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Infroduction

When I wrote the book Julia for Data Science a few years ago, it was an
innovative book where few people believed in this language enough to
write a whole book on the subject. Also, existing books at that time focused
on Julia as a programming language rather than as a tool for data science
work. Fortunately, things have changed since then, especially as the
language matured, and its merits became more known.

Nowadays there are plenty of books on Julia, and lately, even courses
offered by a branch of Julia Computing called Julia Academy
(www julinacademy.com). What's more, there are courses on Julia in various
universities around the world. Recently, there was a book on Julia and its
application to Statistics.

After attending the Julia conference in the summer of 2018 in London, where
Julia 1.0 made its debut, I started considering writing another book on the
language. I was thinking of a second edition to Julia for Data Science, but after
looking into the latest trends and the vastness of Machine Learning, I
decided it would be best to focus on this particular aspect of data science.
After all, with the popularity of Artificial Intelligence (AI) methods in
Machine Learning (ML), it seems that data engineering is not as important
as it used to be, while there is so much material on ML methods, that if I
were to write a second edition of the Julia for Data Science book, it would be
too large!

Anyway, parallel to the books, videos, and other materials I developed since
then, including an entry in Springer’s online encyclopedia on Big Data, on
the Julia language (https:/bit.ly/2VkzjZ]), I did some (non-academic)
research in data science. Naturally, I used Julia for this, as well as many
proof-of-concept projects I carried out during that time. So, when I write
about Julia, I have a very practical approach to the language. What's more,
I'm a practicing data scientist, not a developer or a professor, so my take on
the language is very hands-on and always related to data science from a
holistic perspective.

There are many books that talk about the programming aspects of Julia and
some of them do a good job at it, but few books talk about how it can be
useful to a data scientist or a Machine Learning professional —now enter this
book. This book will be a useful aid to data science professionals who wish



to use Julia in their work, be it data science or any data analytics task in
general.

Since you are reading this book, you must be at least a bit curious about the
Julia programming language and its usefulness in Machine Learning. But
chances are that you need to be convinced of Julia’s power. Everyone talks
about the merits of Python, Scala, R, and even MATLAB, when it comes to
data science work—where does Julia fit?

In addition, Julia has fewer packages than the above languages, because it is
very easy to code from scratch. Perhaps, that’s why it appeals so much to
developers, particularly those who are more creative and curious to explore.
Not only is it easy to code, but the code is very fast, both as a prototyping
language and for executing existing code. In Python or R, for example,
custom scripts are not encouraged, especially when it comes to loops, due to
slow performance. Besides, most of the packages in these languages are
developed in some low-level language (usually C or C++), making the
corresponding scripts lightning fast. In Julia, most of the packages are
written in Julia itself since you don’t need to rely on a low-level language for
a performance boost.

In addition, Julia empowers its users to do their own thing. Not just
building a Machine Learning model from scratch, which we’ll do later on in
this book, but also developing new algorithms, new heuristics, and even
new data science systems leveraging Machine Learning algorithms to use in
your work. Without the performance boost of Julia and the ease of use of its
coding syntax and grammar, this wouldn’t have been as feasible a task.
Nevertheless, if you want to rely solely on existing packages for your work,
you have this option too, as we’ll see in a later part of this book.

Julia is also quite mature when it comes to scientific work, including data
science. Even before its production-ready release (ver. 1.0), it was used in
scientific research and had managed to become one of the languages that the
MXNet framework supported with APIs (https://bit.ly/3c4vewh). Soon after
that, there was even an API for Spark, making Julia a relevant language for
different kinds of data science work (https:/bit.ly/2zUw8k9). Now, things
have escalated since the language has plenty more packages for processes
related to data science, including many Machine Learning models.

Julia is also quite easy to learn. Although many programming languages
require a certain familiarity with programming, Julia is fairly
straightforward right off the shelf. If someone has coded in Python, R, or
MATLAB, it will seem even easier to learn, since it shares a lot of the syntax,



particularly with MATLAB. Besides, many of the high-level languages used
in data science have a similar structure, something that Julia shares to a
certain extent, even if it follows a somewhat different programming style,
namely the functional paradigm.

Compatibility with other programming languages is another advantage that
Julia has as a language. Julia scripts can be called from other languages, like
Python and R, while you can call scripts from other languages (including C),
via the Julia kernel, making the integration of Julia with existing pipelines
feasible and practical, and greatly facilitating your learning of Julia since
you don’t have to jump to this new programming ecosystem and abandon
everything you’ve developed in other languages already. Appendix B
covers how other languages interact with Julia.

One of the key differentiators of Julia from other data science languages is
multiple dispatch. This is a very useful feature of the language enabling the
programmer to have functions with the same name but using different
inputs. The idea is that the user of these functions doesn’t have to remember
numerous names for specialized versions of the same function, as Julia itself
decides which one to use, based on the inputs provided. Multiple
dispatches, therefore, allow for cleaner code and easier maintenance of
scripts, enabling the user to leverage the functional programming paradigm,
saving time and effort.

Julia’s built-in package manager is another reason why this programming
language is a good choice when it comes to data science work. Since the use
of packages is commonplace in all high-level languages, Julia was designed
with this in mind. As a result, it is possible to add, remove, and update
packages of the language within its kernel, using simple commands. If you
use a lot of external code for your work, this feature is particularly useful,
especially today, when a lot of the code that used to be in the base package
of Julia is found in external packages instead. Also, the current package
manager module is much faster than it used to be, so updating existing
packages is a walk in the park. Naturally, you can use the package manager
even in IDEs like Jupyter, as long as you first load the corresponding
package, namely, Pkg.

One of the biggest advantages of Julia, however, is not its code-related
aspects, but the people who make it shine. Namely, there is a team of
talented developers who work to fix bugs and develop new features for this
language. Note that this is not some random start-up but one that involves a
core of MIT graduates, as well as a professor who works at the well-known
technical institution. What's more, there are developers worldwide who



contribute to Julia’s code base, as well as enthusiasts who discover and
report issues with the existing code. Finally, there are lots of people who use
Julia in their work, be it financial modeling, scientific research, and data
science projects. All this makes Julia not just a language, but a vibrant
community that continues to grow. The large number of Meetup groups for
this language may also have contributed to this phenomenon.

Finally, Julia is also at the epicenter of deep learning-related innovation.
From the deep learning package Knet to the Gen programming language
(https://bit1v/3b03M5W), Julia has been driving innovations in this Al-
related area. Note that although Gen is branded as a wide scope Al
language, it also handles probabilistic modeling, particularly Bayesian
Statistics, while it also has an application focus in Computer Vision. MIT
could have gone with any programming language, but they decided on
Julia, something which is quite telling regarding the language’s promising
presence in our field. As for the Knet package for deep learning, it is the first
deep learning framework written entirely in Julia, something that attests to
the demand for alternatives to existing systems like MXNet and Tensorflow.

If all this hasn’t convinced you of the numerous merits of the Julia language,
perhaps you need to try it out for yourself. Many people who were hardcore
R users shifted to Julia over the past few years, and there have been many
other users who have formed a positive opinion of Julia after using it for a
bit. Given how challenging it is to learn a new programming language
(unless you are a coder already), this says a lot about the ease of use that
Julia exhibits and its similarity to other high-level languages. Besides, there
are numerous tutorials and introductory courses on the language, making it
easy to learn. As for more advanced stuff regarding Julia, there is always
this book!

