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1 Introduction

Heraclitus reminds us that we cannot step into the same river twice. As goes the river, so
goes virtually every modeling task 1n artificial intelligence, computer animation, robotics,
software agents, decision and control theory, simulation, databases, programming lan-
guages, etc. The world simply won’t sit still, and all attempts to model any but its simplest
features must take change seriously. It is not trivial to address this problem in its full gener-

ality, as suggested by the following partial list of phenomena that a comprehensive theory
of dynamical systems and autonomous agents must accommodate:

e The causal laws relating actions to their effects.

e The conditions under which an action can be performed.

e Exogenous and natural events.

e Probabilistic action occurrences and action effects.

e Decision theory: Determining what to do and when to do it.

e Complex actions and procedures.

e Discrete and continuous time.

e Concurrency.

e Continuous processes.

e Hypothetical and counterfactual reasoning about action occurrences and time.
e Perceptual actions and their effects on an agent’s mental state.

e Deciding when to look and what to look for.

e Unreliable sensors and effectors.

e Agent beliefs, desires and intentions and how these influence behaviour.
e Real time (resource bounded) behaviour.

e Non deliberative (reactive) behaviour.

e Revising an agent’s beliefs in the presence of conflicting observations.
e Planning a course of actions.

e Execution monitoring of a course of actions; recognizing and recovering from failures.

Despite the many existing disciplines that focus on modeling dynamical systems of one
kind or another, a story as general as this has yet to be told. This is not to say that your
average system modeler lacks for tools of the trade; there are plenty of formalisms to
choose from, including Petri nets, process algebras, dynamic and temporal logics, finite
automata, Markov decision processes, differential equations, STRIPS operators, influence
diagrams, etc. But as this list suggests, what’s available is more like a Tower of Babel than



2 Chapter 1

a unifying representational and computational formalism. To be fair, this state of affairs is
the natural outcome of disciplines organized by their applications; discrete event control
theory is concerned with different problems than, say, programming language design, and
neither appear to have anything in common with semantics for tense in natural language.
We all solve problems that arise in our own, sometimes narrowly circumscribed fields
of specialization, and in this sense, we are like the proverbial blind men, each acting in
isolation, and each trying to figure out the elephant. Nevertheless, one can’t help thinking
that there really is an elephant out there, that at a suitable level of abstraction, there must be
a unifying “theory of dynamics”, one that subsumes the many special purpose mechanisms
that have been developed 1n these different disciplines, and that moreover accommodates
all the features of autonomous dynamical systems listed above.

During the past 15 years or so, a number of researchers in artificial intelligence have
been developing mathematical and computational foundations for dynamical systems that
promise to deliver the elephant.! The methodological foundations of all these approaches
—indeed, of much of the theory and practice of artificial intelligence—are based on what
Brian Smith [202] has called the Knowledge Representation Hypothesis:

Any mechanically embodied intelligent process will be comprised of structural
ingredients that a) we as external observers naturally take to represent a proposi-
tional account of the knowledge that the overall process exhibits, and b) indepen-
dent of such external semantical attribution, play a formal but causal and essential
role in engendering the behaviour that manifests that knowledge.

Adopting this hypothesis has a number of important consequences:

1. We are naturally led to employ mathematical logic as a foundation for the “proposi-
tional account of the knowledge that the overall process exhibits™ called for in part a)
of the hypothesis.

2. This “propositional account” differs substantially from the state-based approaches cen-
tral, for example, to decision and control theory. Instead of explicitly enumerating
states and their transition function, the Knowledge Representation Hypothesis favours
sentences—descriptions of what is true of the system and its environment, and of the
causal laws in effect for that domain.

3. Part b) of the Knowledge Representation Hypothesis calls for a causal connection be-
tween these sentences and the system’s behaviours. How can sentences lead to be-
haviour? In logic, sentences beget sentences through logical entailment, so it is natura
to view system behaviours as appropriate logical consequences of the propositional
account of the domain. On this perspective, the computational component of a logica
representation for a dynamical system consists of deduction. Determining how a sys-

1 Needless to say, this is still just a promise.
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tem behaves amounts to deducing how it must behave, given the system’s description.

