Julia Programming for Operations Research 2/e
g g P /

Changhyun Kwon

Julia Programming for Operations Research

https://www.chkwon.net/julia

Second Edition

Published by Changhyun Kwon
Cover Design by Joo Yeon Woo / www.spacekite.net
Cat Drawing by Bomin Kwon

Copyright (©) 2019 by Changhyun Kwon
All Rights Reserved.

version 2021/03/06 13:58:00

ii

1 Introducti 1T llati
1.1 What is Julia and Why Julia?,
1.2 Installing Julia 0 o0

N

1.2.1 Installing Julia in Windows
1.2.2 Installing Julia in macOS

1.2.3 Running Julia Scripts

1.2.4 Installing Gurobi

1.2.5 Installing CPLEX
1.3 Installing [Julia
1.4 Package Management . .
1.5 Help

—
=

2 Simple Linear Optimization

2.1 Linear Programming (LP) Problems
2.2 Alternative Ways of Writing LP Problems
2.3 Yet Another Way of Writing LP Problems
2.4 Mixed Integer Linear Programming (MILP) Problems

“E8B BREEEEER

o]
[es}

iii

Copyrighted material

3 Basics of the Julia Language
3.1 Vector, Matrix, and Array
32 Tuple
3.3 Indices and Ranges
3.4 Printing Messages
3.5 Collection, Dictionary, and For-Loop . .
3.6 Function
3.7 Scope of Variables
3.9 File Input/Output
3.10 Plotting
3.10.1 The PyPlot Package
3.10.2 Avoiding Type-3 Fonts in PyPlot
4 Selected Topics in Numerical Methods
4.1 Curve Fitting
4.2 Numerical Differentiation
4.3 Numerical Integration
| Automatic Differentiati
5 The Simplex Method
5.1 A Brief Description of the Simplex Method
5.2 Searching All Basic Feasible Solutions
5.3 Using the JuMP Package
5.4 Pivoting in Tableau Form
5.5 Implementing the Simplex Method
5.5.1 initialize(c, A, b)
5.5.2 1is_optimal(tableau)
5.5.3 pivoting! (tableau) .
5.5.4 Creating a Module
5.6 Next Steps. .
6 Network Optimization Problems

iv

6.1 The Minimal-Cost Network-Flow Problem
6.2 The Transportation Problem
6.3 The Shortest Path Problem

CEEEEEg8l Emepd NRRSoBEEEEERER

Copyrighted materia

6.4 Implementing Dijkstra’s Algorithm 144

7 Interior Point Methods 151
7.1 The Affine Scaling Algorithm 151
7.2 The Primal Path Following Algorithm 157
7.3 Remarks 162

8 Nonlinear Optimization Problems 165
8.1 Unconstrained Optimization 165
8.1.1 Line Search 165

8.1.2 Unconstrained Optimization . . 167

8.1.3 Box-constrained Optimization . 168

8.2 Nonlinear Optimization 169
8.3 Other Solvers 170
8.4 Mixed Integer Nonlinear Programming 175

9 Monte Carlo Methods 177
9.1 Probability Distributions 177
9.2 Randomized Linear Program 179
9.3 Estimating the Number of Simple Paths 186

10 Lagrangian Relaxation 197
10.1 Introduction 197
10.1.1 Lower and Upper Bounds 198

10.1.2 Subgradient Optimization 200

10.1.3 Summary . 200

10.2 The p-Median Problem . 201
10.2.1 Reading the Data File 202

10.2.2 Solving the p-Median Problem Optimally 204

10.2.3 Lagrangian Relaxation 205

10.2.4 Finding LLower Bounds 206

10.2.5 Finding Upper Bounds 210

10.2.6 Updating the Lagrangian Multiplier __ 212

-

11 Complementarity Problems 225

11.1 Linear Complementarity Problems (LCP) 225
11.2 Nonlinear Complementarity Problems (NCP) 233
11.3 Mixed Complementarity Problems (MCP) 237
12 Parameters in Optimization Solvers 239
12.1 Setting CPU Time Limit 239
12.2 Setting the Optimality Gap Tolerance 240
123 Warmstart 241
12.4 Big-M and Integrality Tolerance . . 242
12.5 Turning off the Solver Qutput 244
12.6 Other Solver Parameters 244
Index 247

vi

Preface

The main motivation of writing this book was to help myself. I am a professor in the
field of operations research, and my daily activities involve building models of mathe-
matical optimization, developing algorithms for solving the problems, implementing
those algorithms using computer programming languages, experimenting with data,
etc. Three languages are involved: human language, mathematical language, and
computer language. My students and I need to go over three different languages.
We need “translation” among the three languages.

When my students seek help on the tasks of “translation,” I often provide them
with my prior translation as an example or find online resources that may be helpful
to them. If students have proper background with proper mathematical education,
sufficient computer programming experience, and good understanding of how numer-
ical computing works, students can learn easier and my daily tasks in research and
education would go smoothly.

To my frustration, however, many graduate students in operations research take
long time to learn how to “translate.” This book is to help them and help me to help
them.

I'm neither a computer scientist nor a software engineer. Therefore, this book
does not teach the best translation. Instead, I'll try to teach how one can finish
some common tasks necessary in research and development works arising in the field
of operations research and management science. It will be just one translation, not

vii

the best for sure. But after reading this book, readers will certainly be able to get
things done, one way or the other.

What this book teaches

This book is neither a textbook in numerical methods, a comprehensive introduc-
tory book to Julia programming, a textbook on numerical optimization, a complete
manual of optimization solvers, nor an introductory book to computational science
and engineering—it is a little bit of all.

This book will first teach how to install the Julia Language itself. This book
teaches a little bit of syntax and standard libraries of Julia, a little bit of program-
ming skills using Julia, a little bit of numerical methods, a little bit of optimization
modeling, a little bit of Monte Carlo methods, a little bit of algorithms, and a little
bit of optimization solvers.

This book by no means is complete and cannot serve as a standalone textbook
for any of the above-mentioned topics. In my opinion, it is best to use this book
along with other major textbooks or reference books in operations research and
management science. This book assumes that readers are already familiar with
topics in optimization theory and algorithms or are willing to learn by themselves
from other references. Of course, I provide the best references of my knowledge to
each topic.

After reading this book and some coding exercises, readers should be able to
search and read many other technical documents available online. This book will
just help the first step to computing in operations research and management science.
This book is literally a primer on computing,.

How this book can be used

This book will certainly help graduate students (and their advisors) for tasks in their
research. First year graduate students may use this book as a tutorial that guides
them to various optimization solvers and algorithms available. This book will also
be a companton through their graduate study. While students take various courses
during their graduate study, this book will be always a good starting point to learn
how to solve certain optimization problems and implement algorithms they learned.
Eventually, this book can be a helpful reference for their thesis research.

viii

Advanced graduate students may use this book as a reference. For example, when
they need to implement a Lagrangian relaxation method for their own problem, they
can refer to a chapter in this book to see how I did it and learn how they may be
able to do it.

