjecture: Every even number m=4is a
sum of two primes. For example,

4=2+2

6=3+3

8=3+5
10=34+7=5+5
12=5+4+7
14=34+11=7+7
16=34+13=5+11
1I8=5+13=7+11
20=3417=7+13
22=34+19=54+17=11+11.

It would be foolish to demand that all odd numbers be sums of two
primes. For example, suppose that 27 = p + g, where p and g are
primes. If both p and q are odd, then their sum is even,
contradicting 27 being odd. Since the only even prime is 2, we
have 27 = 2 + g, and so g = 25 is prime; this contradiction shows
that 27 is not a sum of two primes.

No one has ever found a counterexample to Goldbach’s
conjecture, but neither has anyone ever proved it. At present, the

conjecture has been verified for all even numbers m < 10"3 by H.
J. J. te Riele and J.-M. Deshouiillers. It has been proved by J.-R.
Chen (with a simplification by P. M. Ross) that every sufficiently
large even number m can be written as p + q, where p is prime
and g is “almost” a prime; that is, g is either prime or a product of
two primes. Even with all this positive evidence, however, no
mathematician will say that Goldbach’s conjecture must, therefore,



be true for all even m.

We have seen what mathematical induction is not; let us now

discuss what induction? is. Suppose one guesses that all the
statements S(n) of a certain sort are true (for example, suppose
that S(n) has been observed to be true for many values of n).
Induction is a technique of proving that all the statements S(n) are,

indeed, true. For example, the reader may check that 2" > n for
many values of n, but is this inequality true for every value of n?
We will prove below, using induction, that this is so.

The key idea is just this. Imagine a stairway to the sky; if its first
step is white, and if the next step above a white step is also white,
then all the steps of the stairway must be white. One can trace this
idea back to Levi ben Gershon in 1321. There is an explicit
description of induction (cited by Pascal) written by Francesco
Maurolico in 1557.

Our discussion is based on the following property of positive
integers (usually called the Well Ordering Principle).

Least Integer Axiom®. Every nonempty collection C of positive
integers has a smallest number in it.

Saying that C is nonempty merely means that there is at least
one integer in the collection C.

The Least Integer Axiom is certainly plausible. Given a
nonempty collection C, check whether 1 is a numberin C; if it is,
then 1 is the smallest number in C. Otherwise, check whether 2 is
anumberin C; ifitis, then 2 is the smallest number in C; if not,
check whether 3 is a number in C. Continue this procedure; since
there is some number in C, we will eventually bump into it.



The Least Integer Axiom can be restated in a more useful way.

Theorem 1.1 (Least Criminal). Let S(n) be a family of
statements, where n varies over some nonempty collection of
positive integers. If some of these statements are false, then there
is a first false statement.

Proof. Let C be the collection of all those positive integers n for
which §(n) is false; by hypothesis, C is nonempty. The Least
Integer Axiom provides a smallest number min C, and S(m) is the
first false statement.

Theorem 1.2. Every integer n = 2 is either a prime or a product of
primes.

Proof. Were this not so, there would be a “least criminal” m; that
iIs, m= 2, mis neither a prime nor a product of primes, and m is
the smallest such integer. Since m is not a prime, it is composite:
there is a factorization m = ab with a < m and b < m. Because mis
the least criminal, both a and b are “honest”; i.e., a = pp'p“for
primes p, p’, p’, --- ,and b =qq'q" --- for primes q, q, 9", .-
Therefore, m=pp'p" --- qq'q" --- is a product of (at least two)
primes, a contradiction.

Mathematical induction is a version of Least Criminal that is
usually more convenient to use.

Theorem 1.3 (Mathematical Induction). Let S(n) be a family of
statements, one for each n = 1, and suppose that:

(i) S(1) is true, and



(i) if S(n) is true, then S(n + 1) is true.

Then S(n) is true for every n =z 1.

Proof. It suffices to show that there are no integers n for which
S(n) is false; that is, it suffices to show that the collection

C = all positive integers n for which S(n) is false

is empty.

If, on the contrary, C is nonempty, then there is a first false
statement, say, S(m). Since S(1) is true, by (i), we must have m =
2. This implies that m— 1 =1, and so there is an (m — 1)st
statement S(m — 1) [there is no statement S(0)]. As mis the least
criminal, m — 1 must be honest; that is, S(m— 1) is true. But (ii)
says that S(m) = S(I[m— 1] + 1) is also true, and this is a
contradiction. We conclude that C is empty and, hence, that all the
statements are true.

Before we illustrate how to use mathematical induction, let us
make sure we can manipulate inequalities. We recall that if two
real numbers a and b are both positive, i.e., a>0and b > 0, then

ab, a + b and 1/a are also positive. On the other hand, the product
of a positive number and a negative number is negative.

Definition. For any two real numbers ¢ and d, define

d<c

to mean that ¢ — d is positive. We write d < ¢ to mean eitherd < ¢



ord=c.

Noticethatifa>band b>c,thena>c[fora—-c=(a—-b)+ (b
— ¢) is a sum of positive numbers and, hence, is itself positive].
One often abbreviates these two inequalities as a > b > c. The
reader may check thatifa > b = c, then a > c.

Theorem 1.4. Assume that b < B are real numbers.

(i) If mis positive, then mb < mB, whereas if m is negative, then
mb > mB.

(i) For any number N, positive, negative, or zero, we have

N+b<N+BandN-b>N-B.

(iii) Let c and d be positive numbers. If d < c, then 1/d > 1/c, and,
conversely, if 1/c < 1/d, then ¢ > d.

Proof. (i) By hypothesis, B—- b > 0. If m > 0, then the product of
positive numbers being positive implies that m(B — b) = mB — mb
is positive; that is, mb < mB. If m < 0, then the product m(B - b) =
mB — mb is negative; that is, mB < mb.

(i) The difference (N + B) — (N + b) is positive, for it equals B — b.
For the other inequality, (N - b) — (N - B) = - b + Bis positive,
and, hence, N-b >N-B.

(i) If d < ¢, then ¢ — d is positive. Hence, 1/d-1/c = (c — d)/cd is
positive, being the product of the positive numbers ¢ - d and 1/cd
(by hypothesis, both c and d are positive). Therefore, 1/d > 1/c.
Conversely, if 1/c < 1/d, then part (i) gives d = cd(1/c) < cd(1/d) =



c; thatis, c> d.

To illustrate, since 3 < 4, we have

O9%x3=27T<36=9x4;
(i)

(=9) x3=-27> -36=(-9) x4,
94+3=12<13=9+4,
9—3=6>5=9-4;

(if)

1-025<033<1.

(i)

It is always a good idea to see concrete examples of a theorem,
for it makes the result more understandable by putting flesh on the
bones of the statement. This is the first step in appreciating what a
theorem means, and so it is an important habit to cultivate.
Indeed, mathematics must be read with pencil and paper. If no
example is given in a text, supply your own. There is an

apocryphal story of a theorem so general that no particular case is
known. Such a theorem would be bad mathematics.

Theorem 1.5.2" > nforalln=1.

Proof. Regard this inequality as a sequence of statements, where



the nth statement S(n) is:

S(n) :2" > n.

There are two steps required for mathematical induction.

Base step: The initial statement
S(1): 21> 1
is true, for21 =2 > 1.

Inductive step: If S(n) is true, then S(n + 1) is also true; that is,

if one uses the inductive hypothesis S(n) : “2" > n is a valid
inequality,” then one can prove

S(n+1): 2M1 > n+ 1.
First, multiply both sides of 27 > n by 2; Theorem 1.4(i) gives
21 =2 x 27> 2n,

Now 2" =n+n2n+ 1 (because n 2 1); therefore, 271 >2n2n +
1, and so 21> n + 1, as desired.

Having verified both the base step and the inductive step, we
conclude that 27> nforalln 2 1.



Induction is plausible in the same sense that the Least Integer
Axiom is plausible. Suppose that statements S(1), S(2), S(3), -
satisfy the hypotheses of mathematical induction. Since S(1) is
true, so is S(2); since S(2) is true, so is S(3); since S(3) is true, so
is S(4); and so forth. Induction replaces the phrase and so forth by
the inductive step; this guarantees, for every n, that there is never
an obstruction in the passage from a statement S(n) to the next
one, S (n+1).

