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PREFACE

Imagine you arrive at your doctor’s office for an appointment to
discuss some recent chest pains. You undergo a series of blood
tests and scans, and a week later you return to the clinic, where
your doctor reviews the results with you. The condition seems
serious, and she briskly recommends surgery for a heart bypass.
When you ask your doctor why she is confident the procedure is
necessary, she walks you through her thought process, including
the possibility that she is wrong and what being wrong might
entail, before reiterating her advice that you undergo the surgery.
What would you do?

Now imagine that, after you undergo a series of blood tests and
scans, the data is fed into an artificially intelligent assistant, which
confidently states that the condition seems serious and it would be
desirable if you had surgery for a heart bypass. When you ask your
doctor whether this is really necessary, she can’t tell you; she
doesn’t know why the recommendation has been made. All she can
say is that, when fed the full range of test data, the Al has been
highly accurate in the past, and that it would be wise to trust it
and proceed with the surgery. What would you do?

In the first case, the answer probably seems obvious: if the
doctor is confident and able to explain her reasons for being
confident, you feel you should trust her advice. In the second,
however, it may not be so clear. Many of us intuitively feel that if a
person or a machine is going to be making high-stakes decisions
on our behalf, we should be able to ask them to explain why they
have come up with a particular answer. Many of our legal
frameworks—those that ascribe liability and blame for errors—are
based on the notion of being able to justify and defend what we did
and why we did it. Without an explanation, we are left with blind
trust—in each other, or in our machines. Ironically, some of the
highest performing machine learning algorithms are often the
least explainable. In contrast, humans are rapacious explainers of



what we are doing and why, a capacity that depends on our ability
to reflect on, think about, and know things about ourselves,
including how we remember, perceive, decide, think, and feel.

Psychologists have a special name for this kind of self-
awareness: metacognition—literally, the ability to think about our
own thinking, from the Greek “meta” meaning “after” or
“beyond.” Metacognition is a fragile, beautiful, and frankly bizarre
feature of the human mind, one that has fascinated scientists and
philosophers for centuries. In the biologist Carl Linnaeus’s famous
1735 book Systema Naturae, he carefully noted down the physical
features of hundreds of species. But when it came to our genus,
Homo, he was so captivated with humans’ ability for metacognition
that he simply annotated his entry with the one-line Latin
description “Nosce te ipsum”—those that know themselves.!

Self-awareness is a defining feature of human experience. Take
a student, Jane, who is studying for an engineering exam. What
might be going through her head? She is no doubt juggling a range
of facts and formulas that she needs to master and understand. But
she is also, perhaps without realizing it, figuring out how, when,
and what to study. Which environment is better, a lively coffee
shop or a quiet library? Does she learn best by rereading her notes
or by practicing problem sets? Would it be better to shut the book
on one topic and move onto another? Can she stop studying
altogether and head out with friends?

Getting these decisions right is clearly critical for Jane’s
chances of success. She would not want to fall into a trap of
thinking she knows a topic well when she does not, or to place her
trust in a dodgy study strategy. But no one is giving her the
answers to these questions. Instead, she is relying on her
awareness of how she learns.

Our powers of self-reflection do not lose their importance
when we leave the classroom or the exam hall. Consider the
experience of James Nestor, an author and free diver. In his book
Deep, Nestor recounts how he traveled to coastal locations in
Greece and the Bahamas to report on free-diving tournaments. At
each tournament, there is only one goal: to dive deeper than all
the other competitors, all on a single breath. To prove that they
have reached a particular depth, the divers retrieve a tag with a
number emblazoned on it. If they pass out after surfacing, the dive



is declared null and void. To be successful, professional free divers
must be acutely self-aware of their ability to reach a depth while
avoiding injury or even death. Slight underconfidence will lead to
underperformance, whereas slight overconfidence may be fatal.
It’s telling that a large part of free divers’ training takes place on
land, in psychological exploration of their underwater capacities

and limitations.?

Or how about the case of Judith Keppel, one of the first
contestants on the British TV game show Who Wants to Be a
Millionaire? For each question, contestants are asked if they are
sure they know the right answer and want to risk their existing
winnings on the chance of a higher prize, or if they’d prefer to
walk away with whatever they have already won. The stakes are
high: being wrong means losing everything you have earned. In
Keppel's case, she faced this decision with £500,000 on the line.
The million-pound question was: “Which king was married to
Eleanor of Aquitaine?” After a brief discussion with the show’s
host, Chris Tarrant, she settled on the answer of Henry II. Then
Tarrant asked his killer question, the moment when contestants
typically agonize the most: “Is that your final answer?” Success
again rests on self-awareness. You want to know if you're likely to
be right before accepting the gamble. Keppel stuck to her guns and
became the show’s first winner of the top prize.

What unites the stories of Jane, James, and Judith is how
keenly their success or failure hinges on having accurate self-
awareness. To appreciate the power of metacognition, we can
reimagine their stories in a world where self-awareness is
inaccurate. Jane might have erroneously thought that because the
fluid mechanics problems felt easy, she could close the book on
that topic and move on. She would think she was doing fine, even
if this was not the case. A metacognitive error such as this could
lead to catastrophic failure in the exam, despite Jane’s raw ability
and diligent studying. In Judith’s case, we can identify two types of
metacognitive failure: She may have known the answer but
thought she did not, and therefore would have missed out on the
opportunity to become a millionaire. Or she may have been
overconfident, choosing to gamble on a wrong answer and losing
everything. In James’s case, such overconfidence may even be the
difference between life and death. If he had thought that he was



able to handle deeper depths than he was capable of, he would,
like a submarine Icarus, have overreached and realized his mistake
only when it was too late.

We often overlook the power of metacognition in shaping our
own lives, both for good and ill. The relevance of good self-
awareness can seem less obvious than, say, the ability to solve
equations, perform athletic feats, or remember historical facts. For
most of us, our metacognition is like the conductor of an
orchestra, occasionally intervening to nudge and guide the players
in the right (or wrong) direction in ways that are often unnoticed
or unappreciated at the time. If the conductor was absent, the
orchestra would continue to play—just as Jane, James, and Judith
would continue to plow on with studying, diving, and game-show
answering even if their self-awareness was temporarily abolished.
But a good conductor can make the difference between a routine
rehearsal and a world-class performance—just as the subtle
influence of metacognition can make the difference between
success and failure, or life and death.

Another reason why the role of self-awareness is sometimes
ignored is that it has historically proven difficult to measure,
define, and study. But this is now changing. A new branch of
neuroscience—metacognitive neuroscience—is pulling back the
veil on how the human mind self-reflects. By combining innovative
laboratory tests with the latest in brain imaging technology, we
are now gaining an increasingly detailed picture of how self-
awareness works, both as a cognitive process and as a biological
one. As we will see, a science of metacognition can take us further

than ever before in knowing ourselves.>

Creating a Science of Self-Awareness

I have been fascinated by the puzzle of self-awareness ever since I
was a teenager, when I was drawn to books on the brain and mind.
I remember glancing up from one of those books while lying by a
pool during a summer vacation and daydreaming about my
experience: Why should the mere activity of brain cells in my head
lead to this unique experience of light shimmering on the surface
of the swimming pool? And more to the point: How can the very



same brain that is having this experience allow me to think about
these mysteries in the first place? It was one thing to be conscious,
but to know I was conscious and to think about my own awareness
—that’s when my head began to spin. I was hooked.