It is also my hope that this book can be used for courses in operations research,
analytics, linear programming, nonlinear programming, numerical optimization, net-
work optimization, management science, and transportation engineering, as a sup-
plementary textbook. If there is a short course with 1 or 2 credit hours for teaching
numerical methods and computing tools in operations research and management sci-
ence, this book can be primary or secondary textbook, depending on the instructor’s
main focus.

Notes to advanced programmers

If you are already familiar with computing and at least one computer programming
language, I don’t think this book will have much value for you. There are many
resources available on the web, and you will be able to learn about the Julia Language
and catch up with the state-of-the-art easily. If you want to learn and catch up even
faster with much less troubles, this book can be helpful.

I had some experiences with MATLAB and Java before learning Julia. Learning
Julia was not very difficult, but exciting and fun. I just needed a good “excuse” to
learn and use Julia. Check what my excuse was in the first chapter.

Acknowledgment

I sincerely appreciate all the efforts from Julia developers. The Julia Language is
a beautiful language that I love very much. It changed my daily computing life
completely. I am thankful to the developers of the JuMP and other related packages.
After JuMP, I no longer look for better modeling languages. I am also grateful to
Joo Yeon Woo for the cover design and Bomin Kwon for the cat drawing.

Tampa, Florida
Changhyun Kwon

ix

Introduction and Installation

This chapter will introduce what the Julia Language is and explain why I love it.
More importantly, this chapter will teach you how to obtain Julia and install it
in your machine. Well, at this moment, the most challenging task for using Julia
in computing would probably be installing the language and other libraries and
programs correctly in your own machine. I will go over every step with fine details
with screenshots for both Windows and Mac machines. I assumed that Linux users
can handle the installation process well enough without much help from this book
by reading online manuals and googling. Perhaps the Mac section could be useful
to Linux users.

All Julia codes in this book are shared as a git repository and are available at
the book website: http://www.chkwon.net/julia. Codes are tested with

e Julia v1.3.0
e JuMP v0.21.2
e Optim v0.20.6

I will introduce what JuMP and Optim are gradually later in the book.

1.1. What is Julia and Why Julia?

1.1 What is Julia and Why Julia?

The Julia Language is a young emerging language, whose primary target is technical
computing. It is developed for making technical computing more fun and more
efficient. There are many good things about the Julia Language from the perspective
of computer scientists and software engineers; you can read about the language at
the official websitel.

Here is a quote from the creators of Julia from their first official blog article “Why
We Created Julia™?:

“We want a language that’s open source, with a liberal license. We want
the speed of C with the dynamism of Ruby. We want a language that’s
homoiconic, with true macros like Lisp, but with obvious, familiar math-
ematical notation like Matlab. We want something as usable for general
programming as Python, as easy for statistics as R, as natural for string
processing as Perl, as powerful for linear algebra as Matlab, as good at
gluing programs together as the shell. Something that is dirt simple to
learn, yet keeps the most serious hackers happy. We want it interactive
and we want it compiled.

(Did we mention it should be as fast as C?)”

So this is how Julia was created, to serve all above greedy wishes.

Let me tell you my story. 1 used to be a Java developer for a few years before
I joined a graduate school. My first computer codes for homework assignments and
course projects were naturally written in Java; even before then, I used C for my
homework assignments for computing when I was an undergraduate student. Later,
in the graduate school, I started using MATLAB, mainly because my fellow graduate
students in the lab were using MATLAB. I needed to learn from them, so I used
MATLAB.

I liked MATLAB. Unlike in Java and C, I don’t need to declare every single
variable before I use it; I just use it in MATLAB. Arrays are not just arrays in the
computer memory; arrays in MATLAB are just like vectors and matrices. Plotting
computation results is easy. For modeling optimization problems, I used GAMS

"http://julialang.org
’http://julialang.org/blog/2012/02/vwhy-we- created- julia

Chapter 1. Introduction and Installation

and connected with solvers like CPLEX. While the MATLAB-GAMS-CPLEX chain
suited my purpose well, I wasn’t that happy with the syntax of GAMS—I couldn’t
fully understand—and the slow speed of the interface between GAMS and MATLAB.
While CPLEX provides complete connectivities with C, Java, and Python, it was
very basic with MATLAB.

When 1 finished with my graduate degree, I seriously considered Python. It
was—and still is—a very popular choice for many computational scientists. CPLEX
also has a better support for Python than MATLAB. Unlike MATLAB, Python is
a free and open source language. However, I didn’t go with Python and decided to
stick with MATLAB. I personally don’t like 0 being the first index of arrays in C
and Java. In Python, it is also 0. In MATLAB, it is 1. For example, if we have a
vector like:

1
v— 0
13
-1
it may be written in MATLADB as:

v =[1; 0; 3; -1]

The first element of this vector should be accessible by v(1), not v(0). The i-th
element must be v(i), not v(i-1). So I stayed with MATLAB.

Later in 2012, the Julia Language was introduced and it looked attractive to me,
since at least the array index begins with 1. After some investigations, I still didn’t
move to Julia at that time. It was ugly in supporting optimization modeling and
solvers. I kept using MATLAB.

In 2014, T came across several blog articles and tweets talking about Julia again.
I gave it one more look. Then I found a package for modeling optimization problems
in Julia, called JuMP-——Julia for Mathematical Programming. After spending a few
hours, I fell in love with JuMP and decided to go with Julia, well more with JuMP.
Here is a part of my code for solving a network optimization problem:

@variable(m, O<= x[links] <=1)

@objective(m, Min, sum(c[(i,j)] * x[(i,j)] for (i,j) in links))

1.2. Installing Julia

for i=1:no_node
Q@constraint(m, sum(x[(ii,j)] for (ii,j) in links if ii==i)
- sum(x[(j,ii)] for (j,ii) in links if ii==i) == b[il)
end

optimize! (m)

This is indeed a direct “translation” of the following mathematical language:

min E CijTij

(i,7)eA

subject to

Z Tij — Z Ij,;=bi Vie N

(i.j)eA (j.i)eA
0<zy <1 V(i,j)eA

[think it is a very obvious translation. It is quite beautiful, isn’t it?

CPLEX and its competitor Gurobi are also very smoothly connected with Julia
via JuMP. Why should I hesitate? After several years of using Julia, I still love it—1I
even wrote a book.

1.2 Installing Julia

Graduate students and researchers are strongly recommended to install Julia in
their local computers. In this guide, we will first install Julia and then install two
optimization packages, JuMP and GLPK. JuMP stands for ‘Julia for Mathematical
Programming’, which is a modeling language for optimization problems. GLPK is an
open-source linear optimization solver that can solve both continuous and discrete
linear programs. Windows users go to Section 1.2.1, and Mac users go to Section
1.2.2.

4

Chapter 1. Introduction and Installation

1.2.1 Installing Julia in Windows

e Step 1. Download Julia from the official website.* (Select an appropriate
version: 32-bit or 64-bit. 64-bit recommended whenever possible.)

