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Knowledge Graphs on the Web —
An Overview

Nicolas HEIST, Sven HERTLING, Daniel RINGLER, and Heiko PAULHEIM
Data and Web Science Group, University of Mannheim, Germany

Abstract. Knowledge Graphs are an emerging form of knowledge representation.
‘While Google coined the term Knowledge Graph first and promoted it as a means to
improve their search results, they are used in many applications today. In a knowl-
edge graph, entities in the real world and/or a business domain (e.g., people, places,
or events) are represented as nodes, which are connected by edges representing the
relations between those entities. While companies such as Google, Microsoft, and
Facebook have their own, non-public knowledge graphs, there is also a larger body
of publicly available knowledge graphs, such as DBpedia or Wikidata. In this chap-
ter, we provide an overview and comparison of those publicly available knowledge
graphs, and given insights into their contents, size, coverage, and overlap.

Keywords. Knowledge Graphs, Linked Data, Semantic Web, Dataset Profiling

1. Introduction

Knowledge Graphs are increasingly used as means to represent knowledge. Due to their
versatile means of representation, they can be used to integrate different heterogeneous
data sources, both within as well as across organizations [8,9].

Besides such domain-specific knowledge graphs which are typically developed for
specific domains and/or use cases, there are also public, cross-domain knowledge graphs
encoding common knowledge, such as DBpedia, Wikidata, or YAGO [33]. Such knowl-
edge graphs may be used, e.g., for automatically enriching data with background knowl-
edge to be used in knowledge-intensive downstream applications [34]. In particular for
the case of eXplainable Al, knowledge graphs can be used as additional input to the Al
algorithm, as a means to support interpretation of the results, or both [18].

Since Google coined the term Knowledge Graph for marketing purposes, it has sub-
sequently been used in the scientific literature as well. The slogan by which Google an-
nounced KGs was Things, not Strings'. The idea of that slogan is: while strings are often
ambiguous, knowledge graphs consist of disambiguated entities, so that entities of the
same name can be told apart more easily. Nowadays, almost all companies processing
large amounts of heterogeneous data use knowledge graphs as a means of representation,
including, but not limited to IBM, Microsoft, Facebook or Ebay [27].

There are quite a few different definitions for knowledge graphs [5]. Typically, a
knowledge graph

https://wuw.blog.google/products/search/introducing-knowledge-graph-things-not/
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. mainly describes real world entities and their interrelations, organized in a graph.
. defines possible classes and relations of entities in a schema.
. allows for potentially interrelating arbitrary entities with each other.

TS I S

. covers various topical domains [29].

In this chapter, we provide an overview of publicly available, cross-domain knowl-
edge graphs on the Web. We discuss the techniques used to create those knowledge
graphs and provide an in-depth comparison in terms of size, level of detail, contents, and
overlap.

2. Overview

There are different techniques for creating knowledge graphs. The most common ones
are (1) manual curation, (2) creation from (semi) structured sources, and (3) creation
from unstructured sources. Some knowledge graphs also use a mix of those techniques.

2.1. Manual Curation

Cyc [20] is one of the oldest knowledge graphs; the Cyc project dates back to the 1990s.
Cyc was created along with its own language (CycL), which provides a large degree of
formalization.

While Cyc was developed by a comparatively small group of experts, the idea of
Freebase [32] was to establish a large community of volunteers, compared to Wikipedia.
To that end, the schema of Freebase was kept fairly simple to lower the entrance barrier
as much as possible. Freebase was acquired by Google in 2010 and shut down in 2014.

Wikidata [43] also uses on a crowd editing approach. In contrast to Cyc and Free-
base, Wikidata also imports entire whole large datasets, such as several national libraries’
bibliographies. Porting the data from Freebase to Wikidata is also a long standing goal
[32].

Curating a knowledge graph manually can be a large effort. The total cost of devel-
opment for Cyc have been estimated as 120 Million USD?. This corresponds to a total
cost of 2-6 USD per single axiom in Cyc [30].

2.2. Creation from (Semi) Structured Sources

A more efficient way of knowledge graph creation is the use of structured or semi struc-
tured sources. Wikipedia is a commonly used starting point for knowledge graphs such
as DBpedia [19] and YAGO [40].

DBpedia mainly uses infoboxes in Wikipedia. Those are manually mapped to a pre-
defined ontology; the mapping is crowd sourced using a Wiki and a community of vol-
unteers. Given those mappings, the DBpedia Extraction Framework creates a graph in
which each page in Wikipedia becomes an entity, and all values and links in an infobox
become attributes and edges in the graph.

YAGO uses a similar process, but classifies instances based on the category structure
and WordNet [24] instead of infoboxes. YAGO integrates various language editions of

Zhttp://www.ttivanguard.com/conference/Napa2017/4-Lenat . pdf
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Wikipedia into a single graph and represents temporal facts with meta-level statements,
i.e., RDF reification.

CaLiGraph also uses information in categories, but aims at converting them into
formal axioms using DBpedia as supervision [11]. Moreover, instances from Wikipedia
list pages are considered for populating the knowledge graph [31]. The result is a knowl-
edge graph which is not only richly populated on the instance level, but also has a large
number of defining axioms for classes [12].

A similar approach, i.e., the combination of information in Wikipedia and WordNet,
is used by BabelNet [25]. The main purpose of BabelNet is the collection of synonyms
and translations in various languages, so that this knowledge graph is particularly well
suited for supporting multi-language applications. Similarly, ConceptNet [38] collects
synonyms and translations in various languages, integrating multiple third party knowl-
edge graphs itself.

DBkWik [14] uses the same codebase as DBpedia, but applies it to a multitude of
Wikis. This leads to a graph which has a larger coverage and level of detail for many long
tail entities, and is highly complementary to DBpedia. However, the absence of a central
ontology and mappings, as well as the existence of duplicates across Wikis, which might
not be trivial to detect, imposes a number of challenges not present in DBpedia.

Another source of structured data is the structured annotations in Web pages using
techniques such as RDFa, Microdata, and Microformats [23]. While the pure collection
of those could, in theory, already be considered a knowledge graph, that graph would
be rather disconnected and consist of a plethora of small, unconnected components [28]
and would require additional cleanup for compensating irregular use of the underlying
schemas and shortcomings in the extraction [22]. A consolidated version of this data into
a more connected knowledge graph has been published under the name VoldemortKG
[42].

2.3. Creation from Unstructured Sources

The extraction of a knowledge graph from semi structured sources is considered more
easy than from the extraction from unstructured sources. However, there is much more
information in unstructured sources (such as text). Therefore, extracting knowledge from
unstructured sources has also been proposed.

NELL [4] is an example for extracting a knowledge graph from free text. NELL was
originally trained with a few seed examples and continuously runs an iterative coupled
learning process. In each iteration, facts are used to learn textual patterns to detect those
facts, and patterns learned in previous iterations are used to extract new facts, which serve
as training examples in later iterations. To improve the quality, NELL has introduced a
feedback loop incorporating occasional human feedback.

WebIsA [37] also extracts facts from free text, but focuses on the creation of a
large-scale taxonomy. For each extracted fact, rich metadata are collected, including the
sources, the original sentences, and the patterns used in the extraction of a particular fact.
Those metadata are exploited for computing a confidence score for each fact [13].
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3. Comparison of Knowledge Graphs

Whenever a knowledge graph is to be used in an application, it is important to determine
which knowledge graph is best suitable for an application at hand. The knowledge graphs
mentioned above differ in their content, their level of detail, etc. Hence, in this chapter,
we will discuss several characteristics of knowledge graphs and provide insights into the
differences between them.

3.1. General Metrics

The most straightforward metrics to be used consider the mere amount of information
contained in a knowledge graph. Measures that may be used include:

e The number of instances in a graph

e The number of assertions (or edges between entities)

® The average and median linkage degree (i.e.: how many assertions per entity does
the graph contain?)

As for using a knowledge graph in an XAI system, these metrics hint at the utility —
the more information about the domain at hand is present (i.e., the more instances are
represented in the knowledge graph and the more detailed that information is), the more
can an XAl application benefit in providing better results or better interpretations.

Another set of metrics can be defined for the schema or ontology level of a knowl-
edge graph:

e The number of classes defined in the schema

e The number of relations defined in the schema

e The average depth and width (branching factor) of the class hierarchy’
e The complexity of the schema

While the instance-based metrics focus more on the coverage of a domain in a knowledge
graph, these schema-level metrics provide information about the richness and formality
of that knowledge. They determine which techniques to use — e.g., while more formal,
very complex ontologies will call for using ontology reasoning, light-weight, but large-
scale ontologies will be better exploited by statistical and distributional approaches.

Table 1 depicts those metrics for some of the knowledge graphs discussed above.
ConceptNet and WeblIsA are not included, since they do not distinguish a schema and in-
stance level (i.e., there is no specific distinction between a class and an instance), which
does not allow for computing those metrics meaningfully. For Cyc, which is only avail-
able as a commercial product today, we used the free version OpenCyc, which has been
available until 2017.*

From those metrics, it can be observed that the KGs differ in size by several orders
of magnitude. The sizes range from 50,000 instances (and Voldemort) to 50 million in-
stances (for Wikidata), so the latter is larger by a factor of 1,000. The same holds for
assertions. Concerning the linkage degree, YAGO is much richer linked than the other
graphs.

3While this could also be done for the property hierarchy, extensive property hierarchies are rather rare in
common knowledge graphs.
*It is still available, e.g., athttps: //github.com/asanchez75/opencyc
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Table 1. Basic Metrics of Open Knowledge Graphs

DBpedia YAGO Wikidata BabelNet

# Instances 5,044,223 6,349,359 52,252,549 7,735,436
# Assertions 854,294,312 | 479,392,870 | 732,420,508 | 178,982,397
Avg. linking degree 21.30 48.26 6.38 0.00
Median ingoing edges 0 0 0 0
Median outgoing edges 30 95 10 9
# Classes 760 819,292 2,356,259 6,044,564
# Relations 1355 77 6,236 22
Avg. depth of class tree 3.51 6.61 6.43 4.11
Avg. branching factor of class tree 4.53 8.48 36.48 71.0
Ontology complexity SHOFD SHOIF SOD SO
Cyc NELL CaLiGraph Voldemort

# Instances 122,441 5,120,688 7,315,918 55,861
# Assertions 2,229,266 60,594,443 | 517,099,124 693,428
Avg. linking degree 3.34 6.72 1.48 0
Median ingoing edges 0 0 0 0
Median outgoing edges 3 0 1 5
# Classes 116,821 1,187 755,963 621
# Relations 148 440 271 294
Avg. depth of class tree 5.58 3.13 4.74 3.17
Avg. branching factor of class tree 5.62 6.37 4.81 5.40
Ontology complexity SHOIFD SROIF SHOD SH

Figure 1 shows an overview of the knowledge graphs considered. We follow the con-
ventions of the Linked Open Data Cloud diagrams® [36], which are used to depict linked
datasets and their connections. In those diagrams, the size of the circles is proportional
to the number of instances, and the strength of the connecting lines is proportional to the
number of links.

The knowledge graphs also differ strongly in the characteristics of their schema. DB-
pedia and NELL have comparably small schemas, while Wikidata and BabelNet build
deep and detailed taxonomies. For example, while NELL does not define detailed sub-
classes for Scientist®, DBpedia defines four subclasses’, Wikidata has more than 6008
and CaLiGraph almost 2,000”, including detailed classes such as sickle-cell disease re-
searcher or loop quantum gravity researcher. Voldemort, on the other hand, reuses the
schema.org ontology, which is comparably small [21].

Looking at the complexity, it is not much of a surprise that Cyc, originating in classic
Al research and strongly building on logical rules [3,20], has the highest complexity.
Wikidata, BabelNet, and Voldemort have only little complexity, the other graphs are
somewhere inbetween.

Shttps://www.lod-cloud.net/
bhttp://rtw.ml.cmu.edu/rtw/kbbrovser/pred:scientist
"http://dbpedia.org/ontology/Scientist
Shttps://www.wikidata.org/wiki/Q15976092
“http://caligraph.org/ontology/Scientist
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Figure 1. Depiction of the size and linkage degree of publicly available knowledge graphs. Although NELL
and DBpedia are not explicitly interlinked, NELL contains links to Wikipedia, which can be trivially translated
to DBpedia links.

3.2. Contents

The knowledge graphs do not only differ in their size and level of detail, but also in their
contents. The most straightforward way to assess the content focus of a knowledge graph
is to look at the size of its classes. Figures 2-9 show graphic depictions of those class
sizes. The diagrams were created starting from the most abstract class and following the
class hierarchy to the largest respective subclasses.

At first glance, the figures reveal differences in the development of the taxonomies.
While Cyc builds a formal ontology with very abstract top level categories such as par-
tially intangible thing or thing that exists in time, the more pragmatic classification in
DBpedia and Voldemort (the latter using schema.org as an ontology) has top level classes
such as Place or Person. The reason for these differences lies in the origins of the re-
spective knowledge graphs: While Cyc’s classification was created by Al researchers,
the ontology in DBpedia is the result of a crowdsourcing process [30]. The same holds
for schema.org, which is a pragmatic effort of a consortium of search engine developers.

Moreover, the diagrams reveal some differences in the contents. The main focus of
DBpedia is on persons (and their careers), as well as places, works, and species. Wiki-
data also has a strong focus on works (mainly due to the import of entire bibliographic
datasets), while Cyc, BabelNet and NELL show a more diverse distribution.

3.3. Looking into Details

To obtain deeper insights which classes are more prominent in which KGs, and, ulti-
mately, which KGs are suitable for building eXplainable Al system in a specific domain,
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person

Athlete

Figure 2. Instances in DBpedia

it is useful to not only look at the number of instances, but also the level of detail in
which those instances are represented (i.e., the linkage degree and number of assertions
per instance).

Table 2 depicts such a detailed view for ten prominent classes:

Person

Organization

Populated place (city, country, etc.)
Uninhabited place (mountain, lake, etc.)
Species

Work (book, movie, etc.)

Building

Gene

Protein

Event
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Figure 3. Instances in YAGO

The global trend observed in this table is that Wikidata has the largest number of
instances in most of the classes, while YAGO has the largest level of detail. However,
there are differences from class to class. While Wikidata has a large number of works,
YAGO is a good source of events. NELL often has fewer instances, but a larger level of
detail, which can be explained by its focus on more prominent instances.

The contrast of the average and the median degree also reveals a few differences. For
example, BabelNet contains a similar amount of instances as DBpedia for some classes,
e.g., uninhabited places or works. While the average linkage degree is higher in DBpedia,
the median is higher in BabelNet. This hints at a more uneven distribution of information
in DBpedia, while BabelNet has a more constant distribution of statements per instance.