I now run a neuroscience lab dedicated to the study of self-
awareness at University College London. My team is one of several
working within the Wellcome Centre for Human Neuroimaging,
located in an elegant town house in Queen Square in London.? The
basement of our building houses large machines for brain imaging,
and each group in the Centre uses this technology to study how
different aspects of the mind and brain work: how we see, hear,
remember, speak, make decisions, and so on. The students and
postdocs in my lab focus on the brain’s capacity for self-awareness.
I find it a remarkable fact that something unique about our biology
has allowed the human brain to turn its thoughts on itself.

Until quite recently, however, this all seemed like nonsense. As
the nineteenth-century French philosopher Auguste Comte put it:
“The thinking individual cannot cut himself in two—one of the
parts reasoning, while the other is looking on. Since in this case
the organ observed and the observing organ are identical, how

could any observation be made?”> In other words, how can the
same brain turn its thoughts upon itself?

Comte’s argument chimed with scientific thinking at the time.
After the Enlightenment dawned on Europe, an increasingly
popular view was that self-awareness was special and not
something that could be studied using the tools of science.
Western philosophers were instead using self-reflection as a
philosophical tool, much as mathematicians use algebra in the
pursuit of new mathematical truths. René Descartes relied on self-
reflection in this way to reach his famous conclusion “I think,
therefore 1 am,” noting along the way that “I know clearly that
there is nothing that can be perceived by me more easily or more
clearly than my own mind.” Descartes proposed that a central soul
was the seat of thought and reason, commanding our bodies to act
on our behalf. The soul could not be split in two—it just was. Self-
awareness was therefore mysterious and indefinable, and off-
limits to science.®

We now know that the premise of Comte’s worry is false. The
human brain is not a single, indivisible organ. Instead, the brain is



made up of billions of small components—neurons—that each
crackle with electrical activity and participate in a wiring diagram
of mind-boggling complexity. Out of the interactions among these
cells, our entire mental life—our thoughts and feelings, hopes and
dreams—flickers in and out of existence.

But rather than being a meaningless tangle of connections
with no discernible structure, this wiring diagram also has a
broader architecture that divides the brain into distinct regions,
each engaged in specialized computations. Just as a map of a city
need not include individual houses to be useful, we can obtain a
rough overview of how different areas of the human brain are
working together at the scale of regions rather than individual
brain cells. Some areas of the cortex are closer to the inputs (such
as the eyes) and others are further up the processing chain. For
instance, some regions are primarily involved in seeing (the visual
cortex, at the back of the brain), others in processing sounds (the
auditory cortex), while others are involved in storing and
retrieving memories (such as the hippocampus).

In a reply to Comte in 1865, the British philosopher John Stuart
Mill anticipated the idea that self-awareness might also depend on
the interaction of processes operating within a single brain and
was thus a legitimate target of scientific study. Now, thanks to the
advent of powerful brain imaging technologies such as functional
magnetic resonance imaging (fMRI), we know that when we self-
reflect, particular brain networks indeed crackle into life and that
damage or disease to these same networks can lead to devastating

impairments of self-awareness.”

Know Thyself Better

I often think that if we were not so thoroughly familiar with our
own capacity for self-awareness, we would be gobsmacked that the
brain is able to pull off this marvelous conjuring trick. Imagine for
a moment that you are a scientist on a mission to study new life-
forms found on a distant planet. Biologists back on Earth are
clamoring to know what they’re made of and what makes them
tick. But no one suggests just asking them! And yet a Martian
landing on Earth, after learning a bit of English or Spanish or



French, could do just that. The Martians might be stunned to find
that we can already tell them something about what it is like to
remember, dream, laugh, cry, or feel elated or regretful—all by
virtue of being self-aware.?

But self-awareness did not just evolve to allow us to tell each
other (and potential Martian visitors) about our thoughts and
feelings. Instead, being self-aware is central to how we experience
the world. We not only perceive our surroundings; we can also
reflect on the beauty of a sunset, wonder whether our vision is
blurred, and ask whether our senses are being fooled by illusions
or magic tricks. We not only make decisions about whether to take
a new job or whom to marry; we can also reflect on whether we
made a good or bad choice. We not only recall childhood
memories; we can also question whether these memories might be
mistaken.

Self-awareness also enables us to understand that other people
have minds like ours. Being self-aware allows me to ask, “How does
this seem to me?” and, equally importantly, “How will this seem to
someone else?” Literary novels would become meaningless if we
lost the ability to think about the minds of others and compare
their experiences to our own. Without self-awareness, there would
be no organized education. We would not know who needs to learn
or whether we have the capacity to teach them. The writer
Vladimir Nabokov elegantly captured this idea that self-awareness
is a catalyst for human flourishing:

Being aware of being aware of being. In other words, if I not
only know that I am but also know that I know it, then I
belong to the human species. All the rest follows—the glory of
thought, poetry, a vision of the universe. In that respect, the
gap between ape and man is immeasurably greater than the

one between amoeba and ape.’

In light of these myriad benefits, it’s not surprising that
cultivating accurate self-awareness has long been considered a
wise and noble goal. In Plato’s dialogue Charmides, Socrates has just
returned from fighting in the Peloponnesian War. On his way
home, he asks a local boy, Charmides, if he has worked out the



meaning of sophrosyne—the Greek word for temperance or
moderation, and the essence of a life well lived. After a long
debate, the boy’s cousin Critias suggests that the key to sophrosyne
is simple: self-awareness. Socrates sums up his argument: “Then
the wise or temperate man, and he only, will know himself, and be
able to examine what he knows or does not know.... No other

person will be able to do this.”10

Likewise, the ancient Greeks were urged to “know thyself” by a
prominent inscription carved into the stone of the Temple of
Delphi. For them, self-awareness was a work in progress and
something to be striven toward. This view persisted into medieval
religious traditions: for instance, the Italian priest and philosopher
Saint Thomas Aquinas suggested that while God knows Himself by
default, we need to put in time and effort to know our own minds.
Aquinas and his monks spent long hours engaged in silent
contemplation. They believed that only by participating in
concerted self-reflection could they ascend toward the image of
God.!!

A similar notion of striving toward self-awareness is seen in
Eastern traditions such as Buddhism. The spiritual goal of
enlightenment is to dissolve the ego, allowing more transparent
and direct knowledge of our minds acting in the here and now. The
founder of Chinese Taoism, Lao Tzu, captured this idea that
gaining self-awareness is one of the highest pursuits when he

wrote, “To know that one does not know is best; Not to know but

to believe that one knows is a disease.”12

Today, there is a plethora of websites, blogs, and self-help
books that encourage us to “find ourselves” and become more self-
aware. The sentiment is well meant. But while we are often urged
to have better self-awareness, little attention is paid to how self-
awareness actually works. I find this odd. It would be strange to
encourage people to fix their cars without knowing how the
engine worked, or to go to the gym without knowing which
muscles to exercise. This book aims to fill this gap. I don’t pretend
to give pithy advice or quotes to put on a poster. Instead, I aim to
provide a guide to the building blocks of self-awareness, drawing
on the latest research from psychology, computer science, and
neuroscience. By understanding how self-awareness works, 1 aim
to put us in a position to answer the Athenian call to use it better.



I also aim to help us use our machines better—both those that
exist today and those that are likely to arrive in the near future. As
with your imagined visit to the doctor’s artificially intelligent
clinic and its inexplicable advice to have surgery, we are already
being forced to deal with complex systems making decisions we do
not understand. We are surrounded by smart but unconscious
algorithms—from climate forecasting models to automatic
financial traders—and similar tools are poised to encroach on all
areas of our lives. In many cases, these algorithms make our lives
easier and more productive, and they may be required to help us
tackle unprecedented challenges such as climate change. But there
is also a danger that deferring to supersmart black boxes will limit
human autonomy: by removing metacognition from the equation,
we will not know why or how certain decisions were made and
instead be forced into blindly following the algorithms’ advice. As
the philosopher Daniel Dennett points out: “The real danger, I
think, is not that machines more intelligent than we are will usurp
our role as captains of our destinies, but that we will overestimate
the comprehension of our latest thinking tools, prematurely
ceding authority to them far beyond their competence.”!3 As we
will see, the science of self-awareness provides us with alternative
visions of this future, ones that ensure that awareness of
competence remains at the top of the priority list, both for
ourselves and our machines.