Here are two comments before giving more applications of
induction. First, one must verify both the base step and the
inductive step; verification of only one of them is inadequate. For

example, consider the statements S(n): n? = n. The base step
S(1) is true, but one cannot prove the inductive step (of course,
these statements are false for all n > 1). Another example is given
by the statements S(n): n > n+1. The next statement, S(n+1), is:
n+1 > n+2, and Theorem 1.4(ii) shows that the inductive step is
true:if n>n + 1, then adding 1 to both sides givesn+ 1> (n+ 1)
+ 1. But the base step is false (of course, all these statements are
false).

Second, when first seeing induction, many people suspect that
the inductive step is circular reasoning: one is using S(n), and this
is what one wants to prove! A closer analysis shows that this is
not at all what is happening. The inductive step, by itself, does not
prove that S( n + 1) is true. Rather, it says that if S(n) is true, then
one can prove that S(n+1) is also true. In other words, the
inductive step proves that the implication “If S(n) is true, then S(n
+ 1) is true” is correct. The truth of this implication is not the same
thing as the truth of its conclusion. For example, consider the two
statements: “Your grade on every exam is 100%” and “Your grade
in the course is A.” The implication: “If all your exams are perfect,
then you will get the highest grade in the course” is true.
Unfortunately, this does not say it is inevitable that your grade in



the course will be A. The truth of an implication together with the
truth of its hypothesis guarantee the truth of the conclusion; the
truth of only the implication does not guarantee the conclusion.
Our discussion above gives a mathematical example. The
implication “If n>n+ 1,thenn+ 1> n+ 2" is correct, but the
conclusion n+ 1 > n + 27 is false. (There is a discussion of
implication, from the viewpoint of truth tables, given in the
Glossary at the end of the book.)

This is an appropriate time to mention the converse of an
implication. The converse of “If P is true, then Q is true” is the
implication “If Q is true, then P is true.” It is possible that both an
implication and its converse are true, in which case we say: “Pis
true if and only if Q is true.” On the other hand, it is possible that
an implication is true but that its converse is false. For example,
the converse of the implication: “If all your exams are perfect, then
you will receive the highest grade in the course” is “If you received
the highest grade in the course, then all your exams were perfect.”
Fortunately, this converse is false. One need not be perfect to
receive the grade A. According to my grading scheme, you
receive the grade A in the course if and only if your exams
average 90% or higher.

The next application of induction verifies a formula giving the
sum of the first n integers.

Theorem 1.6, 1 +2+ +n=3n(1+1) o ayery p 2 1.

Proof. The proof is by induction.

Base step. If n = 1, then the right side is 11+ D=1 and the
left side is 1, as desired.

Inductive step: It is always a good idea to write the (n + 1) st



statement S(n + 1) (so one can see what has to be proved). We

must show that the sum of the first n + 1 integers is given by the
formula:

142+ +n+@n+1) =30+ +2).

=1
Using the inductive hypothesis S(n) : 142+ 4n=3nn+ D w

can rewrite the left side

€

(424 -+nl+@E+D=in(r+ 1D+ @n+1),

and high school algebra shows that 3 +D+n+1) = 3 +1)(n+2).
We have verified the two steps necessary for induction, and so we
can conclude that the formula is true forevery n = 1.

Example. Here is an application of this last formula. How many
pairs of positive integers (a, b) are there witha<b <12? If b = 2,
thena=1ifb=3,thena=1or2;ifb=4,thena=1,2,0r3; - ;
ifb=11,thena=1,2, ---, or 10. The number of such pairs (a, b)
isthus 1+ 2 + ... + 10, and Theorem1.6 says that this sum is

i
equal to $10% 11 =55

There is a story told about the great mathematician Gauss as a
boy. One of his teachers asked the students in his class to add up
all the numbers from 1 to 100, thereby hoping to get some time for
himself (the story assumes that no one in the school knew
Theorem 1.6). But Gauss quickly volunteered that the answer is
25050. Here is what he may have done (without induction). Let s
denote the sum of all the numbers from 1 to 100: s=1+2+ ... +
99 + 100. Of course, s=100+99 + --- + 2 + 1. Arrange these



nicely:

s = 1+ 2+ - 4+ 9 + 100
s = 100 + 99 4+ --- + 2 + L

now add the 100 columns:

2s = 101 + 101 + --- + 101 + 101
= 101 x 100= 10,100,

and s = 5050. The same argument works for any number in place
of 100. Not only did Gauss give a different proof of Theorem 1.6,
but he also discovered its formula. Induction is a technique of
proof, but it is not a method of discovery. We displayed the
formula for the sum of the first n integers in Theorem 1.6, and we
used induction to prove it, but we did not say how the formula was
found. The formula was not discovered by induction; it arose in
some other way.

Example. Here is a problem using both inductive reasoning and
mathematical induction. We seek a formula for the sum of the first
nodd numbers:1+3+ 5+ -.- +(2n—1). Alist of the sums forn =
1,2,3,4,5is1,4,9, 16, 25. These are perfect squares; better,

they are 12 22, 32 42 52 |nductive reasoning suggests the guess

S(n): 1+3+5+ ... +2n—-1)=n2

A formula has been discovered. We now use mathematical
induction to prove that this guess is always true. The base step
S(1) has already been checked. For the inductive step, we must



prove
S(n+1):[1+3+ -+ @2n=1)]+@2n+1)=(n+1)2.

By the inductive hypothesis S(n) : 1+3+5+...+(2n-1) = n?; the
bracketed term on the left side is n?, and so the left side equals n?
+2n+1)=(n+ 1)2. By induction, S(n) is true forall n = 1.

Theorem 1.7. Assuming the product rule from calculus, one has
(x"Y =nx"Tforalln=1,

where' denotes derivative.

Remark. Recall that the product rule says

[FX)9()T = F(x)g(x) + Ax)G(X).

Proof. We proceed by induction.

Base step. If n = 1, then we are asking whether (x)' = x9=1.
Now f(x) = limp_,o(1/h)[f(x + h) — f(x)]. When f(x) = x, therefore, (x)’
= limp_o(1/h)[x + h—x] = limp_,g hth = 1.

Inductive step. We must prove that (x™1) = (n + 1)x" using the

nth statement S(n) : (x") = nx™'. Since x™*1 = xx”, the product
rule and the base step give



E"Y = @xx") = x)x"+xEx"

= x"+x(mx"YH =@+ Dx".

We conclude that (x")' = nx™1is true for all n = 1.

We have just seen that the base step of an inductive proof need
not be a triviality; sometimes it is easier to prove than the inductive
step, and sometimes it is not.

The base step of an induction may occur at an integer other
than 1. For example, consider the statements

S(n) : 2" > n?.
Now S(n) is not true for small n: if n = 2 or 4, then there is equality,

not inequality; if n = 3, we have 23=8<9=32 an inequality in
the wrong direction. However, S(5) is true, for 2% =32>25=52,

Theorem 1.8. 2" > n? is true for all n = 5.

Proof. We have just checked the base step S(5). In proving the
inductive step 2™ > (n + 1)2, we may assume not only the
inductive hypothesis 2" > n® butalsonz5 (actually, we will need
only n = 3). Multiplying 2" > n? by 2 gives

2M1 =92 x 2N 5202 = n2 + n2=n? + nn.



Since n= 5, we have n= 3 and so
nnz3n=2n+nz2n+1.
Therefore,
21 > n2 4 2n+ 1 = (n+1)2. -

We have seen that the base step of an induction can begin at n
=1 oratn=2>5. Indeed, the base step of an induction can begin at
any integer k; of course, the conclusion of such an induction is
that the statements are true for all n = k. If there is a statement
S(0), one may also start an induction with base step atn=0. On

occasion, one finds an induction beginning at n = — 1.4

One often begins an inductive proof with the phrase, “The proof
is by induction on n = k.” This serves to alert the reader not only
that an induction is coming up and that the base step will be at k,
but also to indicate which of several variables in a statement will
be relevant to the induction. For example, consider the statement,

“(m+ 1)" > mn.” If | say that | will prove this by induction, do you
expect that m is fixed and that the base stepn=1saysm+1 >
m, or do you expect that n is fixed and that the base step m = 1

says 2" > n? Stating that the proof is by induction on n = 1 makes
one’s strategy clear.