The book is structured as follows. In chapter 1, we’ll look at Julia as a
programming language today and focus on what makes it stand out as a
data science language, particularly on the Machine Learning front. In
chapter 2, we’ll explore how you can set up Julia on your computer or on
the cloud. We'll also look into the IDE options in this chapter and explain
why we delved into Jupyter in this book. Chapter 3 will examine the
essential libraries of Julia for data science work. Packages related to visuals,
data structures, and some very useful mathematical processes, will be
covered in this part of the book. In chapter 4 we'll shift gears and look at
Machine Learning —there is a need to clear some things up before we look at
specific ML libraries using Julia, which we’ll do in chapter 5. Chapter 6
explores examples and exercises, and chapter 7 shows you how to code a



Machine Learning model from scratch using Julia. To make it more
interesting, the model we’ll be working with is not one that can be found in
any package, although it is one that has been proven to be effective and
efficient.

Naturally, this book would be incomplete, if we didn’t look into
dimensionality reduction methods based on Machine Learning. That's
something we’ll delve into in chapter 8, through a closer examination of two
of the most mature packages. In chapter 9, we’ll examine some additional
topics that play a role in Machine Learning, like parallelization and proper
data engineering processes, which are oftentimes essential prerequisites to
data modeling. In chapter 10, we’ll look at how all this Machine Learning
work impacts the business world and how to best use this know-how when
liaising with other project stakeholders. We'll then examine some useful
considerations to have about this subject in chapter 11, and we look at the
future trends of Machine Learning and Julia in chapter 12. We conclude
with some suggestions for what you can do next.

As a supplement to your learning of this subject, there will be a series of
questions for most of the chapters, so that you can test your understanding
of the topics presented. These questions can help you think about this
subject critically and explore it in more depth, gaining a better
understanding of Julia and its usefulness.

Beyond all this material, there is also an extensive glossary of the most
important terms used in this book, as well as three appendices with
supplementary material. The first appendix contains all the answers to the
questions and exercises throughout the book. The second appendix looks at
Julia’s relationship with other programming languages and how you can
leverage the bridge packages. Finally, the third appendix contains three
heuristics, largely specialized but quite useful for data science work. All of
them are implemented in Julia and are a good addition to the material
presented previously, as they don’t exist in any of the existing packages yet
can add value to a data science project.

Naturally, since this is more of a hands-on book, it is accompanied by a
series of Jupyter notebooks that contain all the examples presented in the
text. On top of that, the data files of the datasets used, as well as any
auxiliary scripts, are also provided. You can find all of this material at
https://technicspub.com/julia. Note that future versions of Julia may not be
100% compatible with this code, so you may need to make alterations to it to
ensure it works with the Julia version you are using. All the code here works
well with Julia 1.1.




Upon reading and practicing the material presented in this book, you
should be able to have a good grasp on Machine Learning and how you can
leverage Julia for related projects. However, there is plenty more to learn on
this topic, which is why this book is best seen as a starting point rather than
a complete resource on the topic. After all, the field of Machine Learning is
blooming, so there are new things coming up constantly. However, if you
have a solid understanding of the topic, you should be able to learn the new
methods and techniques quicker and better.

So, without any further ado, let’s get started.



Chapter 1
Julia Today

Let's now look at how Julia fares as a programming language today. We'll
start by briefly examining its programming paradigm, talk a bit about data
science languages in general, and then look at Julia as a multi-purpose
language. Next, we’ll explore Julia as a data science language, and talk
about the user community. We’ll conclude by examining some useful
resources for learning Julia basics.

The functional paradigm of programming

Programming can be done in various ways and today we have even more
paradigms than the previous generation. Namely, we can choose among the
following programming paradigms:

® procedural
® object-oriented

e functional

Procedural programming has to do with providing simple instructions to
the computer (or any programmable machine) so that it can follow a
particular procedure effectively. A procedural program contains a
systematic order of commands, statements, and functions designed to
complete a computational task or process. Languages like C, FORTRAN,
Pascal, and Basic are procedural languages. Despite their long history in the
computing world, some of these languages are still relevant today.

The key structures of procedural programming are the variable and the
command. The former involves the storage of data and the latter its
processing. Procedural programming is fast and fairly easy to learn, though
not as easy to master since when doing complex tasks in a procedural
language, it can take many lines of code. Procedural programming is often
referred to as imperative programming. Despite its usefulness in computer



science, procedural programming is rarely used in data science, unless it's a
C script for a very specific supportive role.

As for object-oriented programming (OOP), this is the paradigm that
involves the use of objects as the key structures of a program. An object is a
software bundle that is characterized by states and behaviors. Much like
physical objects, objects in OOP are defined by a series of properties and
actions that can be taken related to these objects. This makes the OOP
paradigm fairly intuitive and easy to work with, though mastering it is still
somewhat time-consuming. After all, the plethora of data involved in these
objects can be overwhelming and difficult to handle, especially if there are
many objects that have similar attributes.

The actions related to the objects are represented by the various functions
that can be applied to them. These are defined within the class that describes
the most general form of an object. That's why we say that objects are
instances of particular classes.

Let’s look at a non-programming example, namely the car Fiat Punto with a
particular license plate. This particular vehicle is an object of the class Fiat
Punto, which describes all the cars of that Fiat make and of the Punto model.
We can have a more general class called Fiat that describes all the vehicles
and other products developed by this automotive company, thereby
forming a hierarchy of classes. An object like a particular Fiat Punto can
have functions like “drive”, “park”, and “fill up with gas.” Each one of these
functions applies to all the objects of this class, since other cars like this one
can be driven, parked, and filled up with gas. However, an electric vehicle
of the class Fiat Punto may have other functions, such as “charge battery”
while the function “fill up with gas” wouldn’t make any sense for cars
belonging to that sub-class consisting of electric cars under the Fiat Punto
umbrella.

Object-oriented programming is the most popular paradigm today and Julia
follows that to some extent, since it allows for class structures and objects.
Other languages that follow the OOP paradigm are Python, R, C++, C#, Java,
and Javascript. However, debugging an OOP script can be time-consuming,
particularly if it’s complex, which is why a new paradigm was developed to
alleviate this shortcoming of OOP: functional programming,.

Functional programming is all about functions and their application on
different inputs, to yield outputs. It's a fairly straightforward paradigm,
though it has its limitations too. For example, a strictly functional
programming script doesn’t allow for a common workspace where variables



can be shared among different functions. So creating more complex scripts
can be a challenge, though this peculiarity of functional programming
allows for faster execution speed and mitigates the chances of errors due to
variable conflicts. Naturally, the scripts of a functional language are easier to
debug and maintain, compared to those of other programming paradigms.

Julia follows the functional programming paradigm to a great extent,
though it does allow for shared variables among different functions,
bypassing this peculiarity of a nonexistent shared workspace. Also, the
variables that are not used any more are discarded automatically (also
known as garbage collection), which conserves memory resources and
prevents memory leakage.

The functional programming paradigms are quite popular today due to
performance. Although, many languages that make use of functional
programming are also compatible with the OOP paradigm. A good example
of such a language, other than Julia, is Scala. Additional languages that
follow the functional paradigm include Haskell, Clojure, F#, and Elm.

Data science programming languages

What does all this have to do with data science and Machine Learning
though? Few people are aware that many of the programming languages
interact with each other. For performance reasons, it's often the case that a
program is developed in one of them (e.g. Python) and implemented in
another one (e.g. Java). This is known as the two-language problem,
something that is a necessary evil when using a certain kind of language to
prototype (namely a high-level language) and a different kind of language
to deploy the program (namely a low-level language). The two-language
problem creates additional latency and various kinds of liabilities such as
coding errors, all of which can be avoided through the use of a language like
Julia.