Current stable release (v1.1.0)

Windows Self-Extracting Archive 32-bit 64-hit

(.exe) [help]
Windows 7/Windows Server 2012 users also require Windows Management
Framework 3.0 or later

macOS 10.8+ Package (.dmg) [help] B4-bit

Generic Linux Binaries for x86 [help] 32-bit (GPG) 64-bit (GPG)

Generic FreeBSD Binaries for x86 B64-bit (GPG)

[help]

Source Tarball (GPG) Tarball with dependencies (GPG) GitHub

e Step 2. Install Julia in C:\julia. (You need to make the installation folder
consistent with the path you set in Step 3.)

&% The Julia Language Setup o x
Choose Install Location ®
Choose the folder in which to install The Julia Language. [o]e]

Julia may be installed in any accessible directory, induding a home folder or portable device.
Please run as Administrator to install for system-wide use,

Destination Folder

| C:\julial Browse...

Space required: 336.4MB
Space available: 4.4GB

[omstad] cancel

e Step 3. Open a Command Prompt and enter the following command:

3h‘l:tp ://julialang.org/downloads/

1.2, Installing Julia

setx PATH "Y.PATHY%;C:\julia\bin"

&8 Command Prompt - [m] b 4

If you do not know how to open a Command Prompt, just google ‘how to open
command prompt windows.’

e Step 4. Open a NEW command prompt and type

echo %PATHY,

BN Command Prompt — =] %

The output must include C:\julia\bin in the end. If not, you must have
something wrong.

Chapter 1. Introduction and Installation

e Step 5. Run julia.

B Command Prompt - julia - O x

You have successfully installed the Julia Language on your Windows computer.
Now it is time to install additional packages for mathematical optimization.

e Step 6. In your Julia prompt, type

julia> using Pkg
julia> Pkg.add("JuMP")
julia> Pkg.add("GLPK")

Installing the first package can take long time, because it initializes your Julia
package folder and synchronizes with the entire package list.

Bl Windows PowerShell = O .4

1.2, Installing Julia

@ Windows PowerShell - O X

e Step 7. Open Notepad (or any other text editor such as Visual Studio Code?)
and type the following, and save the file as script.j1l in some folder of your
choice,

using JuMP, GLPK
m = Model(GLPK.Optimizer)

@variable(m, 0 <= x <= 2)
@variable(m, 0 <= y <= 30)

Qobjective(m, Max, 5x + 3xy)

@constraint(m, 1x + 5y <= 3.0)

JuMP.optimize! (m)

println('Objective value: ", JuMP.objective_value(m))

println("x = ", JuMP.value(x))
println("y = ", JuMP.value(y))

e Step 8. Press and hold your Shift Key and right-click the folder name, and
choose “Open command window here.”

4https://ccde.visualstudic.com

Chapter 1. Introduction and Installation

Program Files

Program Files (x86

v Users Open in new process
v chkwon Open in new window
- Pin to Quick access
Julia

Open command window here
17 Contacts

B Desktop Share with >
Restore previous versions

v || Documents
Include in lib >
Juliﬂ_ﬁxﬁrﬂp't nciude in iprary 7
Pin to Start
& Downloads
Copy as path
Favorites
B linle Sendto >

cuments\julia_e

e Step 9. Type dir to see your script file script. jl.

B C\WINDOWS\system32\cmd.exe - O *

If you see a filename such as script.jl.txt, use the following command to
rename:

1.2. Installing Julia

ren script.jl.txt script.jl

e Step 10. Type julia script.jl to run your julia script.

B C:\WINDOWS\system32\cmd.exe = m} b4

After a few seconds, the result of your julia script will be printed. Done.

Please proceed to Section 1.2.3.

1.2.2 Installing Julia in macOS

In macOS, we will use a package manager, called Homebrew. It provides a very
convenient way of installing software in macOS.

e Step 1. Open “Terminal.app” from your Applications folder. (If you do not
know how to open it, see this video.? It is convenient to place “Terminal.app”
in your dock.

e Step 2. Visit http://brew.sh and follow the instruction to install Homebrew.
It may ask you to enter your password to install Xcode Command Line Tools.

F'https ://wuu.youtube.com/watch?v=zw7Nd67_aFw “How to open the terminal window on a Mac

10

Chapter 1. Introduction and Installation

The miasing packags mans
&

&
B

Homebrew

The missing package manager for macOS (or Linusx)

C B8 @ brewsh

English

Install Homebrew

[NN] D chkwon — -bash — 80x24

Last login: Tue Oct 18 11:48:35 on ttysB8ee
chkwon@MacBook:~% fusr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.c

om/Homebrew/install/master/install)"fJ

e Step 3. Installing Julia using Homebrew: In your terminal, enter the following

command:

brew cask install julia

] L] " chkwon — -bash — 80x=7
tests

Already up-to-date.
==> Installation successful!

==> Next steps

Run “brew help’ to get started

Further documentation: https://git.ic/brew-docs
chkwon@MacBook:~$ brew cask install julial

e Step 5. In your terminal, enter julia.
11

1.2. Installing Julia

® ° “ chkwon — julia — 80x24

Last login: Mon Feb 18 13:30:39 on ttys@a3

chkwon@MacBook:~§ brew cask install julia

==> Satisfying dependencies

==> Downloading https://julialang-s3.julialang.org/bin/mac/x64/1.1/julia=1.1.8-m
160.68%

==> Verifying SHA-266 checksum for Cask 'julia‘.

==> Installing Cask julia

==> Moving App 'Julia-1.l1.app' to '/Applications/Julia-1.1.app'.
==> Linking Binary 'julia' to '/usr/local/bin/julia‘.

I julia was successfully installed!

chkwon@MacBook:~§ julia

Documentation: https://docs.julialang.org
Type "?* for help, "]?" for Pkg help

Version 1.1.8 (2819-81-21)
official https://julialang.org/ release

julias |

e Step 6. In your Julia prompt, type

julia> using Pkg
julia> Pkg.add("JuMP")
julia> Pkg.add("GLPK")

Installing the first package can take a long time, because it initializes your
Julia package folder and synchronizes with the entire package list.

12

Chapter 1. Introduction and Installation

®@ o " chkwon — julia — 80x24
Last login: Wed Feb 28 22:25:27 on ttys@8s4
chkwon@MacBook:~§ julia

- Ly _t:]_ | Documentation: https://docs.julialang.org
) 1 () ()
R || G ||y S| | Type "?* for help, *1?" for Pkg help.
| T I I P |
Tzt | version 1.1.8 (2019-81-21)
_FIN_Z'ZlZl N2 | official https://julialang.org/ release
(— |

julia> using Pkg

julia» Pkg.add("JuMP")
Cloning default registries into '=~/.julia
Cloning registry from "https://github.com/JuliaRegistries/General.git"
Added registry ‘General® to '~/.julia/registries/General’
Resolving package versions...
Installed NaNMath ——— v@.3.2
Installed DiffResults ————— v8.0.4
Installed CommonSubexpressions — v@.2.8
Installed OrderedCollections — v1.0.2
3
1