Looking Ahead

Let’s take a look at the road ahead. The big idea of this book is that
the human brain plays host to specific algorithms for self-
awareness. How these algorithms work will occupy us in Part I. We
will see that the neural circuits supporting metacognition did not
just pop up out of nowhere. Instead, they are grounded in the
functions of the evolved human brain. This means that many of
the building blocks of metacognition are also shared with other
species and are in place early in human development. We’ll cover
both the unconscious processes that form the building blocks of
self-monitoring and the conscious processes that enable you to be
self-aware of the experiences you are having. As will become clear,



when we talk about self-awareness, what we really mean is a
collection of capacities—such as being able to recognize our
mistakes and comment on our experience—that when bundled
together result in a self-aware human being.1*

By the end of Part I, we will have seen how a number of critical
components come together to create a fully-fledged capacity for
self-awareness. We will also be in a position to understand how
and why these processes sometimes go wrong, leading to failures
of self-awareness in diseases such as schizophrenia and dementia.
In Part II, we will then turn to how we use self-awareness in many
areas of our lives to learn, make decisions, and collaborate with
others. By understanding how and why self-awareness may
become distorted—and by recognizing both its power and fragility
—we will be in a position to ensure that we do not end up in
situations in which it tends to misfire. We’ll dig into several
important arenas of human affairs—including the crucial role that
metacognition plays in witnesses testimony, in politics, and in
science—to see why knowing ourselves, and knowing how others
know themselves, is crucial to building a fairer and better society.
We'll explore how self-awareness helps us separate reality from
imagination and how, by learning to harness it, it can even help us
shape our dreams. We will see that because self-awareness is
sometimes absent there are, in fact, plenty of cases in which we
humans are also no better than black boxes, unable to explain
what we have done or why.

We will also see that, despite these limitations, the human
capacity for self-awareness and self-explanation is what underpins
our notions of autonomy and responsibility. We’ll explore the role
of self-awareness in classroom learning and teaching. We'll see
why in sports it might be better to be less self-aware to perform
well but more self-aware when coaching others. We'll see how
digital technology changes our awareness of ourselves and others
in a range of crucial ways. Indeed, I'll make the case that in a world
of increasing political polarization and misinformation, cultivating
the ability to self-reflect and question our beliefs and opinions has
never been more essential. We’ll explore why computers—even the
most powerful—currently lack metacognition, and how the
increasing prevalence of machine learning in Al means that
algorithms for intelligence are rapidly diverging from algorithms



for self-awareness. We'll examine what this might mean for society
and how we might fix it, either by attempting to build self-
awareness into our computers or by ensuring we can understand
and use the machines that we build. However that effort
concludes, it may hold the key to solving some of the most
pressing problems in society.

By the end of all this, I hope it will be clear why, from ancient
Athens to the boardroom of Amazon.com, cultivating self-
awareness has always been essential to flourishing and success.
But we are getting ahead of ourselves. To unravel the mysteries of
how self-awareness works, we need to start with the simplest of
building blocks. Let’s begin with two features of how our minds
work: how we track uncertainty and how we monitor our actions.
These two features may appear simple, but they are fundamental
components of a self-aware brain.



PART |

+

BUILDING MINDS THAT KNOW
THEMSELVES



HOW TO BE UNCERTAIN

The other fountain [of] ideas, is the perception of the
operation of our own minds within us.... And though it be
not sense, as having nothing to do with external objects,
yet it is very like it, and might properly enough be called
internal sense.

—JOHN LOCKE,
Essay Concerning Human Understanding, Book Il

Is something there, or not? This was the decision facing Stanislav
Petrov one early morning in September 1983. Petrov was a
lieutenant colonel in the Soviet Air Defense Forces and in charge of
monitoring early warning satellites. It was the height of the Cold
War between the United States and Russia, and there was a very
real threat that long-range nuclear missiles could be launched by
either side. That fateful morning, the alarms went off in Petrov’s
command center, alerting him that five US missiles were on their
way to Russia. Under the doctrine of mutually assured destruction,
his job was to immediately report the attack to his superiors so
they could launch a counterattack. Time was of the essence—
within twenty-five minutes, the missiles would detonate on Soviet
soil.!

But Petrov decided that the alert was unlikely to be a real
missile. Instead, he called in a system malfunction. To him, it
seemed more probable that the satellite was unreliable—that the
blip on the radar screen was noise, not signal—than that the
United States had sent over missiles in a surprise attack that would
surely launch a nuclear war. After a nervous wait of several
minutes, he was proved right. The false alarm had been triggered



by the satellites mistaking the sun’s reflection off the tops of
clouds for missiles scudding through the upper atmosphere.

Petrov saw the world in shades of gray and was willing to
entertain uncertainty about what the systems and his senses were
telling him. His willingness to embrace ambiguity and question
what he was being told arguably saved the world from disaster. In
this chapter, we will see that representing uncertainty is a key
ingredient in our recipe for creating self-aware systems. The
human brain is in fact an exquisite uncertainty-tracking machine,
and the role of uncertainty in how brains work goes much deeper
than the kind of high-stakes decision facing Petrov. Without an
ability to estimate uncertainty, it is unlikely that we would be able
to perceive the world at all—and a wonderful side benefit is that
we can also harness it to doubt ourselves.

Inverse Problems and How to Solve Them

The reason Petrov’s decision was difficult was that he had to
separate out signal from noise. The same blip on the radar screen
could be due to an actual missile or noise in the system. It is
impossible to work out which from the characteristics of the blip
alone. This is known as an inverse problem—so called because
solving it requires inverting the causal chain and making a best
guess about what is causing the data we are receiving. In the same
way, our brains are constantly solving inverse problems, unsure
about what is really out there in the world.

The reason for this is that the brain is locked inside a dark
skull and has only limited contact with the outside world through
the lo-fi information provided by the senses. Take the seemingly
simple task of deciding whether a light was just flashed in a
darkened room. If the light flash is made dim enough, then
sometimes you will say the light is present even when it is absent.
Because your eye and brain form a noisy system, the firing of
neurons in your visual cortex is not exactly the same for each
repetition of the stimulus. Sometimes, even when the light isn’t
flashed, random noise in the system will lead to high firing rates,
just like the blip on Petrov’s radar screen was caused by
atmospheric noise. Because the brain doesn’t know whether these
high firing rates are caused by signal or noise, if your visual



cortical neurons are firing vigorously it will seem as though a light
was flashed even if it wasn’t.?

Because our senses—touch, smell, taste, sight, and hearing—
each have access to only a small, noisy slice of reality, they must
pool their resources to come up with a best guess about what is
really out there. They are rather like the blind men in the ancient
Indian parable. The one holding the elephant’s leg says it must be a
pillar; the one who feels the tail says it is like a rope; the one who
feels the trunk says it is like a tree branch; the one who feels the
ear says it is like a hand fan; the one who feels its belly says it is
like a wall; and the one who feels the tusk says it is like a solid
pipe. Eventually, a stranger wanders past and informs them that
they are, in fact, all correct and the elephant has all the features
they observed. They would do better to combine their
perspectives, he says, rather than argue.