High-level languages are those that are easy to use since their syntax is
closer to how we think and communicate. They are fairly easy to learn too,
and because of their intuitive nature, developing a program in them can be
fairly fast, even if you are not a professional programmer. High-level
languages are key to data science since most data scientists don’t care much
about honing their programming skills, since there is so much more to learn
in order to be able to work in this field. High-level languages include



Python, R, MATLAB, and Julia. MATLAB is not used as much due to its
high license fees, but you may see some people using its open-source clone,
Octave. However, both MATLAB and Octave are fairly slow and despite
their ease of use, they are not used as much in data science today (especially
Octave, as it’s not as practical for more complex problems due to its lack of
packages). Other high-level languages are also somewhat slow, since the
code written in them needs to be translated into something the computer
can understand. Julia, however, is an exception to this, as we’ll see later on.

Low-level languages are those programming languages that are “close to the
metal” meaning that they are near the language computers understand:
machine language. These languages don’t need much translation for the
computer to understand, which enables them to be super-fast to run. In fact,
most performance critical processes, such as those responsible for
infrastructure-related tasks, are handled by low-level languages for this
reason. That's why programmers often spend years learning these
languages, as these languages are not as intuitive as high-level languages.
Some low-level languages (e.g. Java) are used in data science, but only as
supplementary tools due to the challenge in using them to prototype. When
using a high-level language however, it’s not too difficult to migrate to a
low-level language to ensure high performance.

Julia as a multi-purpose language

Let's now zoom in on Julia as a multi-purpose language—it follows the
functional paradigm but is also connected to the OOP one. First of all, Julia
was not designed to be a niche language, since much like most
programming languages, it exists to bridge the user and the computer
efficiently. Perhaps that's why there weren’t that many data science
packages in it when it was first released. It was only after some of us
discovered that it can be leveraged as a programming language in data
science.

Whatever the case, since it has reached a critical mass of users, Julia has
been applied to many problems, ranging from the strictly scientific to the
more applied. It became particularly popular in economics and finance at
one point, so much so that the best introduction to Julia was a niche blog run
by an economics professional. Also, a little known fact, many financial
companies use Julia. After all, in domains like this one, performance
matters. So, a high performance high-level language is like a dream come



true.

Julia has developed in many ways, however, beyond economics and finance
applications. For example, Julia has been successfully used in self-driving
cars. Tiny computers (these computers that work on a single board and are
very popular today among DIY tech enthusiasts) can run Julia too, since it's
a cross-platform language, much like every other serious language. As a
result, it doesn’t take much imagination to figure out that it can be leveraged
in computer vision applications which are an essential part of self-driving
vehicles. Check out this video corresponding to this project, from a time

before Julia v. 1.0: https://bit.1v/2]V8whl.

The fact that Julia is so versatile makes it a useful platform for professionals
and hobbyists alike. That’s why there is a large variety of packages for all
kinds of applications—see the official Julia website:
https://pkg.julialang.org/docs. Currently there are over 2,000 packages for
Julia and the ones on this webpage are just the official ones. There are a few
unofficial packages too, plus nowadays it's easier than ever to create your
own packages in Julia. So, even though Julia is often seen in the context of
data analytics applications, it is much more than that.

Julia as a data science language

Let’s now look at how Julia fares as a data science language and how it can
be leveraged in the development and testing of Machine Learning models.
First of all, although Julia was not designed with data science in mind, it
ticks all the boxes of a data science language. Namely:

e it is easy to code and quite intuitive in its syntax
e its scripts are easy to debug and maintain
® it has great plotting packages enabling good data visualization

¢ it has several other packages that delve into Statistics and Machine
Learning

® it liaises with other programming languages that are used in data
science

¢ it is not esoteric and thereby it is accessible to people not trained in
programming



® there is at least one good book on it, showcasing its usefulness in
data science

® there are several companies that value Julia-savvy data scientists

As a bonus, it is fairly fast, so it overcomes the two-language problem. Not
many data science programming languages can do that. As for the data
science languages that are high performing (e.g. Scala), they are not nearly
as easy to use as Julia.

But has it been used in practice for data science tasks? The short answer is
yes, definitely. The longer answer is yes, but not as much as it should. This
creates a bit of a discrepancy since many data scientists are either too busy
or too conservative to give it a chance. After all, Python and Scala are good
for data science work, so why would someone want to jump ship on them?
Even people who have attended Julia Meetups and other events,
showcasing how promising this language is in data science work, are still
often undecided. The most common reason given is that they are not sure
about the packages being enough and good enough. This is a big topic and it
deserves its own chapter, which is why we are not going to go into it right
now. Suffice to say that these concerns are not justified and that you can
carry out data science projects using Julia exclusively.

Julia is great for data science because it is not tied to any particular platform,
especially a cloud one. Even though there is an indisputable partnership
with a major tech company, enabling Julia to be an option in that company’s
cloud, Julia can be used anywhere. Also, the fact that it is not widely known
which company this is, shows that Julia is still independent.

Of course, Julia Computing has its own cloud service which it promotes for
the seamless use of the language on a server, but they still give you a choice
as to where you deploy your Julia programs. Other languages, like Swift for
example, are tied to a particular ecosystem (in this case Apple’s), which may
be limiting in some cases. Julia doesn’t do that and is extremely unlikely to
do that in the future, either. All this enables Julia to tie in to all kinds of
frameworks and tech ecosystems, making it a versatile piece of technology,
compatible with many pipelines.

Julia as the epicenter of a community of users

Beyond the technical aspects of the language, it's good to be aware of the



community aspect of it too. After all, it was never intended to be a niche tool
for a few programmers having too much time on their hands! Instead, it was
created to be adopted on a larger scale and aid in numerous areas, not just
computer science. At least that’s what can be derived by reading the thesis
from MIT’s Dr. Jeff Bezanson, who is one of the creators of the Julia
language.

Although the Julia community is fairly small compared to other
programming language communities, it is growing at a fast pace. Beyond
the Julia conference that takes place annually (http://www.juliacon.org),
there are several other events and groups where Julians gather. From the
online ones such as the GitHub groups and Slack channels, to the face-to-
face ones such as Meetup groups, the Julia community is vibrant. You can

learn more about it at the official web page: https://julialang.org/community.

What's particularly interesting when it comes to Julia enthusiasts, is the
diversity of the community. Julia may have started in a fairly
technologically advanced corner of the world (Cambridge, Massachusetts),
but it has spread to every part of the globe, including less developed areas.
At the time of this writing, there are Meetups all over North America,
Europe, Asia, Oceania, and even South America (particularly Brazil). What's
more, there is a lot of work being done in Julia Computing to ensure that the
set of users of the language remains diverse and as inclusive as possible.

Now, as mentioned previously, you don’t need much help to pick up this
language since it's fairly intuitive and there are plenty of educational
resources at your disposal. However, for someone new to it, or someone
who is not particularly versed in programming, it may be a challenging task.
Having a support group of people who are in the same boat, as well as
people more experienced in Julia programming can be a big plus.
Participating in hackathons and talks may be enough to motivate or even
inspire you to invest some time in learning and mastering this language.

The value of the community goes beyond all this, however. After all, just
like most programming languages, Julia is an open source project. This
means that even the source code of the language itself is open to everyone.
Of course, not everyone is capable of adding something useful to the code-
base of the base package (the core of the language), but everyone can report
bugs, run tests, and even contribute additional packages. If you are more
courageous, you can give direct feedback to its contributors and even
promote Julia in an educational platform. Whatever the case, community
members are encouraged to refine and promote the language in whatever
way they feel comfortable. Perhaps this is why it has grown so quickly,



unlike its closed-source counterparts, such as MATLAB, which although
very useful, is limited to a niche user group, mainly researchers and
engineers in large companies.