Installed BinaryProvider ——— v@.5.
Installed BinDeps ———— — — v@.8.
T —————

o

®@ e ‘T chkwon — julia « julia — 80x24
[9a3f8284] + Random
[eaBe919c] + SHA
[9e88b42a] + Serialization
[1a1811a3] + SharedArrays
[6462feBb] + Sockets
[2f@1184e] + SparseArrays
[18745b16] + Statistics
[Bdfed6lé] + Test
[ef7118a7] + UUIDs

[4eceaB3e] + Unicode
Building SpecialFunctions # "~/.julia/packages/SpecialFunctions/fvheQ/deps/bui
1d.log’

julia> Pkg.add("GLPK")
Resolving package versions...
Installed LinQuadOptInterface — v@.6.8
Installed GLPK ——————— v@.9.1
Updating “~/.julia/environments/v1.1/Project.toml”
[68bf3e95] + GLPK v@.9.1
Updating "~/.juliafenvironments/vl.1/Manifest.toml”
[6Bbf3e%5] + GLPK v8.9.1
[f8899e@7] + LinQuadOptInterface v@.6.@
Building GLPK # "~/.julia/packages/GLPK/rwé31/deps/build.log’

e Step 7. Open TextEdit (or any other text editor such as Visual Studio Code®)
and type the following, and save the file as script.jl in some folder of your
choice.

Shttps://code.visualstudio.com

13

1.2. Installing Julia

using JuMP, GLPK
m = Model(GLPK.Optimizer)

@variable(m, 0 <= x <= 2)
@variable(m, 0 <= y <= 30)

@objective(m, Max, 5x + 3*y)

@constraint(m, 1x + 5y <= 3.0)

JuMP.optimize! (m)

println("Objective value: ", JuMP.objective_value(m))

println("x = ", JuMP.value(x))
println("y = ", JuMP.value(y))

e Step 8. Open a terminal window” at the folder that contains your script. j1.

e Step 9. Type 1s -al to check your script file.

[NN] B julia_example — -bash — 80x13
chkwon@MacBook : ~/Documents/jul ample$ 1s -al

total 8

drwxr-xr-x 3 chkwon staff 968 Feb 20 22:51 ./
drwx-———-—— + 34 chkwon staff 1.1K Feb 20 22:51 ../
-rw-r--r--@ 1 chkwon staff 3188 Feb 28 22:58 script.jl
chkwon@MacBook:~/Documents/julia_example$]

e Step 10. Type julia script.jl to run your script.

"To do this, you can drag the folder to the Terminal.app icon in your dock, or see http://
osxdaily.com/2011/12/07/open-a-selected-finder-folder-in-a-new-terminal-window/

14

Chapter 1. Introduction and Installation

® ® B julia_example — -bash — 80x13
-rw-r--r-—@ 1 chkwon staff 3168 Feb 28 22:50 script.jl
chkwon@MacBook : L $ julia script.jl
Objective value: 18.6

x = 2.8

y = 8.2

chkwon@MacBook: §

After a few seconds, the result of your julia script will be printed. Done.

Please proceed to Section 1.2.3.

1.2.3 Running Julia Scripts
When vou are ready, there are basically two methods to run your Julia script:

e In your Command Prompt or Terminal, enter C:> julia your-script.jl

e In your Julia prompt, enter julia> include("your-script.jl").

1.2.4 Installing Gurobi

Instead of GLPK, one can use Gurobi, which is a commercial optimization solver
package for solving LP, MILP, QP, MIQP, etc. Gurobi is free for students, teachers,
professors, or anyone else related to educational organizations.

To install, follow these steps:

1. Download Gurobi Optimizer® and install in your computer. (You will need to
register as an academic user.)

2. Request a free academic license? and follow their instructions to activate it.

H’https ://wuw.gurobi.com/downloads/gurobi-optimizer-eula/
E'h‘l:tps ¢/ /wuw.gurobi.com/academia/academic-program-and-licenses/

15

1.2. Installing Julia

3. Run Julia and add the Gurobi package. You need to tell Julia where Gurobi
is installed:

On Windows:

julia> ENV["GUROBI_HOME"] =

"C:\\Program Files\\gurobi910\\win64"
julia> using Pkg
julia> Pkg.add("Gurobi")

On macOS:

julia> ENV["GUROBI_HOME"] =
"/Library/gurobi910/mac64"

julia> using Pkg

julia> Pkg.add("Gurobi")

4. Ready. Test the following code:

using JuMP, Gurobi

m = Model(Gurobi.Optimizer)
@variable(m, x <= 5)

@variable(m, y <= 45)
@objective(m, Max, x + y)
@constraint(m, 50x + 24y <= 2400)
@constraint(m, 30x + 33y <= 2100)

JuMP.optimize! (m)

println("Objective value: ", JuMP.objective_value(m))
println("x = ", JuMP.value(x))

println("y = ", JuMP.value(y))

1.2.5 Installing CPLEX

Instead of Gurobi, you can install and connect the CPLEX solver, which is also free
to academics.
You can follow this step by step guide to install:

16

Chapter 1. Introduction and Installation

1. Go to the IBM ILOG CPLEX Optimization Studio pagel?.
2. Click ‘Access free academic edition.’
3. Log in with vour institution email and certify.

4. Download an appropriate version of IBM ILOG CPLEX Optimization Studio.
It should be v12.10 or higher.

5. Run the downloaded file and install CPLEX. I recommend using the default
installation folder.

6. Add the CPLEX package in Julia. You have to tell Julia where the CPLEX
library is installed.

On Windows:

julia> ENV["CPLEX_STUDIO_BINARIES"] =
"C:\\Program Files\\CPLEX_Studio1210\\cplex\\bin\\x86-64_win\\"
julia> using Pkg
julia> Pkg.add("CPLEX")
julia> Pkg.build("CPLEX")

On macOS:

julia> ENV["CPLEX_STUDIO_BINARIES"] =
"/Applications/CPLEX_Studio1210/cplex/bin/x86-64_osx/"

julia> using Pkg

julia> Pkg.add("CPLEX")

julia> Pkg.build("CPLEX")

7. Ready. Test the following code:

using JuMP, CPLEX

m = Model(CPLEX.Optimizer)
@variable(m, x <= 5)
@uariable(m, y <= 45)

"Yhttps://www.ibm.com/products/ilog-cplex- optimization-studio

17

1.3. Installing [Julia

@objective(m, Max, x + y)
@constraint(m, 50x + 24y <= 2400)
@constraint(m, 30x + 33y <= 2100)

JuMP.optimize! (m)

println("Objective value: ", JuMP.objective_value(m))
println("x = ", JuMP.value(x))

println("y = ", JuMP.value(y))

1.3 Imstalling IJulia

You can also use an interactive Julia environment in your local computer, called
Jupyter Notebook!. Well, at first there was IPython notebook that was an in-
teractive programming environment for the Python language. It has been popular,
and now it is extended to cover many other languages such as R, Julia, Ruby, etc.
The extension became the Jupyter Notebook project. For Julia, it is called TJulia,
following the naming convention of IPython.

To use IJulia, we need a distribution of Python and Jupyter. Julia can auto-
matically install a distribution for you, unless you want to install it by yourself. If
you let Julia install Python and Jupyter, they will be private to Julia, i.e. you will
not be able to use Python and Jupyter outside of Julia.

