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Preface

The Julia programming language has brought an innovative new approach to scientific
computing, promising a combination of performance and productivity that is not usually
available in the current set of languages that is commonly used. In solving the two-
language problem, it has seen tremendous growth both in academia and industry. It has
been used in domains from robotics, astronomy, and physics, to insurance and trading. It
has particular relevance in the area of machine learning, with increasing use for the
emerging field of differentiable computing.

Most new developers are attracted to the language due to its promise of high performance.
This book shows you how and why that is possible. We talk about the design choices of the
language's creators that allow such a high-performance compiler to be built. We also show
you the steps that you, as an application developer, can take to ensure the highest possible
performance for your code. We also tell you the ways in which your code can work with
the compiler and runtime to fully utilize your hardware to the greatest extent possible.

Who this book is for

This book is for the beginner and intermediate Julia developer who wants to fully leverage
Julia's promise of performance with productivity. We assume you are proficient with one or
more programming languages and have some familiarity with Julia's syntax. We do not
expect you to be expert Julia programmers yet but assume that you have written small Julia
programs, or that you have taken an introductory course on the language.

What this book covers

Chapter 1, Juliais Fast, is your introduction to Julia's unique performance. Julia is a high-
performance language, with the possibility to run code that is competitive in performance
with code written in C. This chapter explains why Julia code is fast. It also provides context
and sets the stage for the rest of the book.

Chapter 2, Analyzing Performance, shows you how to measure the speed of Julia programs
and understand where the bottlenecks are. It also shows you how to measure the memory
usage of Julia programs and the amount of time spent on garbage collection.
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Chapter 3, Types, Type Inference, and Stability, covers type information. One of the principal
ways in which Julia achieves its performance goals is by using type information. This
chapter describes how the Julia compiler uses type information to create fast machine code.
It describes ways of writing Julia code to provide effective type information to the Julia
compiler.

Chapter 4, Making Fast Function Calls, explores functions. Functions are the primary
artifacts for code organization in Julia, with multiple dispatch being the single most
important design feature in the language. This chapter shows you how to use these

facilities for fast code.

Chapter 5, Fast Numbers, describes some internals of Julia's number types in relation to
performance, and helps you understand the design decisions that were made to achieve
that performance.

Chapter 6, Using Arrays, focuses on arrays. Arrays are one of the most important data
structures in scientific programming. This chapter shows you how to get the best
performance out of your arrays—how to store them, and how to operate on them.

Chapter 7, Accelerating Code with the GPU, covers the GPU. In recent years, the general-
purpose GPU has turned out to be one of the best ways of running fast parallel
computations. Julia provides a unique method for compiling high-level code to the GPU.
This chapter shows you how to use the GPU with Julia.

Chapter 8, Concurrent Programming with Tasks, looks at concurrent programming. Most
programs in Julia run on a single thread, on a single processor core. However, certain
concurrent primitives make it possible to run parallel, or seemingly parallel, operations,
without the full complexities of shared memory multi-threading. In this chapter, we discuss
how the concepts of tasks and asynchronous IO help create responsive programs.

Chapter 9, Threads, moves on to look at how Julia now has new experimental support for
shared memory multi-threading. In this chapter, we discuss the implementation details of
this mode, and see how this is different from other languages. We see how to speed up our
computations using threads, and learn some of the limitations that currently exist in this
model.

Chapter 10, Distributed Computing with Julia, recognizes that there comes a time in every
large computation's life when living on a single machine is not enough. There is either too
much data to fit in the memory of a single machine, or computations need to be finished
quicker than can be achieved on all the cores of a single processor. At that stage,
computation moves from a single machine to many. Julia comes with advanced distributed
computation facilities built in, which we describe in this chapter.

[2]



Preface

To get the most out of this book

This book has been written to be a practical guide to improving the performance of your
Julia code. As such, we encourage you to run the code shown in this book yourself.
Running the code and inspecting the output for yourself is the best way to learn the
methods suggested here. All the code is available in machine-readable format (see the
following for download instructions), so we suggest having a Julia REPL open while you
read this book, so that you can copy and paste code on to it.

Download the example code files

You can view and download all code for this book at https://juliahighperformance.com.

You can download the example code files for this book from your account at
www.packt .com. If you purchased this book elsewhere, you can visit
www.packt .com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=W N =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

¢ WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Julia-High-Performance-Second-Edition. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

[31]
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Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downlocads/9781788298117_ColorImages.pdf.

Code in Action

Click on the following link to see the Code in Action: http://bit.1ly/2nWsMomd

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, function or method names, folder names, and
filenames. Here is an example: "Mount the downloaded Webstorm-10*.dmg disk image
file as another disk in your system."