So far, we have used induction to prove some minor results; let
us now use it to prove something more substantial. Observe that if
x and y are positive real numbers, then the identity



(X + Yy = (x—y)? + 4xy

gives

B+l =xy+ & -

It follows that
(3(x + P = xy,
. [1ix = Y . . . o
with the term 'z — 77 showing why, in general, the inequality is
not an equality. If equality holds, then G =MF =0gnq x = -

conversely, if x = y, then there is equality:
[,r';{x +.1c}]2 = xx, for [%("f —.x)_]’ = 0,.

Here is an application of this observation. The hyperbolic cosine
is defined by

cosh(x) = %(e'Jr + e~%).
Since eXe™ = 1, it follows that
cosh(x) = 1

for all x, with equality if and only if eX = e7; that is, cosh(x) = 1 if
and only if e2X = 1, so that cosh(x) = 1 if and only if x = 0.



Given positive numbers a4, as, -+ , a,, their arithmetic mean is
defined to be their average: A= (a4 + ap + --- + a,)/n, and their

geometric mean is defined to be ¢ = /@42 @ |sing these
new words, we can rephrase what was shown above; the
arithmetic mean of two positive numbers a4 and a» is larger than

their geometric mean, and equality holds precisely when a4 = a5.

We are going to extend this result to many terms, but we begin
with an elementary lemma followed by a normalized version of the
inequality.

Lemma 1.9.1f0<m<1<M,thenm+ M>1+ mM.

Proof. Since the product of positive numbers is positive,
1-mM-1)=M-1-mM+m

is positive. Therefore, M+ m> 1+ mM, as desired.

For example, there are inequalities 0 < sin 8 < 1 < sec @ for any
acute angle 6, and so the lemma gives the inequality

sin@ + sec® > 1 + sin@ sec6 =1 + tané.

Lemma 1.10.If ky , ko, ---, K, are positive numbers with k¢ ko -+
k, =1, then kq + ky + --- + k, 2 n; moreover, equality holds if and
onlyif 1 =ky=ky =--- =k,



Proof. Clearly, ky + ko + --- + k, = nif all k;= 1. Therefore, to prove
both statements, it suffices to show that if kyko --- k, = 1 and not
all k=1, then kq + ko + -+ + k,, > n. We prove this by induction on
nz2.

Base step. Since kqky = 1 and kq # kp, we may assume that 0 <
k1 <1 < ko (if both are strictly larger than 1, then kqk, > 1; if both
are strictly smaller than 1, then k1k, < 1). By the lemma, k4 + ko >
1+ kqky = 2.

Inductive step. Assume that kqko -+ kKp4q1 = 1, Where kq, Ko, -,
k,+1 are positive numbers. We may further assume that some k; <
1: otherwise, all k; =2 1, and the present assumption that not all k; =
1 gives the contradiction k¢k»-* k,,+4 > 1. For notational
convenience, let k4 < 1. A similar argument, with all inequalities
reversed, allows us to assume that k1 > 1. Define a4 = k1kq+1-
Note that a{ky-'k, = k1ko--kh+1 = 1. By the lemma,

K1 +Kne1 > 1+ Kikneq =1+ aq,

so that adding k, + --- +k, to both sides gives

Ky + Ko+ +knthnpy>T+ag+kp+ -+ ky

It remains to show that 1 + aq + ky + -+ +k, =2 n + 1 (for we already
have an earlier strict inequality). If a4 =1 =ky = -+ = k,, then 1 +
aq +ky+--+k,=n+1, and we are done. Otherwise, the



inductive hypothesis applies and gives a4 + k, + - + k,, > n, and
hence1+aj+ky+--+ky,>n+1.

Theorem 1.11 (Inequality of the Means). If a4, a5, -, a, are
positive numbers, then

(@ +a+---+ay)/n>Yaar---an;

moreover, equality holds if and only if a; = a; = --- = a,,.

Proof. Define ¢ = ¥/@a s, gnd define k; = a;/G for all /. It follows
that kqko - k, = aqas - an/G" = 1, and so the lemma gives k +
ko + -+ k,2n;thatis,aq +ap + - +a,2nG,or

(@ +a+:+a)/n=G=2faa; - ay.

Moreover, the lemma adds that there is equality if and only if all
the k; = 1; that is, if and only if all the a; are equal (to G).

We shall give a geometric application of this inequality in
Chapter 2: Of all the triangles with a given perimeter, the one with
the greatest area must be equilateral.

The first proofs we have presented are straightforward, and it is
easy to believe that we could have discovered them. The proof of
the inequality of the means, however, is different; it is not so clear
whether one could have discovered it without some pondering. Is
there a more pedestrian proof? Probably not. Were all proofs in
mathematics routine, there would be a machine that could solve



any problem; press a button and wait until the machine presents
its answer. But it can be proved that no such machine can ever
exist. Your first reaction to this fact of life might be despair, but do
not be discouraged. Mathematics is not the realm of a few
“magicians”; you are not expected to compete with Archimedes,
Gauss, Hilbert, and Poincaré. Each of us is inventive to some
degree, and the more one learns, the more proficient one
becomes. In music, we can listen and thrill to the beauty of Bach,
Mozart, and Beethoven. Even though we cannot compose the
sonatas for unaccompanied violin, Don Giovanni, or the late
quartets, we can still sing.

The following proof of the inequality of the means is due to G.
Poélya, who said that it came to him in a dream. We begin with a
lemma from calculus.

Lemma 1.12. For all numbers x,

eX=1+x,

with equality if and only if x = 0.

Proof. We consider the function f(x) = (1 + x)/e* = (1 + x)e™*

(notice that f (x) is defined for all x, for the denominator e* is never
0). Now

fX)=—(1+x)e " X+e " *=-xe X

sothat f(x)=z0forall x<0,f(0)=0,and f(x) =0 forall x=0.
Hence, f(x) is an increasing function for negative x, it has exactly



one critical point, at x = 0, and it is a decreasing function for
positive x. It follows that f (x) has an absolute maximum at x = 0;
that is,

(1 + x)le* = f(x) < £(0) = 1 for all x.

Therefore, 1 + x < €* for all x, and there is equality precisely when
x=0.

Here is Polya’s proof of the inequality of the means.

Theorem 1.13 (= Theorem 1.11). If a4, a,, --- ,a, are positive
numbers, then

(a1 + ap *+ -+ *ap)n" 2 ajayap;
moreover, equality holds if and only if a1 = a; = -~ = a,,.

Proof (Polya). Let us write A= (aq + ap + --- + a,)/n and
G =Yaa an 5o that G" = aqa, ~-a,. We must show A" 2 G",
with equality if and only if aj=ao= --- =a,.

= -1+

1
For each i from 1 to n, define * 4% By the lemma,



. —1+la 1 1
ef=¢ +za > 1+(—1+Ia;) =;a|'|

(1)

and there is equality if and only if * =1+ X0 = 0. that is,
eX' =1 + x;if and only if a; = A.

We now prove the theorem. The law of exponents gives
(2)

n
ne—H-;}a; — e-n-Hhiat

i=]

But Z?-l il‘ﬂi =(@m+a+--+a)/l(@+a+---+a,)/n]l= n. Hence,
the exponent "+ Xi 48 =-n+n=0 anq 5o

n

I—[e-—l+;1|-a.' =1.

i=1

Therefore, Eq. (1) gives



1= l'Ie"‘*f*‘” > n (%a:) =a1a; --a,/A" = G"/A";

i=l i=1

(3)

that is, A" = G".
If all the a; are equal, say, a; = aforall i, then A = (a(++a,)/n =
na/n = a; that is, a; = A for all i. Therefore, G = aqa, - a, = A"

Conversely, if A" = G", then 1 = G"/A”, and the inequality in Eq.
(3) becomes

11[8‘“ = ﬁ(l +x.~).
i=1

i=1

By the lemma, € = 1+x for all i. If there is strict inequality e*K > 1
+X) for some k, then there is strict inequality I eXl > (1 +x;).
Therefore, e¥' =1 + x;for all i ; by Eq. (2), this gives a; = A for all /.

This is an elegant proof, but we mere mortals must be content
with more mundane ones.

There is another version of induction, usually called the second
form of induction, that is often convenient to use.

Definition. The predecessors of an integer n = 2 are the positive
integers kwith k< n, namely, 1,2, --- , n—-1.



Theorem 1.14 (Second form of induction). Let S(n) be a family
of statements, one for each n = 1, and suppose that

(i) S(1) is true, and
(ii) if S(K) is true for all predecessors k of n, then S(n) is itself true.

Then S(n) is true foralln = 1.