A mathematical framework known as Bayes’s theorem
provides a powerful tool for thinking about these kinds of
problems. To see how Bayes’s rule helps us solve inverse problems,
we can play the following game. I have three dice, two of which are
regular dice with the numbers 1 to 6 on their faces, and one of
which is a trick die with either a 0 or 3 on every face. From behind
a curtain, I'm going to roll all three dice at once and tell you the
combined total. On each roll, I might choose to use a trick die that
shows all 0s, or a trick die that shows all 3s. For instance, on my
first roll T might roll 2, 4, and 0 (on the third, trick die) for a
combined total of 6. Your task is to tell me your best guess about
the identity of the trick die—either a 3 or a 0—based only on your
knowledge of the total.3

In this game, the 0 or the 3 on the trick die stand in for the
“hidden” states of the world: whether the missile was present in
Petrov’s dilemma, or whether the light was flashed in the case of
our visual cortex neuron. Somehow, we need to go back from the
noisy evidence we have received—the sum total of the three dice—
and use this to work out the hidden state.

Sometimes this is easy. If I tell you the combined total is 4 or
less, then you know that the third die must have been showing 0 to
produce such a low sum. If the combined total is greater than 12
(two 6s plus a quantity more than 0), then you know for sure that
the third die must have been showing 3. But what about quantities



between these extremes? What about a total of 6 or 87 This is
trickier.

One way we might go about solving this game is by trial and
error. We could roll the three dice ourselves many times, record
the total, and observe the true state of the world: what was
actually showing on the face of the third die on each roll.

The first few rolls of the game might look like this:

Roll Die 1 Die 2 Trick Die Total

1 2 A 0 6
2 5 1 3 9
3 5 6 3 14

And so on, for many tens of rolls. An easier way to present this
data is in a chart of the number of times we observe a particular
total—say, 6—and the identity of the trick die at the time (0 or 3).
We can select particular colors for the trick die number; here I've
chosen gray for 0 and white for 3.

After ten rolls the graph might look like this:
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This isn’t very informative, and shows only a scatter of different
totals, just like in our table. But after fifty rolls a pattern starts to

emerge.
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And after one thousand rolls, the pattern is very clear:
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The counts from our experiment form two clear hills, with the
majority falling in a middle range and peaks around 7 and 10. This
makes sense. On average, the two real dice will give a total of
around 7, and therefore adding either 0 or 3 from the trick die to
this total will tend to give 7 or 10. And we see clear evidence for
our intuition at the start: you only observe counts of 4 or less when
the trick die equals 0, and you only observe counts of 13 or more
when the trick die equals 3.

Now, armed with this data, let’s return to our game. If I were
to give you a particular total, such as 10, and ask you to guess what
the trick die is showing, what should you answer? The graph above
tells us that it is more likely that the total 10 is associated with the
trick die having 3 on its face. From Bayes’s rule, we know that the
relative height of the white and gray bars (assuming we've
performed our experiment a sufficient number of times) tells us
precisely how much more likely the 3 is compared to the 0—in this



case, around twice as likely. The Bayes-optimal solution to this
game is to always report the more likely value of the trick die,
which amounts to saying 3 when the total is 9 or above and 0 when
the total is 8 or lower.

What we’ve just sketched is an algorithm for making a decision
from noisy information. The trick die is always lurking in the
background because it is contributing to the total each time. But
its true status is obscured by the noise added by the two normal
dice, just as the presence of a missile could not be estimated by
Petrov from the noisy radar signal alone. Our game is an example
of a general class of problems involving decisions under
uncertainty that can be solved by applying Bayes’s rule.

In the case of Petrov’s fateful decision, the set of potential
explanations is limited: either there is a missile or it’s a false
alarm. Similarly, in our dice game, there are only two explanations
to choose between: either the trick die is a 0 or it’s a 3. But in most
situations, not only is the sensory input noisy, but there is a range
of potential explanations for the data streaming in through our
senses. Imagine a drawing of a circle around twenty centimeters
across and held at a distance of one meter from the eye. Light
reflected from the circle travels in straight lines, passing through
the lens of the eye and creating a small image (of a circle) on the
retina. Because the image on the retina is two-dimensional, the
brain could interpret it as being caused by any infinite number of
circles of different sizes arranged at appropriate distances.
Roughly the same retinal image would be caused by a forty-
centimeter circle held at two meters, or an eight-meter circle at
forty meters. In many cases, there is simply not enough
information in the input to constrain what we see.

These more complex inverse problems can be solved by
making guesses as to the best explanation based on additional
information drawn from other sources. To estimate the actual
diameter of the circle, for instance, we can use other cues such as
differences in the images received by the two eyes, changes in the
texture, position, and shading of nearby objects, and so on.

To experience this process in real time, take a look at these
two pictures:



Most people see the image on the left-hand side as a series of
bumps, raised above the surface. The image on the right, in
contrast, looks like a series of little pits or depressions in the page.
Why the difference?

The illusion is generated by your brain’s solution to the
inverse problem. The left and right sets of dots are actually the
same image rotated 180 degrees (you can rotate the book to
check!). The reason they appear different is that our visual system
expects light to fall from above, because scenes are typically lit
from sunlight falling from above our heads. In contrast, uplighting
—such as when light from a fire illuminates the side of a cliff, or
spotlights are projected upward onto a cathedral—is statistically
less common. When viewing the two sets of dots, our brain
interprets the lighter parts of the image on the left as being
consistent with light striking a series of bumps and the darker
parts of the image on the right as consistent with a series of
shadows cast by holes, despite both being created from the same
raw materials.

Another striking illusion is this image created by the vision
scientist Edward Adelson:



Adelson’s checkerboard (Edward H. Adelson)

In the left-hand image, the squares labeled A and B are in fact
identical shades of gray; they have the same luminance. Square B
appears lighter because your brain “knows” that it is in shadow: in
order to reflect the same level of light to the eye as A, which is
fully illuminated, it must have started out lighter. The equivalence
of A and B can be easily appreciated by connecting them up, as in
the right-hand image. Now the cue provided by this artificial
bridge overrides the influence of the shadow in the brain’s
interpretation of the squares (to convince yourself that the left-
and right-hand images are the same, try using a sheet of paper to
cover up the bottom half of the two images).

The upshot is that these surprising illusions are not really
illusions at all. One interpretation of the image is given by our
scientific instruments—the numbers produced by light meters and
computer monitors. The other is provided by our visual systems
that have been tuned to discover regularities such as shadows or
light falling from above—regularities that help them build useful
models of the world. In the real world, with light and shade and
shadows, these models would usually be right. Many visual
illusions are clever ways of exposing the workings of a system
finely tuned for perceptual inference. And, as we will see in the
next section, several principles of brain organization are
consistent with this system solving inverse problems on a massive
scale.

Building Models of the World



One of the best-understood parts of the human and monkey brain
is the visual system. Distinct regions toward the back of the brain
process different aspects of visual input, and each is labeled with
increasing numbers for more advanced stages of image processing.
V1 and V2 extract information about the orientation of lines and
shapes, V4 about color, and V5 about whether objects are moving.
Downstream of these V regions we hit regions of the ventral visual
stream that are tasked with putting all these pieces together to
identify whole objects, such as faces and bodies and tables and
chairs. In parallel, the dorsal visual stream contains regions that
specialize in keeping track of where things are and whether they
are moving from place to place.*

Parietal

Occipital
lobe

Cerebellum

The right hemisphere of the human brain. The locations
of the four cortical lobes, the cerebellum, and key visual
pathways are indicated.