What may be most inspiring about the Julia community is that everyone
there, including its creators, are very approachable. Some of these people are
the equivalent of celebrities in the programming world, yet they are down-
to-earth and happy to share their stories like you'd share stories with a
friend over a coffee or a drink. Perhaps that’s the most powerful aspect of
the community and what makes it stand out from other programming
language user groups, since it’s akin to a group of friends who share a
common interest.

Useful resources for learning Julia

Before we finish this chapter, let’s look at some useful resources to brush up
your Julia know-how. All of these are free, so you don’t need to spend any
money on learning the language. If you do have some funds that you’d like
to devote to that purpose, feel free to buy my Julia for Data Science book!

First of all, there is a simple tutorial for v. 1.0 of the language (a fairly new
release which is compatible with the one used in this book, v.1.1.1):
https://bit.lv/3a3Bwhn. This 150 minute video, developed by the company
that created Julia, covers the basics of the language, with plenty of examples
to clarify all the points made. It won’'t make you an expert in Julia, but
through it you can learn the ropes of the language and better understand the
more advanced Julia resources.

In addition, there is the official documentation of Julia:
https://bit1v/2RsA1D6. This more esoteric resource may not be for the
fainthearted, but it does contain all the information related to the
functionality of the language that you'll ever need. Also, it's practically
impossible to find a more reliable resource, since it was created by the
makers of the language and the people committed to maintaining and
evolving Julia.

Finally, Julia Wikibook is another great resource when learning the
language: https://bit.ly/3b6]DLq. Contrary to other third party resources,
this one is as robust as it gets, without being a Julia Computing resource.
The Wikibook is not related to Wikipedia in any way, though it does use the
same framework (wiki) as the well-known online encyclopedia. However, it




reads like a good book and it is regularly updated. This is one of the few
resources used in this book that is also used in the Julia for Data Science book
from 2016.

Beyond these resources, there are plenty more, some more reliable than
others. Note, however, that there is no golden resource that can make things
easy for you all the way to the mastery of the language. If you are serious
about learning the ins and outs of Julia—not just in theory but in practice,
you need to use it in projects that are of real value to you, forcing yourself to
become familiar with its more subtle aspects. Unfortunately, there is no
book that can help in that, since the best way to truly learn a powerful tool
like Julia, is to use it to solve challenging problems. Fortunately, before long,
this whole process will become more rewarding and somewhat less
challenging.

Useful considerations

There are several layers to a sophisticated programming platform and Julia
is not an exception to this, no matter how exceptional it is as a language. For
instance, Julia is bound to change, as every other programming language
changes—except for the various legacy languages that have stopped being
relevant in the 1990s. This means that many packages that work fine today
may be unusable if they are not maintained to be compatible with the newer
and better releases of the language. We'll talk about this more in the next
chapter.

What's more, Julia is now a professional language, quite distinct from other
new languages. A good example of such a language is Nim, an elegant and
powerful programming language that although it has been around for over
a decade, it’s still under the radar for most data professionals. Nim may be a
fairly good language, but it's still more of a novelty and not something
someone would learn and hope to use for work projects related to data
science.

Note that Julia scripts are not the most secure code files. After all, the
programs written in Julia are not compiled, so in order to run them, you
need to have the source code exposed. That's why it's best to shield them
with APIs, when possible, if you want to have the option of third parties
making use of them all while respecting the privacy of your code. Besides,
due to the intuitive nature of the language, even someone who doesn’t



know it well can still figure out your code by looking at it—so you may
want to make sure it's secure, especially if it involves critical processes in
your organization.

Finally, Julia is not a solo player when it comes to the data science world,
unlike Go, for example. Julia can collaborate well with other data science
languages, such as Python and R, using the corresponding bridge packages.
Also, there are packages that link Julia with C and Java, so you can always
leverage packages of all these languages in your Julia scripts. What's more,
if you are in a Python or R kernel, you can import Julia scripts too. All this
makes the integration of Julia scripts in existing pipelines something doable
—though if you are really concerned with performance, it would make
sense to migrate your code base to Julia sooner or later.

Summary

e There are different programming paradigms, the most important
of which are procedural (imperative), object-oriented (OOP), and
functional.

e Julia is a hybrid programming language which although it follows
the functional paradigm closely, it has a lot of elements from the
OQP one, too.

® Data science programming languages tend to be high-level and, as
a result, not particularly fast.

¢ Julia manages to combine the merits of a high-level language with
those of a low-level one, solving the two-language problem —that
is, needing both kinds of languages for a data science problem.
Also, Julia is an excellent multi-purpose language, having
applications that go beyond data science, as well as a respectable
number of packages.

® The user community of Julia is a vibrant one and is characterized
by diversity, breadth, and accessibility, among other things.
Particularly, if you are new to the language, yvou can benefit from
it in various ways, while if you believe in the language and wish
to help refine or promote it, there are plenty of ways to do that
too.



® There are various resources for learning the basics of Julia, some of
which are free. However, the best way to master it is through
practice, beyond programming tutorials and specialized books.

® There are certain things you need to consider about Julia as a
programming language, such as the fact that it's constantly
evolving, its professional presence in the world as a production-
ready language, the need to keep your Julia scripts secure when
using them with third parties if the source code is part of an
organization’s IP, and the fact that Julia can collaborate with other
programming languages through bridge packages.

Questions

1. What makes Julia a functional language?
2. Why is Julia relevant as a data science language?

3. Do you need to be a programmer to learn and master the Julia
language?

4. Isn't Julia too new to be reliable as a programming language?

5. How does Julia compare with Java in terms of performance?



Chapter 2
Setting up Julia

As with other programming languages, Julia is a program, so it needs to be
installed and run like any other application on your computer or the cloud.
That's something that hasn’t received enough attention, and although the
average developer won't have any issues handling this process, many data
scientists may not find this process as intuitive,

Since we have more urgent things to do, going through the lengthy
documentation of Julia to figure out how to make it run on our machines is
not a priority. That's why it's good to have a straightforward way of
installing Julia, namely a simple step-by-step guide. Also, as the use of IDEs
greatly facilitates data science work, we need to install the IDEs and ensure
they are working well with Julia. This task may prove even more
challenging than installing Julia, since various key steps need to be taken in
order to do this properly, something that is not clear in the instructions of
these IDEs.

In this chapter, we'll start by looking at how you can install the kernel of the
language—that is, install the actual programming language on your
machine and then explore how you can do the same with the Jupyter IDE,
which is the most popular IDE for data science work. We'll then look into
other IDE options for Julia and where you can find them before we take a
look at the JuliaBox possibility. Next we’ll look at how you can handle Julia
scripts and Jupyter notebooks for your work and examine some useful
considerations to have about this topic.

Julia kernel installation

Let's start by looking at how you can install the Julia kernel on your
machine. Fortunately, the Julia language is compatible with most operating
systems, including Linux-based ones (e.g. Linux Mint) and FreeBSD. You

can download the installation files here: https://julialang.org/downloads.

Unless you have a good reason to opt for the latest release of the language,
you can make use of the latest stable release (usually the first one listed on



the aforementioned web page). Then you need to find the most relevant file
for your computer. If you are using a 64-bit machine that runs Windows, for
example, you will need the .exe file that is on the right of the first row of the
table. Note that most machines nowadays are 64-bit—unless you have an
older computer.