Proof. It suffices to show that there are no integers n for which
S(n) is false; that is, the collection

C = all positive integers n for which S(n) is false

iIs empty.

If, on the contrary, C is nonempty, then there is a least criminal,
that is, there is a first false statement S(m). Since S(1) is true, by
(i), we must have m = 2. As mis the least criminal, k must be
honest for all kK < m; that is, S(k) is true for all the predecessors of
m. By (ii), S(m) is true, and this is a contradiction. We conclude
that C is empty and, hence, that all the statements S(n) are true.

The second form of induction can be used to give a second
proof of Theorem 1.2 (as with the first form, the base step need
not occur at 1).

Theorem 1.15 (= Theorem 1.2). Every integer n =2 2 is either a
prime or a product of primes.

Proof.°. The base step n = 2 is true because 2 is a prime. Let n >
2. If nis a prime, we are done. Otherwise, n = ab, where 2<a<n



and 2 £ b <n(since ais an integer, 1 < aimplies 2 < a). As a and
b are predecessors of n, each of them is either prime or a product
of primes:

a=ppp"-and b= qqq’ -,

and so n=pp'p"-- qq'q" - is a product of (at least two) primes.

The reason the second form of induction is more convenient
here is that it is more natural to use S(a) and S(b) than to use S(n
—1); indeed, it is not at all clear how to use S(n - 1).

Here is a notational remark. When using the second form of
induction, we speak of n and its predecessors, not n+1 and its
predecessors. If one wants to compare the two forms of induction,
one could say that the first form uses S(n — 1) to prove S(n),
whereas the second form uses any or all of the earlier statements
S(1), S(2), ---, S(n — 1), to prove S(n).

The next result says that one can always factor out a largest
power of 2 from any integer.

Theorem 1.16. Every positive integer n has a factorization n =
ka, where k=20and m= 1 is odd.

Proof. We use the second form of induction on n = 1.
Base step: Ifn=1,take k=0and m=1.

Inductive step: If n = 1, then n is either odd or even. If n is odd,
then take k=0 and m=n. If nis even, then n = 2b. Because b <
n, it is a predecessor of n, and so the inductive hypothesis allows

us to assume S(b) : b= 2!m, where £2 0 and mis odd. The



desired factorization is n = 2b = 2% m.

Definition. The Fibonacci sequence Fq, F1, Fp, --- is defined as
follows:

Fo=0,Fi=1,and F,=F,_4+F,_oforallnz2.

Thus, the sequence begins: 0,1, 1, 2,3, 5,8, 13, .-

Theorem 1.17. If F,, denotes the nth term of the Fibonacci
sequence, then

Fy=Jz@" — ")
= 1
forall n 20, where @ = 10+ V5) gnq p=10-V5),

Remark. The number ¢ = %f_] ++/5) is called the golden ratio. The
ancient Greeks called a rectangular figure most pleasing if its
edges a and b were in the proportiona : b= b: a + b. It follows
that b2 = a (a + b), so that b? — ab — a% = 0, and the quadratic

= Ma+JaZ+adad) = gl
formula gives b=3@tva'+da aj(1+ *ﬁ)'. Therefore,

bla=aorbla=g.

Proof. We are going to use the second form of induction [the



second form is the appropriate induction here, for the equation F,
= F,_1 + F,_ o suggests that proving S(n) will involve not only
S(n - 1) but S(n — 2) as well].

Base step. The formula is true forn =0 : R =) =0=F and

L@ -p) = L@-p

= k[a+v5H-1a-v5)]

il
P

(we have mentioned both n =0 and n = 1 because the inductive
step will use two predecessors).

Inductive step. If n = 2, then

F, = Fooi+F
_ _}5'(6‘"_1 _ ﬁﬂ—l) + %(an—z _ﬁn—l)

= :}; [(ﬂ'n_l + an—Z) _ (ﬁn—l +ﬁn—2)]

-

= L[ ia+1) -8B+ 1)

w

=(@" — B"),

|
S

because the numbers a and B are the roots of the quadratic
equation

x2=x+1,



sothatu+1=azandﬁ+1=|32.

Remark. It is curious that the integers F,, are expressed in terms

of the irrational number V5. An analogous phenomenon will be
seen later: there are formulas that express real numbers in terms
of complex numbers.

One can also use induction to give definitions. For example, we
can define n factorial, denoted by n!, by induction on n = 0.
Define 0! = 1, and if n! is known, then define

(n+1)'=nl(n+1).

The reason for defining 0! = 1 will be apparent in the next section.

Exercises

1+ ij!j.
1.1. Find a formula for =1 and use mathematical induction
to prove that your formula is correct.

(Remark. This exercise illustrates the two types of
induction described at the beginning of the chapter: your
guess uses inductive reasoning, while its proof using
base and inductive steps is mathematical induction.)

1.2.If r#, prove, forall n = 1, that



-1

r—1-

Thr+r?+r 4+ =

13. Show, for all n = 1, that 10" leaves remainder 1 after dividing
by 9. (Hint: Prove 10" = 9q,, + 1 for some integer q,,.)

1.4. If a < b are positive numbers, prove that a” < b for all
integers n = 0.

1.5. (i) Prove that 1 + 2% 4+ +n? = gn(n + D@ + 1),

(ii) Prove that 13+23+---+n3 = (1+2+-- +n)2. (Hint; Use
Theorem 1.6.)

4, 4 4 _ 1.5 1. 4,1 3_ 1
(iii) Prove that 1 % + o m = smaam g = g

1.6. (i) Find a formula for a, = 13 + 33 + 53 +-- + (2n = 1)3, and
then prove that your guess is correct using induction.

(i) Give a second proof of part (i) based on Exercise
1.5(ii) and the following observation: If b, = 1% + 23 + 3°
+ -+ m> . then

ba =an+ [+ & + .+ 2n)Y)
=a, +8[13+ 22+ .-+ 1 =a, + 8b,.



1.7. (i) Prove that if n = ab, where n, a, and b are positive integers,
then either a < Vn or b < \n.

(ii) Prove that if n is composite, then it has a prime factor
p with p < Vn. Conclude that if n = 2 has no prime factors
<+n, then n is a prime.

(iii) If f(n) = n? —n+ 41, use part (ii) to show that f(10),
f(20), f(30), and f(40) are prime. (If each student in a
class checks that two or three values of f(n) are prime,

then the class will have shown that f(n) is prime for all n
<40.)

Remark. It is now simple to check that 991 is a prime,
but checking that 1,000,099 is a prime is a longer
enterprise, for its square root is a bit over 1000.

1.8. Prove, for all n =2 0, that (1+ x)" =21 + nxif 1 + x > 0.
1.9. (i) Prove that 2 > n3 for all n = 10.

(i) Prove that 2" > n* forall n 2 17.

1.10. Let g1(x), . . . ,g, (x) be differentiable functions. If f(x) = g{(x)
... gp(x), prove that its derivative is

froy =3 Figix)/gix).
i=l1



1.11. Prove that every positive integer a has a factorization a =

3Km, where k = 0 and mis not a multiple of 3. (Hint: Adapt the
proof of Theorem 1.16.) Remark. This last exercise illustrates
another reason for knowing proofs. The solution of Exercise
1.11 does not follow from the statement of Theorem 1.16, but a
solution can be obtained by modifying the proof of that theorem.

1.12. Prove that 2" < nl for all n = 4.

1.13. Prove that F,, < 2" for all n = 0, where Fy, Fq, F», --- is the
Fibonacci sequence.

1.14. For every acute angle 6, i.e., 0° < 6 < 90°, prove that

sin @ +cot 8+ sec 6= 3.

(Hint: Use the inequality of the means or Lemma 1.10.)

1.15. Prove thatif a4, ay, . . . , a, are positive numbers, then
(@1 +ap+...+ap)(1a+ a, + ...+ 1/a,) = n?

1.16. For every n = 2, prove that there are n consecutive
composite numbers; that is, there is some integer b such that b
+1,b+2,---, b+ nare all composite. (Hint: f2<a<n+1,
then ais a divisorof (n + 1)! + a.)



BINOMIAL COEFFICIENTS

Let no one say that | have said nothing new ... the
arrangement of the subject is new. When we play
tennis, we both play with the same ball, but one of us
places it better.