A block of code is set as follows:

struct Pixel{T}

x::Inted

y::Inté64

color::T
end

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

function sum_cols_matrix (x)
num_cols = size(x, 2)
s = zeros (num_cols)
for i = 1l:num_cols
s[i] = sum_vector(x[:, i])
end
return s
end

[4]
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Most code snippets in this book have been typed at the Julia REPL. This is denoted by the
julia> prompt. Such a listing will show the output of the expression below the expression
itself. If you type the code into the REPL yourself, this is exactly what you should see:

julia> a = £i11(1, 4,4)
4x4 Array{Inté64d,2}:

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

[5]
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Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]



Julia is Fast

In many ways, the history of programming languages has been driven by, and certainly
intertwined with, the needs of numerical and scientific computing. The first high-level
programming language, Fortran, was created to solve scientific computing problems, and
continues to be important in the field even to this day. In recent years, the rise of data
science as a specialty has brought additional focus to numerical computing, particularly for
statistical uses. In this area, somewhat counter-intuitively, both specialized languages such
as R and general-purpose languages such as Python are in widespread use. The rise of
Hadoop and Spark has spread the use of Java and Scala respectively among this
community. In the midst of all this, Matlab has had a strong niche within engineering
communities, while Mathematica remains unparalleled for symbolic operations.

A new language for scientific computing therefore has a very high barrier to overcome, and
it's been only a few short years since the Julia language was introduced to the world. In that
time, however, its innovative features, combining the ease of use of a dynamic language
and the performance of a statically compiled language, have created a growing niche
within the numerical computing world. Based on multiple dispatch as its defining
paradigm, Julia is a very pleasant language to program in, making mathematical
abstractions very easy to express. However, it was the claim of high performance that drew
the earliest adopters.

This, then, is a book that celebrates writing high-performance programs. With Julia, this is
not only possible, but also reasonably straightforward, in a low-overhead, dynamic
language.

As a reader of this book, you have likely already written your first few Julia programs. We
will assume that you have successfully installed Julia, and have a working programming
environment available. We expect you are familiar with very basic Julia syntax, but we will
discuss and review many of those concepts throughout the book as we introduce them.



Julia is Fast Chapter 1

In this chapter, we will describe some of the underlying design elements of Julia that
contribute to its well-deserved reputation as a fast language:

e Julia - fast and dynamic
¢ Designed for speed
e How fast can Julia be?

Julia - fast and dynamic

It is a widely believed myth in programming language communities that high-performance
languages and dynamic languages are completely disjointed sets. The perceived wisdom is
that, if you want programmer productivity, you should use a dynamic language, such as
Ruby, Python, or R. On the other hand, if you want fast code execution, you should use a
statically typed language, such as C or Java.

There are always exceptions to this rule. However, for most mainstream programmers, this
is a strongly held belief. This usually manifests itself in what is known as the two-
language problem. This is something that is especially prominent in scientific computing.
This is the situation where the performance-critical inner kernel is written in C, but is then
wrapped and used from a dynamic, higher-level language. Code written in traditional,
scientific computing environments such as R, Matlab, or NumPy follows this paradigm.

Code written in this fashion is not without its drawbacks, however. Even though it looks
like it gets you the best of both worlds—fast computation, while allowing the programmer
to use a high-level language—this is a path full of hidden dangers. For one, someone will
have to write the low-level kernel. So, you need two different skill sets. If you are lucky
enough to find the low-level code in C for your project, you are fine. However, if you are
doing anything new or original, or even slightly different from the norm, you will find
yourself writing both C and a high-level language. This will severely limit the number of
contributors that your projects or research will get: to be really productive,

those contributors really have to be familiar with two languages.

Secondly, when running code routinely written in two languages, there can be severe and
unforeseen performance pitfalls. When you can drop down to C code quickly, everything is
fine. However, if, for time reasons, effort, skill or changing requirements, you cannot write
a performance-intensive part of your algorithm in C, you'll find your program taking
hundreds or even thousands of times longer than you expected.

[8]
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Julia is the first modern language to make a reasonable effort to solve the two-language
problem. It is a high-level, dynamic language with powerful features that make for very
productive programming. At the same time, code written in Julia usually runs very quickly,
almost as quickly as code written in statically typed languages.

The rest of this chapter describes some of the underlying design decisions that make Julia
such a fast language. We'll also look at some evidence of the performance claims about
Julia. The rest of the book shows you how to write your Julia programs to be as fast and
lean as possible. We will discuss how to measure and reason about performance in Julia,
and how to avoid some potential performance roadblocks.

For all the content in this book, we will usually illustrate our points with small, self-
contained programs. We hope that this will enable you grasp the crux of the issue, without
getting distracted by unnecessary elements of a larger program. We expect that this
methodology will therefore provide you with instinctive intuition about Julia's performance
profile.

Julia has a refreshingly simple performance model—thus, writing fast Julia code is a matter
of understanding a few key elements of computer architecture, and how the Julia compiler
interacts with it. We hope that, by the end of this book, your instincts are developed well
enough to design and write your own Julia code with the fastest possible performance.

Finally, Julia will work for you at both ends of the compute spectrum. On one hand, its
performance and expressiveness allows it to run embedded use cases on low-powered
processors and it is fully supported on ARM processors, and works well on the Raspberry
Pi, which makes it a perfect environment for teaching programming. At the other end of the
spectrum, Julia has been used to run large-scale machine learning applications on some of
the world's largest super-computers. The Celeste project used Julia Build and Atlas of the
Sky, where the computation ran at an amazing 1.5 petaflops (1 petaflop is 10"15 floating
point operations per second, or a thousand million million), using 1.3 million threads. This
was the first time any dynamic language had broken the petaflop barrier. So, Julia can run
on machines large and small, scaling massively in both directions.