Copyrighted materia



Table 2.: Detail statistics for selected classes

DBpedia YAGO Wikidata
Class Instances | Avg. Deg. | Med-in | Med-out Instances | Avg. Deg. | Med-in | Med-out Instances | Avg. Deg. | Med-in | Med-out
Person 1,243,400 1.54 0 5 2,213,431 5.62 0 258 5.250.,840 241 0 10
Organization 286,482 10.3 0 7 498,750 136.92 0 64 1.665.319 30.98 0 6
Populated place 513,642 7.38 0 8 319,210 219.49 0 138 2,355,359 3.81 1 6
Uninhabited place 67.495 0.91 0 4 160,615 23.67 0 48 1,516,890 0.23 0 6
Species 306,104 2.56 0 7 || 2,553,369 492 0 224 110 21.53 0 3
Work 496,070 0.81 0 8 1,175,125 28.07 0 36 || 34,585,828 5.91 0 12
Building 197,831 0.41 0 5 274,606 13.44 0 69 2,291,168 0.98 0 6
Gene 4 0.5 0.5 7.5 12,351 0.00 0 8 172,128 1.27 0 8
Protein 2,747 0.03 0 1 10,935 0.01 0 32 84,163 115 1 14
Event 76,029 1.91 0 3 562,583 41.23 0 48 579.559 176 0 5
BabelNet Cyc NELL
Class Instances | Awg. Deg. | Med-in | Med-out Instances | Avg. Deg. | Med-in | Med-out Instances | Avg. Deg. | Med-in | Med-out
Person 2,384,065 0.00 0 17 12,784 0.04 0 3 90,601 8.93 0 0
Organization 764,662 0.1 0 12 26,276 5.70 0 5 41,646 6.31 0 0
Populated place 509,257 0.1 0 9 8,396 20.63 0 12 28.359 39.98 0 0
Uninhabited place 70,209 0.02 0 11 64 2.05 1 12 158.879 3.83 0 0
Species 6,536 0.01 0 17 0 - - - 3273 0.88 0 0
Work 491,057 0.00 0 12 19,908 091 0 2 27,038 1.09 0 0
Building 520 0.00 0 8 786 0.14 0 4 50,699 4.51 0 0
Gene 522 0.00 0 5 8 0 0 3 0 - - -
Protein 10,399 0.00 0 3 0 - - - 0 - - -
Event 9,904 0.00 0 13 685 0.86 0 2 37,203 0.65 0 0
CaLiGraph Voldemort

Class Instances Avg. Deg. Med-in Med-out Instances Avg. Deg. Med-in Med-out

Person 1,967,339 0.34 0 2 36,370 0.00 0 5

Organization 547,728 2.67 0 2 5,984 0.00 0 1

Populated place T00,559 10.12 0 2 1,278 0.00 0 5

Uninhabited place 170,324 1.16 0 2 60 0.00 0 4

Species 552,249 1.04 0 1 0 - - -

Work 678,888 0.49 0 1 6,673 0.00 0 3

Building 404,087 0.21 0 1 108 0.00 0 5

Gene 1,106 0.00 0 0 0 - - -

Protein 6,138 0.00 0 0 0 - - -

Event 148,122 0.49 0 0 198 0.00 0

MANLLDAE) WY — gaf) 21 uo sydpany 28paymowy g jp 12 15195 N
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Figure 4. Instances in Wikidata

4. Linkage and Overlap of Knowledge Graphs

Since knowledge graphs differ so strongly in size, coverage, and level of detail, combin-
ing information from multiple KGs for implementing one application is often beneficial.
To estimate the value of such a combination, we determine the overlap of the knowledge
graphs first.

As shown in Fig. 1, many KGs contain explicit interlinks. Those links, usually in
the form of owl:sameAs links, express that entities in two KGs are the same (or, more
precisely: that they refer to the same real world entity) [10]. In other cases, such links
can be generated indirectly, e.g., if a knowledge graph contains links to Wikipedia pages,
which can be easily mapped to entities in DBpedia and YAGO.

Even if those links provide a first hint at the overlap of KGs, and further links can be
found by exploiting the transitivity of the owl : sameAs property [1], they do not provide
a complete picture. Due to the open world assumption, which holds for KG interlinks
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Figure 5. Instances in BabelNet

as well, there might always be more links than the one which are explicitly or implicitly
provided by the KGs.

4.1. Method

In order to estimate the actual number of interlinks, we use a method first discussed in
[33], which builds on a set of existing links and heuristic link discovery:

1. We use different heuristics to discover links between two KGs automatically, e.g.,
different string similarity measures [7,26].

2. Based on the existing, incomplete set of interlinks, we measure recall and precision
of the individual heuristics [35].

3. With the help of those recall and precision figures, we can estimate the actual
number of interlinks. After repeating the procedure with multiple heuristics, we
can use the average of those estimations.
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ible thing

Figure 6. Instances in OpenCyc

Given that the actual number of links is C (which is unknown), the number of links found
by a heuristic is F, and that the number of correct links in F is FT, recall and precision
are defined as

Ft
R:= (D
|
P=15 2)
By resolving both to |F 7| and combining the equations, we can estimate |C| as
Cl=IFI-P ®
B R

Thus, we can obtain an estimate for C given F, R, and P. A more intuitive interpretation
of the last equation is that P is a measure of how strongly the heuristic overestimates
the number of actual interlinks (thus, F is reduced by multiplication with P), and R is
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Figure 7. Instances in NELL

a measure of how strongly the heuristic underestimates the number of actual interlinks
(thus, F is divided by R).

In [33], we have shown that across different heuristics, although F varies a lot, the
estimate C is fairly stable. For producing the estimates in this chapter, we have used the
following heuristics: string equality, scaled Levenshtein (thresholds 0.8, 0.9, and 1.0),
Jaccard (0.6, 0.8, and 1.0), Jaro (0.9, 0.95, and 1.0), JaroWinkler (0.9, 0.95, and 1.0), and
MongeElkan (0.9, 0.95, and 1.0). The estimated overlap reported is the average estimate
computed using these 16 metrics.

4.2. Findings

To analyze the benefit of the combination of different KGs, we depict the number of
estimated links both in relation to (a) the entities existing in the larger of the two KGs
(Fig. 10) as well as (b) in relation to the links that exist explicitly or implicitly (Fig. 11).
From (a), we can estimate the amount of gain in knowledge of combining two KGs (i.e.,
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Figure 8. Instances in CaLiGraph

if only a small fraction of one KG is also contained in the other and vice versa, such a
combination adds a lot of information). From (b), we can get insights into whether the
set of existing links is sufficient for such a combination or not.

Fig. 10 shows that in most cases, the larger of two knowledge graphs contains most
of the entities of a smaller one, i.e., its set of entities of a class in larger KG is usually
a superset of that set in the smaller one. For example, as depicted in table 2, Wikidata
contains about twice as many persons as DBpedia and YAGO. A value close to 0 for
the overlap implies that DBpedia and YAGO contain almost no persons which are not
contained in Wikidata. In conclusion, combining Wikidata with DBpedia or YAGO for a
better coverage of the Person class would not be beneficial.

Notable exceptions are BabelNet and CaLiGraph, which often contain complemen-
tary instances. For example, DBpedia, BabelNet and CaLiGraph contain 1.2M, 2.4M,
and 1.9M instances of the class Person, respectively, while DBpedia and BabelNet to-
gether are estimated to 2.9M, and all three together are estimated to contain even 3.9M in-
stances of the class Person. The reasons for the high complementary of DBpedia/YAGO,
BabelNet and CaLiGraph are their sources (only English Wikipedia vs. multiple lan-
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guage editions) and extraction mechanisms (especially the extraction from list pages in
CaLiGraph, which leads to a larger number of instances overall).

Fig. 11 shows that the linkage between DBpedia, YAGO, BabelNet and CaLiGraph
is mostly complete (i.e., most of the common instances are also explicitly linked). Since
they are all generated from Wikipedia with different means, this is not much surprising.
On the other hand, Nell, OpenCyc, and Voldemort have a much lower degree of linkage.
This shows that links between KGs are only complete where they are trivial to create,
and combining different knowledge graphs otherwise requires efforts in improving the
interlinking as a preliminary step.

5. Conclusion and Outlook

In this chapter, we have given an overview of publicly available, cross-domain knowledge
graphs on the Web. We have compared them according to different metrics which might
be helpful to implement an eXplainable Al project in a given domain.

Besides the metrics used for this comparison, there are quite a few more which help
in the selection and assessment of a given KG. For example, data quality in KGs has not
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been considered in this chapter, since there are already quite elaborate surveys covering
this aspect [6,44].

So far, we have measured the overlap of knowledge graphs only based on entities.
Another helpful metric would be the overlap on the statement level. Even if two knowl-
edge graphs cover the same entity, the information they contain about that entity might
still be complementary. For example, for the entity University of Mannheim, DBpedia
has the exact number of undergraduate students, PhD students, etc.!?, while Wikidata
lists all faculties'' and can provide a list of researchers employed at the university'2. The
density of information differs as well: while YAGO lists 3 alumni of the University of
Mannheim'?, DBpedia lists 11 and Wikidata even 85 alumni'*. Even contradicting infor-
mation can be found [2]: for example, DBpedia and Wikidata provide a different number
of students and Wikidata and YAGO provide different founding dates of the University
of Mannheim.

Developing cross-domain knowledge graphs is an active field of research, and new
developments emerge every once in a while. They differ in the data they use and/or the
method of extraction:

® DBkWik [14,15,16] uses the extraction mechanism of DBpedia and applies it to a
multitude of Wikis. The intermediate result is a collection of a few thousand iso-
lated knowledge graphs, which have to be integrated into a coherent joint knowl-
edge graph.

e Chaudron [39] uses Wikipedia as a source and focuses on quantifiable values
(e.g., sizes, weights, etc.). Besides the mere extraction, Chaudron uses sophisti-
cated methods for recognizing and converting units of measurement.

e The Linked Hypernym Dataset (LHD) [17], like the aforementioned WeblIsA-
LOD, focuses on the extraction of a hypernym graph. It uses a deep linguistic
analysis of the first paragraph in Wikipedia.

o ClaimsKG [41] extracts claims from fact checking Web pages, such as politifacts,
and interlinks them with other knowledge graphs such as DBpedia, which also
allows for finding related claims.

The methods discussed in this chapter can be used to assess those emerging knowledge
graphs and discuss their added value over existing ones. So, for example, for the above
mentioned DBkWik, we have shown that it is highly complimentary to DBpedia: 95% of
all entities in DBkWik are not contained in DBpedia and vice versa.

In summary, knowledge graphs are a useful ingredient to XAl systems, as they pro-
vide ready-to-use cross-domain knowledge. With this chapter, we have given an overview
of existing knowledge graphs on the Web, and some guidelines on picking one or more
such graphs to build an application for a task at hand.

nttp://dbpedia.org/page/University_of _Mannheim
Unttps://www.wikidata.org/wiki/Q317070
Dhttps://w.wiki/TUU

Phttps://bit.1y/2U4wL0A

Yhttps://w.wiki/TUV
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Abstract. Explainability has been an important goal since the early days of Ar-
tificial Intelligence. Several approaches for producing explanations have been de-
veloped. However, many of these approaches were tightly coupled with the ca-
pabilities of the artificial intelligence systems at the time. With the proliferation
of Al-enabled systems in sometimes critical settings, there is a need for them to
be explainable to end-users and decision-makers. We present a historical overview
of explainable artificial intelligence systems, with a focus on knowledge-enabled
systems, spanning the expert systems, cognitive assistants, semantic applications,
and machine learning domains. Additionally, borrowing from the strengths of past
approaches and identifying gaps needed to make explanations user- and context-
focused, we propose new definitions for explanations and explainable knowledge-
enabled systems.

Keywords. Knowledge Graphs, eXplainable Al, Explainable Knowledge-Enabled
Systems, Historical Evolution

1. Introduction

The growing incorporation of Artificial Intelligence (Al) capabilities in systems across
industries and consumer applications, including those that have significant, even life-
or-death implications, has led to an increased demand for explainability. To accept and
appropriately apply insights from Al systems, users often require an understanding of
how the system arrived at its results.

Such an understanding can include having a model of how the underlying Al system
operates, how it was constructed, and how the data used to develop and train it matches
the situations in which it was used. It can include information about the specific features
of the current situation that contributed to the system’s determination. It can also include
descriptions of the underlying rationales and reasoning paths the system used to arrive
at a conclusion, which in turn can be based on observed statistical regularities, models
of underlying mechanisms and causal relationships, and temporal patterns. We draw a
distinction, between transparency,' by which we mean general information about a sys-
tem’s operation, capabilities, underlying training data, and fairness, and explainability,

'In this chapter, we use quotes for terms that we introduce or for direct quotations from publications, and
we use italics to either emphasize terminology from papers or highlight important terms.
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by which we mean the ability of a system to provide information describing and justi-
fying how a specific result was determined along with the overall context. We build on
this notion of explainability and present desired properties for explanations and redefine
explanations supporting a user’s perspective in Section 2.

By their very nature, explanations are user focused; explanations are needed because
they provide information that would otherwise be absent that helps a user trust, apply,
and maximally benefit from the Al system’s operation. Thus, the need for explanation,
and the types of explanations required, are contextual, depending on users, their roles,
their prior knowledge, and the situation. For example, a physician recommending a non-
standard treatment regimen might want to understand what aspect of the current patient’s
condition led to an unexpected result, and how the reasoning behind it aligns with sci-
entific knowledge about biological and pharmacological mechanisms. A patient-facing
explanation for the same result may need to include more basic information on the condi-
tion and what is unique about the patient’s situation. An explanation aimed at a hospital
administrator or insurance coordinator may need to include information about potential
biases that could lead to a lack of fairness in the recommendation.

Explanations can have deeper value beyond the “gating” role they play in helping
users determine which results should be trusted and applied. Explanations provided in
the above example could contribute to the mental model the physician is constructing of
the patient, and of diseases and biological mechanisms in general, that could be valuable
in future treatment decisions they make for that patient and others. Explanations also
contribute to the model users are creating of the system itself, by exposing the kinds
of information and processing mechanisms the system utilizes. Norman famously de-
scribed how users construct mental models of systems with which they interact across
gulfs of execution and interpretation [58]. With Al systems, explanations can help users
simultaneously construct models of the system with which they are interacting, and of
the underlying domain and situation in which the system is being used.

The importance of explainability is particularly salient with collaborative Al systems
meant to work in tandem with human users to augment rather than supplant their skills
and capabilities. A “Distributed Cognition™ approach [35] is informative here, in which
cognition is seen to take place not within the head of any one individual, but rather
through the exchange and transformation of representations across multiple actors and
artifacts [38]. The ability for a system to provide explanations, and respond to queries
that reference other information relevant to the situation, expands the range of ways in
which the system and human actors can interact.