You can find specific instructions on how you can install the Julia kernel for
each operating system at https://julialang.org/downloads/platform.html.
Note that if you want to uninstall the kernel for whatever reason, it’s best to
use the process provided at the end of the web page. If you decide to do
that, however, make sure that you have kept your scripts elsewhere so that
they are not deleted accidentally. You can replace the Julia kernel easily, but
replacing your scripts may be next to impossible. Once you have installed
the Julia kernel, you can execute the corresponding file and run Julia. For a
Linux-based system, for example, you just type julia on the shell, as
shown in Fig. 2.1.

Figure 21. Sereenshot of the Julia kernel being run on a Linux-based system.

Note that the prompt changes to julia> once the kernel is loaded on your
computer. From this point onward, you can run Julia commands on your
computer. To exit the language and return to the shell, you can either type
exit () or press Control and D.

Jupyter IDE installation

Let's now explore the Jupyter IDE, which is also the best option for data
science work, especially when it comes to wrapper methods and merging
the various components of a program. Jupyter has been around for a while,
but only fairly recently has it gained popularity thanks to its usefulness in



data science projects. Whether you use Python, R, or Julia, Jupyter can
provide a very useful and intuitive interface for your programming work,
making any programming task more efficient and comprehensible,
especially when dealing with complex tasks involving lots of commands
and outputs.

The Jupyter IDE is a notebook where you can mix formatted text, code, and
the output of that code neatly. The output can include graphics as well,
making the notebook a very comprehensible demonstration of your work,
which you can showcase at a data science meeting, for example. The fact
that Jupyter allows you to export the whole notebook as a PDF file, for
example, can help greatly in showcasing your work to a larger audience.

In essence, Jupyter comprises two main screens, the home screen and the
notebook one, both of which are viewed on your browser through a local
server the Jupyter program uses. The first screen, which you can view in Fig.
2.2, shows you the different notebooks on your machine and when they
were last modified. You can also view any folders there are there and
navigate through them, much like a file explorer. On this screen, you can
also rename the notebooks and even delete them. Finally, you can see which
notebooks are currently running. Clicking on any one of these notebooks
will open it, usually in a new tab on your browser.
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Figure 2.2, Screenshot of Jupyter's Home screen.

The Jupyter notebook is a bit more interesting. It looks like a document
editor but allows for writing and executing code. All the lines that have been
marked with In[#] are where executable code is included, while those

marked with Out [#] are where the output of that code is shown (# is a

number, related to the order in which that particular cell was executed).
Note also that you can include headings to organize your work better and
make the notebook easier to read. A sample of a Jupyter notebook appears
in Fig. 2.3.

You can download and install Jupyter on your machine through Python by
typing the following on the command prompt:

python3 -m pip install jupyter (for Python 3),

or
python -m pip install jupyter (for Python 2)

Note that you may want to upgrade the pip program before installing
Jupyter, by typing:



python3 -m pip install --upgrade pip
or
python -m pip install --upgrade pip
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Figure 2.3. Screenshot of a Jupyter notebook.

To make Jupyter usable with Julia, however, you need to also install the
IJulia package on your machine, through the Julia prompt:

Pkg.add (“IJulia”)

Unless IJulia is properly installed, you will not be able to use Julia on your Jupyter
Notebook, even if the latter runs fine. So, make sure you pay attention to this step
before proceeding to the next one.

To run the Jupyter program, you need to type on the command prompt:

jupyter notebook



Note that although Jupyter notebook is still the most popular IDE for data
science work, there is also a new IDE developed by the same company,
called JupyterLab. This is still fairly new, so it’s a bit premature to know for
sure its efficacy in data science work. However, the design seems to be slick
and user-friendly, while the core functionality of the Jupyter Notebook
remains more or less the same. In essence, the GUI is the only key
difference, while the multitude of windows it entails makes it useful only if
you are using at least two monitors. Not a bad option but perhaps a bit
hyped overall since there are few things it offers that you cannot do on a
conventional Jupyter notebook.

You can learn more about Jupyter Notebook and JupyterLab at the official
website: https://jupyter.org.

Other IDE options

Julia has gained enough traction to be acknowledged as a relevant-enough
language to have a presence in other IDEs as well. Also Juno is a special IDE
designed for Julia specifically. Although it has been unreliable and does not
work seamlessly in all operating systems, Juno is one of the first IDEs to
accompany the programming language. After all, when it does work, it is
very practical and ideal for low-level programming in Julia. Also, before it
became its own thing, it was part of Atom, another useful IDE for the
language. Note that you can use Atom as an IDE, regardless of Juno. The
former is quite stable and works well with Julia.

Atom is probably the best IDE for programming in general, covering a large
variety of programming languages, while it can also be used to view text
files efficiently. Lately, it includes Julia scripts too, though getting the Julia
kernel to run on Atom can be quite a challenge, especially on a Linux-based
operating system. However, you can still get the IDE to recognize Julia code
and show it with some colors, something that can make every Julia script
more comprehensible. You just need to make sure that the package
language-julia is installed on Atom for this to happen. Note that Atom
has a bunch of other useful packages you may want to install as well,
though there are no other Julia-related packages that you need for using
Atom as an IDE.

Other IDEs include Vim and SublimeText, both of which are exceptional text
editors and not just for editing scripts. Note that beyond these editors, any



other text editor can function as an IDE. However, without the Julia IDEs
syntax formatting dictionary, it would be difficult to read the code properly,
while debugging may be more time-consuming. Finally, there is a reference
somewhere to Weave as an IDE. However, this is a misconception since
Weave is a scientific report generator package designed by the same group
that developed Juno, namely JunoLab.

JuliaBox

JuliaBox is another interesting option for running Julia, especially if you
need to access the language remotely. Note that this is primarily a
commercial option managed by the Julia Computing company, so if you are
serious about using it, it would be best to think about your budget.
Naturally, there is a free option so that you can try it out. In Fig. 2.4 you can
see a screenshot of what it looks like right after the login, while in Fig. 2.5,
you can view it after the Jupyter app is launched. As you can see, it looks
very much like running Jupyter Notebook on your machine. Note, however,
that the versions of Julia that it supports are not the latest ones. Yet, it does
support multi-threading, so if you want to use the full spectrum of
computing resources in it, you have that option, even for the free option.

Figure 2.4. Screenshot of the JuliaBox system, after login.



Figure 2.5. Screenshot of the JuliaBox system, after launching Jupyter. Note that the files
system of every JuliaBox account comes equipped with some tutorials for the newcomers of the

language.

Although JuliaBox is fairly popular among many Julia learners, particularly
in universities, its main use case is deploying Julia programs in need of a
large number of resources. So, in order to make the most of it, it is best to
invest some money in it, though preferably after you have implemented and
tested your scripts. This way, you can use it without having to worry too
much about potential bugs in your code, something that can cause
frustrating delays, which you would have to pay for if you have to do the
debugging of your scripts on the Julia cloud.

Nevertheless, JuliaBox is the last piece of the puzzle in the data science
pipeline, since it can enable you to do even the most challenging part of it,
model deployment, in Julia, without having to rely on a tool from a different
ecosystem. This wasn’t the case a few years ago when Julia first began to
make a case for data science and Machine Learning applications. And even
if it’s not too difficult to create an API in Julia, JuliaBox makes the whole
process much easier for deploying your programs on an internet server.

Note that JuliaBox is not the only cloud option for Julia. You can run Julia on
the Microsoft cloud (Azure), something you can learn more about in this
article: https:/bit.Iv/3eghvmM. Of course, such a move would make sense if
you already have worked with Azure or wish to deploy a Julia script in
combination with a cloud-based database or other programs that dwell
there. For most data science applications, the JuliaBox option would be more
than adequate,

Julia scripts and Jupyter notebooks




Handling Julia scripts and Jupyter notebooks is something few people will
talk about as it seems obvious to them, even if it doesn’'t seem so
straightforward to someone new to the language or to how Julia is used in a
data science context.