Versions of Julia:

The code and examples in this book are targeted at version 1.2 of the
language, which is the most recently released version at the time of
publication. Since there will be no breaking changes in the 1.x series of
Julia, most of the code in this book should work on version 1.0 onward,
which was released in August of 2018.

[9]
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Designed for speed

When the creators of Julia launched the language into the world, they said the following in
a blog post entitled Why We Created Julia, which was published in early 2012:

"We want a language that’s open source, with a liberal license. We want the speed of C
with the dynamism of Ruby. We want a language that’s homoiconic, with true macros like
Lisp, but with obvious, familiar mathematical notation like Matlab. We want something as
usable for general programming as Python, as easy for statistics as R, as natural for string
processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs
together as the shell. Something that is dirt simple to learn, yet keeps the most serious
hackers happy. We want it interactive and we want it compiled. (Did we mention it should
be as fast as C?)”

High-performance, indeed nearly C-level performance, has therefore been one of the
founding principles of the language. It's built from the ground up to enable the fast
execution of code.

In addition to being a core design principle, it has also been a necessity from the early
stages of its development. A very large part of Julia's standard library, including very basic
low-level operations, is written in Julia itself. For example, the + operation to add two
integers is defined in Julia itself. (Refer to: https://github.com/Julialang/julia/blob/
e1def102429941705bc16009e35a74abedbbi88e/base/int. j14L38.) Similarly, the basic for
loop uses the standard iteration mechanism available to all user-defined types.
Broadcasting, which is a fundamental low-level operation in the compiler, can be
completely overridden by custom array types (this is used heavily in CUDA arrays, for
example). All of this means that the compiler had to be very fast from the very beginning to
create a usable language. The creators of Julia did not have the luxury of escaping to C for
even the core elements of the library.

We will note throughout the book the many design decisions that have been made with an
eye to high performance, but there are three main elements that create the basis for Julia's
speed: a high performance Just in Time compiler, LLVM to generate machine code, and a
type system that allows expressive code.

JIT and LLVM

Julia is a Just In Time (JIT) compiled language, rather than an interpreted one. This allows
Julia to be dynamic, without having the overhead of interpretation. This compilation
infrastructure is built on top of LLVM—more information about it is available on its
website: http://1llvm.org.

[10]
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The LLVM compiler infrastructure project originated at the University of Illinois. It now
has contributions from a very large number of corporate as well as independent developers.
As aresult of all this work, it is now a very high-quality, yet modular, system for many
different compilation and code generation activities.

Julia uses LLVM for its JIT compilation needs. The Julia runtime code generator produces
LLVM Intermediate Representation (IR) and hands it over to LLVM's JIT compiler, which
in turn generates machine code that is executed on the CPU. As a result, sophisticated
compilation techniques that are built into LLVM are ready and available to Julia, from
simple ones (such as Loop Unrolling or Loop Deletion) to state-of-the-art ones (such as SIMD
Vectorization). These compiler optimizations form a very large body of work and, in this
sense, the existence of LLVM is very much a pre-requisite to the existence of Julia. It would
have been an almost impossible task for a small team of developers to build this compiler
and code generation infrastructure from scratch.

Just-In-Time compilation:

A technique in which the code in a high-level language is converted to
machine code for execution on the CPU at runtime. This is in contrast to
interpreted languages, whose runtime executes the source language
directly.

This usually has a significantly higher overhead. On the other hand,
Ahead of Time (AOT) compilation refers to the technique of converting a
source language into machine code as a separate step prior to running the
code. In this case, the converted machine code can usually be saved to
disk as an executable file.

Types, type inference, and code specialization

While LLVM provides the basic infrastructure that allows fast machine code to be
produced, it must be noted that adding an LLVM compiler to any language will not
necessarily make it execute faster. Julia's syntax and semantics have been carefully
designed to allow high-performance execution, and a large part of this is due to how Julia
uses types in the language. We will, of course, have much more to say about types in Julia
throughout this book. At this stage, suffice it to say that Julia's concept of types is a key
ingredient of its performance.

[11]
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The Julia compiler attempts to infer the type of all data used in a program, and compiles
different versions of functions specialized to particular types of its arguments. To take a
simple example, consider the ~ (power) function. This function can be called with integer or
floating point (i.e, fractional, or decimal) arguments. The mathematical definitions and,
thus, the implementation of this function are very different for integers and floats. So, Julia
will compile, on demand, two versions of the code, one for integer arguments, and one for
tloating point arguments, and insert the appropriate call in the code when it compiles the
program. This means that, at runtime, fast, straight-line code without any type checks will
be executed on the CPU.

Julia allows us to introspect the native code that runs on the CPU. Using this facility, we
can see that very different code is generated for integer and floating point arguments. So,
let's look at the following machine code, generated for squaring an integer:

julia> @code_native 3"2
pushl %eax
decl %eax
movl $202927424, %eax ## imm = 0xC186D40
addl %eax, (%eax)
addb %al, (%eax)
calll *%eax
popl %ecx
retl

We omitted some boilerplate output when showing the result of the
@code macros, in order to focus on the relevant parts. Run this code
yourself to see the full output.