At the start of the ventral visual stream, individual brain cells
encode only a small amount of the external world, such as a patch
in the lower left of our field of view. But as we move up the
hierarchy, the cells begin to widen their focus, similar to a camera
zooming out. By the time we reach the top of the hierarchy, where
a stimulus is displayed matters much less than what it depicts—a
face, house, cat, dog, etc. The lens is completely zoomed out, and
information about the object’s identity is represented
independently of spatial location.



Crucially, however, information in the visual system does not
just flow in one direction. For a long time, the dominant view of
information processing in the brain was that it was a feed-forward
system—taking in information from the outside world, processing
it in hidden, complex ways, and then spitting out commands to
make us walk and talk. This model has now been superseded by a
raft of evidence that is difficult to square with the input-output
view. In the visual system, for instance, there are just as many, if
not more, connections in the reverse direction, known as feedback
or top-down connections. Information travels both forward and
backward; upper levels of the hierarchy both receive inputs from
lower levels and send information back down in constant loops of
neural activity. This way of thinking about the mind is known as
predictive processing, and it represents a radically different
understanding of what the brain does—although one with a long
intellectual history, as the range of references in the endnote
makes clear.”

Predictive processing architectures are particularly well suited
to solving inverse problems. Instead of just passively taking in
information, the brain can harness these top-down connections to
actively construct our perception of the external world and shape
what we see, hear, think, and feel. Higher levels furnish
information about the type of things we might encounter in any
given situation and the range of hypotheses we might entertain.
For instance, you might know that your friend owns a Labrador,
and so you expect to see a dog when you walk into the house but
don’t know exactly where in your visual field the dog will appear.
This higher-level prior—the spatially invariant concept of “dog”—
provides the relevant context for lower levels of the visual system
to easily interpret dog-shaped blurs that rush toward you as you
open the door.

The extent to which our perceptual systems should rely on
these regularities—known as priors—is in turn dependent on how
uncertain we are about the information being provided by our
senses. Think back to Petrov’s dilemma. If he was sure that his
missile-detection technology was flawless and never subject to
error, he would have been less willing to question what the system
was telling him. Whether we should adjust our beliefs upon
receiving new data depends on how reliable we think that



information is.

In fact, Bayesian versions of predictive processing tell us that
we should combine different sources of information—our prior
beliefs and the data coming in through our senses—in inverse
proportion to how uncertain we are about them. We can think of
this process as being similar to pouring cake batter into a flexible
mold. The shape of the mold represents our prior assumptions
about the world. The batter represents the sensory data—the light
and sound waves hitting the eyes and ears. If the incoming data is
very precise or informative, then the batter is very thick, or almost
solid, and will be hardly affected by the shape of the mold (the
priors). If, in contrast, the data is less precise, then the batter will
be runnier, and the shape of the mold will dominate the shape of
the final product.

For instance, our eyes provide more precise information about
the location of objects than our hearing. This means that vision
can act as a useful constraint on the location of a sound source,
biasing our perception of where the sound is coming from. This is
used to great effect by ventriloquists, who are seemingly able to
throw their voices to a puppet held at arm’s length. The real skill
of ventriloquism is the ability to speak without moving the mouth.
Once this is achieved, the brains of the audience do the rest,
pulling the sound to its next most likely source, the talking
puppet.6

It makes sense, then, that keeping track of uncertainty is an
inherent part of how the brain processes sensory information.
Recordings of cells from the visual cortex show us how this might
be done. It's well known that moving objects such as a waving
hand or a bouncing ball will activate neurons in an area of the
monkey brain known as MT (the human equivalent is V5). But cells
in MT do not just activate for any direction of movement. Some
cells fire most strongly for objects moving to the left, others for
up, down, and all other points of the compass. When firing rates of
MT cells are recorded over multiple presentations of different
motion directions, they begin to form a distribution like the ones
we saw in our dice game. At any moment in time, these
populations of MT cells can be thought of as signaling the
uncertainty about a particular direction of motion, just as our
noisy dice total signaled the probability of the trick die being a 0 or



a3.’

Uncertainty is also critical for estimating the states of our own
bodies. Information about where our limbs are in space, how fast
our heart is beating, or the intensity of a painful stimulus is
conveyed to the skull by sensory neurons. From the brain’s
perspective, there is little difference between the electrical
impulses traveling down the optic nerve and the neural signals
ascending from our gut, heart, muscles, or joints. They are all
signals of what might be happening outside of the skull, and these
signals are subject to illusions of the kind that we encountered for
vision. In one famous experiment, stroking a rubber hand in time
with the participant’s own (hidden) hand is sufficient to convince
the participant that the rubber hand is now their own. In turn, the
illusion of ownership of the new rubber hand leads the brain to
wind down the neural signals being sent to the actual hand. Just as
the voice is captured by the ventriloquist’s dummy, the synchrony
with which the rubber hand is seen and felt to be stroked pulls the

sense of ownership away from the real hand.

Harnessing Uncertainty to Doubt Ourselves

Of course, no one is suggesting that we consciously churn through
Bayesian equations every time we perceive the world. Instead, the
machinery our brains use to solve inverse problems is applied
without conscious thought, in what the German physicist Hermann
von Helmholtz called a process of “unconscious inference.” Our
brains rapidly estimate the effects of light and shade on the dips,
bumps, and checkerboards we encountered in the images on
previous pages, literally in the blink of an eye. In a similar fashion,
we reconstruct the face of a close friend, the taste of a fine wine,
and the smell of freshly baked bread by combining priors and data,
carefully weighting them by their respective uncertainties. Our
perception of the world is what the neuroscientist Anil Seth refers
to as a “controlled hallucination”—a best guess of what is really
out there.

It is clear that estimating uncertainty about various sources of
information is fundamental to how we perceive the world. But
there is a remarkable side benefit of these ingenious solutions to



the inverse problem. In estimating uncertainty in order to
perceive the world, we also gain the ability to doubt what we
perceive. To see how easy it is to turn uncertainty into self-doubt,
let’s consider the dice game again. As the numbers in the game
tend toward either 15 or 0, we become surer about the trick die
showing a 3 or 0, respectively. But in the middle part of the graph,
where the gray and white bars are of similar height—totals of 7 or
8—there is limited support for either option. If T ask you how
confident you are about your response, it would be sensible to
doubt decisions about the numbers 7 and 8 and to be more
confident about smaller and larger quantities. In other words, we
know that we are likely to know the answer when uncertainty is
low, and we know that we are likely to not know the answer when
uncertainty is high.

Bayes’s rule provides us with a mathematical framework for
thinking about these estimates of uncertainty, sometimes known
as type 2 decisions—so called because they are decisions about the
accuracy of other decisions, rather than type 1 decisions, which
are about things in the world. Bayes’s theorem tells us that it is
appropriate to be more uncertain about responses toward the
middle of the graph, because they are the ones most likely to result
in errors and are associated with the smallest probability of being
correct. Conversely, as we go out toward the tails of each
distribution, the probability of being correct goes up. By
harnessing the uncertainty that is inherent to solving inverse
problems, we gain a rudimentary form of metacognition for free—
no additional machinery is needed.’

And, because tracking uncertainty is foundational to how
brains perceive the world, it is not surprising that this form of
metacognition is widespread among a range of animal species. One
of the first—and most ingenious—experiments on animal
metacognition was developed by the psychologist J. David Smith in
his study of a bottlenose dolphin named Natua. Smith trained
Natua to press two different levers in his tank to indicate whether
a sound was high-pitched or low-pitched. The low-pitched sound
varied in frequency from very low to relatively high, almost as
high as the high-pitched sound. There was thus a zone of
uncertainty in which it wasn’t always clear whether low or high
was the right answer, just like in our dice game.'?