4. Providing a propositional account for some domain amounts to giving an abstract spec-
ification for that problem. Even by itself, having a non-procedural specification for a
problem domain is a good thing; at least it’s clear what modeling assumptions are be-
ing made. But in addition to this, because these are logical specifications, one can
hope to prove, entirely within the logic, various properties of the specification. In
other words, there is a direct mechanism, namely logical deduction, for establishing
correctness properties for the system.

5. In those cases where deduction can be performed efficiently, these system specifica-
tions are also executable. This means that, as a side effect of providing a logical spec-
ification, we often obtain a simulator for the system.

This book deals with a logical approach to modeling dynamical systems based on a
dialect of first order logic called the situation calculus, a language first proposed by John
McCarthy in 1963 [136]. The material presented here has evolved over a number of years
in response to the needs of the University of Toronto Cognitive Robotics Project, and there-
fore, has been heavily influenced by the problems that arise there. Broadly speaking, the
newly emerging field of cognitive robotics has, as its long term objectives, the provision of
a uniform theoretical and implementation framework for autonomous robotic or software
agents that reason, act and perceive in changing, incompletely known, unpredictable en-
vironments. It differs from “traditional” robotics research in emphasizing “higher level”
cognition as a determiner for agent behaviours. Therefore, one focus of cognitive robotics
is on modeling an agent’s beliefs and their consequences. These include beliefs about what
is true of the world it inhabits, about the actions that it and other agents (nature included)
can perform and the effects of those actions on the agent and its environment, about the
conditions under which such actions can be performed, about the mental states and phys-
ical abilities of its fellow agents in the world, and about the outcomes of its perceptions.
In keeping with the Knowledge Representation Hypothesis, these beliefs are represented
as logical sentences, in our case, using the situation calculus. Such beliefs condition be-
haviour in a variety of ways, and one goal of cognitive robotics is to provide a theoretical
and computational account of exactly how it is that deliberation can lead to action. None
of this i1s meant to suggest that these objectives are peculiar to cognitive robotics; many
control theorists and roboticists are concerned with modeling similar phenomena. What
distinguishes cognitive robotics from these other disciplines is its emphasis on beliefs and
how they condition behaviour, and by its commitment to the Knowledge Representation
Hypothesis, and therefore, to logical sentences as the fundamental mathematical represen-
tation for dynamical systems and agent belief states. Nevertheless, despite these differ-
ences in emphasis and methodology, the representational and computational problems that
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Uppercase Roman will be a constant.

e We will often omit leading universal quantifiers in writing sentences. The convention

will be that any free variables in such formulas are implicitly universally quantified.
So,

P(x,y) 5 3)[Q(y,2) A R(x, w, 2)]

abbreviates

(Vx, y, w)[P(x,y) D 3)[Q(y, 2) A R(x, w, 2)]].

e The “dot” notation: In logical languages, a quantifier’s scope must be indicated ex-
plicitly with parentheses. An alternative notation, which often obviates the need for
explicit parentheses, is the “dot” notation, used to indicate that the quantifier preceding
the dot has maximum scope. Thus, (Vx).P(x) D Q(x) stands for (VX)[P(x) D Q(x)].

[((Vx)(3y).A(x, y) A B(x,y) D C(x,y)] A R(x, y)
stands for

[(Vx)(3y)[A(x, y) A B(x,y) D C(x, y)I] A R(x, y).

e Parenthesis reduction. We shall assume that A takes precedence over Vv, so that P A
QO V R A § stands for (P A Q) V(R A S). Also, D and = bind with lowest precedence,
sOPAQ DRv Sstands for (PA Q) D(RVv S),and PA Q = R Vv S stands for
(PAQ)=(RVS).

2.1.2 Semantics

We begin, as usual, with the definition of a structure (sometimes called an interpretation)
for a first-order language. This will tell us

|. What collection of things the universal quantifier symbol (V) ranges over—the domain
or universe of quantification.

2. What the other parameters—the predicate and function symbols—denote with respect
to the domain of the structure.

Formally, a structure S for a given first-order language is a function whose domain is the
set of parameters of the language, and is defined by:

1. VSisa nonempty set, called the universe or the domain of the structure S. The universe
is usually written |S]|.

2. For each n-ary predicate symbol P of the first-order language, P° < |S|". These
n-tuples of the universe are understood to be all, and only, those tuples on which P is
true in the structure. This is called the extension of P in the structure S.