Let's now look at the following code, generated for squaring a floating point value:

julia> @code_native 3.5"2
vevitsi2sdl %edi, %xmml, %xmml
decl %eax
movl $1993314664, %eax ## imm = 0x76CF9168
.byte Oxff .byte O0x7f .byte 0x00
addb %bh, %bh
loopne 0x68

nopw %cs: (%$eax, %eax)

[12]
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You will notice that the code looks very different (although the actual meaning of the code
is not relevant for now). You will notice that there are no runtime type checks in the code.
This gets to the heart of Julia's design and its performance claims.

The ability of the compiler to reason about types is due to the combination of a
sophisticated dataflow-based algorithm, and careful language design that allows this
information to be inferred from most programs before execution begins. Put in another
way, the language is designed to make it easy to statically analyze its data types.

If there is a single reason for Julia being such a high-performance language, this is it. This is
why Julia is able to run at C-like speeds while still being a dynamic language. Type inference
and code specialization are as close to a secret sauce as Julia gets. It is notable that, outside
this type inference mechanism, the Julia compiler is quite simple. It does not include many
of the advanced Just in Time optimizations that Java and JavaScript compilers are known to
use. When the compiler has enough information about the types within the code, it can
generate optimized, straight-line code without many of these advanced techniques.

Detailed information about the implementation of type inference and code
specialization in Julia can be found in the paper Julia: A Fresh Approach to
Numerical Computing. Jeff Bezanson, Alan Edelman, Stefan Karpinski, and
Viral B. Shah (2017) SIAM Review, 59: 65-98. doi: 10.1137/141000671.

URL: https://julialang.org/research/julia-fresh—approach-BEKS.
pdf

It is useful to note here that, unlike some optionally typed dynamic languages, simply
adding type annotations to your code does not make Julia go any faster. Type inference
means that the compiler is usually able to figure out the types of variables when necessary.
Hence, you can usually write high-level code without fighting with the compiler about
types, and still achieve superior performance.

How fast can Julia be?

The best evidence of Julia's performance claims is when you write your own code. We
encourage you to run and measure all the code snippets in the book. To start, we will
provide an indication of how fast Julia can be by comparing a similar algorithm on multiple
languages.

[13]
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As an example, consider the algorithm to compute a Mandelbrot set. Given a complex
number, z, the function computes whether, after a certain number of iterations, the

J(2)=2"4¢ function converges or not. Plotting the imaginary numbers where that function
diverges on a 2D plane produces the following iconic fractal image that is associated with

this set:

Im[¢]
Y

The following code computes the divergence point based on this logic. Calling this function
over all points on a 2D plane will produce the Mandelbrot set:

function mandel (c)
zZ = C
maxiter = 80
for n in l:maxiter
if abs(z) > 2
return n - 1
end
z =2z"2 + c
end
return maxiter
end

You will notice that this code contains no type annotations, or any special markup, even
though it operates on complex numbers. It looks remarkably clean, and the idea that the
same mathematical operations can apply to many different kinds of mathematical objects is

key to Julia's expressiveness.

[14]
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The same algorithm implemented in modern C would look as follows:

int mandel (double complex z) {

int maxiter = 80;
double complex ¢ = z;
for (int n = 0; n < maxiter; ++n) A
if (cabs(z) > 2.0) {
return n;
}
z = z¥*z+c;
}

return maxiter;

Downloading the example code:

You can download the example code files for this book from your account
at http://www.packtpub.comn. If you purchased this book elsewhere, you
can visit http: //www.packtpub.com/support and register to have the files
emailed directly to you.

You can download the code files by taking the following steps:

1. Log in or register on our website using your email address and
password

Let the mouse pointer hover over the SUPPORT tab at the top
Click on Code Downloads & Errata

Enter the name of the book in the Search box

AN

Select the book for which you're looking to download the code
files

6. Choose from the drop-down menu where you purchased this
book

7. Click on Code Download

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of the following;:

¢ WInRAR/7-Zip for Windows
¢ Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux
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By timing this code in Julia and C, as well as re-implementing it in many other languages
(all of which are available within the Microbencmarks project at https://github.com/
JuliaLang/Microbenchmarks), we can note that Julia's performance claims are certainly
borne out for this small program. Plotting these timing results in the following chart, we see
that Julia can perform at a level similar to C and other statically typed and compiled
languages:

20

speed relative to C

0.66 0.79

o N

Fortran Go Java JavaScript Julia Lua Mathematica Matlab Python R

This is, of course, a micro benchmark, and therefore cannot be extrapolated too much.
However, I hope you will agree that it is certainly possible to achieve exceptional
performance in Julia, without having to fall back to low-level languages for performance-
critical code. The rest of the book will attempt to show how we can achieve performance
close to this standard, for many different kinds of code bases. We will learn how to squeeze
the maximum possible performance from the CPU, without any of the overhead that

typically plagues dynamic languages.
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Summary

In this chapter, we noted that Julia is a language that is built from the ground up for high
performance. Its design and implementation have always been focused on providing the
highest possible performance on a modern CPU.

The rest of the book will show you how to use the power of Julia fully, to write the fastest
possible code in this language. In the next chapter, we will discuss how to measure the
speed of Julia code, and identify performance bottlenecks. You will also learn about some
of the tools that are built into Julia for this purpose.