B. Pascal

Consider the formulas for powers (1 + x)” of the binomial 1 + x :

1+x° =1

+x)' = 1+1x

(14+x)? = 142x+1x?
A+x)P = 1+3x4+3x2+12°

(1+x)* = 144x+6x*+4x> + 1x%

Is there a pattern in the coefficients in these formulas? Figure
1.1, called Pascal’s triangle [after B. Pascal (1623 — 1662)],

shows the first few coefficients.



Figure 1.1

Figure 1.2 is a Chinese illustration made in the year 1303, which
shows that Pascal’s triangle had been recognized long before
Pascal.
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Figure 1.2

The expansion of (1 + x)" is an expression of the form



Co+ C1X + Cox2 + ..+ X",

where ¢y = 1 and ¢, = 1. What are the “inside” coefficients ¢y, . . .
Cn_1?

L. Euler (1707 — 1783) introduced the notation (%) which lost its
bar after fifty years, and this more simple form of it is now
universally accepted:

(n) = coefficient ¢, of x" in (1 + x)”".
7

n - . _
These numbers (.}'are called binomial coefficients; the number

(is pronounced “n choose r’ because it arises in counting
problems (as we shall see at the end of this section).

Observe, in Figure 1.1, that an inside number (i.e., nota 1 on
the border) of the (n +1)th row can be computed by going up to
the nth row and adding the two neighboring numbers above it:

(7)=(2)+C)

For example, the inside numbers in row 4 can be computed from
row 3 as follows:



1+3 =4, 343 =6, and 3+1 = 4. Let us prove that this observation
always holds.

Itis clear that () =1 = G)ithat is, in the expansion of (1+ x)7
both the constant term and the coefficient of x7 are equal to 1.

Theorem 1.18. Forall rwithO<r<n+1,
(71)=(")+C)
= -+ .
r r—1 r
Proof. We must show that if
(1+x)"=cg+cix+cox? ... +cpx",

then the coefficient of x”in (1+ x)™1is ¢4 + c,.

I+ = (1+x)(1+x)"
= (1+x)"+x(1+x)"

= (co+cix+ecax*+---+cex™) +
x(co+ c1x + cax2 + -+ -+ cux™)

= (cp+cC1x+ x4 +cpx") +

cox +e1x? + e + -+ cpx"!

= l+(co+c)x+(c+e)x* +(ca+e)x’+---,



because cy = 1. Thus, the coefficient of xin (1 + x)" * 1is ¢4 +
Cr-

We shall see how the formula in the next theorem arises when
we discuss some counting problems.

Theorem 1.19 (Pascal). Foralln =0 and all rwith 0 < r<n,

ny n!
(r) T rln =)t

Proof. We prove the theorem by induction on n = 0.

The base step n = 0 is easy: by definition, (cﬁJ =1 while 01/0!0!
1 as well. To prove the inductive step, we must show

(n+ l) (1)
r Trln+1-n)t"

By Theorem 1.18,



("Tl) (,f 1) +(f) |

D=7+ Am=n)!

B n! 1 +l)
- (r—l)!(n—r)!‘(n-r-{-l r

_ n! .(r+n—r+1)
T =D n—=r \r(n—r+1)

_ n! n+1 )
- (r—l)!(n—r)s'(r(n-rH)

3 (n+ 1! .
T orln+1-n)

One defines 0! = 1 to make formulas like this one more simple;
without this convention, there would have to be an extra statement
giving the formula in the special cases r=0 and r= n. Moreover,
the base step n = 0 is simpler than the base step n = 1.

Corollary 1.20. For any number x and for all n = 0,

n n n . n n! .
(1+x) =E(r)x =Zr!(n~r)!x'

r=0 r=0

Proof. The binomial coefficients have been defined as the
numbers c,, where



(1+x)"=cp+cix+coxZ +. .. +cx".

Since & = (:)-, we have

ﬂ_ n n n 2 ..o " r EEE n n
=)+ () Q)+ Qe+ O

and the formula in Pascal’s theorem now gives the result.

Corollary 1.21 (Binomial Theorem). For all numbers a and b and
for all integers n = 0,

(a+b)" = i (f)b’a“" = Z (?)biaj,

r=0 i+j=n

Proof. The result is trivially true when a = 0 (we agree upon the

notation 00 = 1).Ifa#0,setx=b/ain Corollary 1.20, and
observe that

(l +E)" _ (a +b)” _a+b
a a a"

Thus, (a + b)" is obtained by multiplying the expression for (1 + b /
a)" by a”.
We have used a second convention: 0° = 1, and we are using it

for the same reason we use 0! = 1: it simplifies the writing of
formulas.



Here is a combinatorial interpretation of the binomial
coefficients. Given a set X, an r-subset is a subset of X with
exactly relements. If X has n elements, denote the number of its
r-subsets by

[, 1].

We compute [n, r] by considering a related question. Given an
“alphabet” with n (distinct) letters and a number rwith 1 <= r<n, an
r-letter word is a sequence of r of the letters with no repetitions
(and with no regard to whether the “word” actually occurs in some

dictionary). For example, the 2-letter words on the alphabet a, b, ¢
are

ab, ba, ac, ca, bc, cb

(note that aa, bb, cc are not on this list). How many r-letter words
are there on an alphabet with n letters? We count the number of
words in two ways.

(I) There are n choices for the first letter; having chosen the first
letter, there are now only n — 1 choices for the second letter, for no
letter is repeated; having chosen the first two letters, there are
only n — 2 choices for the third letter, and so forth. Thus, the
number of r-letter words is

nn-1n-2)---(n=[r=1)=nn-1)n-2)...(n-r
+1).



Note the special case n = r. the number of n-letter words on n
letters is n!.

(Il) Here is a second way to count these words. First choose an r-
subset of the alphabet (consisting of r letters); there are [n, r] ways
to do this, for this is exactly what the symbol [n, r] means. For
each chosen r-subset, there are rl ways to arrange the rletters in
it (this is the special case of (I) when n = r). The number of r-letter
words is thus

A[n, r.

We conclude that

Aln, A=nn-1)Nn-2)---(n—r+1).

Therefore,

nin—NDn-=2)---(n—r+1)
r!

[n,r] =

nn—1)(n-2)---(n—r+1) . (n—r)!
r! (n—r)!

_ n! _(n
- r!(n—r)!_(r)

(the last equation by Pascal’s theorem). This fact is the reason
one often pronounces the binomial coefficient () as n choose r.




As an example, how many ways are there to choose 2 hats
from a closet containing 14 different hats? (One of my friends
does not like the phrasing of this question. After all, one can
choose 2 hats with one’s left hand, with one’s right hand, with
one’s teeth, . . . ; but | continue the evil tradition.) The answer is

(3). and Pascal’s formula allows us to compute this as 14 x 13/2 =
1.

Ouir first interpretation of the binomial coefficients was
algebraic; that is, as Pascal’s formula in terms of factorials; our
second interpretation is combinatorial; that is, as n choose r. Quite
often, each interpretation can be used to prove a desired result.
For example, let us prove Theorem 1.18 combinatorially. Let X be
a collection of n +1 balls, and let us color one ball red and the

other n balls blue. Now ("1 is the number of r-subsets S of X.
There are two possibilities for an r-subset S: either it contains the
red ball or it does not. If S does contain the red ball, then S
consists of the red ball and r— 1 blue balls, and so the number of
such S is the same as the number of (r— 1)-subsets of the blue

balls, namely, (-21)-The other possibility is that S consists
completely of blue balls; since there are n blue balls, there are )
such r-subsets. Therefore, (";') = (.2,) + ():as desired.

Exercises

1.17. Show that the binomial coefficients are “symmetric”: if 0 < r<
n, then



1.18. Show, for every n, that the sum of the binomial coefficients is
2"

1.19. (i) Show, for every n > 0, that the “alternating sum” of the
binomial coefficients is zero:

(6)-C)+ )=+ C)=e

(if) Use part (i) to prove, for a given n, that the sum of all
the binomial coefficients ()with r even is equal to the
sum of all those Flwith rodd.

1.20. What is the coefficient of x'8 in (1 + x)20?

1.21. How many ways are there to choose 4 colors from a palette
containing 20 different paints?

1.22. Prove that a set X with n elements has exactly 2 subsets.
Can you give more than one proof of this?

1.23. A weekly lottery asks you to select 5 numbers between 1
and 45. At the week’s end, 5 such numbers are drawn at
random, and you win the jackpot if all your numbers match, in
some order, the drawn numbers. How many selections of 5



numbers are there?
Answer: 1, 221, 759.