Once Natua had got the hang of this task, a third lever was
introduced into the tank that could be pressed to skip the current
trial and move on to the next one—the dolphin equivalent of
skipping a question on a multiple-choice quiz. Smith reasoned that
if Natua declined to take on decisions when his uncertainty about
the answer was high, he would be able to achieve a higher
accuracy overall than if he was forced to guess. And this is exactly
what Smith found. The data showed that Natua pressed the third
lever mostly when the sound was ambiguous. As Smith recounts,
“When uncertain, the dolphin clearly hesitated and wavered
between his two possible responses, but when certain, he swam
towards his chosen response so fast that his bow wave would soak
the researchers’ electronic switches.”11

Macaque monkeys—which are found across Asia (and are fond
of stealing tourists’ food at temples and shrines)—also easily learn
to track their uncertainty in a similar setup. In one experiment,
macaques were trained to judge which was the biggest shape on a
computer screen, followed by another choice between two icons.
One icon led to a risky bet (three food pellets if right, or the
removal of food if wrong), while the other, safe option always
provided one food pellet—the monkey version of Who Wants to Be a
Millionaire? The monkeys selected the risky option more often
when they were correct, a telltale sign of metacognition. Even
more impressively, they were able to immediately transfer these
confidence responses to a new memory test without further
training, ruling out the idea that they had just learned to associate
particular stimuli with different confidence responses. Adam
Kepecs's lab, based at Cold Spring Harbor in New York, has used a
version of this task to show that rats also have a sense of whether
they are likely to be right or wrong about which of two perfumes is
most prominent in a mixture of odors. There is even some
evidence to suggest that birds can transfer their metacognitive
competence between different tests, just like monkeys.!?

If a sensitivity to uncertainty is a fundamental property of how
brains work, it makes sense that this first building block of
metacognition might also be found early in the lives of human
babies. Taking inspiration from Smith’s tests, Louise Goupil and Sid
Kouider at the Ecole Normale Supérieure in Paris set out to
measure how eighteen-month-old infants track uncertainty about



their decisions. While sitting on their mothers’ laps, the babies
were shown an attractive toy and allowed to play with it to whet
their appetite for more playtime in the future. They then saw the
toy being hidden in one of two boxes. Finally, after a brief delay,
they were allowed to reach inside either of the boxes to retrieve
the toy.

In reality, the toy was sneakily removed from the box by the
experimenter. This allowed the researchers to measure the infants’
confidence about their choice of box. They reasoned that, if the
babies knew whether they were making a good or bad choice, they
would be more willing to search for the (actually nonexistent) toy
when the correct box was chosen compared to when they chose
incorrectly. This was indeed the case: when babies made wrong
moves, they were less persistent in searching for the toy. They
were also more likely to ask their mother for help in retrieving the
toy when they were most prone to making an error. This data tells
us that even at a young age, infants can estimate how uncertain
they are about simple choices, asking for help only when they
most need it.13

We cannot know for sure how animals and babies are solving
these problems, because—unlike human adults—they cannot tell us
about what they are thinking and feeling. A critic could argue that
they are following a lower-level rule that is shared across all the
tasks in the experiment—something like, If 1 take a long time to
decide, then I should press the “uncertain” key—without forming
any feeling of uncertainty about the decisions they are making. In
response to this critique, ever more ingenious experiments have
been designed to rule out a variety of non-metacognitive
explanations. For instance, to rule out tracking response time,
other studies have given the animals the chance to bet on their
choices before they have started the test and before response-time
cues are available. In this setup, macaque monkeys are more likely
to be correct when they choose to take the test than when they
decline, suggesting that they know when they know the answer—a
hallmark of metacognition.

There is also evidence that otherwise intelligent species fail to
track uncertainty in these situations, suggesting that feelings of
uncertainty might really be picking up on the first glimmers of
self-awareness, rather than a more generic cognitive ability.



Capuchin monkeys, a New World species found in South America,
share many characteristics with macaques, using tools such as
stones to crack open palm nuts, and living in large social groups.
But capuchins appear unable to signal that they are uncertain in
Smith’s task. In a clever twist, it is possible to show that capuchins
have no difficulty using a third response key to classify a new
stimulus, but they are unable to use the same response to indicate
when they are uncertain. This data suggests that when comparing
two similar species of monkey, one may show signs of
metacognition while another may not.!>

Once uncertainty tracking is in place, it opens the door to a
range of useful behaviors. For starters, being able to estimate
uncertainty means we can use it to decide whether or not we need
more information. Let’s go back to our dice game. If I were to give
you a total near the middle of the graph—a 7 or an 8—then you
might reasonably be uncertain about whether to answer 0 or 3.
Instead, you might ask me to roll the dice again. If I were to then
roll a 5, a 4, and a 7, all with the same three dice, then you would
be much more confident that the trick die was a 0. As long as each
roll is independent of the previous one, Bayes’s theorem tells us we
can compute the probability that the answer is a 3 or a 0 by
summing up the logarithm of the ratio of our confidence in each
hypothesis after each individual roll.'®

The brilliant British mathematician Alan Turing used this trick
to figure out whether or not to change tack while trying to crack
the German Enigma code in the Second World War. Each morning,
his team would try new settings of their Enigma machine in an
attempt to decode intercepted messages. The problem was how
long to keep trying a particular pair of ciphers before discarding it
and trying another. Turing showed that by accumulating multiple
samples of information over time, the code breakers could
increase their confidence in a particular setting being correct—
and, critically, minimize the amount of time wasted testing the
wrong ciphers.!”

In the same way, we can use our current estimate of
confidence to figure out whether a new piece of information will
be helpful. If T get a 12 on my first roll, then I can be reasonably
confident that the trick die is showing a 3 and don’t need to ask for
the dice to be rolled again. But if I get a 7 or 8, then it would be



prudent to roll again and resolve my current uncertainty about the
right answer. The role of confidence in guiding people’s decisions
to seek new information has been elegantly demonstrated in the
lab. Volunteers were given a series of difficult decisions to make
about the color of shapes on a computer screen. By arranging
these shapes in a particular way, the researchers could create
conditions in which people felt more uncertain about the task but
performed no worse. This design nicely isolates the effect a feeling
of uncertainty has on our decisions. When asked whether they
wanted to see the information again, participants did so only when
they felt more uncertain. Just as in the experiments on babies, the
participants were relying on internal feelings of uncertainty or

confidence to decide whether to ask for help.18

Shades of Gray

Being able to track uncertainty is fundamental to how our brains
perceive the world. Due to the complexity of our environment and
the fact that our senses provide only low-resolution snapshots of
our surroundings, we are forced to make assumptions about what
is really out there. A powerful approach to solving these inverse
problems combines different sources of data according to their
reliability or uncertainty. Many aspects of this solution are in
keeping with the mathematics of Bayesian inference, although
there is a vigorous debate among neuroscientists as to how and
whether the brain implements (approximations to) Bayes’s rule.!®
Regardless of how it is done, we can be reasonably sure that
computing uncertainty is a fundamental principle of how brains
work. If we were unable to represent uncertainty, we would only
ever be able to see the world in one particular way (if at all). By
representing uncertainty we also acquire our first building block
of metacognition—the ability to doubt what our senses are telling
us. By itself, the ability to compute uncertainty is not sufficient for
full-blown self-awareness. But it is likely sufficient for the
rudimentary forms of metacognition that have been discovered in
animals and babies. Nabokov’s bright line between humans and
other species is becoming blurred, with other animals also
demonstrating the first signs of metacognitive competence.