[17]
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The aim of this book is to show us how to improve the performance of our Julia code, but
before we can improve, we must measure. To try and optimize any Julia code we have
written, we first need to understand its performance characteristics. Is the code fast enough
for our needs? If not, is there an upper limit to how fast it can be? And finally, can we
understand where the bottlenecks are, so that we can prioritize where to focus our efforts.
This chapter will show us the tools available in Julia to answer these questions and more. In
later chapters, we will see how to use this information to improve our code.

In this chapter, we will cover the following topics:

Timing Julia functions

Accurate benchmarking

Profiling Julia functions

Tracking detailed memory allocation

Timing Julia functions

The first step to understanding anything is to measure it. The same goes for writing high-
performance Julia code. We need to measure the performance of the code as the first step to
achieving that. As a high-performance language, Julia includes many tools to do this easily,
effectively, and accurately. Many of these are built into the language and the standard
library, while others are in external packages that can be installed with a single command.
All of these tools not only make it easy to measure the performance of the code; they also
make it easy to execute the measurement correctly.
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When reading this book, whether in print or on screen, we encourage you
to run the code and see the results for yourself. The concepts in this book
will become much easier to learn if you run the code yourself. The
simplest would be to copy/paste the code you see in this book into the
Julia REPL.

The REPL (or the Read-Eval-Print-Loop, aka the Julia> prompt) is what
you get when you run the Julia executable. It is the best command-line
environment you will have seen, with features such as full history,
multiline editing, and multiple modes. The code that you see in this book
is written as if entered on the REPL. And in an amazing feat of user
friendliness, you can copy and paste the entire line, including the text of
the prompt (in other words, the julia> text). Upon pasting, the REPL
will recognize this, and do the right thing. Do try this!

The @time macro

Whenever you care about the performance of your code, the ¢t ime macro will end up
being one of your most widely used commands on the Julia prompt. Built into the base
Julia runtime, this macro wraps the provided expression to calculate and print the elapsed
time while running it. It also measures and prints the amount of memory allocated while
running that code.

julia> @time sqrt (rand(1000));
0.000023 seconds (8 allocations: 15.969 KB)

Any kind of Julia expressions can be wrapped by the @t ime macro. Usually, it is a function
call as above, but it could be any other valid expression:

julia> @time for i in 1:1000
®x = sin. (rand(1000))
end
0.023210 seconds (2.00 k allocations: 15.503 MiB, 38.35% gc time)

[19]
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Timing measurements and JIT compiling:

Recall that Julia is a JIT-compiled language. This means that the Julia
compiler and runtime compiles any Julia code into machine code the first
time it sees it. This means that, if you measure the execution time of any
Julia expression that executes for the first time, you will end up measuring
the time (and memory use) required compiling this code. So, whenever
you time any piece of Julia code, it is crucial to run it at least once prior to
measuring the execution time. Always measure the second or later
invocation.

Other time macros

An enhanced version of the @t ime macro is also available; this is the @t imev macro. This
macro operates in a manner very similar to @t ime, but measures some additional memory
statistics, and provides elapsed time measurements to nanosecond precision. The following
output shows the result of running this macro:

julia> @timev sgrt. (rand(1000));
0.000012 seconds (8 allocations: 15.969 KB)
elapsed time (ns): 11551
bytes allocated: 16352
pool allocs: 6
non-pool GC allocs:2

Both the @t ime and @t imev macros return the value of the expression whose performance
they measured (note the semicolon at the end of the preceding expression—this prevents
the REPL from outputting the return value to the console). Hence, these can be added
without side effects to almost any location within the Julia code.

They can be used to measure the performance of the specific expression we are interested
in, and still use the computed value for further operations. For example, it could be used
within a function call's arguments. In the following expression, the @t ime macro is used to
time the execution of the sqrt function, and then the result of that function is passed as an

argument to the sum function:

julia> sum(@time sgrt. (rand(1000)))
0.000373 seconds (29 allocations: 17.047 KiB)
656.069185135439

[20]
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Gelapsed is yet another built-in macro that can be used to measure the execution time of
Julia programs. Unlike the @t ime or @t imev macros, which output the time information to
the console, the @elapsed macro returns the time in seconds as a result:

julia> @elapsed sgrt. (rand(1000))
0.000217478

This means that these resulting times can be used for further processing—for example, they
can be used to assert performance limits during unit testing:

julia> using Test

julia> @test @elapsed(sqgrt. (rand(1000))) <= 10e-4
Test Passed

These macros are useful to measure the performance of individual expressions. To fully
understand how larger codebases perform, we need a profiler.

The Julia profiler

The Julia runtime includes a built-in profiler, which can be used to measure how long each
line of code takes to run, relative to a certain code base. It can therefore be used to identify
bottlenecks in code, which can, in turn, be used to prioritize optimization efforts.

This built-in system implements what is known as a sampling profiler. As its name
suggests, it samples the program call stack at certain points in time. When the profiler is
run, it stops and inspects the running system every few milliseconds (by default, 1
millisecond on UNIX, and 10 milliseconds on Windows). At every point, the profiler
identifies the list of function calls (and the line of code they originate), from the start of the
program to the current point, and updates a counter for every line it sees on the call stack.
The idea is that the lines of code that are executed most are also found more often on the
call stack. Hence, over many such samples, the count of how often each line of code is
encountered will be a measure of how often this code runs.