The following process will automatically install Python and Jupyter.

1. Open a new terminal window and run Julia. Initialize environment variables:

julia> ENV["PYTHON"] = ""

julia> ENV["JUPYTER"] = ""

2. Install TJulia:

"http://jupyter.org

18

Chapter 1. Introduction and Installation

julia> using Pkg
julia> Pkg.add("IJulia")

3. To open the IJulia notebook in your web browser:

julia> using IJulia
julia> notebook()

It will open a webpage in your browser that looks like the following screenshot:

0@ T rome
C 88 localhost i &
~ Jupyter Qut | Logout
Running Clusters
Select items to parform actions on them. Upload | New + || &
- W Mame+s LastModified | File size
[Applications & days ago
3 bin 2 years ago
[Box 13 minutes ago
[J Calibre Library 25 days ago
[J Desktop 4 minutes ago

3 Dacuments 4 months ago

[Dawnloads 20 minutes ago

The current folder will be your home folder. You can move to another folder and
also create a new folder by clicking the “New” button on the top-right corner of the
screen. After locating a folder you want, you can now create a new IJulia notebook
by clicking the “New” button again and select the julia version of yours, for example
“Julia 1.1.0”. See Figure 1.1.

It will basically open an interactive session of the Julia Language. If you have
used Mathematica or Maple, the interface will look familiar. You can test basic
Julia commands. When you need to evaluate a block of codes, press Shift-+Enter,
or press the “play” button. See Figure 1.2.

If you properly install a plotting package like PyPlot (details in Section 3.10.1),
you can also do plotting directly within the IJulia notebook as shown in Figure 1.4.

19

1.3. Installing [Julia

00 e o + =
¢ » C B 2 lcahost8858/res Q&
= Jupyter out || Logout
Files Funning Clusters
Select items to perform actions on them. Upload <
ar | Ne ook ¥
'L Named| L Loes ®
[Applications Julia 0.7.0
T Dbin Julia 1.0.3
Juiia 1.1.0
[Box. Python 3
[Calitre Library Cthar
[Desktop Text File
O Decuments Fokae
Terminal
~ I Dewninads e —
localhost-BAE9 tread

Figure 1.1: Creating a new notebook

® 0 ® 2 untitedz + =
(> C @ 8 s JatitiedZ.ipynb <
= JUpYTer Untitled? s o & [om
File Edit View Inset Cell Kemal Widgets Help Trusted | # | Julia1.1.0 O
B+ x @ e +[¢] nrn B C[» coe s =
In (1)1)14
out[1]: 2

In [2]: println("Hello IJulial®)
Hello IJulial

In [3]: £(x,y) =272 + ¥y"2
£(2,3)

out[3]: 13

I e | ‘

Figure 1.2: Some basic Julia codes.

20

Copyrighted material

Chapter 1. Introduction and Installation

®@ o chkwon — julia — 80x24

julia> exit()
chkwon@MacBook:~$ julia

Documentation: https://docs.julialang.org

= |
) |« |
__ _ll- ___ | Type "2 for help, "1?" for Pkg help.
Trrrrrsnd
I LIt I 11t | | Vversion 1.1.@ (2019-81-21)
ANl ZIN_Z' 2] | official https://julialang.org/ release
" |
julia> 141

2

julia> println("Hello REPL!")
Hello REPL!

julia> f(x,y) = x"2 + y*2
f (generic function with 1 method)

julia» £(2,3)
13

julia> fi

Figure 1.3: This is the REPL.

Personally, I prefer the REPL for most tasks, but I do occasionally use IJulia,
especially when I need to test some simple things and need to plot the result quickly,
or when I need to share the result of Julia computation with someone else. (IJulia
can export the notebook in various formats, including HTML and PDF.)

What is REPL? It stands for read-eval-print loop. It is the Julia session that
runs in your terminal; see Figure 1.3, which must look familiar to you already.

1.4 Package Management

There are many useful packages in Julia and we rely many parts of our computations
on packages. If you have followed my instructions to install Julia, JuMP, Gurobi, and
CPLEX, you have already installed a few packages. There are some more commands
that are useful in managing packages.

julia> using Pkg
julia> Pkg.add("PackageName")

21

22

1.4. Package Management

® 0@ 5 Uaiteds Els
¢ > C = @ | localhost:8888 notebooks/Untitled3.ipynb

= Jupyter Untitled3 s susen

File Ecit View Inset Cell Kemel Widgets Trusted

+ x A B 4+ ¥ HAn B C W |Code § | =
In [5]: wsing PyPlot

x = range(0, stop=2*pi, length=1000)
¥ = sin.(3*x)

plot(x, y, color="blue”, linewidth=2.0, linestyle="--"})

... Logout

| Juia 1.1.0 ©

1,00 1 "

/

075 i
i
oso{ |
!
0254 1
I
oooq !

-0.25 1

0501

=0.75 1

\
-1.004) A\

Figure 1.4: Plotting in IJulia

e

Chapter 1. Introduction and Installation

chkwon — julia — 80x24

Last login: Wed Feb 20 13:39:59 on ttys@el

chkwon@MacBook:~$ julia
|
|
|
|
|
|
|

julia» 1+1
2

(vi.1) pkg> I

Documentation: https://docs.julialang.org
Type "?* for help, "1?" for Pkg help.

Version 1.1.@ (2019-01-21)
Official https://julialang.org/ release

Figure 1.5: Package Mode in REPL

This installs a package, named PackageName. To find its online repository, you can
just google the name PackageName.jl, and you will be directed to a repository

hosted at GitHub. com.

Using Pkg.add requires using Pkg first. In REPL, by pressing the ‘1’ key, you
can enter the package management mode (Figure 1.5) and the prompt will change

as follows:

(v1.3) pkg>

Then to install a package you can simply enter:

(v1.3) pkg> add PackageName

To install the JuMP package, you can do:

23

1.4. Package Management

(v1.3) pkg> add JuMP

To come back to the julia prompt, press the backspace or delete key.

julia> Pkg.rm("PackageName")
(v1.3) pkg> rm PackageName

This removes the package.

julia> Pkg.update()
(v1.3) pkg> update

This updates all packages that are already installed in your machine to the most
recent versions.

julia> Pkg.status()
(v1.3) pkg> status

This displays what packages are installed and what their versions are. If you just
want to know the version of a specific package, you can do:

julia> Pkg.installed() ["PackageName"]

julia> Pkg.build("PackageName")
(v1.3) pkg> build PackageName

Occasionally, installing a package will fail during the Pkg.add("PackageName") pro-
cess, usually because some libraries are not installed or system path variables are
not configured correctly. Try to install some required libraries again and check the
system path variables first. Then you may need to reboot your system or restart
your Julia session. Then Pkg.build("PackageName"). Since you have downloaded
package files during Pkg.build("PackageName"), yvou don’t need to download them
again; you just build it again.