But tracking uncertainty is only the beginning of our story. Up
until now we have treated the brain as a static perceiver of the
world, fixed in place and unable to move around. As soon as we
add in the ability to act, we open up entirely new challenges for
metacognitive algorithms. Meeting these challenges will require
incorporating our next building block: the ability to monitor our
actions.



alive becomes very difficult indeed. Consider a humble single-
celled bacterium. Living cells depend on managing the acidity of
their internal world, because most proteins will cease to function
beyond a narrow range of pH. Even simple bacteria have intricate
networks of sensors and signaling molecules on their cell surface,
which lead to the activation of pumps to restore a neutral pH
balance when required.

This is known as homeostasis, and it is ubiquitous in biology.
Homeostasis works like the thermostat in your house: when the
temperature drops below a certain point, the thermostat switches
on the heating, ensuring that the ambience of your living room is
kept within a comfortable range. A curious aspect of homeostasis
is that it is recursive—it seeks to alter the very same thing that it is
monitoring. The thermostat in my living room is trying to regulate
the temperature of the same living room, not some room in my
neighbor’s house. This feature of homeostasis is known as a closed-
loop system. If the state it is detecting is in an acceptable range,
then all is well. If it’s not—if an imbalance in pH or temperature is
detected—some action is taken, and the imbalance is corrected.
Homeostasis can often be left to its own devices when up and
running; it is rare that a corrective action will not have a desired
effect, and the control process, while intricate, is computationally
simple.

Homeostatic mechanisms, however, operate in the here and
now, without caring very much about the future. A simple on-off
thermostat cannot “know” that it tends to get colder at night and
warmer during the day. It just switches on the heating when the
temperature drops below a threshold. In the BBC comedy series
Peep Show, Jez misunderstands this critical feature of thermostats,
telling his housemate Mark, “Let’s whack [the boiler] up to 29.... I
don’t actually want it to be 29, but you've got to give it something
to aim for. It'll get hotter, quicker.” Mark replies disdainfully (and
accurately): “No it won't, it’s either on or off. You set it, it achieves
the correct temperature, it switches off.” You cannot trick a boiler.

The new breed of learning thermostats, such as the Nest,
improves on traditional on-off devices by learning the typical rise
and fall in temperature over the course of the day and the
preferences of the owner for particular temperatures. A smart
thermostat can then anticipate when it needs to switch on to



maintain a more even temperature. The reason this is more
successful than a good-old-fashioned thermostat is a consequence
of a classic proposal in computer science known as the good
regulator theorem, which states that the most effective way of
controlling a system is to develop an accurate model of that same
system. In other words, the more accurate my model of the kind of
things that affect the temperature, the more likely I will be able to
anticipate when I need to make changes to the heating to keep it
within a comfortable range.!

The same is true when we move beyond homeostasis to actions
that affect the external world. In fact, we can think of all our
behavior as a form of elaborate homeostasis, in the sense that
many of the things we do are aimed at keeping our internal states
within desirable bounds. If I am hungry, I might decide to go and
make a sandwich, which makes me feel full again. If I need money
to buy ingredients to make a sandwich, I might decide to apply for
a job to make money, and so on. This idea—that everything we do
in life fits into some grand scheme that serves to minimize the
“error” in our internal states—has both its proponents and critics
in the field of computational neuroscience. But at least for many of
our simpler actions, it provides an elegant framework for thinking
about how behavior is monitored and controlled. Let’s take a

closer look at how this works in practice.?

Who Is in Control?

In the same way that there are dedicated sensory parts of the brain
—those that handle incoming information from the eyes and ears,
for instance—there are also dedicated motor structures that send
neural projections down to the spinal cord in order to control and
coordinate our muscles. And just as the visual cortex is organized
hierarchically, going from input to high-level representations of
what is out there in the world, the motor cortex is organized as a
descending hierarchy. Regions such as the premotor cortex are
involved in creating general plans and intentions (such as “reach
to the left”), while lower-level brain areas, such as the primary
motor cortex, are left to implement the details. Regions in the
prefrontal cortex (PFC) have been suggested to be at the top of



both the perceptual and motor hierarchies. This makes sense if we
think of the PFC as being involved in translating high-level
perceptual representations (the red ball is over there) into high-
level action representations (let’s pick up the red ball).3

One consequence of the hierarchical organization of action is
that when we reach for a cup of coffee, we do not need to
consciously activate the sequence of muscles to send our arm and
hand out toward the cup. Instead, most action plans are made at a
higher level —we want to taste the coffee, and our arm, hand, and
mouth coordinate to make it so. This means that in a skilled task
such as playing the piano, there is a delicate ballet between
conscious plans unfolding further up the hierarchy (choosing how
fast to play, or how much emphasis to put on particular passages)
and the automatic and unconscious aspects of motor control that
send our fingers toward the right keys at just the right time. When
watching a concert pianist at work, it seems as though their hands
and fingers have a life of their own, while the pianist glides above
it all, issuing commands from on high. As the celebrated pianist
Vladimir Horowitz declared, “I am a general, my soldiers are the
keys.” In the more prosaic language of neuroscience, we offload
well-learned tasks to unconscious, subordinate levels of action
control, intervening only where necessary.?

Not all of us can engage in the finger acrobatics required for
playing Chopin or Liszt. But many of us regularly engage in a
similarly remarkable motor skill on another type of keyboard. 1 am
writing this book on a laptop equipped with a standard QWERTY
keyboard, named for the first six letters of the top row. The history
of why the QWERTY keyboard, designed by politician and amateur
inventor Christopher Latham Sholes in the 1860s, came into being
is murky (the earliest typewriters instead had all twenty-six letters
of the alphabet organized in a row from A to Z, which its inventors
assumed would be the most efficient arrangement). One story is
that it was to prevent the early typewriters from getting jammed.
Another is that it helped telegraph operators, who received Morse
code, quickly transcribe closely related letters in messages. And
yet another is that Remington, the first major typewriter
manufacturer, wanted to stick with QWERTY to ensure brand
loyalty from typists who had trained on its proprietary system.

Whichever theory is correct, the English-speaking world’s



QWERTY typewriter has led millions of people to acquire a highly
proficient but largely unconscious motor skill. If you are a regular
computer user, close your eyes and try to imagine where the
letters fall on your keyboard (with the exception of the letters Q-
W-E-R-T-Y!). It is not easy, and if you are like me, can only really
be done by pretending to type out a word. This neat dissociation
between motor skill and conscious awareness makes typing a
perfect test bed for studying the different kinds of algorithms
involved in unconsciously monitoring and controlling our actions.
Typing can also be studied with beautiful precision in the lab: the
initiation and timing of keystrokes can be logged by a computer
and the movements of people’s fingers captured by high-
resolution cameras.

Using these methods, the psychologists Gordon Logan and
Matthew Crump have carried out detailed and creative
experiments to probe how people type. In one of their
experiments, people were asked to type out the answers to a
classic psychological test, the Stroop task. In the Stroop, people are
asked to respond to the color of the ink a word is written in—
typing “blue” for blue ink and “red” for red ink, for instance. This
is straightforward for most words, but when the words themselves
are color words (such as the word “green” written in blue ink,
“purple” written in red ink, and so on) it becomes much more
difficult, and people slow down and make errors when the word
and the ink color don’t match. But despite being slower to initiate
typing the word, they were no slower to type the letters within the
word once they had gotten started (for instance, b-1-u-e). This led
to the hypothesis that there are multiple action control loops at
work: a higher-level loop governing the choice of which word to
type, and a lower-level loop that takes this information and works
out which keys need to be pressed in which order.”