The primary advantage of a sampling profiler is that it can run without modifying the
source program, and thus has very little overhead. The program runs at almost full speed
when being profiled. The downside of the profiler is that the data is statistical in nature,
and may not reflect exactly how the program executed. However, when sampled over a
reasonable period of time (say a few hundred milliseconds at least), the results are accurate
enough to form a good understanding of how the program performs, and what its
bottlenecks are.

[21]
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Using the profiler

The profiler lives within the Profile standard library package. So the first step in using the
profiler is to import its namespace into the current session. You can do this using the using

command:
julia> using Profile

This makes the @profile macro available. This measures and stores the performance
profile of the expression supplied to it.

Do not profile the JIT:

As with measuring the time of execution, remember to run your code at
least once before attempting to profile it. Otherwise, you will end up
profiling the Julia JIT compiler, rather than your code. If you see many
instances of inference. j1 in your profiler output, that means you are
profiling the compiler instead of your code. If you see this, clear the
profile data, and run your code again; on the second run, you will get the
correct profile results.

To see how the profiler works, let's start with a function that creates 1,000 sets of 10,000
random numbers, and then computes the mean of the squares for each set:

using Statistics

function randmsqgl()
x = rand (10000, 1000)
y = mean(x.”2, dims=1)
return y

end

After calling the function once to ensure that all the code is compiled, we can run the
profiler over this code as follows:

julia> randmsq();
julia> @profile randmsqg()

This will execute the function while collecting profile information. The function will return
as normal, and the collected profile information will be stored in memory.

[22]
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The output from the profiler is a hierarchical list of code locations, representing the call
stack for the program. The number, against each line, counts the number of times this line
was sampled by the profiler. Therefore, the higher the number, the greater the contribution
of that line to the total runtime of the program. It indicates the time spent on the line, and
all its callees. If the hierarchy is too deeply nested, thereby making the output confusing,
you can get a flat output by calling Profile.print (format=:flat).

The profile information can be printed via the print method as follows:

julia> Profile.print ()
115 ./task.jl:257; (::getfield(REPL,
Symbol ("##28#29") ) {REPL.REPLBackend}) ()
115 ...r/share/julia/stdlib/v0.7/REPL/src/REPL.j1:116; macro expansion
115 ...r/share/julia/stdlib/v0.7/REPL/src/REPL.J1:85;
eval_user_input (::Any, ::REPL.REPLBackend)
115 ./boot.jl:316; eval(::Module, ::Any)
115 ./<missing>:0; top-level scope
115 .../julia/stdlib/v0.7/Profile/src/Profile.jl:27; macro expansion
53 ./REPL[11]:2; randmsg()
53 ...e/julia/stdlib/v0.7/Random/src/Random.jl:224; rand
53 .../julia/stdlib/v0.7/Random/src/Random. j1:236; rand
53 .../julia/stdlib/v0.7/Random/src/Random.jl1:235; rand
8 ./boot.jl:407; Type
8 ./boot.jl:400; Type
8 ./boot.jl:392; Type
45 . ../julia/stdlib/v0.7/Random/src/Random.jl:214; rand!
45 ...e/julia/stdlib/v0.7/Random/src/RNGs.jl1:447; rand!

What does this output tell us? Well, among other things, it shows that the creation of the
random arrays took a majority of the execution time; over a third. Of the remaining time,
the majority was spent on the squaring, and a minority on the mean.

There are a few options to the profiler that are sometimes useful, although the defaults are a
good choice for most uses. Primary among them is the sampling interval. This can be
provided as keyword arguments to the Profile.init () method. The default delay is 1
millisecond on Linux, and should be increased for very long-running programs through a
line of code such as the following (which sets the delay to 100 ms):

julia> Profile.init (delay=.01)

The delay may be reduced as well, but the overhead of profiling can increase significantly if
it is lowered too much.
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Finally, you may have realized that the profiler stores its samples in memory in order to be
viewed later. In order to profile a different program during a Julia session that is already
running, it may be necessary to clear the stored profile from memory. The
Profile.clear () function does this, and must therefore be run between any two
invocations of @profile within the same Julia process.

ProfileView

The textual display of the profiler output shown previously is useful and explanatory in
many cases, but can become confusing to read for long, or deeply nested call graphs. In this
case, or in general, if you prefer a graphical output, the ProfileView package is the
answer. However, this is not included in the base Julia distribution, and must be installed
as an external package via the Julia package manager:

julia> using Pkg
julia> Pkg.add("ProfileView")

This will install the ProfilevView package and its dependencies (which include the Gtk

graphical environment). Once installed, it is very simple to use. Simply load the package
and call its view () function instead of Profile.print () after the profile samples have
been collected using @profile:

julia> using ProfileView
julia> ProfileView.view()

A user interface window will pop up, with the profile displayed as a flame graph, similar to
the following screenshot. Move your cursor over the blocks to note a hover containing the
details of the call location:

L IR Profile

i
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This view provides the same information as the tree view seen earlier, but may be easier to
navigate and understand, particularly for larger programs. In this chart, elapsed time goes
trom left to right, while the call stack goes from bottom to top. The width of the bar
therefore shows the time spent by the program in a particular call location, along with its
callees. The bars stacked on top of one another show the hierarchy of function calls. This
view of a program's execution profile is commonly known as a flame graph.