1.1. Historical Evolution

Explainability has been a major goal since the early days of Al. In this chapter, we focus
on the broad class of knowledge-enabled systems, instead of simply knowledge-based
systems. We include rule-based systems as well as hybrid Al systems that may include
a wide range of reasoning components including potentially inductive or abductive rea-
soning as well as the more traditional deductive reasoning. As such, we include historical
explanation work (e.g., [13,68,70]) and also explanation work aimed more at evolving
hybrid Al systems (e.g., [27,54,66]). The survey includes the domains of expert systems,
cognitive assistants, Semantic Web [32], and, more recently, explanations that work with
black-box models, i.e., deep learning models [44]. With this background, we will now
present a historical perspective on the evolution of explainable Al



S. Chari et al. / Foundations of Explainable Knowledge-Enabled Systems 25

Many early Al systems took a rule-based, expert system approach. Expert systems
(e.g., [68,70]) were inherently explainable in that they used a set of rules to come to con-
clusions, so explanations could be generated that provided a detailed or abstracted col-
lection of the rule executions as an explanation of a conclusion. During the expert system
era, much work focused on explaining these systems and their decisions to the end-user.
Explanations were broadly intended to address the Why, What, and How aspects of an
Al system that produces a result. Dhaliwal et al. [16] provide an overview of these ex-
planation types and state that the Why explanations were populated with the justification
for a conclusion, the How explanations contained a trace of the mechanistic functioning
of the system, and, the Whar explanations exposed the system’s decision variables in-
volved in the conclusion. Explanations produced by these systems were mainly focused
on introducing the rationale behind a system’s decision and the way the system works.
Additionally, while trace-based explanations produced by expert systems captured the
why and how aspects, they typically did not account for the context of a user when they
generated explanations. There were a wide range of expert systems early on. For exam-
ple, MYCIN [67] was an early expert system that supported medical diagnosis using a
rule-based inference engine and included a trace-based explanation component.

Today, with the availability of vast volumes of data, deep learning algorithms are
being widely used. However, these models are largely uninterpretable, and a significant
focus of explainable Al research (e.g., DARPA XAI Report 2017 [27]) is focused on ex-
plaining the underlying mechanisms of these black-box models. In our opinion, gaining
transparency into the black boxes can be useful, and it may decrease the “unintelligibility
aspect” [47]. However, it is not enough to provide personalized, tailored, and trustworthy
[36] explanations to consumers of Al models. Additionally, machine learning (ML) mod-
els often output a score or probability as predictions. While the number may be useful
to understand some level of confidence, a single number lacks context, and thus is often
inadequate without additional information. Semantic Web representation and reasoning
work is well suited to help here. Standards for representing terminology, e.g., RDF and
OWL [55], as well as representing provenance (e.g., PROV-O [42] and nanopublications
[26]), have emerged and can be used to encode information along with its provenance
and a system’s reasoning provenance, and this may be used to augment explanations.
The inclusion of provenance into the underlying representation and thus potentially into
the explanations partially addresses the What and Why aspects of the reasoning behind
presenting explanations to consumers.

Recently, researchers have acknowledged an increasing need to include explainabil-
ity modules into Al systems. As a consequence, several survey papers [10,36,57] have
highlighted past noteworthy efforts in explainable AL? These survey papers emphasize
the fact that different situations, users, and contexts demand different kinds of expla-
nation [3]. Different Al systems are geared toward addressing an explanation type (or
rarely, a combination), e.g., expert systems typically provide trace-based explanations,
deep learning models can be leveraged to offer contrasting explanations, etc. We believe
that the next-generation Al systems need to go beyond the Why, What, How aspects and
produce explanations that additionally prioritize issues related to the setting, users’ un-
derstanding, and contexts. At a minimum, these Al systems need to include a provenance

ZWe choose to use the explainable Al phrasing for explainability efforts in Al as XAI has come to be
associated with the DARPA eXplainable Al (XAI) program. Our focus is broader than the program’s focus on
explaining and interpreting black box ML methods from a cognitive perspective.
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component to support trust and provide users with tools that can access a reasoning trace
to further explore or serve as a means of understanding. In Section 3, we will review a
few of these past approaches mentioned in this section.

1.2. Shift and Current Focus of Explainable Al

The evolution of Al systems has been heavily influenced by the availability of resources,
computing power and data. As previously stated, Al has moved from primarily using
rule-based expert systems to using ML methods, and, sometimes, hybrid methods. With
these changes, there has been a shift in the focus of explainability, due to the new chal-
lenges of the interpretability of complex ML models. The initial explanation focus on
working from system traces to provide a notion of what was done has expanded to in-
cluding a focus on including a notion of interpretability of an underlying ML model.
This interpretable ML work may be a first generation of explanation of ML, but as we
will expand on below, more is needed. Additionally, in the Semantic Web [32], and more
generally, in knowledge representation-based applications, the focus has expanded from
traditional What explanations to include explanations addressing information attribution
and provenance aspects. The motivations for those expansions include improving the
trustworthiness of information being represented in knowledge graphs (KGs), and fur-
ther, to provide more context for users as they are deciding how to use the information in
analysis applications. Further, Al models are now being employed in user-facing settings
where there is a need for personalized conclusions. Hence, there is a need to rethink ex-
planations produced by Al systems from a user perspective and include components to
educate users, align with their cognitive model, help them trust the system, provide rele-
vant information, and tailor suggestions to a user’s contexts [10,57]. Borrowing strengths
from explanations provided by past approaches, we will attempt to present, synthesize,
and refine a definition of explanation and explainable knowledge-enabled systems with
an acknowledgment of desired explanation properties that fit today’s settings.

2. Terminology

Several researchers have proposed comprehensive definitions of explanations [18,23,54,
71] and have presented explanation components that they deem necessary to satisfy ei-
ther their work or the domains where they hope the explanations will be useful. However,
with a shift of focus in Al we feel the need to revisit the work on defining explanation as
we consider what is desirable in next-generation “explainable knowledge-enabled sys-
tems.” In this section, we list desirable properties (Section 2.1) for both explanations and
explainable knowledge-enabled systems that generate these explanations, and use these
properties as a basis to provide definitions.

2.1. Desirable Properties

2.1.1. Explanations

As a part of our list of desirable properties for explanations, we present properties, such
as, improving user appeal, and achieving user understandability, that have been explored
as explanation components in the past, and that will be useful in designing explanations
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suitable for the end-user. In addition, we propose including a higher priority on the in-
clusion of features, such as, provenance and adapting to user’s context that will have a
renewed focus in making explanations user-centric and in mitigating the unintelligibility
aspect of current ML methods. We are aligning with others who have called for a greater
user focus in explanations [45,56,64].

o Be understandable: Borrowing from desired properties of explanations stated by
Swartout and Moore [71], we highlight that for explanations to be understandable
by the user, the explanations should use terminology familiar to the user. If termi-
nology is potentially unfamiliar, then we also suggest that capabilities be included
for obtaining definitions of terms, thereby educating users. Understandability has
the potential to be significantly increased if the Al system incorporates user feed-
back and a model of user context.

o Include provenance: Provenance is a property of explanations that has either
been absent in some past descriptions of explanations [71], or has not had the em-
phasis that it deserves now. As systems expand to include more diverse content
the need for capturing provenance increases. Explanations need to include prove-
nance that includes information about the domain knowledge utilized by the sys-
tem, along with the methods used to obtain that knowledge. We borrow from the
“counterfactual faithfulness” idea proposed by [18], and argue that, as part of the
provenance components, explanations need to carry causal information about the
conclusion, if present in domain literature or supported by expert knowledge.

e Appeal to user: Paraphrasing Swartout and Moore [71], we note that explanations
need to be rich, coherent, and appeal to the user.We propose that explanations
need to expose facts that the user finds resourceful and sufficient for further explo-
ration. A resourceful explanation contains enough granular content and evidence
to appeal to the user’s mental cognition and current needs. A sufficient explana-
tion contains content that the user requires to carry out their tasks. A subtlety in
generating explanations that appeal to the user would be to tailor the explanation
length to the user’s needs and preferences, i.e., to avoid lengthy explanations with
content that might not be useful to the user or that they already understand. Fur-
ther, we acknowledge that the resourcefulness and sufficiency aspects of explana-
tions might be hard to measure in real-time. However, we suggest that explainable
knowledge-enabled systems should be designed after an analysis of user require-
ments and utilize techniques to employ dynamic and static evaluation strategies to
help realize these goals. More specifically, dynamic strategies could involve inter-
active mechanisms, such as the delivery of persuasive messages used by Maimone
et al. [48], and static evaluation strategies could include user surveys conducted to
evaluate the effectiveness of the systems, such as the one by Glass et al. [25].

e Adapt to users’ context: Besides being user-centric, explanations need to be tai-
lored to the user’s current scenario and context. Explainable Al systems not only
need to leverage information about the user (as may have been captured in a user
profile [65,69]), but they also need to identify the user’s intent and adapt the ex-
planation form to connect to the user’s mental model and align with the user’s in-
tent. For example, an explanation may include a contrastive hypothesis that relates
to the user’s intent or statistical evidence to provide more support to enhance a
user’s belief. In a later chapter, “Directions for Explainable Knowledge-enabled
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Systems,” in this book, we present different explanation types and their various
focii that would allow Al systems to generate diverse explanations.

Overall, explanations should serve beyond their original aim to teach [70], and pro-
vide trustworthy, transparent, unambiguous accounts of automated tasks to end-users.

2.1.2. Explainable Knowledge-Enabled Systems

While many have attempted to define explanations (e.g., [17,71]), additional efforts have
attempted to improve the generation of explanations (e.g., [25,39,54]) and tackle various
aspects of explainability (e.g., [61,57]). To begin to address the need of building explain-
able, knowledge-enabled Al systems, we present a list of desirable properties from the
synthesis of our literature review of past explanation work. Our review primarily spans
knowledge representation in expert systems [71], provenance and reasoning efforts in the
Semantic Web [26], user task-processing workflows in cognitive assistants [53,54], and
efforts to reduce unintelligibility in the ML domain [3,23,27]. Additionally, we analyzed
explanation requirements from current literature, answering an increased need for user-
comprehensibility [43], accountability [17] and user-focus [57]. In our literature review
in Section 3 we will highlight approaches that exhibit these properties.

o Modularity: A modular design, such as, the one proposed by Swartout and Moore
[70], is desirable, as it would allow systems to adapt models and functioning to
users’ requirements and scenarios. This property would also allow for the Al sys-
tem to include explanation facilities that tap into various modules to expose infor-
mation requested by and conducive to the user’s needs.

o Interpretability: Borrowing from Mittlestadt et al. [57] and Hasan and Gandon
[31], we believe that the interpretability of explainable knowledge-enabled sys-
tems enables them to be transparent, lending to the ability to provide trace-based
accounts of their working. Additionally, we utilize Gilpin et al’s definition of in-
terpretability as a ‘“‘science of comprehending what a model did.” However, if the
models used in the system are not interpretable, we propose that they should con-
sider including proxy methods to be interpretable, for example, utilizing linear
proxy models proposed by Gilpin et al. [23] that serve as a simplified proxy of the
full model.

e Support provenance: Paraphrasing from the explanation requirements suggested
by Hasan and Gandon [31], we agree that explainable knowledge-enabled systems
should store the provenance of the information that their models rely on beyond
just metadata. We believe that the inclusion of provenance aids Al systems in gen-
erating resourceful and sufficient explanations for users, providing them with re-
sources for further exploration.

o Adapt to user’s needs: We propose that Al systems need to be adaptive and in-
teractive, adapting their functioning and explanation generation capabilities to suit
the user’s requests and contexts. To this end, and to provide tailored explanations,
Ribera and Lapedriza [64] have identified user categories (domain experts, Al re-
searchers, and lay users) and presented their contrasting demands from an Al sys-
tem. Further, the ability to be adaptive would be enhanced by a modular design, as
suggested earlier, and would aid the system in generating explanations in various
forms to suit the user’s understanding and their needs.
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o Include explanation facilities: Inspired by McGuinness et al.’s cognitive assis-
tants explanation frameworks [53,54], we propose that the design of the explana-
tion facilities should be addressed early and in detail in the design phase, to ensure
that the Al system is capable of supporting the requirements of the explanation
facilities within its design. Explanation facilities could constitute a wide-range of
user-facing interfaces, such as, dialogue systems, visualizations, and feedback sys-
tems that the user interacts with and provides feedback to the Al system about
the explanations generated or a need for further clarifications. Hence, since ex-
planation facilities would require additional information, such as, provenance, and
would need the system to incorporate feedback and adapt to context, we recom-
mend that their design be coupled with the Al system design.

o Include/Access a knowledge store: We recommend that explainable knowledge-
enabled systems store the domain knowledge they rely on, the user’s mental model
they appeal to, and the explanation components they are generating. Additionally,
we relax the inclusion of knowledge in that an Al system might provide access to
a knowledge store - as the system may host it, or it may use some other system'’s
hosting and contribute to and access that store. By knowledge store, we refer to
data storage mechanisms (KGs or semantic representations are preferred) that can
store knowledge of various forms spanning categories such as background knowl-
edge, domain knowledge, etc.

e Support compliance and obligation checks: In addition to hosting/accessing
knowledge stores, we recommend that explainable knowledge-enabled systems
store an encoding set of expert knowledge in their field of application. These en-
codings should be sufficient to determine if the system complies with the stan-
dards and practices in that field. Additionally, we also recommend that explain-
able knowledge-enabled systems attempt to adhere to standards for the proposed
explainable AI models, such as [3,23]. Furthermore, we suggest that compliance
and obligation checks be evaluated on the system post-construction.

2.2. Definitions

Having identified desirable properties for explanations and explainable knowledge-
enabled systems, will now provide a set of definitions leveraging our review of the ex-
planation literature and our analysis of the current Al landscape. Our goal is to reflect
the needs of explainable Al in current times and provide a summary of the desirable
properties to achieve better explainability.

2.2.1. Explanation

We define an explanation in the computational world as, “an account of the system, its
workings, the implicit and explicit knowledge used in its reasoning processes and the
specific decision, that is sensitive to the end-user’s understanding, context, and current
needs.”

2.2.2. Explainable Knowledge-Enabled Systems

We define “explainable knowledge-enabled systems” to be, “Al systems that include a
representation of the domain knowledge in the field of application, have mechanisms
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to incorporate the users’ context, are interpretable, and host explanation facilities that
generate user-comprehensible, context-aware, and provenance-enabled explanations of
the mechanistic functioning of the Al system and the knowledge used.”