1.24. Assume that term-by-term differentiation of power series is
valid: if

f(x)=2¢ux" =ay+aix+ax®+-- Fapx"+---,
£=0

then the power series for its derivative f(x) is

flx)= zkﬂkxk_l =ay+2ax +3a3x* + -+ napx"
k=1

(i) Prove that f(0) = ag.
(ii) Prove, for all n =z 0, that the nth derivative

F® ) = Zk(k — 1k —2)---(k —n+ Dagx*".

k>n

[79(x) is defined to be f(x)].5 Conclude, for all n = 0, that

f(ﬂ) 0)
an =

nt




1.25. (Leibniz) A real-valued function f(x) is called a C*-function
if it has an nth derivative £ (x) for every n 2 0 [f9)(x) is defined
to be f(x)]. Prove that if f(x) and g(x) are C”-functions, then

n

(fxgxN™ =3 (:) P x)g" 0 (x) forall n > 0.
k=0

1.26. Prove, for all n =21 and for all r> 1, that
n n+1 n+2 n+r n+r+1
(0)+( 1)*(2)+ +(r)=( . )

(Hint: Use inductionon rz 2.)



Chapter 2

Things Pythagorean

AREA

Let no one ignorant of geometry enter my door.
Plato

One of the earliest ideas of geometry is the computation of the
area of geometric figures. Let us start with the simplest figure; a
rectangle with sides of lengths a and b has area A = ba.

Figure 2.1

For instance, if the base is of length b = 5 and the heightis h = 3,
then the area is 15 units of area. If we cut the rectangle in half, we
obtain two congruent right triangles:



7

Figure 2.2

The area A of a right triangle is, thus, 1 base height.

The area A of an arbitrary triangle of base b and height h, as

you recall, is also 4 = area = 1bh_Observe that this formula is really
three formulas in one, because each of the three sides of a
triangle qualifies as a “base” of the triangle; the corresponding
height is the length of the altitude to that side.

Figure 2.3

Let us prove the area formula by using the formula for a right
tnangle. If, as in Figure 2.4, the altitude divides the triangle into
two right triangles of height h having bases b and by, respectively

(so that b = bq + by), then the area A is

A = bk + $byh = 3(by + by)h = Lbh.



by b,

Figure 2.4

Suppose now that the altitude does not divide the triangle into two
triangles, but that we have Figure 2.5; that is, the possibilities are
either that S lies between Q and R or that it does not lie between

them. Let b' be the length of RS, so that b + b'is the length of QS.

Since AQSP and ARSP are right triangles, their areas are 1(¢+b)%
and %b""'respectively. The area of APQR is, thus,

$(b+ bk — 3b'h = 3 (b+ b~ b)h = 3bh.Hyaying considered all the
cases, we can now declare the result.

Figure 2.5

Theorem 2.1. The area A of any triangle with base b and height h
is given by



~ 1
A = lbh.

Let PA and QR be parallel, and consider the triangles APQR
and AAQR in Figure 2.6a. Since they have the same base and the
same height, they have the same area, by Theorem 2.1. That is, if
we hold the base fixed and slide the top along a horizontal line,
then the area remains the same.

P A
h
Q R
Figure 2.6a

This invariance of area after “sliding” was already recognized by
Euclid, one of whose theorems is: “Triangles drawn to a point are
to each other as their bases.”

Euclid’s theorem is illustrated in Figure 2.6b:



arca(AABC) _ |BC|
area(AADE) ~ |DE|

Figure 2.6b

Exercise 2.3 below shows that the two triangles in Figure 2.6a
have horizontal cross sections of equal length. Cavalien’s
principle, named after B. Cavalieri (ca. 1598 — 1647), extends the
invariance of area after “sliding” to more general figures.

Cavalieri’s Principle: Two figures with horizontal cross sections
of equal length have the same area.

The next result shows that Cavalieri’s principle applies to
parallelograms: holding the base fixed and sliding the top does not
change the area.

Theorem 2.2. The area A of a parallelogram with height h and
base b is given by A = hb.



Figure 2.7

Proof. Divide the parallelogram with height h and base b into two
triangles, as in Figure 2.7. Now AZRS has base RS of length b,

height h, and area #®isimilarly, AYZR has base YZ of length b,

height h, and area zhb. We conclude that the parallelogram has
areg 3hb+ 3hb = hb.

Another way to see that the area of a parallelogram is hb is
indicated in Exercise 2.1. As the proof of Theorem 2.1, the proof
suggested in this exercise also involves two cases, the second of
which is often overlooked.

We sketch two proofs of Cavalieri’s principle using calculus. The
first proof involves the computation of the area of a region R by
double integrals.

Figure 2.8



Figure 2.9

Here is an ancient problem, called doubling the square. Given
a square of side length a, what is the side length d of the square

having double its area, namely, 2a%? This problem is discussed in
Plato’s Menon in the form of a dialogue between Socrates and a
slave. Their discussion leads to the geometric construction in
Figure 2.10.

Figure 2.10

Theorem 2.3. The length d of the diagonal of a square having
side length a satisfies the equation

d? = 2a2.



Proof. In Figure 2.10, the large region is a square with all sides of
length d, where d = 2x. The shaded region is a rhombus with all
sides of length a; it is a square because the base angles of the
right triangles are each 45°, and hence the interior angles of the
rhombus are each 45° + 45° = 90°.

We compute the area of the shaded square in two ways. On the
one hand, it has area a2, for the length of a side is a. On the other
hand, this square is divided into 4 right triangles, each of area ix-

Therefore, @ =4* 15 = 2,2 and
2a% = 4x? = (2x)? = d?.

We remark that there is a quick proof of the theorem using the

Pythagorean theorem, for d? = a2 + a% = 2a2. Indeed, we have just
proved the special case of the Pythagorean theorem for isosceles

right triangles. We will prove the Pythagorean theorem in the next

section.

Corollary 2.4. Let C be a circle, let S be a circumscribed square,
and let T be an inscribed square. Then

area(S) = 2 area(T).

Proof. Using the notation in Figure 2.10 (imagine a circle inscribed
in the big square, circumscribing the shaded square), the diameter
of C is equal to d = 2x. By the theorem,

area(S) = a?2=2a2=2 area(T).



Before continuing this discussion, we remind you of some
familiar terminology.

Definition. A divisor of an integer m is an integer d for which
m=dq,
where @ is an integer.

Recall that if m and d are positive integers, then long division
gives integers g and r with

m_ +r
d 974

and rid < 1. Clearing denominators, this equation involving
fractions gives an equation of integers

m=dq+r,

where the quotient q is an integer = 0 and the remainder r is one
of 0,1,2,...,d-1. Of course, d is a divisor of m precisely when
the remainder r= 0.

For example, every integer can be written either as 2q or 2q +1,
for some integer q, because the only possible remainders after
dividing by 2 are 0 and 1.



Definition. A rational number r (also called a fraction) is a ratio
of two integers; that is, r = p/q, where both p and q are integers
and g # 0. A real number that is not rational is called irrational.

It turns out that there are plenty of irrational numbers, as we
shall soon see. The terms rational and irrational come from “ratio;”
in particular, this usage of irrational does not mean
“‘unreasonable,” which is the other contemporary usage of this
word.

There are many ways to write a given rational number; for
1 _—
example, : =3 = 8§ =" "+ Recall that

I}

SR
alo

if and only if cross multiplication holds: ad = bc. Note that cross
multiplying converts equations in rationals into equations in
integers. Given a rational number a/b, let us show that we may
assume, after suitable cancellation, that at least one of the
numerator a and the denominator b is odd. Theorem 1.16 says
that

a=2'm and b= 2,

where £, k= 0 and mand n are odd. If { = k, then

28m 28 km

2%n n

at
b

Because { = k, the exponent £ — k=0 and 2% mis an integer. We



may thus replace a by 2% m and b by n; that is, we may assume
that the (new) denominator is odd. Similarly, if £ < k, then

m
2k—tp’

S| R

and we may assume that the (new) numerator is odd. Hence,
every rational number a/b has an expression of the form p/q,
where at least one of p and g is odd. (More is true; a/b can always
be put in lowest terms; that is, the numerator and denominator
have no factors in common. This is proved using the notion of
greatest common divisor, but we leave this discussion to another
course.)

Theorem 2.5. 2 is an irrational number.
Proof. Assume, on the contrary, that V2 is rational; that is,

SB=E,
q

where both p and q are positive integers. By our discussion
above, we may assume that at least one of p and q is odd.