The profileview Ul provides a few nifty utilities to work with the profile data. The
profile itself can be saved to disk using the save icon at the top of the window, while a
previously saved profile can be opened by clicking the folder icon. Right-clicking on a bar
will cause an editor to open the program at that line, and left-clicking will cause a line
describing the call to be printed in the Julia REPL. The latter is an easy way to quickly mark
interesting lines, for subsequent analysis.

ProfileView also has the ability to create the flame graph in SVG format, which makes it
easy to share profiling results with others. SVG is also the default format when
ProfileView is called from within an IJulia notebook:

In [9): using ProfileView

In [10]: Bprofile testfunc()
out[10]: 1=1000 Array{Float64,2}:

0.289969 0.290125 0.288434 0.288483 .. 0.28958 0.286604 0.288659
In [11): ProfileView.view()

Qut[1l1l):

Profile results

Function: dsfmt_fill_array_close_open! in ./dSFMT.jl:84

From the REPL, the svgwrite function can be used to output the graph in SVG format.

julia> ProfileView.svgwrite ("profile_results.svg")

Using the profiler on the Julia REPL is simple, as we saw in this section, but it is also
possible to use it in an integrated manner within an IDE.
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Using Juno for profiling

The Juno IDE is a popular environment for developing Julia code. It is bundled with
JuliaPro, and can also be installed directly. Among its many productivity enhancing
features (such as inline evaluation, code completion, and a built-in debugger) is an
integrated profiler. This provides a display of the profiler output on top of the source code
view, making it easy to visualize the relative contribution of each line of code to the overall
execution time.

While the display is more sophisticated, using the profiler in Juno is similar: use
the €profiler macro (note the extra r at the end). The following screenshot shows an
example of the profiler view inside Juno:

Chapter2.jl — ~/dev/julia/Julia-High-Performance
. o% Chapter2.jl <+ random.jl Ll Profiler

« » O 4+ - =

msq() » 1x1000 Array{Float64,2}:

You will notice the highlight on top of the source code of the function being analyzed,
depicting the performance cost of each line as an inline bar. On the right, there is a more
traditional flame graph. Hovering on the boxes in the flame graph displays the file and
function that it denotes, and clicking on the box will open the relevant source code in the
IDE.
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Using TimerOutputs

For some complicated and long-running programs, a full profiler run can be complex and
confusing. Scrolling through many hundreds of stack frames becomes tedious. In these
situations, the Timeroutput package helps to easily measure the constituent parts of a
program.

To use this package, first install it using Julia's package manager:

julia> using Pkg
julia> Pkg.add("TimerCutputs");

Once installed, the package can be loaded. Next, a global Timeroutput object is created.
This will store the results of our timing runs:

julia> using TimerOutputs
julia> const to = TimerOutput();

Now, we can time individual parts of the computation. We will reuse the randmsg function
we wrote previously. We annotate the code inside the function via the @t imeit macro,
which takes as an argument the Timeroutput object, a name to refer to each invocation,
and the expression to be measured:

function randmsg_timed()
@timeit to "randmsq" begin
X = @timeit to "rand" rand(10000, 1000)
y = @timeit to "mean" mean(x.”2, dims=1)
return y
end
end
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We now run this function, and then view the timer outputs using the print_time
function:

julia> randmsqg_timed();

julia> print_timer (to)

Time Allocations

Tot / % measured: 53.0s / 0.83% 173MiB / 88.3%
Section ncalls time Ftot avg alloc Ftot avg
randmsqg 2 438ms 100% 219ms 153MiB  100% 76.3MiB
rand 1 250ms 57.0% 250ms 76.3MiB 50.0% 76.3MiB
mean 1 188ms 43.0% 188ms 76.3MiB  50.0% 76.3MiB

The output nicely summarizes the timings for the nested calls, and calculates the
aggregates. For long simulations, or complex optimization problems, this way of measuring
timings can be very useful.

Analyzing memory allocation

The amount of memory used by a program is sometimes as important to track as the
amount of time taken to run it. This is not only because memory is a limited resource that
can be in short supply, but also because excessive allocation can easily lead to excessive
execution time. The time taken to allocate and deallocate memory and run the garbage
collection can become quite significant when a program uses large amounts of memory.

The @t ime macro seen in the previous sections provides information about memory
allocation for the expression or function being timed. In some cases, however, it may be
difficult to predict where exactly the memory allocation occurs. For these situations, Julia's
track allocation functionality is just what is needed.
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Using the memory allocation tracker

To get Julia to track memory allocation, start the julia process from your command or
shell prompt with the -track-allocation=user option as follows:

$ julia track-allocation=user

This will start a normal Julia session in which you can run your code as usual. However, in
the background, Julia will track all the memory used, which will be written to .mem files
when Julia exits. There will be a new .menm file for each . j1 file that is loaded and executed.
These files will contain the Julia code from their corresponding source files, with each line
annotated with the total amount of memory that was allocated as a result of executing this
line.

As we discussed earlier, when running Julia code, the compiler will compile the user code
at runtime. Once again, we do not want to measure the memory allocation due to the
compiler. To achieve this, first run the code under measurement once, after starting the
Julia process. Then, run the Profile.clear_malloc_data () function to restart the
allocation measurement counters. Finally, run the code under measurement once again,
and then exit the process. This way, we will get the most accurate memory measurements.