3. Approaches

We present past approaches that have addressed various aspects of explainability re-
lated to trust, transparency, provenance and interpretability. To the extent possible, we
group publications by technical domain: knowledge-based systems, Semantic Web ap-
plications, cognitive assistants, and ML systems, in an attempt to show the progression of
methods within those domains. In Section 3.1, we consider work from the 1970s-1990s
that sought to utilize the trace explainability strengths of rule-based systems to explain
the process used to arrive at decisions. In Section 3.2, we review provenance and expla-
nation modeling efforts and posit them as contributors to the development of trustwor-
thy and explainable semantic applications. In Section 3.3, we focus on efforts to explain
task-based workflows in personal assistants and intelligent tutoring settings. We end with
a review of papers that improve the interpretability and trust aspects of ML methods in
Section 3.4. While each of these vast domains has large volumes of published literature,
we restrict ourselves to seminal work on explainability in the domain or publications
that have introduced novel techniques to tackle different aspects of explainability. As a
conclusion of each domain subsection, we provide a brief summary of the methods uti-
lized to address explainability and describe any lessons applicable for the development
of future explainable Al methods.

Table 1 contains an evaluation of the foundational AI systems, reviewed against
the criteria we defined for explainable knowledge-enabled systems (Section 2.1). The
chronological order allows us to view trends in explainability over the years and also
helps expose shifts in the areas of focus and strengths of the class of approaches. We
observe that explanations were well-explored as a topic of interest in the Al commu-
nity from the early 1990s - mid-2000s. We note that, even within the expert systems era,
the AI architecture evolved from simply generating trace-based accounts of decisions
to including modular explanation facilities ([11,13,70]) that sometimes could produce
provenance-enabled ([13]), adaptive and user-customizable ([60]) explanations. Addi-
tionally, observe that, among other classes of approaches in our review, explanations
have been best established in cognitive assistants, which also have the most direct im-
pact on human decision-making capabilities. However, we notice that, with more recent
systems in the Semantic Web and ML domains, there has been a shift in explainabil-
ity from building explanation facilities to minimally ensuring that Al models are inter-
pretable [63] and support provenance [50] for further tracing. Further, most Al systems
in our review ([11,13,50,53,54,68,70,72]) satisfy the ‘Compliance Checks’ criteria by
leveraging logical rule-based or other deductive reasoners to check or enforce compli-
ance. Also, systems such as the Disciple-LTA and Common Ground Learning and Expla-
nation (COGLE) deployed in critical settings of military and aviation, respectively, have
features to allow both expert and lay users to provide feedback about the system’s expla-
nations and outputs. Hence, indicating that system supported features are partially driven
by the domain of application. Finally, while our evaluation was conducted on a carefully
selected set of approaches, our findings on explainability trends are in-line with a larger,
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Table 1. Foundational explanation approaches and desired features of explainable knowledge-enabled systems
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systematic review conducted by Nunes and Jannach [59], who noted that explainability
was best explored in the expert systems and cognitive assistants domains.

3.1. Knowledge-based systems

The 80s decade saw the rise of knowledge-based and expert systems, that were de-
signed to assist humans where human resources were limited [16]. Expert systems and
knowledge-based systems both contained an encoding of knowledge. More specifically,
in the case of expert systems, the knowledge encoded was that of expert’s knowledge,
typically in the form of rules. In our review, we will not make distinctions between these
two classes of systems and will focus on identifying the explainability components of
these systems. From an implementation perspective, both of these systems required the
engineering and encoding of multiple rules to support inference. This reliance on rules
made these systems inherently explainable, as one could trace back the rules to identify
the factors that lead to a conclusion. Subsequently, researchers have introduced different
types of explanations [13,68], and approaches to improve explanation generation [11],
and to introduce more granular content into explanations generated by these systems
[70].

3.1.1. Early Expert Systems: MYCIN and NEOMYCIN

The MYCIN [67,68] paper was one of the first to introduce computer-based explanations,
and, is regarded as a foundational and seminal work. The goal of the MYCIN system
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was to identify highly probable carriers of infectious diseases, and suggest treatments for
the diseases. The system provided explanations by exposing the inference trace that lead
to a decision. The system was able to trace back and expose the reasoning, that served
as justifications of decisions. In particular, MYCIN provided Why and How explanations
[16]. The Why explanations included facts and task-based information to address a user’s
queries. The How explanations explained the manner and trace in which the system gen-
erated the conclusion.

To enhance the Why and How explanations, a descendant of MYCIN - NEOMYCIN
[13] produced strategic explanations comprised of meta-knowledge and the problem-
solving strategies to adapt the MYCIN system to a teaching setting. NEOMYCIN built
on MYCIN’s inability to explain beyond the expert knowledge known to the system
and added a component that leveraged explicit encodings of problem-solving strate-
gies used to generate the medical knowledge for use in its explanations. To this end,
the NEOMYCIN system used a meta-strategy to decide what portion of the rules to
invoke from data sources, including an etiological taxonomy, disease knowledge, and
causal associations. The metastrategy contained rules that a human would use to un-
dertake tasks such as building hypothesis, pursuing them, identifying problems, etc. In
essence, the NEOMYCIN system attempted to mimic human decision-solving, where
one would eliminate a hypothesis based on the search space, and not by merely navi-
gating the knowledge (“bridge concepts” [13]) that the system already holds. Further,
NEOMYCIN introduced the idea of separating knowledge to make the system more ac-
cessible, which was further adopted by Moore and Swartout in their Explainable Expert
System [70] effort, discussed later in this section. While the strategic explanations gen-
erated by NEOMYCIN are desirable, they might be onerous for user consumption due
to a surplus of details.

3.1.2. Explainable Description Logics: CLASSIC

McGuinness and Borgida took an approach to explanation where each of the inferences
that the underlying logical reasoning system could execute had a declarative explanation
description and those individual explanation components could be used to build simple,
complex, abstracted, or otherwise customized explanations [52]. Additionally, every ex-
pert rule that a knowledge-based system builder encoded in the system included a struc-
tured component that could be used to explain when that rule was used. These explana-
tion “breadcrumbs” could then be used to assemble explanations when a user’s actions
triggered the execution of a rule.

The authors implemented their approach in the CLASSIC knowledge representation
system, a description-logic-based language that provided a framework “to define struc-
tured concepts and make assertions about individuals in a knowledge base” [60]. The
complete set of foundational inference rules that could be explained for the underlying
description logic reasoner was also available for reuse in other systems [51]. This style
of encoding axioms for every inference that a system could execute was also leveraged in
the axiomatic semantics for other predecessors to today’s description logic-based recom-
mended language for encoding ontologies on the web: OWL [55]. The axioms for RDF,
RDFS, and DAML+OIL were described in W3C Note® and then were used in a number
of different reasoners to provide trace-based explanation capabilities.

3DAMLAOIL axioms note link: https: //www.w3.org/TR/daml+o0il-axioms
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3.1.3. Explainable Expert System

Moore and Swartout coined the term ‘Explainable Expert Systems’ (EES) in their
widely-cited work [70]. The EES framework that aimed to provide explanations and was
tested in a Program Enhancement Advisor setting. The explanations generated by the
EES system borrowed from and had components of various knowledge sources includ-
ing domain, problem-solving and system terminology. Further, the design of their EES
system supported the generation of the various components of the explanations and were
made of knowledge bases, a program writer, an explanation generator, an interpreter, and
an execution trace. The EES system used a planning algorithm, wherein goals are refor-
mulated if no viable match is found in the domain knowledge. The reformulation of goals
was achieved by the representation of the domain knowledge into a concept hierarchy,
via a language, such as, KL-ONE [12]. The EES framework was interactive in nature,
and goals were reformulated based on user dialogue with the system. Additionally, users’
queries were used as a cue to interleave domain and problem-solving knowledge traces
into their explanations.

3.1.4. Summary

The explainable knowledge-based systems that we discussed introduced several types
of explanations, including Why, How, and Strategic explanations (described earlier in
Section 1.1). However, their reliance on encoding a large rule base makes them difficult
to scale and extremely human-intensive to maintain. Today, we see the semi-automatic
generation of rules and knowledge-base population via natural language processing and
ontology-enabled extraction techniques. Many learnings from knowledge-based systems
have been reused and expanded in the Semantic Web, as will be illustrated in Section
3.2.

3.2. Semantic Web

The creation of the World Wide Web (WWW) [8] made it possible to create content
online and make existing content available online in digital formats. In their seminal
paper, Berners-Lee, Hendler, and Lassila [9] state that the Semantic Web was intended
to unify content being published online through tagging content with unique identifiers,
or Uniform Resource Identifiers (URIs), representing the content utilizing well formed
definitions from taxonomies and ontologies, and borrowing from the knowledge repre-
sentation world to utilize structuring mechanisms for data. While these properties are
desirable and necessary to enable data sharing and achieve a semantic understanding of
digital content, they are not sufficient to make the content explainable to a broad range
of users. However, the Semantic Web community has tackled the provenance aspect and
trace-based aspects of explainability and developed several provisions to both include
provenance in the semantic representation [26,42] and to supporting reasoning mecha-
nisms, [34] to generate traces. As a direct consequence of the Semantic Web, the textual
content is more accessible in knowledge graphs (KGs) via semantic representations [20].
Additionally, KG provisions have made it possible to provide justifications and prove-
nance to suggestions. In this section, we will review some provenance encoding efforts
and explainable semantic applications.
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3.2.1. Provenance modeling efforts

There have been two somewhat recent foundational provenance efforts that paved the
way for provenance-aware applications, namely the World Wide Web Consortium’s work
on a recommended standard for provenance on the web (PROV) with its associated en-
coding as an ontology PROV-0O [42] and nanopublications [26]. Nanopublications pro-
vide a structure to associate triple statements with their provenance. In general, prove-
nance is essential as it encodes information that can be used to explore where informa-
tion came from and this information can be used to build trust in applications when they
use this information to expose the evidence behind their recommendations.

3.2.2. Nanopublications

Nanopublications were conceived to help disambiguate and represent the context for sci-
entific statements that were extracted from textual corpora and made available as triples.
The authors identified that contextual information present in a document was imperative
to understand a statement in relation to the full document. Hence, they designed nanop-
ublications that provided a mechanism to associate metadata or annotations with state-
ments. The schema of nanopublications has evolved over the years. In its current state,
nanopublications are composed of three named graph components, Assertions, Publica-
tion Information, and Provenance. The Publication Information graph stores metadata
information about the creation of the content, or how it came to be, such as, the date of
creation, author, etc. The Provenance graph contains metadata, such as, citation informa-
tion. The assertion graph contains one or more subject-predicate-object statements with
domain content.

Kuhn et al. [41] have proposed an Atomic, Independent, Declarative, and Absolute
(AIDA) framework to encode atomic and indisputable assertion statements. They de-
scribe a metananopublication world in which nanopublications can be created from other
nanopublications via different channels, for example, from authors creating content from
scientific results, and from data mining algorithms generating nanopublications from ex-
isting unstructured data sources. Essentially through the metananopublications concept,
the authors highlight that provenance can be interleaved and chained, to reflect the real
world where multiple entities depend on each other at various levels of granularities.

3.2.3. The Provenance Ontology (PROV-0)

The PROV-O ontology [42] provides a formal mechanism to support comprehensive
modeling of the provenance of digital objects. In their ontology, they support three pri-
mary forms of provenance contributors, agent-centered, object-centered, and process-
centered forms. In PROV-O >, provenance is modeled via three simple class types, i.e.,
‘entities’® which are generated by activities, and ‘entities’ and ‘activities’ that are ‘asso-
ciated with’ and ‘attributed to’ agents, respectively. In the W3C note, the editors show-
case the adequacy of the PROV-O ontology in modeling a use case where a blogger is
exploring the provenance chain of a newspaper article while finding out who compiled
the chart included in the article. The use case also illustrates that provenance needs to

#Nanopublication Guidelines: http: //nanopub.org/guidelines/working_draft/
3PROV-O ontology W3C note: https://www.w3.org/TR/prov-o/
6Classes and properties are referred to by their label, and are enclosed within single quotes
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be modeled comprehensively to ensure that users have a complete understanding of the
information they are viewing.

There have been ontology alignment efforts on the PROV-O ontology to enhance
usability and increase interoperability. These efforts include alignment of PROV-O with
standard ontologies, such as, the TIME ontology, Semantic Sensor Network Ontology
(SSN), and the Basic Formal Ontology (BFO). The PROV-O ontology has also served
as a foundational ontology for several other provenance ontologies (e.g., Provenance for
Clinical and Healthcare Research (ProvCare [73]) and Guideline Provenance Ontology
(G-Prov [1])) that support provenance modeling in specific use cases with different levels
of granularity.

3.2.4. Provenance and Related Semantic Knowledge Graphs

The Semantic Web community also allows for different alternatives of representing that
information based on granularity and content needs such as named graphs, ’ reification,
§ etc., and there exist cross-domain open source KGs that host somewhat comparably
rich provenance (e.g., Wikidata, 9 WebIsALOD [33]). Additionally, while we believe
that provenance modeling is crucial to provide high-quality, trustworthy information to
consumers, we acknowledge that it is not sufficient to capture user context or to person-
alize results. Recently, there has been an emergence of KGs that encode contextual and
personal information [29,48], lending to the personalizing of semantic applications that
are enabled by these KGs. Gyrard et al. [29] described the components of a personalized
healthcare knowledge graph (PHKG) that are needed to monitor user health to help users
combat chronic diseases, such as, asthma and obesity. In a similar effort, Maimone et al.
developed Perkapp [48], a persuasive system that monitors people’s lifestyles and per-
suades them to make healthier choices and stay on track. Their persuasive, knowledge-
based system architecture contains a set of expert-generated rules and outputs persuasive
context-aware messages to users based on their adherence to the rules.

3.2.5. Reasoning Efforts

We now present a selective overview of the reasoning efforts. We briefly introduced
RDFS reasoning efforts in Section 3.1. RDFS reasoning results in justifications or trace-
based accounts of Why a conclusion was made by the system, based on which rule fired.
However, these justifications can be overwhelming for human consumption. To address
this, Horridge et al. [37] proposed laconic and precise justifications that do not 1. conceal
detail, 2. expose axioms that are relevant to the justification, and 3. are atomic, in that
multiple fine-grained cores can be highlighted. Besides the laconic justification effort,
there have been other efforts to improve explainability of justifications and we discuss
one such effort, the AIR (Accountability in RDF or AMORD 10 140] in RDF) language.