24

Chapter 1. Introduction and Installation

1.5 Help

In REPL, you can use the Help mode. By pressing the ? key in REPL, you can
enter the help mode. The prompt will change as follows:

help?>

Then type in any function name, for example, println, which results in:

help?> println
search: println printstyled print sprint isprint

println([io::I0], xs...)

Print (using print) xs followed by a newline. If io is not supplied, prints to
stdout.

Examples

julia> println("Hello, world")
Hello, world

julia> io = IOBuffer();

julia> println(io, "Hello, world")

julia> String(take! (io))
"Hello, world\n"

See also Figure 1.6.
Readers can find codes and other helpful resources in the author’s website at

http://wuw.chkwon.net/julia

which also includes a link to a Facebook page of this book for discussion and com-
munication.

This book does not teach everything of the Julia Language—only a very small
part of it. When you want to learn more about the language, the first place you
need to visit is

25

1.5. Help

26

eCe 7 chkwon — julia — 80x36

Last login: Wed Feb 2@ 13:48:26 on ttys@e?
[chkwon@MacBook:~$ julia

- - | Documentation: https://docs.julialang.org

() 1 () () |

Akl] e [| Type "?" for help, "1?" for Pkg help.

Frrrrrsn 1

I Ui 11 t2) | | versiom 1.1.8 (2019-81-21)

Aol ZIh__'] | Oofficial https://julialang.org/ release
-t |

[julia®» println("Hello, Julia!®)
Hello, Julia!

[help?> println
search: println printstyled print sprint isprint

println([ie::I0], xs...)

Print (using print) xs followed by a newline. If io is not supplied, prints
to stdout.

Examples
EEEEEEmEES

julia> println(“Hello, world")
Hello, world

julia> io = IOBuffer();
julia> println(io, "Hello, world")

julia> String(take!(ic))
“Hello, world\n®

julia> I

Figure 1.6: Help Mode in REPL

Chapter 1. Introduction and Installation

http://julialang.org/learning/

where many helpful books, tutorials, videos, and articles are listed. Also, you will
need to visit the official documentation of the Julia Language at

http://docs. julialang.org/

which I think serves as a good tutorial as well.
When you have a question, there will be many Julia enthusiasts ready for you.
For questions and discussion, visit

https://discourse.julialang.org
and
http://julialang.org/community/

You can also ask questions at http://stackoverflow.com with tag julia-lang.
The webpage of JuMP is worth visiting for information about the JuMP.jl pack-
age.

http://jump.dev

27

1.5.

Help

28

Simple Linear Optimization

This chapter provides a quick guide for solving simple linear optimization problems.
For modeling, we use the JuMP package, and for computing, we use one of the
following solvers.

¢ Clp: an open-source solver for linear programming (LP) problems from COIN-

OR.

e Chc: an open-source solver for mixed integer linear programming (MILP) prob-
lems from COIN-OR.

e GLPK: an open-source solver for mixed integer linear programming problem
(MILP) problems from GNU.

e Gurobi: a commercial solver for both LP and MILP, free for academic users
¢ CPLEX: a commercial solver for both LP and MILP, free for academic users

Open-source solvers Clp, Che, and GLPK can be obtained by simply installing
the corresponding Julia packages:

julia> using Pkg

julia> Pkg.add("Clp")
julia> Pkg.add("Cbc")
julia> Pkg.add("GLPK")

29

2.1. Linear Programming (LP) Problems

In fact, the C1p package automatically installs the Cbc package. COIN-OR is an open-
source initiative, titled “Computational Infrastructure for Operations Research.”

For commercial solvers Gurobi and CPLEX, one must first install the solver
software, and then install the corresponding Julia packages:

julia> using Pkg
julia> Pkg.add("Gurobi")
julia> Pkg.add("CPLEX")

There are a couple of things to do before you add Julia packages. See Sections 1.2.4
and 1.2.5 for the details.

There are some alternatives available, both open-source and commercial solvers.
See the list of available solvers via JuMP!. Nonlinear optimization solvers will be
discussed in Chapter 8.

2.1 Linear Programming (LP) Problems

Once you have installed the JuMP package and an optimization solver mentioned
above, we can have Julia solve linear programming (LP) and mixed integer linear
programming (MILP) problems easily. For example, consider the following LP prob-
lem:

max x1 + 2x2 + dxsg

subject to

—x1+x2+ 323 < =5
x1 + 3x9 — Trg < 10
0<z <10

x9 > 0

r3 > 0.

Using Julia and JuMP, we can write the following code:

1http://jump.dev/JuMP.jl/stable/installation/

30

Chapter 2. Simple Linear Optimization

Listing 2.1: LP Example 1
code/chap2/LP1. 751

using JuMP, GLPK

Preparing an optimization model
m = Model (GLPK.Optimizer)

Declaring variables
@variable(m, 0<= x1 <=10)
@variable(m, x2 >=0)
@variable(m, x3 >=0)

Setting the objective
@objective(m, Max, x1 + 2x2 + 5x3)

Adding constraints
@constraint(m, constraintl, -x1 + x2 + 3x3 <= -5)
@constraint(m, constraint2, x1 + 3x2 - 7x3 <= 10)

Printing the prepared optimization model
print (m)

Solving the optimization problem
JuMP . optimize! (m)

Printing the optimal solutions obtained
println("Optimal Solutions:")

println("x1 = ", JuMP.value(x1))
println("x2 = ", JuMP.value(x2))
println("x3 = ", JuMP.value(x3))

]

Printing the optimal dual wariables
println("Dual Variables:")

println("duall = ", JuMP.shadow_price(constrainti))
println("dual2 = ", JuMP.shadow_price(constraint2))

The above code is pretty much self-explanatory, but here are some explanations.
We first declare a placeholder for an optimization model:

31

2.1. Linear Programming (LP) Problems

m = Model (GLPK.Optimizer)

where we also indicated that we want to use the GLPK optimization solver. We call
the model m.
We declare three variables:

@variable(m, 0<= x1 <=10)
@variable(m, x2 >= 0)
@variable(m, x3 >= 0)

where we used ‘macros’ from the JuMP package, @variable. In Julia, macros do
repeated jobs for you. It is somewhat similar to ‘functions’ with some important
differences. Refer to the official documentation?.

Using another macro @objective, we set the objective:

@objective(m, Max, x1 + 2x2 + 5x3)

Two constraints are added by the @constraint macro:

@constraint(m, constraintl, -x1 + x2 + 3x3 <= -5)
@constraint(m, constraint2, =x1 + 3x2 - 7x3 <= 10)

Note that constraintl and constraint2 are the names of those constraints. These
names will be useful for obtaining the corresponding dual variable values.

We are now ready with the optimization problem. If you like you can print the
optimization model and check how it is written, the code is as simple as:

print (m)

We solve the optimization problem:

thtp://docs.julialang.org/en/v1/manual/metaprogramming/#macros

32

Chapter 2. Simple Linear Optimization

JuMP.optimize! (m)

After solving the optimization problem, we can obtain the values of variables at
the optimality by using the JuMP.value() function:

println("Optimal Solutions:")

println("x1 = ", JuMP.value(x1))
println("x2 = ", JuMP.value(x2))
println("x3 = ", JuMP.value(x3))

where println() is a function that puts some text in a line on the screen. If you
don’t want to change the line after you print the text, use the print() function
instead.