First of all, Julia scripts are the .j1 files that contain Julia code. Any such
file will be recognized as having Julia language syntax by an IDE that
supports Julia. This way, you can open them and view them in an
understandable manner. Note that even if the extension is different, the Julia
scripts you have in text files would still run on Julia. However, it’s generally
good practice to store all your Julia programs in .j1 files. A key .j1 file
you need to be aware of is the startup.jl script, which is located in the
/etc/julia subfolder of the folder Julia has been installed. So, if you
want to execute certain commands as soon as Julia starts, that’s where you'd
put them. For example, you may want certain libraries to be loaded or
change the working directory to a particular folder. You can do these things
easily by adding the corresponding commands in the startup.jl script.
Note that this may slow down Julia a bit, so it's good to remember where
this file is kept and perhaps make a backup of it before you modify this
script.

As for the Jupyter notebooks, these are the .ipynb files. This bizarre
extension stems from IPython Notebook, as they were used primarily for
Python scripts. As the makers of the Jupyter notebook platform would tell
you, Jupyter was created primarily for three programming languages: Julia,
Python, and R, which is where its name comes from (Ju from Julia, Py from
Python, and r for R, with the te part as a filler syllable).

Anyway, Jupyter notebooks are also text files that are designed to be used
by the Jupyter program (technically they are JSON files, so if you were to
open such a file in a text editor like Atom, be sure to use the corresponding
package to parse them properly). Any project you make using Julia is best
stored in such files, though you may use . j1 files in it too, preferably stored
separately, so that they can be levera?ed in other projects also. Note that for
.71 files that you plan to use in a different project, it's advisable to structure
all of the code in them as functions,

For larger projects, you'd have several files, be it . j1 or . ipynb ones. Itis a

good practice to store all of these files in the same folder, particularly a
folder dedicated to that project. For .j1 files that are used in several

projects, it's best to have them in a general folder for easier access.



Naturally, you'd want to give all the files of your projects intuitive names or
names that you can easily remember. Otherwise, they are bound to get lost
as you create additional files in your codebase. Also, for the most important
Julia files you have, it's best to back them up regularly.

What's more, if you make changes to these scripts regularly, or if you work
on these scripts in tandem with other people, you may want to use a version
control system like Git or SVN. Also, as you may have noticed, the bulk of
the code base of Julia is on Github, which is also the version control system
most Julians use. You can use whatever version control system you like for
your Julia work since they are about the same in terms of functionality and
ease of use.

If you have lots of Julia scripts working together for a particular task,
especially for a generic task, it’s best to compile them into a package. Use the
Pkg. jl package, a package for packages (a meta-package if you will). We'll
look into this more in the next chapter, where we’ll talk about Julia packages
in general, focusing on the most important ones for data science projects.

It's a good practice to separate the scripts that you plan to use in various
projects from the ones that are created for drills or one-time usage. Also, it's
good to maintain the scripts you plan to use in the future, as the Julia
language evolves from release to release, to ensure that they are always
relevant and efficient. Bundling the most similar into larger scripts also
makes sense as it makes it easier to manage them.

Useful considerations

Installing Julia and an IDE may be fairly straightforward, but there are
certain things that you need to keep in mind nevertheless, For example, it's
not uncommon to have multiple IDEs when using the language (or any
programming language for that matter). That’s something that we’d
recommend, since the Atom IDE, for example, is much better at handling
multiple scripts than a Jupyter notebook. However, you'll still need the
latter if you want to do some data science work in a manner that enables
easy collaboration and presentation. However, if you develop a new method
that you plan to use in various projects, it's best to do that in another IDE,
not Jupyter.

Also, when upgrading the Julia kernel, you need to be careful to ensure that
the new release is working properly. If you just download the new release



on your machine and run it, things may be fine if you do so from its folder,
but the symbolic link to the new executable needs to be updated too. This
omission may create serious confusion and make you waste a lot of time.
Besides, once you get a grip on the latest release of the language, there is
little point in keeping the older release around, unless you have legacy code
lingering on your computer.

What's more, you need to be mindful of the package situation when running
a different release of the language. After all, every new release is clean, and
you have to install all the packages you need from scratch. It's not too
challenging a process, but it does take some time, so you need to plan
properly. Fortunately, since version 1.0 of Julia, the package installing and
updating process is a breeze, significantly better than that of other data
science programming languages.

Furthermore, it's important to check if a package you plan to use is working
properly in the new release before you upgrade your Julia kernel.
Otherwise, you may find that you need to revert to a previous release just so
that you can run that package properly. Luckily, this doesn’t happen often
and when it does happen, it is usually a temporary issue. However, if you
have crucial code that relies on a certain package, that’s something you need
to be aware of as it can save you time and effort.

Finally, all these IDEs and accessories of the Julia ecosystem may be great,
but they are no substitute for effective programming and good practices,
qualities that are both transferable and valuable when it comes to carrying
out any data science project.

Summary

® The installation of the Julia kernel is a fairly straightforward
process as long as you obtain the right file for your computer and
follow the corresponding instructions.

¢ Installing an IDE for Julia is not essential but particularly useful,
especially for data science work.

¢ Jupyter is the most popular IDE for data science projects and
works seamlessly with Julia. Always install the IJulia package on
Julia before trying to run Jupyter in combination with Julia,
though.



® JupyterLab is another product by the same organization that
developed Jupyter Notebook, sharing most of its traits but with a
slicker interface. However, whether it improves the efficacy of
data science work is something yet to be determined.

e Several other IDEs are compatible with Julia, such as Atom and
Juno.

® JuliaBox is a popular cloud-based option for Julia, essentially a
Jupyter notebook that you can access from any computer. Beyond
JuliaBox, there is the Azure cloud option, too, for more niche use
cases.

® Handling Julia scripts and notebooks is needed to maintain a
certain security level for your work. It's best to keep all of these
files in a separate folder, different than the one where Julia is
installed. Also, regular backups of these files are highly
recommended.

Questions

1. When would you use an IDE like Atom in your work?

2. Can you use a basic text editor for creating or editing your Julia
scripts?

3. What kind of file would you use to store the code of a multi-
purpose function you have created, to use in your data science
projects?

4. Can you use Jupyter offline?
5. Is Jupyter better than other IDEs?
6. Can you run Julia on your mobile device?



Chapter 3
Julia Libraries

Let's now examine some key libraries for Julia that are useful in all kinds of
data analytics projects. Libraries are usually referred to as packages, and in
Julia, they are handled by a package manager program, which is part of the
main language. Since there are plenty of packages now, it's good to
prioritize which ones to use since some are better than others for a particular
task. Also, as the language matures, some packages are left behind, and
even if they were great once, they might not be so relevant anymore.

In this chapter, we’ll look into packages for Julia, with a focus on
functionality. We'll look at what packages are available in the Julia
ecosystem and organize them into meaningful categories for a data scientist.
Then, we’ll look specifically at the packages related to data preparation
(making the data ready for your models), data models, Statistics, Machine
Learning utilities, AI, and some other packages that don't fit into any one of
these categories (e.g. plotting packages).