3.2.6. Explanations for Automated Policy Reasoning

AIR language that had a broader focus on modeling explanations serving to explain in-
ference traces from policy reasoning. AIR is a Semantic Web-based rule language fo-

"Named Graphs: https : //www.w3.org/2009/07 /NamedGraph . html

8Reification: https://www.w3.0org/TR/rdf-primer/#reification

9Wikidata: https://www.wikidata.org/wiki/Wikidata:Main_Page

10 AMORD (A Miracle Of Rare Device) is an explanation system developed for MIT scheme in the 1970’s
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cused on generating and tracking explanation for inferences and actions [39]. The Mas-
sachusetts Institute of Technology (MIT) Decentralized Information Group developed
the AIR language, as an extension to N3Logic [7] to support accountable privacy pro-
tection in Web-based information systems conforming to Linked Data principles. Ac-
countability and privacy protection are enabled through auditable trace-based explana-
tions. AIR supports Linked Rules, which can be combined and reused like Linked Data.
Additionally, AIR explanations can be used for further reasoning.

AIR provides two independent ontologies. One ontology allows the specification of

AIR rules,'! and the other one allows describing justifications.'> The reasoning steps of
the AIR reasoner are considered as events and modeled as subclasses of air:Event.
air:Rule represents rules, and it is defined as a subclass of air:0Operation. The on-
tology also provides properties to enable representing variable mappings in the per-
formed operations. AIR provides a means to write explicit explanations using the as-
sertion property associated with rules. This property is composed of two components,
air:Statement, which is the set of triples being asserted, and air: Justification,
which is the explicit justification that needs to be associated with the statement.
Example policy reasoning with explanations using AIR:
Parts of the Massachusetts Disability Discrimination Law were translated into a com-
puter interpretable policy using AIR. A user’s phone records requesting some service
and subsequently getting denied based on his disability recorded in the phone logs were
captured in RDF. Once the AIR reasoner is invoked with the policy file, and the phone
log in RDF, a user can visualize the annotated transaction log that contains the reasoning
output. Figure | contains a partial proof tree with natural language assertions.

) ™ 7 http:f mr-burns.w3.org/egi-bin/ server_cgi.pyMogFile=http:/ /dig csail mit edu/ TAMI/ 2007 /59 variation] /log.n3&rulesF ile= hetp:  /dig csailmit edu/TAMI 2007 /39 /variation ] jdemo-policy.n3
¥ hitp:/imr-burns.w3.org/cgi-bin/server_cgl.py?logFile=http:/dig.csail. mit.eduw/TAMI2007/s9/variation 1/10g.n3&rulesFile=http-/dig.csail.mit.eduw/TAMI2007/s8/variation1

/demo-policy.n3 4 4 = ? m

The reason Betty s with MA Disabiity Di Poicy is because:

Mare information ) ( Start Over

Bobsrequest is denied based on health information contained in xphone record 2892. Under the MA Disability Discrimination Law it is illegal 10 use heath
information 1o deny a service request.

The requester, Bob Same, resides in MA and is covered by the MA Disability Discrimination Law
Bob Same's request, Bobsrequest, was refused because of xphone record 2892

Premises.

Bettyrejectsbobsreq reason xphone record 2892
receiver customerds1
reply to
type Refuse Request

customer351 name Bob Same

Fing Al

Figure 1. AIR Justification or Explanations View: Once a user clicks the “Why?” button, they will see a
description appear in the “Because” box, and the premises that support the justification appear in the “Premises”
box. When the user clicks the “More Information™ button, the descriptions corresponding to outer rules in the
proof tree will be appended to the “Because” box, and the “Premises” box is overwritten with the corresponding
set of premises in the proof tree. When all the descriptions in the proof tree have been traversed, the message
“No more information is available from the reasoner” will be displayed in the “Premises” box. At any given
time, this proof exploration can be restarted by clicking the “Start Over” button. [Image taken from website 3

" AIR rules ontology: http://dig.csail.mit.edu/TAMI/2007/amord/air
I2AIR justifications ontology: http://dig.csail.mit.edu/2009/AIR/airjustification.n3
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3.2.7. Semantic applications

Aside from the various representation mechanisms described earlier that support prove-
nance encoding and personalized content, there have been many semantic applications
(e.g., [49,66]) enabled by these representations that are explainable. We briefly describe
two of these efforts.

In our automatic breast cancer characterization effort [66], we developed a visual
interface to assist physicians in their diagnosis process by providing justifications of the
treatment rules that resulted in a stage change of a patient between changing guideline
editions. We considered the 7th and 8th edition of the American Joint Committee on
Cancer (AJCC) cancer staging guidelines [24]. Our system reasoned using a knowledge
base of encoded cancer staging rules, and inferred the stage of the patient based on their
metastasis parameters and biomarkers. Our system could automatically determine the
staging, explain how the stage was derived, and explain any restaging that happened.
In another effort, McCusker et al. developed a framework [49] that encoded semantic
connections between drugs, proteins, and diseases and allowed users to look for potential
repurposing of drugs. A novel aspect of this system was that the interface allowed the user
to explore why a drug may be used to target a particular disease, thus having a potential
causal explanation as opposed to many other drug repurposing efforts that focused only
on correlations. The system also included weights on all of the links in the graph so that
users could get a sense of how strongly the evidence supports a relationship.

The semantic applications we reviewed primarily utilize scientific evidence to
present factual content, discover new content, and automate human-intensive tasks. In
Section 3.3, we review explanation modeling frameworks, such as, the Inference Web
[53], which also have semantic representations but are used in more typical cognitive
assistant settings.

3.2.8. Summary

The Semantic Web efforts we described address various components of explainability.
Although, even these interpretable systems, powered by KGs and ontologies, do not en-
tirely address all aspects of explainability that we detail in Section 2. However, we be-
lieve that semantic representations for explainability can evolve from the existing se-
mantic representations for provenance, accountability and context. Hence, we believe
that the strengths of the Semantic Web, coupled with ML methods, will be a significant
contributor to hybrid explainable Al systems.

3.3. Cognitive Assistants

Cognitive Assistants are systems that are used to “augment human intelligence” [21] and
aid humans in decision-making and problem-solving. These assistants have grown from
their former role of professional assistants, educating users in a particular domain, to be-
ing widely accessible as personal assistants, aiding users in their everyday tasks. These
assistants function in a tight coupling with the user and, hence, their design, knowledge
bases, and interactions are driven by users’ cognitive capabilities and needs. Further,
these assistants play various roles from fostering positive behavior change, to training
people with the necessary problem-solving skills in a domain, to providing tailored in-

BImage available at: http://dig.csail.mit.edu/TAMI/2008/JustificationUI/howto.html
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formation based on an understanding of user context [19]. As the proliferation of general
purpose, conversational cognitive assistants grows, it will become increasingly important
that they include a representation of the user’s goals, and “theory-of-mind” elements that
support effective communication and collaboration [22].

3.3.1. DARPA PAL program

An ambitious and multi-university program, the Defense Advanced Research Projects
Agency (DARPA) program, Personal Assistant that Learns (PAL),'* gave rise to the
Cognitive Assistant that Learns and Organizes (CALO) system. CALO was a large ef-
fort including over 20 collaboration organizations aimed at building a cognitive agent
that can assist in a wide range of day-to-day office-related tasks, including sending out
emails, memos, maintaining a to-do list [ 14], etc. Henceforth, several projects leveraged
the CALO work, the most famous is Apple’s personal assistant Siri. In our review, we
will cover some of the seminal explainable cognitive assistants [53,54] and user studies
[25] that resulted from or were refined within the CALO project, that are explainable in
their own right.

Inference Web was one of the early modular explanation frameworks, and it built
upon the strengths from the Semantic Web [32], Description Logics [4], and expert sys-
tems communities, to generate explanations for distributed, web-based systems that were
interacting with users. The framework provided explanations that contained the prove-
nance of the information (both implicit and explicit), and the proof for inference traces
to novice users and agents alike. Additionally, the framework could abstract explana-
tions to suit users’ understanding and to avoid lengthy proofs that would overwhelm the
users (similar to the breadcrumbs features provided by the CLASSIC system (Section
3.1.2)). Besides the ability to abstract explanations, the framework was also capable of
providing explanations in different formats and even had a built-in explanation dialogue
that would display questions and answers. Users could then interact with the answers
and pose follow-up questions. The framework achieved its explanation capabilities via a
modular architecture consisting of an IWBase, a data repository of the metainformation
about the information used by the framework; an I[WAbstractor, abstractor component
that converted lengthy Proof Markup Language (PML) [15] proofs to PML explanations;
an IWExplainer, an explanation dialogue component that would generate explanations
for users; and an IWBrowser, a browser for displaying the explanations. While the In-
ference Web framework did not include a context-specific component, it provided some
context modeling options and was capable of providing a wide range of customized ex-
planation capabilities that included direct support for encoding trust and user models.

McGuinness et al. [54] expanded on their earlier Inference Web [53] framework,
and developed an Integrated Cognitive Explanation Environment (ICEE) that generated
explanations for task reasoning. ICEE served as an explanation component on the CALO
system, in which multiple reasoning techniques, including task processing, numerous
learning components, along with statistical and deductive methods, all worked together.
Since CALO served as a cognitive assistant in the workplace, the tasks involved process-
ing workplace automation activities, such as requesting quotes from different sources
(e.g., GetQuotes was one of the sub-tasks [54]). Additionally, the reasoning techniques
used in CALO used multiple knowledge sources to generate conclusions that needed to

YPAL: https://www.darpa.mil/about-us/timeline/personalized-assistant-that-learns
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Figure 2. An activity flow diagram of the Integrated Cognitive Explanation Environment (ICEE) that was
utilized to explain task-processing systems in the CALO project taken from McGuinness et al. [54].

be explained. The ICEE explanation architecture (shown in Figure 2) consisted of sev-
eral components critical to generating explanations: an explanation dispatcher that inter-
preted a user’s explanation request and invoked different reasoning components based on
the type of explanation request, a task manager explainer that further invoked task man-
ager wrappers to gather task execution information, a task state database that maintained
the execution traces and states of the tasks, and a justification generator that created
explanations from the task execution processing information.

The authors conducted a user study aimed at understanding the types of questions
that users wanted answered. These explanation request types included questions about
the motivation of a task, status, execution history, forward-looking execution plans, task
ordering, or explicit questions about time [54]. The classifications of these explanation
requests into different request types helped invoke appropriate explanation strategies.
Additionally, the system hosted introspective predicates were used to identify the types
of information to be included in explanations based on the request’s intent. Broadly, the
introspective predicates were grouped into basic procedure information, metadata about
task definitions; execution information, details about the task execution; and, projection
information, information about future task processing. The ICEE framework provides
an example of many of the components needed in explainable hybrid Al systems and
demonstrated how they can be used to provide user-customized explanations.

Another noteworthy effort from CALO was Glass, et al. [25]’s user study that as-
sessed the trust and understandability aspects of adaptive systems. They used the CALO
system as an adaptive system use case in their study. Their findings grouped users’ con-
cerns into eight themes: 1). High-level usability of complex prototypes, 2). being ig-
nored, 3). context-sensitive questions, 4). granularity of feedback, 5). transparency, 6).
provenance, 7). managing expectations, and 8). autonomy and verification. While there
were some system-related concerns that could be addressed via system improvements
(high-level usability, verification), there were also other concerns, such as, provenance,
the granularity of feedback, the transparency targeting the users’ perception of trust in
the agent. They found that the trust level of most users in the system increased signif-
icantly with the inclusion of provenance and context-sensitive aspects. Therefore, this
study concluded that users who work with cognitive agents would like an interactive di-
alogue and personalized experience and would prefer provenance information to under-
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stand the working of these complex systems, to some degree. The themes identified in
this paper remain desired features for our complex, hybrid systems of today that use both
statistical ML and reasoning techniques.

3.3.2. Intelligent tutors

Intelligent tutoring is a sub-domain of cognitive assistants, where adaptive task-oriented
systems are utilized for training humans in a particular domain. Hence, intelligent tutors
need to appeal to the human cognition and understand and evolve their learning capabili-
ties and grasp of the domain. In a seminal work, VanLeHan [75] noted that there are two
loops to human tutoring, an inner and outer loop. He noted that the inner loop worked
in tandem with the human, helping them at each step, assessing their competence, and
updating the student model, while the outer loop identified a new task to execute based
on the student’s assessment. Enhancements have been proposed to VanLeHan’s inner and
outer loop proposition, one of which is a behavior graph [2] that kept track of the pos-
sible problem-solving strategies that students can adopt. The edges in a behavior graph
represented the different ways in which students could solve problems, and the nodes
represented the acceptable states. In general, intelligent tutors host an inherent, domain-
specific knowledge component that is used to undertake tasks.

A use case on explainable, intelligent tutors was explored in a military setting by
a Disciple-LTA [72] system. They used an iterative problem-solving approach in intel-
ligence tasks to assist analysts. These tasks were broken down into executable steps to
which evidence could be associated to find solutions (also termed as “‘task-reduction™).
The solutions were then combined at the task level, or “solution-composition,” to pro-
duce conclusions. A sample conclusion from this system was “There is strong evidence
that Location-A is a training base for terrorist operations.” [72] The Disciple-LTA archi-
tecture consisted of different reasoning agents: learners, tutors, and problem-solvers, all
of which read from and wrote into the knowledge base of an ontology and its rules.

3.3.3. Summary

The cognitive assistant literature is vast and continues to grow with the emergence of per-
sonal assistants, such as, Apple’s Siri, Amazon’s Alexa, etc. In our review, we have cov-
ered explanation facilities in DARPA’s CALO project [25,53,54], and have also briefly
discussed Intelligent Tutors [2,72,75]. While the focus of explanations in the CALO cog-
nitive assistant was on explaining task-based workflows, the underlying system contained
a set of hybrid deductive reasoners coupled with numerous learning components, and
thus is representative of today’s hybrid learning systems. User requirements were utilized
to design explanation strategies and determine the execution of the next task, dictated
by user feedback. Cognitive assistants have begun to focus on the end-user, and are sup-
porting facilities to account for user perspective, to some extent, unlike expert systems
(Section 3.1) that focused primarily on generating explanations of inference traces.