Squaring both sides, 2 = p2/g?, and cross multiplying gives
2¢% = p?.

Were p odd, then p2 would also be odd [by Exercise 2.4(ii): the



product of odds is odd]. Since p2 = 2q2 is even, we conclude that
p is even, and so we may write p = 2rfor some integer r.

Substituting into 2q2 = p2 gives 2qr2 = (2r)2 = 472, so that
G = 212,

It follows, as above, that g is even (for q2 =27 is even). This
contradicts our assumption that at least one of p and g is odd.

This last result is significant in the history of mathematics. We
accept the real number line without qualms; if two points on a line
are chosen, one labeled 0 and the other 1, then every point on the
line corresponds to a number. Not only was this not obvious to the
ancient Greeks, they did not believe it. From its earliest days,
about four to five thousand years ago in western Asia,
mathematics was used for applications to practical problems.
Numbers and geometry were studied using experience, and
generalizations seem to have been made with the light of intuition,
but not with proofs. Because of its utility, mathematics spread to
China, India, Greece, and Egypt. In Greece, sometime after the
time of Homer, the idea arose that logical reasoning was
necessary to prove mathematical results. There are proofs
attributed to Thales of Miletus (ca. 624 — 547 BC) (many historians
describe him as the founding father of Greek mathematics). The
ancient philosopher Pythagoras (ca. 570 — 500 BC), after whom
the Pythagorean theorem is named, may have studied with
Thales. Pythagoras founded a secret philosophical society, one of
whose goals was to use integers and their ratios to explain all of
nature’s phenomena. (The word mathematics, meaning “that
which is learned,” is due to the Pythagoreans. Here is some more
etymology. The word geometry, meaning “earth measure,”



probably goes back to its early applications, whereas the word
algebra is a European version of the first word in the title of an

influential book, Al-jabr w’al muqabala7, by al-Khwarizmi, written in
Arabic in 830.) For the Pythagoreans, numbers were defined to be
positive integers, whereas other (positive) real numbers were not
numbers at all; instead, they were viewed as pairs a : b of line
segments (which we can interpret as the number |a|/|b|, where |a|
is the length of a). There were geometric ways of viewing addition,
subtraction, multiplication, and division of segments, but it was
virtually impossible to do any algebra with them. For example, a
sophisticated geometric argument (due to Eudoxus and given in
Euclid’s Elements) was needed to prove cross multiplication: if a :
b=c:d, then a: c=b:d. Pythagoras dealt with rationals by
assuming, given two segments x and y, that there is a segment z
and integers m and n with |x|= m|z| and |y| = n|z|; iIn modem
notation: *I=%1¥l- He had hoped that such a relation would be
true for any pair of segments x and y, but Theorems 2.3 and 2.5
showed him that this is not so when x is the diagonal of a square
with side y.

Why did Pythagoras have such a constrictive view of numbers?
We quote van der Waerden, Science Awakening.

Nowadays we say that the length of the diagonal is the
“irrational number” ¥2 and we feel superior to the poor
Greeks who “did not know irrationals.” But the Greeks
knew irrational ratios very well. ... That they did not
consider V2 as a number was not a result of ignorance,
but of strict adherence to the definition of number.
Arithomos means quantity, therefore whole number.
Their logical rigor did not even allow them to admit
fractions; they replaced them by ratios of integers.



For the Babylonians, every segment and every area
simply represented a number. ... When they could not
determine a square root exactly, they calmly accepted
an approximation. Engineers and natural scientists have
always done this. But the Greeks were concerned with
exact knowledge, with “the diagonal itself,” as Plato
expresses it, not with an acceptable approximation.

In the domain of numbers (positive integers), the

equation x2 = 2 cannot be solved, not even in that of
ratios of numbers. But it is solvable in the domain of
segments; indeed the diagonal of the unit square is a
solution. Consequently, in order to obtain exact
solutions of quadratic equations, we have to pass from
the domain of numbers (positive integers) to that of
geometric magnitudes. Geometric algebra is valid also
for irrational segments and is nevertheless an exact
science. It is therefore logical necessity, not the mere
delight in the visible, which compelled the Pythagoreans
to transmute their algebra into a geometric form.

Even though the Pythagorean definition of number is no longer
popular, the Pythagorean dichotomy persists to this very day. For
example, almost all American high schools teach one year of
algebra and one year of geometry, instead of two years in which
both subjects are developed together. The problem of defining
number has arisen several times since the classical Greek era. In
the 1500’s, mathematicians had to deal with negative numbers
and with complex numbers (see our discussion of cubic
polynomials in Chapter 4); the description of real numbers
generally accepted today dates from the late 1800’s. There are
echos of Pythagoras in our time. L. Kronecker (1823 — 1891)
wrote, “Die ganzen Zahlen hat der liebe Gott gemacht; alles



andere ist Menschenwerk” (The integers were created by God; all
the rest is the work of Man), and even today, some logicians
argue for a new definition of number.

Exercises

2.1. (i) In Figure 2.11a, QPSR is a rectangle and YZSRis a
parallelogram. Show that AQYR and APZS are congruent.

9 Y P Z

Figure 2.11a

(ii) Show that one can construct the parallelogram YZSR
from the rectangle QPSR by cutting off AQYR and
pasting it in position APZS; conclude that the
parallelogram has the same area as the rectangle if Yis
between Q and P.

(iii) Prove that the parallelogram YZSR has the same
area as the rectangle QPSR when Y is not between Q
and P (see Figure 2.11bb.) [One must prove this in
order to complete the argument that the areas of the
parallelogram and the rectangle always agree. You may
not use Theorem 2.2, for this exercise is to give an



alternative proof of that theorem.]

Figure 2.11b

2.2. Show that the trapezoid in Figure 2.12 has areat(@+ b

a

Figure 2.12

2.3. Assume, in Figure 2.13, that PA, EH, and QR are parallel. If P
and Q are points, let us denote the length of the line segment
PQ by |PQ| Prove that |EF| = |GH|, and then conclude that
Cavalieri’s Principle applies to APQR and AAQR. (Hint: Let £
and ¥’ be parallel lines, and let t and t’ be transversals. If £’ is
parallel to £ (and to '), then {" divides the transversals
proportionally. In Figure 2.13, |PE|/|PQ)| = |AH|/|AR|.)



Figure 2.13

2.4. Let a and b be integers.

(i) If a is even, prove that ab is even for every integer b.

(i) If both a and b are odd, prove that ab is odd while a
+ bis even.

(iii) If neither a nor b is a multiple of 3, prove that ab is
not a multiple of 3.

2.5. If r= p/qis a nonzero rational number, show that r + V2 and

2 are irrational numbers. Conclude that there are infinitely
many irrational numbers.

2.6. Use the Pythagorean theorem to prove that if a is the side
length of a cube and |AB]| is the length of a diagonal joining

opposite comers, then |AB|2 = 3a2.



Figure 2.14

2.7. Prove that \3 is irrational. (Hint: Modify the proof of Theorem
2.5, replacing each occurrence of 2 by 3, “even” by “multiple of
3”7, and "odd" by "not divisible by 3.”)

Remark: Exercise 2.7 shows one reason why it is
important to know proofs. One cannot use the statement
of Theorem 2.5 to solve the problem. However, one can
solve this problem by modifying the proof of that
theorem.

2.8. (i) Prove that an integer m = 2 is a perfect square if and only if
each of its prime factors occurs an even number of times. (Hint:

Use the Fundamental Theorem of Arithmetic: |f
Py p =g al \where pPi<py<--<ppand qq<Qg,< - <@
are primes and the e’s and f's are positive integers, then n = ¢

and, for all /, p; = g; and e; = f. [This theorem is usually proved in
the next course.))

(if) Using part (i), prove that if m is a positive integer for
which Ym is rational, then m is a perfect square.



Conclude that ¥2, V3, and V6 are irrational.

(iii) If n is a positive integer, show that nm+n?isa

perfect square if and only if n + 1 is a perfect square.
(Example: Ifn=8 (sothatn+1=9= 32), then n3 + n?
=512 + 56 = 576 = 242 The next example occurs when
n=15)

2.9. Let p be a prime number, and consider the number

N=Np=1+@2x3x5x7x11x...xp).