A library of libraries

Fortunately, there are plenty of packages available in the Julia ecosystem for
data science tasks. Contrary to what the critics of the languages say,
nowadays, there is a package for everything you’d need in your data science
work, even the most advanced models, as can be seen in Fig. 3.1. If you are
comfortable with using mind-maps, you can use this diagram as a starting
point to help you organize the packages you learn in a way that makes sense
and is not too difficult to remember. Note that not all of these packages
would be necessary for your data science work. Sometimes even a handful
of packages suffice for a given project, while other times, it's easier to code
something from scratch and use your scripts for your work. Whatever the
case, knowing that these packages exist can be a useful aid, particularly
when you are new to programming or the Julia language.
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Figure 3.1. Main types of libraries in Julia languages, related to data science work.

For additional packages, the best place to start would be the official package
repository of Julia: https://pkg.julialang.org/docs. Although not all packages

are covered, the repository includes the ones that have been tried and tested
enough for the Julia Computing company to give its stamp of approval.
Also, these are the packages that the Julia community uses and provides
feedback, so they are the most likely ones to be in good shape.

Data preparation libraries

Let’s start our exploration of the Julia packages with the ones geared toward
data preparation. Data preparation is the part of the data science pipeline
that involves getting the data in a neat and usable state so that it can be fed
into models, be it for exploring or for making predictions. The key data
preparation packages in Julia are:

® DataFrames - the Julia equivalent of Python’s Pandas package,
and one that plays an instrumental role in data science tasks as it
contains the Data Frame structure. Although not always essential
for a data science project, it is very useful, and you can’t do much
without it if you plan to work with most of the data science
packages since they have this package as a dependency.

® ExcelReaders — a package for accessing .xIsx documents and
storing their contents into a data frame. This package does not
create .xIsx files, however.



* CategoricalArrays — a package for handling categorical data, be it
nominal or ordinal. The data may contain missing values too.

® (CSV - a package for handling CSV files easily. Although you
could create all the functions of this package yourself without
being adept at programming, it’s still a convenience when dealing
with tabular data files.

Note that there are more packages that qualify as members of the data
preparation family, but these are sufficient for most tasks. Besides, for more
niche applications, you can find whatever package you need in the Julia
package ecosystem. Also, all of the previous packages are available on
GitHub, too, so you can access them using a GitHub account. However, it’s
easier to use them through Julia, either through the REPL or one of its IDEs.

Libraries for data models

Let’s now look at some libraries geared toward data models. We won’t go
into much depth in them as they are going to be examined in some detail at
a later chapter, along with examples. Depending on the methodology, they
are most relevant to these packages:

¢ Unsupervised Learning — not making use of a target variable,
such as for exploratory data analysis (EDA).

® Supervised Learning — making use of a target variable, be it for
classification or regression problems.

¢ Transparent models — models that are easy to interpret and
understand their functionality.

* Black box models — models that are difficult or impossible to
interpret (figure out how they arrive at their conclusions exactly).

Based on this simple taxonomy, we can organize the data model packages
as:

® Unsupervised Learning
o Clustering — a package specializing in clustering
methods for grouping data into meaningful groups,



usually part of Exploratory Data Analysis.

o ManifoldLearning — a package focusing on non-linear
methods for reducing the dimensionality of a dataset.

® Supervised Learning (transparent model)
¢ DecisionTree — decision trees and random forests
package.

© GLM - generalized linear model package for regression
analysis.

¢ Supervised Learning (black box models)
¢ XGBoost - a gradient boosting framework for ensembles
using boosting, particularly comprising of decision trees.

o LIBSVM - a package for Support Vector Machines
(SVMSs) in Julia.

Beyond these packages, there is another one that, although clearly under the
supervised learning umbrella, it is difficult to classify using this taxonomy.
The reason is that it contains models that span across both categories: the
ML] package and its sibling package, ML]Models. For reasons that go
beyond the scope of this book, these two packages are often used in tandem.

MLJ and ML]Models are two packages used for various supervised learning
models, spanning from simpler ones such as kNN, to more complex models
such as Ridge Regressors, Learning Networks, and Ensembles. Although
ML]JModels is an extension of ML], ML] is a unique data modeling package
in Julia as it attempts to unify all existing models and methods within a
single framework. However, as it’s relatively new, it has some wrinkles that
need to be ironed out before it can be considered production-ready. You can

check it out at https://bit.1y/34swGZZ.

Note that it’s best to have a decent understanding of the models behind the
methods in these packages since the examples in the corresponding GitHub
pages are lean and simple, perhaps too simple for someone unfamiliar with
all this. However, this is not a criticism for these web pages or the people
maintaining them, but rather an observation regarding the
oversimplification of the data science field and the dangers this entails.
We'll look into this in more detail in the next chapter.



Statistics libraries

Statistics packages are some of the most mature packages in Julia and the
most widely used in various data analytics projects. The most important and
reliable such packages are:

* StatsBase — a collection of multiple Statistics functions, essential in
most data science projects. Probably one of the oldest packages in
the Julia repository.

® Distributions - a package for all kinds of probability
distributions, along with useful functions for performing various
tasks with them, such as sampling, maximum likelihood
estimation, and the pdf of each (as well as its logpdf). See the
package’s official documentation for more information:
https://bit.ly/3b4vz58.

* HypothesisTests — a package containing several statistical
methods for hypothesis testing, such as t-tests and chi-square
tests.

¢ MultivariateStats — a great place to obtain various useful Statistics
tunctions, including principal components analysis (PCA).

Probably the best place to start would be with the distributions package, as
it’s often used as a dependency in other data science packages. Whatever the
case, each one of the Statistics packages here is worth learning, particularly
if you have a sufficient understanding of Stats. Note that the GLM package
would also fit in this category, but it seems more relevant as a data model
package. After all, this taxonomy is used to facilitate the organization of the
packages into a meaningful and memorable manner—to optimize their
usefulness in data science projects.

Libraries related to ML utilities

Beyond Stats and model-related packages, there are some packages geared
toward helping out with Machine Learning tasks. These are:

¢ Distances —a quite useful package for distance calculation,



covering all major distance metrics—particularly essential for
transductive systems, be it clustering algorithms or distance-based
classifiers and regressors.

® MLJ - beyond Machine Learning models, this package includes a
variety of utilities, too, such as grid search and K-fold cross-
validation. Even if you don’t use the ML]JModels package, ML] is
useful in and of itself for data science projects.

® ScikitLearn — the well-known master package for all kinds of
Machine Learning applications in Python, made available through
the PyCall bridge package.

* MLLabelUtils — a quite useful package for pre- and post-
processing of labels data for classification problems. Labels
encoding may seem like a trivial task, but it can be time-
consuming and prone to errors, something this package aims to
help manage efficiently.

® MLBase - this is the most established package in Julia, related to
Machine Learning, covering a wide range of tasks. You can obtain

more information about it at https:/bit.lv/2wylmln.

¢ AutoMLPipeline (AMLP) — a creative approach to building
machine learning pipeline structures, for more complex tasks. This
tool can bring a great deal of value to a data science project. More

information about it at https://bit.ly/2zI Mégt.

Although MLJ] is the most promising, it’s still not there yet, so we will focus
on the other ML packages in this book. This package may someday be the
Julia equivalent of Scikit-learn (even if the latter exists in Julia too as an API
for the Python package). Still, until then, it's recommended to rely on the
existing packages for any data science work.

Al-related libraries

Al-related packages aim to bring forward the more advanced models that
are employed in data science, via Machine Learning methodologies. There
are several, but the most important of them are:

¢ Knet - this deep learning framework is the first one that’s been



developed entirely in Julia (even the cost function methods are
coded in the language). Created by Professor Deniz Yuret and his
team, it covers a variety of ANNSs, including MLPs, CNNs, and
some models specializing in sentiment analysis.