Statistically accurate benchmarking

The tools described in this chapter, particularly the ¢t ime macro, are useful for identifying
and investigating bottlenecks in our program. However, they are not very accurate in terms
of a fine-grained analysis of fast programs. If you want to, for example, compare two
functions that take a few milliseconds to run, the amount of error and variability in the
measurement will easily swamp the running time of this function.

Using BenchmarkTools.jl

The solution, then, is to use the BenchmarkTools. j1 package for statistically accurate
benchmarking. Install the package via the Julia package manager, and thereafter it is simple
to use. Instead of using @t ime, use the @benchmark macro. Unlike @t ime, however, this
macro can only be used in front of function calls, rather than any expression. It will
evaluate the parameters of the function separately, and then call the function multiple times
to build up a sample of execution times.
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The output will show the mean time taken to run the code, but with statistically accurate
upper and lower bounds. These statistics are estimated by evaluating the expression
multiple times, with the number of evaluations determined in order to maximize the
accuracy of the measurements. These estimates attempt to account for the noise inherent in
running benchmarks on real machines, while also minimizing the time taken to measure it
accurately. As an example, we measure the running time of creating a random array and
calculating the square root of all its elements:

julia> using BenchmarkTools

julia> @benchmark sqgrt. (rand(1000))
BenchmarkTools.Trial:

memory estimate: 15.88 KiB

allocs estimate: 2

minimum time: 6.266 pus (0.00% GC)
median time: 7.225 ps (0.00% GC)
mean time: 9.417 pus (13.12% GC)
maximum time: 612.404 pus (96.45% GC)

samples: 10000
evals/sample: 5

A simpler version of the output can be obtained by using the @bt ime macro. This macro
does the same operations as the @benchmark macro, but provides simpler output that is
similar to the basic @t ime macro. Furthermore, it also returns the value of the expression
that it evaluated. For the rest of the book, this is what we will use for all time measurements
for the code that we write and evaluate. Using the @bt ime macro from the
BenchmarkTools package will allow us to be confident that any performance
improvements to our code that we measure are real, and not noise:

julia> @btime mean (rand(1000));
1.665 us (1 allocation: 7.94 KiB)e

The BenchmarkTools package consists of sophisticated machinery to
provide statistically accurate benchmarking. The theory behind the code is
explained in Jarett Ravel and Jiahao Chen's paper, Robust benchmarking in
noisy environments, available at https://arxiv.org/abs/1608.04295.
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These two macros, @benchmark and @bt ime, should be your standard method to measure
performance in Julia. They should be used in almost all cases in which you need to
benchmark any code. We will use them almost exclusively throughout this book. All the
code in subsequent chapters will assume that the package has been loaded in the session by
using BenchmarkTools. Inrare cases, such as for long-running programs that take too
long and cannot be executed multiple times, you may fall back to the @t ime macro.
However, such occasions should be rare.

Summary

In this chapter, we discussed how to use the available tools to measure the performance of
Julia code. We learned to measure the time and memory resources used by code, and
understood how to arrive at the hotspots for any program.

In subsequent chapters, we will learn how to remedy the issues we encounter using the
tools of this chapter, and hence improve the performance measurements for our code.
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Stability

Julia is a dynamically typed language. Unlike languages such as Java or C, the programmer
does not need to specify the fixed type of every variable in the program. Yet, somewhat
counterintuitively, Julia achieves its impressive performance characteristics by inferring
and using the type information for all the data in the program. In this chapter, we will start
with a brief look at the type system in the language and then explain how to use this type
system to write high-performance code.

This chapter will cover the following topics:

¢ The Julia type system

¢ Type inference

e Type stability

* Types at storage locations

The Julia type system

Types in Julia are essentially tags, on values, that restrict the range of potential values that
can possibly be stored at that location. Being a dynamic language, these tags are relevant
only to runtime values. Types are usually not enforced at compile time; rather, they are
checked at runtime. However, type information is used at compile time to generate
specialized methods for different kinds of function arguments.
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Using types

In most dynamic languages, types are implicit in terms of how values are created. Julia can
be—and usually is—written in this way, with no explicit type annotations. However,
optionally, you can indicate variables or function parameters to be restricted to specific
types using the : : symbol. Here are a few examples.

We define two versions of the iam function, one for integer arguments and another for
string arguments. We also define a single method for the function addme, which takes two
unrestricted values of any kind as an argument, as follows:

#Declare type of function argument
iam(x::Integer) = "an integer"
iam(x::String) = "a string"

function addme (a, b)
#Declare type of local variable x
x::Int64d = 2
#Type of wariable y will be inferred
y = (at+b) / x
return y

end

Having defined these functions, we can now call them. These calls should make clear how
Julia dispatches function calls based on the types of the argument values, as follows:

julia> iam(1) #Dispatch on type of
argument
"an integer"

julia> iam("1") #Dispatch on type of

argument
"a string"

julia> iam(1.5) #Dispatch fails
ERROR: “iam’ has no method matching iam(::Floaté4)

A note on terminology

In Julia, the abstract operation represented by a name is called a function,
while the individual implementations for specific types are called
methods. Thus, in the preceding code, we can use the iam function and
the iam methods for Integer and String. In an object-oriented
language, objects have methods; in Julia, functions have methods.
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