Not only are there multiple levels of action control, but the
higher levels know little about the workings of the lower levels.
We know this because one of the easiest ways to screw up
someone’s typing is to ask them to type only the letters in a
sentence that would normally be typed by the left (or right) hand.
Try sitting at a keyboard and typing only the left-hand letters in
the sentence “The cat on the mat” (on a QWERTY keyboard you
should produce something like “Tecatteat,” depending on whether



you normally hit the space bar with your right or left thumb). It is
a fiendishly difficult and frustrating task to assign letters to hands.
And yet the lower-level loop controlling our keystrokes does this
continuously, at up to seventy words per minute! Some part of us
does know the correct hand, but it’s not able to get the message
out.®

Staying the Course

These experiments suggest that fine-scale unconscious
adjustments are continuously being made to ensure that our
actions stay on track. Occasionally, these unconscious monitoring
processes become exposed, similar to how visual illusions revealed
the workings of perceptual inference in the previous chapter. For
instance, when I commute to work on the London Tube, I have to
step onto a series of moving escalators, and 1 rely on my body
making rapid postural adjustments to stop me from falling over
when 1 do so. But this response is so well learned that if the
escalator is broken and stationary, it’s difficult to stop my motor
system from automatically correcting for the impact of the usually
moving stairs—so much so that I now have a higher-level
expectation that I will stumble slightly going onto a stationary
escalator.”

In a classic experiment designed to quantify this kind of rapid,
automatic error correction, Pierre Fourneret and Marc Jeannerod
asked volunteers to move a computer cursor to a target on a
screen. By ensuring that participants’ hands were hidden (so that
they could see only the cursor), the researchers were able to
introduce small deviations to the cursor position and observe what
happened. They found that when the cursor was knocked off
course, people immediately corrected it without being aware of
having done so. Their paper concluded: “We found that subjects
largely ignored the actual movements that their hand had
performed.” In other words, a low-level system unconsciously
monitors how we are performing the task and corrects—as
efficiently as possible—any deviations away from the goal.®

One part of the brain that is thought to be critical for
supporting these adjustments is known as the cerebellum—from



another button if they detected themselves making an error.
Rabbitt precisely measured the time it took for these additional
button presses to occur, finding that people were able to correct
their own errors very quickly. In fact, they realized they had made
an error on average forty milliseconds faster than their fastest
responses to external stimuli. This elegant and simple analysis
proved that the brain was able to monitor and detect its own
errors via an efficient, internal computation, one that did not
depend on signals arriving from the outside world.

This rapid process of error detection can lead to an equally
rapid process of error correction. In a simple decision about
whether a stimulus belongs to category A or B, within only tens of
milliseconds after the wrong button is pressed, the muscles
controlling the correct response begin to contract in order to
rectify the error. And if these corrective processes happen fast
enough, they may prevent the error from occurring in the first
place. For instance, by the time our muscles are contracting and
we are pressing the send button on a rash email, we might have
accumulated additional evidence to suggest that this is not a good
idea and withhold the critical mouse click at the last moment.!!

A couple of decades after Rabbitt’s experiment, the brain
processes that support internal error detection were beginning to
be discovered. In his PhD thesis published in 1992, the psychologist
William Gehring made electroencephalograph (EEG) recordings
from participants while they performed difficult tasks. EEG uses a
net of small electrodes to measure the changes in the electrical
field outside the head caused by the combined activity of
thousands of neurons inside the brain. Gehring found that a
unique brain wave was triggered less than one hundred
milliseconds after an error was committed. This rapid response
helps explain why Rabbitt found that people were often able to
very quickly recognize that they had made an error, even before
they were told. This activity was labeled the error-related
negativity (ERN), which psychologists now affectionately refer to
as the “Oh shit!” response.1?

We now know that the ERN occurs following errors on a
multitude of tasks, from pressing buttons to reading aloud, and is
generated by a brain region buried in the middle of the frontal
lobe: the dorsal anterior cingulate cortex (dACC). This tell-tale



neural signature of self-monitoring is already in place early in
human development. In one experiment, twelve-month-old babies
were flashed a series of images on a computer screen, and their
eye movements recorded. Occasionally one of the images would be
a face, and if the babies looked toward it, they would get a reward
in the form of music and flashing colored lights. The occasions on
which the baby failed to look at the face are errors in the context
of the experiment—they did not perform the action that would get
them the reward. On these occasions, EEG recordings showed a
clear ERN, although somewhat delayed in time compared to what
is typically seen in adults.!3

We can think of the ERN as a special case of a “prediction
error” signal. Prediction errors do exactly what they say on the tin
—they keep track of errors in our predictions about the future, and
they are a central feature of algorithms that can efficiently learn
about the world. To see how prediction errors help us learn,
imagine that a new coffee shop opens up near your office. You
don’t yet know how good it is, but they have taken care to buy a
top-of-the-line espresso machine and get the ambience just right.
Your expectations are high—you predict that the coffee will be
good before you've even tasted it. When you sip your first cup, you
find that it’s not only good—it’s one of the best cups of coffee you
have had in a long time. The fact that the coffee was better than
expected leads you to update your estimate, and it becomes your
new favorite stop on the way in to work.

Now let’s imagine a few weeks have gone by. The baristas have
become complacent and the coffee is no longer as good as it used
to be. It might still be good, but compared to what you expected,
this is experienced as a negative error in your prediction, and you
might feel a little more disappointed than usual.

The ability to make and update predictions depends on a
famous brain chemical, dopamine. Dopamine is not only famous,
but it is also commonly misunderstood and often referred to as the
“pleasure” chemical in the popular media. It is true that dopamine
is boosted by things that we enjoy, from money to food to sex. But
the idea that dopamine simply signals the rewarding character of
an experience is incorrect. In the 1990s, a now classic experiment
was carried out by the neuroscientist Wolfram Schultz. He
recorded signals from cells in the monkey midbrain that produce



dopamine and deliver it to other brain areas. Schultz trained the
monkeys to expect a drop of juice after a light was switched on in
the room. Initially, the dopamine cells responded to the juice,
consistent with the pleasure theory. But over time, the animals
began to learn that the juice was always preceded by the light—
they learned to expect the juice—and the dopamine response

disappeared.!4

An elegant explanation for the pattern of dopamine responses
in these experiments is that they were tracking the error in the
monkeys’ prediction about the juice. Early on, the juice was
unexpected—just like the unexpectedly good coffee from the new
shop. But over time, the monkeys came to expect the juice every
time they saw the light, just as we would come to expect good
coffee every time we walked into the cafe. Around the same time
that Schultz was performing his experiments, the computational
neuroscientists Peter Dayan and Read Montague were building on
classic work on trial-and-error learning in psychology. A
prominent theory, the Rescorla-Wagner rule, proposed that
learning should only occur when events are unexpected. This
makes intuitive sense: If the coffee is just the same as yesterday, I
don’t need to alter my estimate of the goodness of the coffee shop.
There is no learning to do. Dayan and Montague showed that
versions of this algorithm provided an excellent match to the
response of dopamine neurons. Shortly after Schultz, Dayan, and
Montague’s work was published, a series of studies by my former
PhD adviser Ray Dolan discovered that the neural response in
regions of the human brain that receive dopamine input closely
tracks what one would expect of a prediction error signal.
Together, these pioneering studies revealed that computing
prediction errors and using them to update how we experience the

world is a fundamental principle of how brains work.1?

Now that we’re armed with an understanding of prediction
errors, we can begin to see how similar computations are
important for self-monitoring. Occasionally we directly experience
positive or negative feedback about our performance—on an
assignment at school, for instance, or when we learn we have
beaten our personal best over a half-marathon distance. But in
many other areas of everyday life, the feedback may be more
subtle, or even absent. One useful way of thinking about the ERN,