¢ Flux - although this package is marketed for Machine Learning, it
is one of the most well-made deep learning packages, developed
using Julia exclusively. It also has GPU and AD support and is
optimized for performance. Also, it is fully compatible with the
Metalhead package. You can learn more about Flux at
https:/bitly/2RvsQZX.

® Metalhead - one of the most creatively named packages in the
Julia ecosystem, Metalhead is all about Computer Vision. So, if
you are looking to perform classification on images using Al, this

is the best place to start. More info at https:/bitly/2Vg3IYQ.

Other Al-related packages in Julia corresponding to well-known
frameworks such as MXNet are used with languages like Python and R.
However, as this is not a book on these frameworks, we’ll focus on the
conventional Machine Learning packages instead. Besides, these are more
promising and worth looking into, no matter how popular the more
advanced Al-related libraries are these days.

Other libraries

Beyond the previous packages, there are a few more that are equally useful,
if not more useful. Namely, this generic group of packages includes those
related to specialized processes like graph analytics and of course plotting
(data visualization). Also, there is a package that ensures that all packages in
Julia work in harmony and are up-to-date. These packages are:

® TSne - a package implementing the T-SNE algorithm by the
creators of the algorithm. Its creator and his team cover it at
https://bit.ly/2vcKX0w. Note the stochastic nature of this
algorithm and its scope, since this is not meant for everyday
dimensionality reduction, like PCA and ICA, for example.

e UMAP - a package related to the Uniform Manifold
Approximation and Projection algorithm, a powerful




dimensionality reduction method. You can learn more about it at
https://bit.ly/3ccl.LkV. Just like T-SNE, UMAP is stochastic, but
unlike T-SNE, it’s much more useful in dimensionality reduction
that goes beyond visualization. UMAP is often used in conjunction
with Clustering methods.

® Graphs - the most complete graph analytics package. Note that
these are mathematical graphs, and although there is a
visualization aspect to this package, it is not relevant to plotting
data in general, just graph-related data.

* Gadfly — one of the best plotting packages, written entirely in
Julia. Note that the inputs of the corresponding methods require
the use of the DataFrames package, mentioned in a previous
section of this chapter.

e PyPlot — a great plotting package, borrowed from Python'’s
Matplotlib, ideal for heat maps, among other plot types. If you are
new to Julia and already familiar with Python, this is a good place
to start in your visualization endeavors.

® Pkg - a powerful package for creating, installing, updating, and
uninstalling packages in your Julia kernel. Learn more about it
here: https://bit.ly/3efliF4. The most common usage of it is:
Pkg.add (CoolPackage)

Pkg.update ()
Pkg.rm(CoolPackage)

Pkg.status ()

Although the above format is valid, it is rarely used any more since this
package is so common that a particular shortcut is employed instead.
Namely, you can press the “]” key while you are on the REPL and gain
access to it directly, so that you can run the above commands in a simpler
format, as shown in Fig. 3.2, You can exit this mode by pressing the
“backspace” key while you are on the Pkg prompt. Note that you need to
import this package in a Jupyter notebook if you plan to add, remove, or
update a package while in that environment, After all, the “]” shortcut only
works on the REPL.



The upgraded usage of this package is one of the most important
improvements of Julia since version 1.0. You should familiarize yourself
with this package before learning any other package in the language,
especially if you plan to use packages extensively for your work. Browse the
many more packages available on the Julia package website.

ies/General.git

olving ns

Updating ~/.julia/environments/vl. 1/Project.tonl

Updating "“</.julia/environments/vl.l/Manifest, toal

Figure 3.2 The Pkg package in action. You can enter this mode of usage by pressing the “]” key,
while to exit it, you just need to press “backspace” while on the Pkg prompt. When actually
updating packages, there is more text on the screen, depicting the progress of the update for

each of the packages being updaled.

Useful considerations

Although the package ecosystem of the Julia language is quite
straightforward, some things are important to keep in mind to make the
most of it and avoid any potential issues. First of all, Julia packages are
always work in progress, and they rely on the feedback of users like you to
remain relevant and useful as tools in data science work.

What's more, not all packages you come across in Julia are going to be fully
compatible with each other. Take LightGraphs, for example, a package that
aims to facilitate Graph Analytics tasks swiftly and intuitively, explained in
my previous book on Julia. As great as this package may be, it is not
compatible at all with the Graphs package, which is another, more well-
established library of Graph Analytics methods.

In addition, packages are the product of some people who took time out of



their days to create them, so they have their limitations, and may not be
bug-free. They are not always the product of a team with sufficient
resources to develop them in the professional manner you may be used to if
you are coming to Julia from other more established programming
languages. Take ELM.jl, for example, the package that put Extreme
Learning Machines on the map for those data scientists who are unfamiliar
with this kind of network-based system. The ELM package doesn’t cover the
various types of ELMs, which are what make ELMs such an intriguing
technology.

Furthermore, Julia packages are a great facilitator of data analytics tasks, but
they are no substitute for proper planning and meticulous application of the
data science mindset. They may enable you to do interesting things and
come off as someone who knows data science, but unless you have an
understanding of the field that goes beyond methods and techniques, you
are bound to remain at the surface and not fulfill your potential.

Finally, even if you are not an adept programmer or a Julia connoisseur, you
can still take a stab at developing your tools using this language. They may
not be optimal, and they may not be promoted as much by the more
experienced Julians. Still, if they help you improve your efficiency at your
data science work, they may be valuable regardless. If you are brave enough
and have no copyright restrictions, you can even share your work with the
Julia community and invite others to help you with these scripts, gradually
evolving them into new packages which benefit everyone.

Summary

® Packages in Julia are sufficient in number and diversity, for
facilitating various data science-related tasks, particularly those
geared toward Machine Learning.

¢ There are different groupings of data science-related packages in
Julia, such as the one proposed in this chapter: Data preparation,
Data models, Statistics, ML utilities, Al-related, and Other.
Whether this taxonomy is comprehensive enough or not, it can
still be useful for organizing the various data science related
packages in the Julia ecosystem and finding them faster when in
need of them,



* Data preparation packages include DataFrames, ExcelReaders,
Categorical Arrays, and CSV.

® Data model packages include Clustering, DecisionTree, GLM,
XGBoost, LIBSVM, and ML]J/MLJModels. These cover a variety of
models, ranging from the unsupervised learning ones to the
supervised learning ones. Some of these correspond to transparent
models (GLM and DecisionTree packages) while others to black
box ones (ELM, XGBoost, and LIBSVM). The ML] and ML]JModels
packages, which are usually used together, cover a broad
spectrum of packages across different categories.

e Statistics packages include StatsBase, Distributions,
HypothesisTests, and MultivariateStats. Of these four packages,
the one that is most relevant and worth learning first is the
Distributions one, though all of them are important. Some
understanding of Statistics would be crucial for making the most
of these packages, however, and for understanding the results of
the methods they contain.

e ML Utilities packages include Distances, ML], ScikitLearn,
MLLabelUtils, and MLBase. Of these, ML] is probably the newest
one and attempts to provide a unified framework for all the
Machine Learning models available in Julia. ScikitLearn is more
like a proxy for the well-known scikit-learn package in Python,
while the MLLabelUtils package is useful for processing the labels
data for classification-related projects.

e Al-related packages include Knet, Flux, and Metalhead. Of these,
Knet is a deep learning framework comparable to the conventional
ones used with Python, while Metalhead is specialized in
computer vision applications.

® Other packages include T-Sne, Graphs, Gadfly, PyPlot, and Pkg.
The most important of these are Gadfly (best plotting package in
Julia) and Pkg (responsible for adding, updating, removing, and
creating packages in the Julia installation you are using).

Questions

1. What's the point of using pre-made packages in Julia if we can
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