Prove that none of the prime numbers 2, 3,5, 7, 11, --- |
p used in the definition of N is a divisor of N. (Hint:
Dividing N by 3, for example, leaves remainder 1, for the
quotientis2x5x7x11x . xp)

2.10. Use Exercise 2.9 to prove that there are infinitely many
prime numbers. (Hint: Assume, on the contrary, that there are
only a finite number of primes, say, 2, 3,5, 7, --- , p; define N as
in Exercise 2.9 and show that N does not satisfy Theorem 1.2.)
(This is an argument given in the ninth book of Euclid’s
Elements.)

2.11. (i) If p =11, the number N defined in Exercise 2.9 is 2311.
Show that 2311 is prime.

(i) If p =13, the number N is 30031. Show that 30031 is
not prime.



(i) If p= 17, show that 19 is a divisor of N = 510511.

2.12. A mad architect has designed the symmetric building shown
in Figure 2.15. Find the area of the building’s front (not counting
the two circular windows of radius 2 or the semicircular entrance
way), given the dimensions in the figure.

Figure 2.15

THE PYTHAGOREAN THEOREM

Euclid alone has looked on beauty bare.
Edna St. Vincent Millay

From earliest times, algebraic identities were verified by
geometric figures. The simplest example is Figure 2.16, which is a
geometric picture of the identity (a + b) = a + 2ab + b?; the large
square having sides of length a + b is divided into two squares,
with side lengths a and b, respectively, and two rectangles each of
area ab.



b | ab b
a b
Figure 2.16

Recall that the hypotenuse (from the Greek word meaning “to
stretch”) of a right triangle is the longest of its three sides; the
other sides are called its legs. In Theorem 2.3, we proved the
special case of the Pythagorean theorem involving an isosceles
right triangle.

Figure 2.17

Theorem 2.6 (Pythagorean Theorem). In a right triangle with

legs of lengths a and b and hypotenuse of length c, we have 2=
2 4 p2
ac + b-.

Remark. Although the statement of this theorem was accepted
centuries before him, Pythagoras was perhaps the first to prove it.
The proof we give, due to Indian mathematicians around 400 AD,



is based on Figure 2.18.

Figure 2.18

Proof. Figure 2.18 pictures the area of the big square in two ways:
first, as a square with side lengths a + b; second, as dissected into
a rhombus PQRS with side lengths ¢, and four congruent right

tnangles of area %ab. We claim that the rhombus is actually a
square. Consider the interior angle y at P, for example. Note that a
+y+ B8=180° Inasmuch as a + 8 = 90°, because a and § are the
acute angles in a right triangle, we have y = 90°. The Pythagorean
theorem now follows from the algebraic identity

(a+b)? =c?+4 x lab,

for the left side is a% + 2ab + b2, while the right side is ¢ + 2ab.
The converse of the Pythagorean theorem is also true.

Theorem 2.7. A triangle having sides of lengths a, b, and ¢ with
a%+ b? = c? must be a right triangle.



Proof. Take two perpendicular lines, as in Figure 2.19, and choose
points A and B with |IAOI = a and |IBOI = b. Now AOAB is a right
triangle having side lengths a, b, and d. The Pythagorean theorem
gives a2 + b% = d?, and so d = ¢. But AOAB and the given triangle
are congruent, by “side-side-side,” and so A is a right triangle.

AR
. d
a Y
\\
\\
o b B
Figure 2.19

Figure 2.20 gives another proof, also in the Indian style, of the
Pythagorean theorem.

Figure 2.20



The square of side length c is partitioned, with a square of side
length a — b in the center. This yields

c?=(a—b)?+4x3ab

for the total area. The Pythagorean theorem follows. Query: What
does Figure 2.20 look like when the right triangle is isosceles?

The proof of the Pythagorean theorem given in Euclid’s
Elements is based on Figure 2.21. Note that it is almost purely
geometric (in contrast to the two proofs just given, which involve
some algebra as well), and, thus, it is more complicated for us
than the preceding proofs. On the other hand, notice that it
actually displays the (geometric) squares sitting on the three sides
of the right triangle. The big square is divided into two rectangles
of areas pc and qc. It suffices to show that

a2 = pc and b2 = qc.



a b
[ c
Figure 2.21

There is an algebraic proof of these equations. The altitude CJ
forms similar right triangles AJBC, ACBA, and AJCA, as in Figure
2.22. The corresponding sides of these similar triangles can be
seen in Figure 2.23. Thus, there are the proportions

qg b
d ==-
e b ¢’

4
a

(o IR~

and cross multiplication gives the desired equations.
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At this stage, however, Euclid did not want to use proportions.
Although such algebraic manipulations are routine forus, p:a=a
. ¢ in Euclid’s time was not merely an equation p/a = a/c (as we
remarked earlier); rather, it was a relation between two pairs of
line segments. Geometry and algebra were already living in
separate worlds, and Euclid’s treatment of proportions is very
sophisticated. Thus, Euclid was not being a purist in avoiding
proportions; his proof, which looks more complicated to us, was
the most straightforward one that he knew.

Euclid’'s geometric argument is best explained by referring to
Figure 2.24.
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The area ¢? of the square AHIB is the sum of the areas of the
rectangles AHKJand BJKI. We want to show that

area( AHKJ) = b2 and area( BJKI) = a2,

which will prove the desired result.

Now, by Theorem 2.1,

area(ACAH) = 3|AH||AJ|,

for AH is a base and AJ is the corresponding altitude. Thus,



aregl8CAH) = jarea(DAH K J).

Next we compare ACAH with AABD. The angles «CAH and
«DAB are equal, for each equals «.BAC + 90°. By the side-angle-
side theorem, it follows that ACAH and AABD are congruent. But

area(AABD) = 3|AD||AC| = 3b?,
for AD is the base and AC is the altitude. It follows that
area( AHKJ) = 2 area(ACAH) = 2 area(AABD) = b2,
A similar argument shows that
area( BJKI) = a2,

and the Pythagorean theorem follows.

We now give a geometric proof of the Pythagorean theorem that

Euclid would have loved had he known it8 (this proof can be found
in a commentary in Heath’s 1926 translation of Euclid). Figure
2.25 displays a square of side length a+b dissected in two
different ways. The left dissection is Figure 2.18; the right
dissection is Figure 2.16 with each rectangle bisected by a
diagonal.



Figure 2.25

That both squares have the same area gives the equation
c® +4 x tab=a®+ b* +4 x ab.

Here are some applications of the Pythagorean theorem. In a
later section of this chapter, we will discuss a bit of trigonometry
(which is also intimately related to the Pythagorean theorem).

Aristarchus (310 — 250 BC) used the Pythagorean theorem to
draw conclusions about the distance from the Moon to the Earth.
His idea was as follows. At halfmoon, the Sun S, the Moon M, and

the Earth E form a right triangle, with right angle at M, as in Figure
2.26.



Figure 2.26

Let

|SE| = distance from S to E,
ISM| = distance from S to M,
IME| = distance from M to E.

The Pythagorean theorem gives
|ISE|2 = ISM2 + IMEI2.

One conclusion Aristarchus drew from this is that the Earth is
farther from the Sun than it is from the Moon. This is not at all
obvious, for both the Sun and the Moon appear to be the same
size (of course, having observed solar eclipses in which the Moon
is seen to come between the Earth and the Sun, the Greeks would
have known this fact without using the Pythagorean theorem). At
sunset, if one is looking up at the (half) Moon, sunlight seems to
be perpendicular to EM, the line of sight to the Moon; that is, the
angle a seems very close to 90°. Now cos a = IMEI/ISEl. When a
is close to 90°, cos a is close to zero. Aristarchus was, thus, able
to conclude that the Earth is very much farther from the Sun than
it is from the Moon, and so this fact follows without sophisticated



instruments. [Modern measurements have IME| = 240, 000 miles

and |SEl = 93, 000, 000 miles, so that cos a = IMEI/|SEI= .0026
and a = 89.85° (or 89°51').]

The following castle problem is from an old Chinese text.

There is a circular castle, whose diameter is unknown; it
is provided with four gates and two lengths out of the
north gate there is a large tree, which is visible from a

point six lengths east of the south gate. What is the
length of the diameter?

Figure 2.27
We compute the area of ATSE in two ways. On the one hand,

area(ATSE) = $(2+ 2r)6 = 6 + 6r.

On the other hand, this area is the sum of the areas of the three
smaller triangles AOSE, AOCE, and AOCT. Now the right triangles