3.4. Explainability in Machine Learning (ML)
ML algorithms have been rapidly advancing, proliferating in various domains, even high-

precision domains, such as, healthcare and finance. However, these algorithms, are typ-
ically more opaque than previous expert systems (Section 3.1), semantic applications
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(Section 3.2), and cognitive assistants (Section 3.3). Hence, the ML domain faces large
challenges in addressing the trustworthiness, transparency, and intelligibility'> of their
models. Additionally, even within the ML domain, there has been a shift from the depen-
dence on simpler linear algorithms that were less complex, to non-linear, “black-box™
models, such as, deep learning [44]. While ML algorithms are often achieving high ac-
curacy, they are typically unable to explain why they arrived at a classification or score
(view the tradeoff in Figure 3). However, there have been techniques to circumvent these
issues, such as, providing confidence scores for the results of models to induce trust (post-
hoc interpretations [3,57]), attaching semantic information to results [5], presenting con-
trastive or counterfactual explanations to provide intuition for the model’s functioning
[74,76], etc. Formally, the interpretability techniques for ML models can be grouped into
two categories [57], one class aimed at post-hoc interpretations that contain explanations
about the results to provide perspective on the model’s functioning, and the other aimed
at improving transparency to offer an intuition for the model’s functioning. We want to
clarify that although ML models might not be considered traditional knowledge-enabled
system candidates, we have included them in our review due to the emergence of hybrid
systems composed of ML models and semantic methods. We believe that a review of
explainability approaches in the ML domain will be fruitful for introducing explanation
components into these hybrid systems.
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Figure 3. A high-level overview of the ML models’ classes and the explanation techniques being developed as
part of DARPA’s eXplainable Al program. It is interesting to note the accuracy-explainability tradeoff depicted
in the graph on the right, which shows that within the ML domain, simpler models which are oftentimes less
accurate are often more explainable [Image taken from Gunning [27]].

50ur definition of intelligibility is very similar to the description proposed by Lipton [46] and Lou et al.
[47], in that intelligible models are interpretable wherein the contribution of model features to a decision can
be deciphered.
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3.4.1. DARPA XAl Program

DARPA’s eXplainable Al (XAI) program'® focuses on building explainable models that
achieve high accuracy and on methods to enable human users to trust and understand
these models. We will discuss selected X Al efforts mentioned in the DARPA XAl reports
[27,28] that have a knowledge explainability component to them.

Bau et. al. [5], have developed a network dissection technique to align the inter-
mediate layer results of convolutional neural networks (CNN) with semantic concepts.
They make two contributions, a network dissection technique to identify what the net-
work is learning at each step by comparing it to semantic concepts, and the construction
of disentangled representation to align encodings between the network’s output and a
semantic concept. The disentangled representations were designed to provide a notion of
the “human perception of what it means for a concept to be mixed up” [5]. Further, the
authors also assembled a new dataset, the Broadly and Densely Labeled Dataset (Bro-
den) [78] of objects, that contained low-level compositions of objects used as semantic
concepts. This work addresses the deep explanation component of Figure 3, wherein fea-
ture modifications are being made to make deep learning algorithms interpretable. Simi-
larly, as part of the same program, a team of Charles River Analytica (CRA) researchers
developed a technique to learn the causal nature of CNN activations [30]. In this work,
Harradon et al. [30] construct a causal graph in-line with Judea Pearl’s do-calculus [62]
method. They ground the network activations in a P(O, P,C) graph, where C represents
concepts of network representations that humans can identify, P is the input, and O is the
output. However, unlike the network dissection paper [5], the causal graph is learned via
an unsupervised autoencoder method. Hence, it might be challenging to trust the causal
graphs that are learned.

Since the XAl program by DARPA is an ongoing initiative, some of the work men-
tioned in the slideware'” remains unpublished. However, we briefly summarize some of
these unpublished methods that we believe are relevant to our explainability review. In
the Common Ground Learning and Explanation (COGLE) project,'® being led by PARC,
a system is being built to explain to humans the workings of an autonomous Unmanned
Aircraft System (UAS) testbed. The COGLE system explains the workings of the UAS
reinforcement learning decision-making algorithm to users, conveys an understanding
of the system’s future behavior, and uses a common ground vocabulary to present these
explanations. The common ground vocabulary is generated by including both human
understandable and machine-understandable terminology, hence, hoping to ensure a di-
alogue between ML algorithms and humans. The common ground idea corroborates a
requirement put forth by Doshi-Velez et al., [18] that “to build Al systems that can pro-
vide explanation in terms of human-interpretable terms, we must both list those terms
and allow the Al system access to examples to learn them.” In another effort, researchers
at Rutgers have proposed a technique to choose optimal examples to explain a model’s
decision via Bayesian Teaching [77]. The explanation by the Bayesian Teaching method
is an explanation by examples technique, wherein model-agnostic probabilistic methods

1DARPA XAl program website: https://www.darpa.mil/program/explainable-artificial-
intelligence

""DARPA explainable Al slideware: https://www.darpa.mil/attachments/
explainableAIProgramUpdate.pdf

"8COGLE: https://www.parc.com/blog/explainable-ai-an-overview-of-parcs-cogle-
project-with-darpa/
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are used to identify the most probable data points that lead to a conclusion. The hypoth-
esis that Yang et al. [77] present is that the data is most representative of the algorithm’s
conclusions, and humans tend to understand more intuitively through examples.

In summary, the DARPA XAI program (of which the report is a by-product [27])
is largely focused on improving explainability of deep learning models through local
interpretation methods, or “knowing the reasons for specific decisions™ [17] and post-
hoc interpretations. These focus points, to some extent, address the trustworthiness and
intelligibility aspects of the explainability of ML models.
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Figure 4. A decision-tree like visual overview of the taxonomy of explanations which encodes different factors
ML models need to consider while designing explainable models. [Image taken from Arya et al. [3]]

3.4.2. Taxonomies in explainable ML

Besides the DARPA XAI program, there have been other recent efforts in the ML domain
to support the explainability of ML models. A team of researchers from IBM Research
have built the Al Fairness 360 [6] and AI Explainability 360 [3] toolkits to identify
bias in datasets and ML algorithms, and to describe the explainability of ML models,
respectively. In their Al fairness 360 toolkit, Bellamy et al. [6] define metrics to identify
bias in three stages of the dataset, the algorithm, and the predictions of the algorithm, in
their goal to improve fairness in the entire ML workflow. While, in Section 1, we noted
that we do not account for fairness in explainability, we acknowledge that the exposition
of the fairness of the algorithm and data could increase trust in the model. Furthermore, in
the Al explainability 360 effort, Arya et al. [3] designed a taxonomy resource to provide
a structure of the explanation space to benefit algorithm designers who are looking to
include necessary components in explanations. More specifically, their taxonomy (Figure
4) helps in identifying methods to introduce local (explanations of portions of the model
that lead to a conclusion), global (an explanation of the entire model), and post-hoc
interpretations (explaining the results) of models via careful inclusion of features and
mechanisms during the design of ML models. However, their taxonomy focused more
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on model interpretability and features of the model, rather than on intended use of the
model by users.

Researchers at MIT conducted a literature review of published explainable Al pa-
pers and cataloged the explanation methods used by ML algorithms into a taxonomy
[23]. Their taxonomy grouped papers into three categories, methods that emulate the
processing of the data, explanations of representations (such as, the network dissection
technique [5]), and explanation-producing networks. Their hope was for future methods
to use the taxonomy as a reference to build explainable models. Additionally, they note
that certain ML methods, such as, decision trees are more interpretable than black-box
models and hence are being utilized as proxies [79] to explain the conclusions of these
black-box models. Similarly, Gilpin et al. [23] proposed the Local Interpretable Model-
agnostic Explanations (LIME) framework [63], that can be utilized to generate linear
models on perturbations of the black-box model input to get a sense of the functioning
of the black-box models.

3.4.3. Summary

From a review of the ML domain, we can infer that the explainability techniques being
developed are mainly tackling challenges of model interpretability and generating post-
hoc interpretations of the model’s conclusions or input data. While these two broad cat-
egories might seem insufficient, the breadth of innovative approaches [3,5,76,77] being
developed are promising and can help in building interpretable, and hybrid models, aided
by explainable models (e.g., KGs, causal methods). In summary, what makes the models
that we describe in this section candidates for explainable knowledge-enabled systems
is that they utilize knowledge to provide an intuition for the functioning of unintelligible
models [5], or to build a vocabulary (COGLE: '?) to explain conclusions/inputs/workings
of the algorithms. Additionally, prior knowledge of the requirements of explanations are
being encoded as taxonomies [3,23] to serve as checks for future explainable models, and
knowledge of existing linear models [63,79] are being leveraged to enhance the expla-
nation capabilities of ML models. Orthogonally, the interpretability research in the ML
domain is helping researchers understand that humans prefer richer, social, contrasting,
and selective explanations [57].

4. Conclusion

We presented foundational approaches to explainable, knowledge-enabled systems, and
identified themes for explainability within these approaches. We presented our definition
of “explainable knowledge-enabled systems” to cover a broad range of past and present
Al systems including expert systems, Semantic Web, cognitive assistants, and ML do-
mains. Additionally, we believe that, with the increasing focus on explainable Al, we are
at the cusp of a new era of Al where explainability plays a pivotal role in the adoption
of Al systems. We provided synthesized, refined definitions of knowledge-enabled sys-
tems from a user perspective and included properties that are desirable for when a system
needs to generate provenance-aware, personalized, and context-aware explanations.

YCOGLE: https://www.parc.com/blog/explainable-ai-an-overview-of-parcs-cogle-
project-with-darpa/
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We reminded our readers that different Al domains and varying methodologies are
differently suited for various aspects of explanations. The next-generation hybrid Al sys-
tems would benefit from these identified strengths, utilizing a potentially, carefully cho-
sen combination of these techniques to provide more complete, satisfying explanations.
For instance, we identified that trace-based explanation facilities are well-explored in ex-
pert systems, provenance encoding in the Semantic Web domain is capable of represent-
ing different granularities of evidence, the modular, task-based explanation facilities of
cognitive assistants can generate atomic explanation components, and that interpretabil-
ity efforts in the ML domain are giving rise to taxonomical checks for explainable Al
models that can be adapted to other Al fields. However, we noted that these Al systems
do not fully account for aspects such as user context and causality and are only capable
of generating explanations belonging to a restricted set of explanation types. To address
these issues, we present directions for research and describe different explanation types
in a later chapter, “Directions for Explainable Knowledge-enabled Systems,” that might
play a key role in furthering explainable Al

In conclusion, we believe that with the increased adoption of Al systems, there is
an increased need for systems to be interpretable, adaptive, interactive, and, most impor-
tantly, able to generate explanations that not only provide an overview of the Al system,
but serve as a means to educate users and help in their future explorations. To address
these lofty goals of explainability, we believe that we need to learn from strengths of past
foundational approaches and adapt/expand on them in the user-centric needs of the cur-
rent Al landscape to build hybrid Al systems that are interpretable, knowledge-enabled,
adaptive, and context and provenance-aware.
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Abstract. Knowledge graph embeddings are now a widely adopted approach to
knowledge representation in which entities and relationships are embedded in vec-
tor spaces. In this chapter, we introduce the reader to the concept of knowledge
graph embeddings by explaining what they are, how they can be generated and
how they can be evaluated. We summarize the state-of-the-art in this field by de-
scribing the approaches that have been introduced to represent knowledge in the
vector space. In relation to knowledge representation, we consider the problem of
explainability, and discuss models and methods for explaining predictions obtained
via knowledge graph embeddings.

Keywords. Knowledge Graphs, Knowledge Graph Embeddings, Knowledge
Representation, eXplainable Al

1. Introduction

A knowledge graph [39] (KG) is an abstraction used in knowledge representation to en-
code knowledge in one or more domains by representing entities like New York City
and United States (i.e., nodes) and binary relationships that connect these entities;
for example, New York City and United States are connected by the relationship
country, i.e., New York City has United States as a country. Most of KGs also
contains relationships that connect entities with literals, i.e., values from known data
structures such as strings, numbers, dates, and so on; for example a relationship settled
that connects New York City and the integer 1624 describe a property of the entity New
York City. More in general, we can view a KG under a dual perspective: as a directed
labeled multi-graph, where nodes represent entities or literals and labeled edges repre-
sent specific relationships between entities or between an entity and a literal, and as a set
of statements, also referred to as facts, having the form of subject-predicate-object triples,
e.g., (New York City, country, United States) and (New York City, settled,
1624). In the following, we will use the notation (h, r, t) (head, relation, tail) to identify
a statement in KG, as frequent in the literature about KG embeddings.

The entities described in KGs are commonly organized using a set of types, e.g.,
City and Country, also referred to as concepts, classes or data types (when referred
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Figure 1. Binary adjacency representation of a KG.

to literals). For example, the statement (New York City, type, City) states that the
entity New York City has type City. Indeed. this types are often defined in what is
generally referred to as the ontology [21]. An ontology is a formal specification of the
meaning of types and relationships expressed as a set of logical constraints and rules,
which support automated reasoning. For example, DBpedia [3], a knowledge graph built
upon information extracted from Wikipedia, describes more than 4 million entities and
has 3 billion statements'.

While KGs can be described using a graph, a nice and simple way to visualize a
knowledge graph is considering it as a 3-order adjacency tensor (i.e., a 3-dimensional
tensor describing the structure of the KG). Formally a 3-dimensional adjacency tensor
is defined as T € RV*F*N yhere N is the number of entities and R is the number of
relationships. Each dimension of the tensor corresponds to (head, relation, tail)
respectively.

More formally, assume we have a KG % = {(e;.rj,e;)} € & x % x &, where & and
Z denote the sets of entities and relations in the KG, respectively, with |&| = N and
|&| = R. The adjacency tensor T &€ RV*F*N s defined as follows:

1 if (ej,rj,ex) €Y,
Tjx= .
0 otherwise.

To visualize this, imagine a simple adjacency matrix that represents a single relation,
such as the country relation: the two dimensions of the matrix correspond to the head
entity and the tail entity. Each entity corresponds to an unique index: given a triple (New
York City. country, United States), we have a 1 in the cell of the matrix corre-
sponding to the intersection between the i-th row and the j-th column, where i,j € N
are the indices associated with New York City and United States, respectively. On
the other hand, any cell in the adjacency matrix corresponding to triples not in the KG
contains a 0. If we consider more than one relationship and we stack them together, we
obtain a 3-dimensional tensor, generally referred to as the binary tensor representation
of a KG. See Figure 1 for a simple visualization of this concept.

"https://wiki.dbpedia.org/about/facts-figures
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Capita Embedding
Washington New York  United country capital
Washington D.C. City States
D.C. 1 1 5
country — — —
2 2 6
United 4 5 4
States 5 4 4_
6 7 8
New York 7 7 7
City country

Figure 2. Starting from a knowledge graph, embedding methods generate representations of the elements of
the knowledge graph that are embedded in a vector space. For example, these representations could be vectors.
Vectors encode latent properties of the graph and for example similar entities tend to be described with similar
vectors.

The term “knowledge graph embeddings” refers to the generation of vector repre-
sentations of the elements that form a knowledge graph?®. Essentially, what most methods
do is to create a vector for each entity and each relation; these embeddings are gener-
ated in such a way to capture latent properties of the semantics in the knowledge graph:
similar entities and similar relationships will be represented with similar vectors. Fig-
ure 2 provides an intuitive example of what a knowledge graph embedding method does.
The tensor representation introduced above is frequently used in many KG embedding
methods that learn embeddings by using dimensionality reduction techniques over the
tensor.