To obtain the values of optimal dual variables, call JuMP.shadow_price() with
the corresponding constraint names as follows:

println("Dual Variables:")
println("duall = ", JuMP.shadow_price(constraintl))
println("dual2 = ", JuMP.shadow_price(constraint2))

IMPORTANT: There is also the JuMP.dual() function defined. However, the
sign of JuMP.dual() results might not be as you would expect, since it follows the
convention of conic duality. For linear optimization problems, JuMP.shadow_price()
provides dual variable values as defined in most standard textbooks. Please refer to
the relevant discussion in the JuMP documentation?.

In my machine, the output by Gurobi looks like:

julia> include("LP1.j1")
Max x1 + 2 x2 + b x3
Subject to

x1 0.0

x2 0.0

x3 0.0

3http://jump.dev/JuMP.jl/stable/constraints/#constraint_duality-1

33

2.2. Alternative Ways of Writing LP Problems

x1 10.0

-x1 + x2 + 3 x3 -5.0
x1 +3x2 -7 x3 10.0
Optimal Solutions:

x1 = 10.0
x2 = 2.1875
x3 = 0.9376

Dual Variables:
duall = 1.8125
dual2 = 0.06249999999999998

If you want to use the Gurobi optimization solver instead of GLPK, use the following
inputs:

using JuMP, Gurobi
m = Model(Gurobi.Optimizer)

For CPLEX:

using JuMP, CPLEX
m = Model (CPLEX.Optimizer)

There are many other optimization solvers supported by the JuMP package. See the
manual of JuMP for a list.4

2.2 Alternative Ways of Writing LP Problems

We can use arrays to define variables. For the same LP problem as in the previous
section, we can write a Julia code alternatively as follows:
To define the variable x as a three-dimensional vector, we can write:

@variable(m, x[1:3] >= 0)

4http://jump.dev/JuMP.jl/stable/installation/

34

2.2. Alternative Ways of Writing LP Problems

@constraint(m, bound, x[1] <= 10)

The final code is presented:

Listing 2.2: LP Example 2
code/chap2/LP2. j1

using JuMP, GLPK
m = Model (GLPK.Optimizer)

c=[1; 2; 5]

A=1[-1 1 3;
1 3 -7]

b = [-5; 10]

@variable(m, x[1:3] >= 0)
@objective(m, Max, sum(c[il*x[i] for i in 1:3))

@constraint(m, constraint[j in 1:2], sum(A[j,il*x[i] for i in 1:3) <= b[j]l)
@constraint(m, bound, x[1] <= 10)

JuMP.optimize! (m)

println("Optimal Solutions:")
for i in 1:3

println("x[$i] = ", JuMP.value(x[i]))
end

println("Dual Variables:")
for j in 1:2

println("dual[$j] = ", JuMP.shadow_price(constraint[j]))
end

Note that there have been changes in the code for printing. The result looks like:

julia> include("LP2.j1")
Optimal Solutions:
x[1] = 10.0

36

Chapter 2. Simple Linear Optimization

r1 + 3x0 — Tz < 10
0<z; <10
9 > 0 Integer
xzz € {0,1}.

Using JuMP, it is very simple to specify integer and binary variables. We can define
variables as follows:

@variable(m, 0<= xl1 <=10)
@variable(m, x2 >=0, Int)
@variable(m, x3, Bin)

The complete code would look like:

Listing 2.4: MILP Example 1
code/chap2/MILP1. 51

using JuMP, GLPK

Preparing an optimizaiion model
m = Model (GLPK.Optimizer)

Declaring variables
@variable(m, 0<= x1 <=10)
@variable(m, x2 >=0, Int)
@variable(m, x3, Bin)

Setting the objective
@objective(m, Max, x1 + 2x2 + 5x3)

Adding constraints
@constraint(m, constraintl, -xl1 + x2 + 3x3 <= -5)
@constraint(m, constraint2, x1 + 3x2 - 7x3 <= 10)

Printing the prepared optimization model
print (m)

Solving the optimizalion problem

JuMP . optimize! (m)

39

2.4. Mixed Integer Linear Programming (MILP) Problems

Printing the optimal solutions obtained
println("Optimal Solutions:")

println("x1 = ", JuMP.value(x1))
println("x2 = ", JuMP.value(x2))
println("x3 ", JuMP.value(x3))

The result looks like:

julia> include("MILP1.j1")
Max x1 + 2 x2 + 5 x3
Subject to

x3 binary

x2 integer

x1 0.0

x2 0.0

x1 10.0

-x1 + x2 + 3 x3 -5.0
x1 + 3 x2 -7 x3 10.0
Optimal Solutions:

x1 = 10.0
x2 = 2.0
x3 = 1.0

40

Basics of the Julia Language

In this chapter, I cover how we can do most common tasks for computing in opera-
tions research and management science with the Julia Language. While I will cover
some part of the syntax of Julia, readers must consult with the official documenta-
tion! of Julia for other unexplained usages.

3.1 Vector, Matrix, and Array

Like MATLAB and many other computer languages for numerical computation, Julia
provides easy and convenient, but strong, ways of handling vectors and matrices. For
example, if you want to create vectors and matrices like

1
123

a= 12/, b=[4 5 6], A-{ }
3 45 6

then in Julia, you can simply type

a=[1; 2; 3]
b=[45 6]
A=1[1223; 45 8]

"http://docs. julialang.org/

41

3.1. Vector, Matrix, and Array

where the semicolon (;) means a new row. Julia will return:

julia> a = [1; 2; 3]
3-element Array{Int64,1}:
1

2

=)

julia> b = [4 5 6]
1x3 Array{Int64,2}:
4 5 6

julia> A = [1 2 3; 4 5 6]
2x3 Array{Int64,2}:

1 2 3

4 5 6

We can access the (i, 7)-element of A by A[i,]j]:

julia> A[1,3]
3

julia> A[2,1]
4

The transpose of vectors and matrices is easily obtained either of the following
codes:

julia> transpose(A)
3x2 Array{Int64,2}:
1 4

2 5

3 6

julia> A'
3x2 Array{Int64,2}:
1 4

2 5
3 6

42

Chapter 3. Basics of the Julia Language

julia> B * inv(B)
3x3 Array{Float64,2}:

1.0 0.0 0.0
0.0 1.0 0.0
-2.22045e-16 0.0 1.0

Note that the off-diagonal elements are not exactly zero. This is because the com-
putation of the inverse matrix is not exact. For example, the (2,1)-element of the
inverse matrix is not exactly 1, but:

julia> inv(B)[2,1]
1.0000000000000004

In the above, we have seen something like Int64 and Float64. In 32-bit systems,
it would have been Int32 and Float32. These are data types. If the elements in
your vectors and matrices are integers for sure, you can use Int64. On the other
hand, if any element is non-integer values, such as 1.0000000000000004, you need to
use Float64. These are usually done automatically:

julia> a = [1; 2; 3]
3-element Array{Int64,1}:
1

2

3

julia> b = [1.0; 2; 3]
3-element Array{Float64,1}:
1.0

2.0
3.0

In some cases, you will want to first create an array object of a certain type.
then assign values. This can be done by calling Array with a keyword undef. For
example, if we want an array of Float64 data type and of size 3, then we can do:

45

Symbols
al format ... 171
A
add_edge! 142
adjacency matrix 187
affine scaling algorithm 151
AMPL ..o 171
AmpINLWriter 172
argmin ... 113, 211
Array 46, 109, 181, 212
ALTAY vttt e e et 41
tuples ...l 47, 128
@assert 99, 204
automatic differentiation 91
B
Bernoulli distribution 178
bi-level optimization 171
big-M ... 242
Bonmin 171

247

Index

box-constrained optimization 168
break, 55
Broyden-Fletcher-Goldfarb-Shanno,
BFGS 168
C
Calculus 86
Clp oo 104
COIN-OR 30, 172
collect 50, 100, 110
collection 54
colon (z) ..o 50
combinations 100, 110
Combinatorics 100

comma separated values, CSV68,
125, 127, 135

commodity 123
Complementarity 227
@complementarity 228
Cmapping ...l 228

complementarity
linear complementarity problems,
LCP ..o 225
mixed complementarity problems,
MCP ..o 237
nonlinear complementarity
problems, NCP 233
complementarity problems 225
conjugate gradient 168
CONVETL ...\ttt 203
COPY weeee e e e 190
Couennec.couuiiin.. 171
CPLEX 3. 104, 239
installation 16
parameters 245
CPU timecoooiiinn. 239
curve fitting 79
curve_fit &2
D
DelimitedFiles 70
derivative 86, 93
Diagonalccovvviueinnn. 154
Dict 55, 128, 136, 146
dictionary 54
Dijkstra’s algorithm 140, 144
dijkstra_shortest_paths 142
Distributions 177
dot ... 43, 103
E
end ... 49
enumerate_paths 142
equilibrium
traffic equilibrium 233
Wardrop equilibrium 233

248

F

fieldnames 108
file input /output67
findall113, 115, 191
findfirst Ll 113
finite difference 34
Fminboxol 169
o 54
ForwardDiff 92
function 57
G
GAMS 3
Gauss-Kronrod integration method 90
Geometric distribution 178
global optimization 171
GLPK 104
Golden Section 167
gradient 87, 93
graphl 123
Gurobi oLl 4, 104, 239
installation 15
parameters 245
H
hessian 87, 93
1
identity matrix 43
TJalia ..o 18
importance sampling 195
index 48
Inf ..o 99, 126
inner product 43
integrality tolerance 242
inv oo 44, 101, 154

inverse matrix 44
Ipopt ... 169
Tisempty ...ovviiiiiii 147
J
Julia
installation 4
macOS 10
Windows 5
JuMP oo 3
Bin 39
@constraint 32, 35, 38
getobjectivevalue 130
Int 39
@NLconstraint 170
@NLobjective 170
@objective 32, 35
optimize 33
print () 32
set_start_value 241
shadow_price() 33
value ... 33
@variable 32, 35
L
labeloiiiiiiii i 156
Lagrangian relaxation 197
least-squares fit 81
legend ...l 156
length 53, 55, 127, 204
Levenberg-Marquardt algorithm ...81
LightGraphs 141
line search 165
linear programming, LP 30, 95
linear regression 80
LinearAlgebra 43, 99, 154

249

linearization 242
link ... 123
loop .. 54
lower bound 199
LsgFit ... 81
M

Margin_error 82

mathematical program with
complementarity conditions,

MPCC ... 172
MATLAB ... 23
matplotlib 72
matrix ... 41
117 5 127
MARimumovvreiinnnnn. 127, 211
minimal-cost network-flow problem

123
mixed integer linear programming,

MILP ..o 38
mixed integer nonlinear programming,

MINLP 171, 175
moduleciiiiiiiian. 116
Monte Carlo 177
N
Nelder-Mead 168
network optimization 123
NLsolve 227
node 123
nonconvex nonlinear optimization 171
nonlinear optimization 169
nonlinear programming, NLP169
0o o 1 S 154
Normal distribution 64, 177

multi-variate 179

normedf, 66
norminvedf 66
normpdfl 66
numerical differentiation 84
numerical integration 87
numerical methods 79
0]
OMES .ottt 44, 214
Optim 165, 168
optimality gap 199, 240
optimization 165
bi-level 171
box-constrained 168
globall 171
nonconvex nonlinear 171
nonlinear 169
unconstrained 165
optimize, 167, 168
P
p-median problem 201
package management 21
packages
AmpINLWriter 172
Calculus 86
Combinatorics 99, 100
Complementarity 227
CPLEX 17
DelimitedFiles 70
Distributions 177
ForwardDiff 92
GLPK 7,12
Gurobl ... 16
Dulia19

Ipopt ...l 169

LightGraphs 141

LinearAlgebra 43, 99, 154
LsqFit 81
NLsolve 227
Optim 165, 168
PathDistribution 195
PATHSolver 227
Plots 72
Printf 53
PyPlot 72, 156, 218
QuadGK 90
StatsFuns 65
PathDistribution 195
PATHSolver 227
plot 156
Plots ... 72
plotting 72
primal path following algorithm ..157
Print ... 52
Printfo L 53
O@printf L. 53
println 52
probability distribution
Uniform distribution 63
probability distributions 177
Bernoulli 178
Binomial 66
Gamma 66
Geometric 178
Normal 66, 177
multi-variate 179
Normal distribution 64
Poisson 66
push! ... 214
PyPlot 72, 156, 218

Python 3
Q
QuadGKl 90
quadgk ... 90
R
rand ..., 63, 178, 192
Tandn ... 64
random number 63
randomized linear program 179
TANEE oottt 48
rank ... 99
readdlm il 70
REPL i 21
revenue management 179
Riemann sum 88
Tound ... 126
S
scope blocks 60
scope of variables 39
second_derivative 87
semicolon ()ooiiii. 42
Set i 146
setdiff 110, 115, 148
shortest path problem 139
simplex method 95
Simpson’s rule 90
simulated annealing 168
sinknode L. 123
size ... i 99, 109, 204
SOIVETS ... 29
Bonmin 172
Che oo 29
Clp 29

251

Couenne 172
CPLEX 16, 29
GLPK 7,12, 29
Gurobi 15, 29
parameters 239, 245
SOTtING ...t 207
SOTLPErmccoouinonn... 207
source node 123
O@sprintf 54
StatsFuns L 65
subgradient optimization 200
SUM «ovvvent e, 182, 214
T
Taylor series 85
tolerance
integrality 242
optimality gap 240
traffic assignment 233
traffic equilibrium 233
transportation problem 133
transpose 43, 154, 214
trapezoidal rule 89
Tupleooviiiiiiiannns 128, 146
tuple ... 47
BYPE « oo 107
typeof ...l 108
U
unconstrained optimization 165
undef ... 46
upper bound 199
Vv
vector ... 41