The elements are generally represented in a vector space with low dimensionality
(with values ranging from 100 dimensions to 1000 dimensions) and one key aspect is
given by the notion of similarity: in a vector space similarity can be interpreted with the
use of vector similarity measures (e.g., cosine similarity, in which two vectors are more
similar if the angle between them is small).

An important task is to find ways to extend KGs adding new relationships be-
tween entities. This task is generally referred to as link prediction or knowledge graph
completion. Adding new facts can be done with the use of logical inference. For ex-
ample, from a triple (Washington D.C., capital, United States) we can infer
(Washington D.C., country, United States). Inferring this last fact comes from
background knowledge encoded in an axiom that specify that if a city is a capital of a
country, it is also part of that country (e.g., as encoded by a first order logic rule such
as VX,Y : capital(X,Y) = country(X,Y)). Unfortunately, many knowledge graphs have
many observed facts and fewer axioms or rules [87].

KG embeddings can be used for link prediction, since they show interesting predic-
tive abilities and are not directly constrained by logical rules. This property comes at the

ZNote that knowledge graph embeddings are different from Graph Neural Networks (GNNs). KG embedding
models are in general shallow and linear models and should be distinguished from GNNs [78], which are neural
networks that take relational structures as inputs.
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cost of not being directly interpretable (i.e., the vector representations now encode the
latent meaning of the entity/relationship). The explainability of this prediction is often
difficult because the result comes from the combination of latent factors that are embed-
ded in a vector space and an evaluation of the inductive abilities of these methods is still
an open problem [87].

Knowledge graph embeddings projected in the vector space tend to show interesting
latent properties [61]; for example, similar entities tend to be close in the vector space.
The value of similarity in the latent space is a function that depends on the way knowl-
edge graph embeddings are generated. Similarity is also important under the point of
view of explaining the meaning. For instance, we might not know the meaning of the
entity New York City, but it can be inferred from its topic by looking at closest entities
in the geometric space (i.e. Washington D.C. and United States).

The components of the vectors representing the entities and relations are not ex-
plainable themselves, and it can be hard to assign a natural language label that describes
the meaning of that component. However, we can observe how different entities and rela-
tionships are related within the graph by analyzing its structure — which was also used to
generate the vector-based representations. In addition, the training is driven by a similar-
ity principle, which can be easily understood. For example, similar entities have similar
embedding representations, and the same is true for similar relationships. Thus, while it
is not possible to explain the exact difference between two vectors of two entities, we
can refer to this similarity when using the vectors in more complex neural networks that
use these vectors and the additional information to enrich the network capabilities.

Knowledge graph embeddings have been used in different contexts including rec-
ommendation [40,91,106], visual relationship detection [4] and knowledge base com-
pletion [11]. Moreover, knowledge graph embeddings can be used to integrate semantic
knowledge inside deep neural networks, thus enriching the explainability of pure black-
box neural networks [48,38], but they also come with some limitations.

In this chapter, we describe how to build embedding representations for knowledge
graphs and how to evaluate them. We discuss related work of the field by mentioning
the approaches that improved the state-of-the-art results. Then, we focus on knowledge
graph embeddings to support explainability, i.e. how knowledge graph embeddings can
be adopted to provide explanations by describing the relevant state-of-the-art approaches.
Similarity comes has a key factor also in the context of explainability, in recommender
systems for example, similarity is a key notion to express suggestions to users.

1.1. Overview of this Chapter

This chapter provides an overview of the field in which we describe how KG embeddings
are generated and which are the most influential approaches in the filed up to date. More-
over, the chapter should also describe which are the possible usages for KG embeddings
in the context of explainability. In the recent literature, many approaches for knowledge
graph embeddings have been proposed; we summarize the most relevant models by fo-
cusing on the key ideas and their impact on the community.

In Section 2 we give a more detailed overview related to how a knowledge graph
embedding method can be defined and trained. We will describe TransE [11], one of the
most popular models, and then we will briefly explain how information that does not
come from the knowledge graph can be used to extend the capabilities of the embedding
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models. This will be a general introduction that should help the reader understand how
the methods introduced in the other sections work.

In Section 3, we describe the approaches we have selected. We summarize what re-
searchers have experimented within the field, giving to the reader the possibility of ex-
ploring different possible ways of generating knowledge graph embeddings. Note that
it is difficult to describe which is the best model for a specific task because evaluation
results are greatly influenced by hyper-parameters (see Section 3.5). Nevertheless, we
think that most of the approaches have laid the basis for further development in the field
and are thus worth describing. We then describe how knowledge graph embeddings are
evaluated, showing that the main task is link prediction and that the datasets used have
changed over the years. Link prediction is a task that requires high explainability, some-
thing that in the context of knowledge graph embeddings is often missing. In general,
ComplEx [88] is often considered as one of the best performing models [4] and gives
stable results in inductive reasoning tasks [87].

Then, in Section 4, we focus on explainability. Explainability is a difficult term to
define [53]. Knowledge graph embeddings are not explainable by default, because they
are sub-symbolic representations of entities in which latent factors are encoded. Knowl-
edge graph embeddings can be used for link prediction, but the prediction is the result
of the combination of latent factors that are not directly interpretable. However, there is
recent literature that explores the usage of embeddings in the context of explainable and
logical inferences.

We conclude this chapter in Section 5, where we summarize our main conclusions
and we describe possible future directions for the field.

Additional Resources Several works that provide an overview of knowledge graph em-
beddings have been proposed in the literature. We point the reader to [28] that contains a
nicely written survey of approaches that are meant to support the embedding of knowl-
edge graph literals and to [92] for another overview on knowledge graph embeddings.
As knowledge graph embeddings provide sub-symbolic representations of knowledge
there is a recent increasing interest in finding ways to interpret how these representations
interact [1]. Inductive capabilities of knowledge graph embeddings methods have been
recently evaluated [87].

2. Knowledge Graph Embeddings

A Short Primer In this first part, we are going to define the general elements that char-
acterize a knowledge graph embedding method. To better illustrate how knowledge graph
embeddings are created we focus our explanation on one of the seminal approaches of
the field, TransE [11]. We will introduce how TransE embeddings can be generated and
how a method like TransE can be extended to consider information that is not included
in the set of triples. While we will describe TransE-specific concepts, most of what it is
explained in this section is still valid for other methods in the state of the art.
Nowadays, a plethora of approaches to generate embedded representations of KGs
exists [11,67,96,52,88]. In 2011, RESCAL [67] was the first influential model to cre-
ate embedded representations of entities and relationships from a KG by relying on a
tensor factorization approach upon the 3-dimensional tensor generated by considering
subject entity, predicate entity and object entity as the 3 dimensions of the tensor. There
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are mainly three elements that are used to distinguish a method to generate KGs embed-
ding: (i) the choice of the representations of entities and relationships, in general vector
representations of real numbers are used [11,96], but there are methods that use matri-
ces to represent relationships [67] and complex vectors to represent entities and relation-
ships [88]; (i1) the so-called scoring function, which we will refer to as ¢. This function
is used to aggregate the information combing from a triple, and is generally referred to
as the function that estimates the likelihood of the triple; lastly (iii) the loss function,
which defines the objective being minimized during the training of the knowledge graph
embedding model.

Changes in these three elements is what generally makes one model better than the
other (although, see Section 3.5, where we explain the impact of different hyperparame-
ters on the comparison). Scoring functions can be extended with many different informa-
tion like, information coming from images [98] or numerical and relational features [26],
in which the entity vector of a scoring function might be represented with the aggregation
of image representations of that entity or textual content, an entity can be represented by
aggregating the information contained inside its textual description. At the same time,
loss functions can be extended considering different parameters, e.g., it is possible to
extend a loss function by adding regularization. The interaction between the entity vec-
tors and the relationship vectors is modulated by the score function. The score function
computes a confidence value of the likelihood of a triple.

The learning process requires both positive and negative data in input and KGs con-
tain only positive information. In KG embeddings the generation of negative is gener-
ally achieved generating corrupted triples i.e., triples that are false. For example, if in
a knowledge graph we have the triple (New York City, country, United States),
a simple corrupted triple is (United States, country, New York City). Note that
despite these training procedures might have several limitations, different methods have
been proposed to optimize the selection of good negative samples. One of the most ad-
vanced techniques is KBGAN [13] that proposes an adversarial method to generate ef-
fective negative training examples that can improve the representations of the knowledge
graph embedding.

Making Knowledge Graph Embeddings TransE [11] uses k-dimensional vectors to rep-
resent both entities and relationships; the score function that the authors propose as the
following form d(h+ r,t), where the d function can be the L1 or the L2 norm. The driv-
ing idea of this score function is that the sum of the subject vector with the predicate
vector should generate the vector representation of the object as output (i.e. h4+r =~ t),
in general the scoring function can be also defined as d(h+r,t) = ||h+r —t||. The loss
function defined to learn the representations is instead:

Z=Y Y [y+dh+rt)—di +rt),,

hrt€S ri'es)

where [x] is the positive part of x and ¥ is a margin hyper-parameter. And §), ., is the
set of corrupted triples. d(h+r,t) is the score of the true triple while d(h’ +r,t) is the
score of the true triple. This loss function favors low values of d(h+r,t) with respect to
the corrupted triples, in such a way that the function can be effectively minimized. It is
possible to optimize the representation through the use of gradient-based techniques that
are now common in machine learning. Figure 3 shows how TransE combine entities and
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Figure 3. Example of how TransE represents and models the interactions between entities and relationships
in vector space.

relationships in the scoring function. Through the training process, TransE learns vector
representations of entities and relationships.

Augmenting Knowledge Graph Embeddings Knowledge graph embeddings can be gen-
erated by considering information that is not included in the graph itself. Different meth-
ods have been introduced to extend knowledge graph embeddings by adding novel in-
formation outside from the one provided by knowledge graph triples and we will give
a more detailed overview in the next section, here we describe a method that extends
TransE using textual information; adding elements to the score function allows us to
include novel information inside our representations.

Description-Embodied Knowledge Representation Learning (DKRL) [100] jointly
learns a structure-based representation /i, (as TransE) and a description-based represen-
tation 4 that can be used in an integrated scoring function, thus combining the relative
information coming from both text and facts. To extend with additional information a
model like TransE, the scoring function can be extended to optimize also other represen-
tations. For example, DKRL uses the following scoring function:

[+ 1 — | + [[hg + 1 =ty ]| + [y + 1 =ty ]|+ [[hg + 1 — .

Optimizing this joint score function allows us to combine the information coming from
both text and triples. In detail, DKRL uses convolutional neural networks to generate
description based representations for the entities. Different information can be used to
extend the embedding such as images, logical rules, and textual information. In general,
the process to introduce new information relies on the extension of the scoring function.
Often adding more information allows us to extend the capabilities of the model. For ex-
ample, the use of text-based representations allows us to generate vector representations
of entities for which we have a description but that are not present in the KG.
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Method Scoring Function Representation
RESCAL [67], 2011 hTW,t h,te RY W, e RI*d
TransE [11], 2013 —[|h+r—t|| h,t,r e R?
DistMult [103], 2014 (h,r,t) h,t,r e R4
HolE [66], 2016 {r,h@t) h.t,reR?
ComplEx [88], 2016 Re((h,r,t)) h,t,r e C¢
RotatE [82], 2019 —||hor—t||? htreCo || =1

Table 1. A short list with knowledge graph embedding approaches with the respective scoring functions and
the representation space used for entities and relationships. Lowercase elements are vectors, while uppercase
elements are matrices, ® is the circular correlation. t defines the complex conjugate of an t and Re denotes the
real part of a complex vector. We sampled these approaches by considering the novelty they introduced at the
time they were presented. Score functions are based on those published in [82,6].

3. State-of-the-art Knowledge Graph Embeddings

In this section, we review some of the algorithms that have been introduced in the state
of the art. Qur main objective is to give the reader an overview of the research that has
been done until now and which are the key points in the knowledge graph embedding
field.

3.1. Structure-based Embeddings

Approaches that focus on the use of knowledge graph facts have also been called fact
alone methods by other authors [92]. Table 1 shows the different scoring function that
can be used to define different knowledge graph embeddings methods. The two main
categories of approaches are the translational models and the bilinear models. Transna-
tional models are often based on learning the translations from the head entity to the tail
entity (e.g., TransE) while bilinear models often tend to use a multiplicative approach
and to represent the relationships as matrices in the vector space. In general, bilinear
models obtain good results in the link prediction tasks [44]. Main models of this category
are RESCAL [67], DistMult [103], ComplEx [88].

Translational Models We have described how TransE behaves in the previous sec-
tion. Note that TransE does not efficiently learn the representations for 1-to-N relation-
ships in a knowledge graph. This comes from how the scoring function is defined: sup-
pose the existence of the triples (New York City, locatedIn, State of New York),
(New York City, locatedIn,United States. Eventually, a scoring function consis-
tent with s + p =~ o, would make the entities State of New York and United States
similar, since the elements s and p of the formula are fixed. Novel models in the trans-
lational group have been introduced to reduce the effect of this problem; we can cite
in this category TransH [96] and TransR [52]. In general, translational models have the
advantages of having a concise definition and getting good performances. In this same
category, recent and relevant approaches are RotatE [82] and HAKE [107].

Bilinear Models RESCAL [67] is based on the factorization of the tensor (see Figure 2
and has a high expressive power due to the use of a full rank matrix for each relation-
ship in the score function hTW,t, where the interaction between the elements comes un-
der the form of vector-matrix products. At the same time, the full rank matrix is prone
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to overfitting [107] and thus researchers that studied bilinear models have added some
constraints on those representations. Indeed, DistMult [103] interprets the matrix W, as
a diagonal matrix, not making difference between head entity and tail entity and thus
forcing the modeling of symmetric relationships [44,87]: ¢ (h,r,t) = ¢(t,r,h), Vh,t, that
force symmetry even for anti-symmetric relationships (e.g., country, hypernym).

At the same time DistMult was extended by ComplEx that models the vectors in
a complex vector space to better account for anti-symmetric relationships. HolE [66]
uses circular correlation, a non commutative operation between vectors, that allows us
to effectively surpass the ¢(h,r,t) = ¢(t,r,h) problem that DistMult had. Note that it
has been proved that HolE and ComplEx are isomorphic [36]. ANALOGY [54] is a
model that extends the scoring function by considering analogical relationships that exist
between entities given the relationships. In their paper [54], the authors have shown that
DistMult, ComplEx and HolE are special cases of ANALOGY.

Neural Models Another group with a lower number of proposed approaches consists
of neural networks-based models; the Neural Tensor Network [81] is an approach for
knowledge graph embeddings that uses a score function that contains a tensor multiplica-
tion, that depends on the relationship, to relate entity embeddings, this type of operation
provides some interesting reasoning capabilities and was also used in later approaches
as a support for reasoning using neural networks in a neural-symbolic model [80]. In-
stead, ConvE [18] introduces the use of convolutional layers, thus being closer to deep
learning approaches. While effective, this method suffers from limited explainability and
more variation given by the number of hyperparameters that increases with the number
of layers [82].

Recent Approaches We hereby summarize some recent approaches that have been in-
troduced in the literature and that are relevant with respect to the results they obtained
and the ideas that stand behind them.

e Hierarchy-Aware Knowledge Graph Embedding (HAKE) [107] is one of the few
models that also consider the fact that elements in the knowledge graph belong to
different levels of the hierarchy (e.g., the authors use the triple arbor/cassia/palm,
hypernym, tree as an example of elements at different levels of the hierarchy).
Using polar coordinates they are able to distribute the hierarchical knowledge
inside the representations.

e RotatE [82] was introduced to provide a method to effectively represent symmet-
ric properties in knowledge graph embeddings. The authors of this paper propose
to use rotation in a complex space to support symmetry and other properties. In
Figure 4 we show how rotation can effectively support the definition of relation-
ships that are symmetric; the rotation allows you to interpret symmetry as a ge-
ometric property. Authors prove that their model, implemented inside a complex
vector space, can capture properties like symmetry, inversion, and composition.

e TuckER [6] is a recent approach that also uses tensor factorization for knowledge
graph embeddings obtaining good results over the link prediction task.

e Another recent approach tries to apply graph convolutional neural networks to
generate knowledge graph embeddings, and this might influence a new way of
dealing with knowledge graph structures [79].

e Contextualized Knowledge Graph Embeddings [31] (COKE) is a method that has
been inspired by recent results of contextual representation of words [68]: using
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© Barack Obama

Michelle Obama

Figure 4. Example of how the use of rotation can support the definition of properties that are symmetric in the
vector space. Image is adapted from [82].

transformers [89], the authors propose to capture the different meanings an entity
can assume in different parts of the knowledge graph. For example, the entity
Barack Obama is connected to entities related to politics, but also to the entity that
represents members of his family, showing two different contextual meanings of
the same entity. The main difference between COKE and other models is that it
models the representations based on the context and thus, differently from other
methods, it provides representations that are not static.

e SimplE [44] extends canonical Polyadic tensor decomposition (CP) [37] to pro-
vide good embeddings for link prediction. CP poorly performs on link prediction
because it learns two independent embeddings for each entity. SimplE makes use
of inverse relationships to jointly learn the two embeddings of each entity.

o Quantum embeddings [27] are a novel method to embed entities and relationships
in a vector space and the representations are generated following ideas that come
from quantum logic axioms [ 10]. These embeddings preserve the logical structure
and can be used to do both reasoning and link prediction.

3.2. Enhanced Knowledge Graph Embeddings

While most of the previous approaches rely mainly on the use of the triples present in
the knowledge graph to generate the vector representations; additional information (or
different information) can be used inside the embeddings to generate vectors that account
for a better representation. As noted by [92] attributes (like gender) need to be model in
an efficient way: the attribute male is connected to multiple entities and thus model like
TransE might not be adequate to treat this issue; in the literature, there are in fact models
that have been proposed to account for better handling of these attributes [51].
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Path-based Embeddings While the most common approaches use a score function that
is based on triples, more recent approaches try to consider also the information that
comes from a path on the graph [50,33]. There are approaches that focus on the use of
Recurrent Neural Networks (RNNs) to tackle the task of multi-hop predictions [104,16].

Distributional Embeddings An alternative approach to generate embeddings comes
from the computational linguistics field and it is represented by those models that view
language under a distributional perspective in which the meaning of words in a language
can be extracted from the usage of those words in the language. Word2vec [59] is a
model that embeds words in the vector space by eventually putting words that appear in
similar contexts in close positions of the vector space. In the same way, on Wikipedia
using user-made links [7] or using entity linking [9] it is possible to generate embed-
dings of the entities of a knowledge graph using the word2vec algorithm [59]. For ex-
ample, Wiki2vec® uses word2vec over Wikipedia text and generates the representations
for both entities (by looking at links co-occurrence) and words. TEE [9] proposes to use
entity linking to first disambiguate text and generate sequences of entities and then use
the knowledge graph to replace the sequences of entities with sequences of most spe-
cific types; using word2vec one can generate entity and type embeddings based on the
distribution in text. Methods that are based on entity linking suffer from low coverage,
caused by the entity linking quality. In general, these models do not provide a direct way
to embed relationships. Another prominent model in this category is RDF2Vec [72]: it
uses an approach that combines techniques from the word embeddings community with
knowledge graphs. It generates embeddings of entities and relationships by first creat-
ing a virtual document that contains lexicalized walks over the graph and then use word
embeddings algorithm on the virtual document to create the representations.

Text-Enhanced Embeddings There instead exists a variety of models that makes use
of textual information [97,23,95,100,99,41,2] to enhance the performance of knowledge
graph embeddings techniques. These pre-trained representations can be used to initialize
knowledge graph embeddings and to generate representations that can, in some cases,
outperform other baselines [103]. As stated in the previous section, the use of textual
information can be useful to generate the representations of the entities even when they
are not present in the knowledge base. For example, Text-enhanced Knowledge Embed-
ding [97] (TEKE) focuses on Wikipedia inner links and replaces them with Freebase en-
tities and then constructs a co-occurrence network of entities and words in the text; even-
tually, this information is used to enrich the contextual representation of the elements of
the knowledge graph. Jointly [95] is an embedding method in which textual knowledge is
used to enrich the representation of entities and relationships. In this work, both entities
and words are aligned into a common vector space; vectors associated with words and
entities that represent a common concept are then forced to be closer in the vector space
by combining different loss functions. Description-Embodied Knowledge Representa-
tion Learning (DKRL) [100] includes the description of the entities in the representation.
DKRL uses a convolutional layer to encode the description of the entity into a vector rep-
resentation and use this representation in the loss function. Words vectors coming from
the entity description can be initialized with the use of word2vec embeddings. The model
learns two representations for each entity, one that is structure-based (i.e., like TransE)

*https://github.com/idio/wiki2vec
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and one that is based on the descriptions. One key advantage of DKRL [100] is that it
offers the possibility of doing zero-shot learning of entities by using the description of
the entities themselves.

Image Enhanced Embeddings Image-embodied Knowledge Representation Learn-
ing [101] (IKRL) provides a method to integrate images inside the scoring function of
the knowledge graph embedding model. Essentially, IKRL uses multiple images for each
entity and use the AlexNet convolutional neural network [46] to generate representations
for the images; these representations are then selected and combined with the use of at-
tention to be finally projected in the entity space, generating an image specific represen-
tation for images. Recently, approaches to exploit multi-modal learning on knowledge
graph embeddings that combine image features and other information have also been
introduced in the state-of-the-art [98,55].

Logic Enhanced Embeddings There are approaches that account for the combination
of logic and facts [93,29,30,74] for knowledge representation. KALE is a model that
combines facts and rules using fuzzy logic [29]. There are other approaches that try to
embed knowledge graphs by keeping the logical structure consistent, we mentioned em-
bedding with quantum axioms in Section 3.1, but there are other methods that starts with
the objective of doing logical reasoning over embedded representations [80,73] (we will
present more details of these approaches in the Section 4, where we discuss explainabil-
ity).

Researchers have shown that it is possible to combine facts and first-order formulae
using a joint optimization process. In [75], the authors propose a general approach for
incorporating first-order logic formulae in embedding representations. During training,
their approach samples sets of entities, and jointly minimizes the negative likelihood of
the data and a loss function measuring to which extent the model violates the given rules
with respect to the sampled entities. A shortcoming of this approach is that it relies on
a sampling procedure, and it provides no guarantees the model will still produce predic-
tions that are consistent with the logic rules for entities that were not observed during
training. To overcome this shortcoming, in [61] authors incorporate equivalency and in-
version axioms between relations by only regularizing the relation representations dur-
ing the training process, where the shape of the regularizers are derived from the axiom
and the model formulations. A similar idea is followed by [17] for incorporating sim-
ple implications between two relations. In [63], authors propose using adversarial train-
ing for incorporating general first-order logic rules in entity and relation representations:
during training, an adversary searches for entities where the model violates the given
constraints, and the model is regularized in order to correct such violations. Entities can
be searched either in entity or in entity embedding space; in the latter case, the problem
of finding the entity embeddings where the model maximally violates the logic rules can
be efficiently solved via gradient-based optimization.

Schema-Aware Embeddings Few models in the state of the art focus on the differences
between instances (i.e., entities) of a knowledge graph and concepts (like, Country,
City and Place) [56]. Schema-rules can be useful to define constraints over score pre-
dictions. For example, they have been used to learn predicate specific parameters to
decrease, in an adaptive way, the score of relationships that might be conflicting with
schema rules [62].
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TransC [56] proposes an interesting representation for concepts, in which each con-
cept is represented as a sphere and each entity is a vector. An instance-of relationship
can be easily verified by checking if the entity is contained inside the sphere. In one
of the previous sections, we mentioned HAKE (Hierarchy-Aware Knowledge Embed-
dings) [107] as a recent method that considers the hierarchical topology in the embed-
ding. This aspect is also important in the context of analysis over explainability: mod-
eling ontologies is a needed step to learn how to model logical reasoning and provide
justifiable inferences, however, not all methods are capable of modeling rules [32].

There are also approaches that considers the fact that the ontology can be used to
provide better representations, for example Type-embodied Knowledge Representation
Learning (TKRL) [102]. Given a triple &, r,¢, the subject h and the object t are projected
to the type spaces of this relation as h, and t,, the projection matrices become type-
specific. TKRL optimizes the following scoring function: ||h, +r —t,||. In this group
we also include TRESCAL [14] an extension of RESCAL [67] that considers types in
the tensor decomposition. On the other hand, there do exist approaches that generate
the representations of ontology concept by taking in consideration the co-occurrence of
types in text [9].

Hyperbolic Embeddings Many approaches in the state-of-the-art rely on the use of rep-
resentations in the Euclidean space. However, when dealing with the representations of
tree-like structures (e.g., some ontologies can be interpreted as trees) Euclidean spaces
have to rely on many dimensions and are not suited to represent trees. Euclidean ge-
ometries rely on Euclid’s axiom of the parallel lines, but there do exist other geometries
that do not consider it. Hyperbolic geometries allow us to use hyperbolic planes where
trees can be effectively encoded. These approaches have been now widely used to rep-
resent tree-like structure [65,83,77] and received recognition in natural language pro-
cessing [47,85,90]. In general, these approaches have been applied to ontological trees
(e.g., the WordNet hierarchy) and cannot account for knowledge graph structures that are
more complex. Recently, embedding in the hyperbolic plane has shown to be effective
also for knowledge graphs [5,45] since they can provide better ways to model topological
structures [45].

Temporal Knowledge Graph Embeddings There are also approaches that are meant to
account for temporality in knowledge graph embeddings by considering temporal link
prediction (i.e., consider that some predicates, like president of, have values that change
over time) and to study the evolution of knowledge graphs over time [42,22,25]. For
example, recurrent neural networks can be used to learn time-aware relation representa-
tions [25].

3.3. Evaluation and Replication

Evaluation in knowledge graph embeddings is often based on link prediction. In general,
the link prediction task can be defined as the task of finding an entity that can be used
to complete the triple (4,7, ?); for example, (New York City, country, 7), where 7
is United States. To compute the answer for the incomplete triple generally the score
function is used to estimate the likelihood of the entities. The procedure is the following:
for each triple to test, we remove the head and we compute the value of the score function
for each of the entities that we have in the dataset and we rank them from higher to
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Dataset # Entities  # Relations Train Validation Test

FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,505 237 272,115 17,535 20,466
WNI8 40,943 18 141,442 5,000 5,000
WNI18RR 40,943 11 86,835 2,824 2,924
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 2. Number of entities, relationships and training, validation, test triples for the main dataset used in the
state-of-the-art.

lowest. Then we collect the rank of the correct entity. The same is done by replacing the
tail of the triple. At the end, the average rank is computed, this measure is called Mean
Reciprocal Rank (MRR). Another measure that is often used in the link prediction setting
is the HITS@K (with K commonly in 1,3,10).

[11] uses a filtering setting that has become a standard of the evaluation. The eval-
uation of the MRR is influenced by the fact that some correct triples share entity and
relationship (e.g., (United States, country0f, ?)is true for multiple triples) and they
can be ranked one over the other in the ranking list, thus biasing the results. What it is
typically done when computing the MRR for a triple in this setting is to filter out the
other triples that are true and that are present in the training/validation/test set.

FB15k [11] is a subset of Freebase while WN18 [11] is a Word-Net subset. FB15k
and WN18 were both introduced in [11] and originally come with a training, validation
and test split.

The quality of these two datasets has been argued in more recent work [86,18].
FB15k originally contained triples in the test set that are the inverse of those present
in the training set, for example /award/award nominee and /award nominee/award.
While those links are not false, they could bias the results by making the task easier
for learning models (i.e., models can just learn that one relationship is the inverse of
the other [86], and models that force symmetry, like DistMult, could perform better just
because of the dataset used). The same problem was found in WN18 [18]. This brought
researchers to introduce two novel datasets, a subset of the original ones, that do not
contain easy-to-solve cases. FB15k-237 has been introduced by [86] and WN18RR was
introduced by [18] and they are a subset of FB15K and WNI18 respectively. Take into
account that the DistMult model favored the symmetry between the relationships.

YAGO3-10 [57,18] has recently become quite popular, it contains a subset of the
YAGO knowledge graph that consists of entities that have more than 10 relationships
each. As noted by [18] the triples in this dataset account for descriptive attributes of
people (e.g., as citizenship, gender, and profession). Another really important dataset is
Countries [12], which is often used to evaluate how well knowledge graph embeddings
learn long term logical dependencies. Note that while in general, the datasets used are
the ones we described, some papers introduce new datasets when needed. For example,
a subset of the YAGO dataset (namely YAGO39K) has been used to evaluate TransC a
work that extended embeddings with the use of concepts [56].

In Table 2 we show numerical data related to these datasets. It is important to notice
that these datasets are small with respect to the size of knowledge graphs (e.g., DBpedia
has more than 4 million entities).

Link prediction is not the only task on which knowledge graph embedding are eval-
uated, often the evaluation takes into account the task of triple classification, that is the