3. For each n-ary function symbol f of the first-order language, f S is an n-ary function
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on [S], i.e. f‘s . |S§|" — |S]. In particular, when n = 0, so that f is a constant symbol,
£° is simply some element of the universe.

SEMANTICS: TRUTH IN A STRUCTURE

We want to define when a sentence o is true in a structure S, denoted by =g o. To do so,
we need a more general notion of truth for a formula (not necessarily a sentence). Suppose
1. ¢ is a formula of the given first-order language.

2. & i1s a structure for the language,

3. 5s: V — |5]is a function, called a variable assignment, from the set V of variables of
the language into the universe of S.

We can now define =5 ¢[s], meaning that the formula ¢ is true in the structure S when
its free variables are given the values specified by s in the universe.

. Terms: Define an extension 5 : T — |S&]| of the function s from the set T of all terms
of the language into the universe.

(a) For each variable v, s(v) = s(v).
(b) If 11, ..., 1, are terms and f is an n-ary function symbol, then
S(f(h, ... ) = fOGN), ..., 5(t)).
2. Atomic Formulas:

(a) For terms #; and 15,

=5 1 = [s]iff 5(11) = 5(12).]
(b) For an n-ary predicate symbol P,
=s P(t1, ..., t,)[s]iff <5(11),...,5(t,) >€ PS.
3. Well-Formed Formulas:
(a) =5 —¢ls] iff not =5 ¢[s].
(b) s (@ D ¥)Is]iff =5 —¢[s] or =5 ¥s].

(c) E=s (Vx)¢ls] iff forevery d € |S|, E=s ¢[s(x|d)].
Here, s(x|d) 1s the function that is exactly like s except that for the variable x it
assigns the value d.

I Notice that we are slightly abusing notation here by using the same symbol = for two different purposes. We
could have avoided this ambiguity by denoting the equality predicate symbol in the language of first-order logic
by something different than =, for example =, reserving = for its standard usage in the metalanguage. But that
seemed a bit pedantic.,
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Our interest will always be in the truth of sentences, not of arbitrary formulas. We
needed the above notions for well-formed formulas in order to give a recursive definition
of truth in a structure, even when our only interest is in sentences. With this definition in
hand, we can now consider only sentences.

1. Satisfiability: A structure S satisfies a sentence o, or o is true in S, iff =g o[s]
for every variable assignment s. A sentence is satisfiable iff there is a structure that
satisfies it.

2. Models: A structure S is a model of a sentence o iff S satisfies o. S is a model of a
set of sentences, possibly infinite, iff it is a model of each sentence in the set.

3. Validity: The sentence o is valid, written = o, iff every structure of the first-order
language is a model of the sentence o.

4. Unsatisfiability: A sentence is unsatisfiable iff it has no models.

5. Logical entailment: Suppose I' 1s a set of sentences, possibly infinite, and o is a
sentence. I' = o (I entails o) iff every model of I" is a model of . It is a standard
result of first-order logic that I' = o iff there is a finite subset I'' of I" such that

= A I'" O o, where /A I’ denotes the conjunction of the sentences in I'’. This is often

called the Compactness Theorem for first-order logic.

2.1.3 Soundness and Completeness

First-order logic can be axiomatized using a suitable set of sentences called axioms (usually
a finite set of sentence schemas), together with rules of inference that permit the derivation
of new formulas from old. These systems are used to construct proofs of sentences from
sets of sentences called premises. A = o means that, with respect to some given axioma-
tization of first-order logic, there is a proof of o from the premises A. An axiomatization
of first-order logic is complete iff A = o implies A - o. An axiomatization of first-order
logic is sound iff A - o implies A = 0.

First-order logic has many sound and complete axiomatizations, all of them equiva-
lent. Examples include Gentzen and Hilbert style systems, etc. In this book, we won't
be much concerned with particular axiomatizations of first-order logic, although the need
for theorem-proving will arise frequently. So the symbol “I” will not be used very often.
Virtually all our claims and arguments will be semantic.

First-order logic is not decidable; the non-valid sentences are not recursively enumer-
able, although the valid sentences are.

2.1.4 Many-Sorted First-Order Languages

In the situation calculus, we shall find it convenient to distinguish three kinds of objects—
situations, actions and other things. To do this, we will appeal to a sorted first-order lan-
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guage. In general, a sorted first-order language has variables and terms of different sorts.
Semantically, the universe is partitioned into disjoint sub-universes, one such sub-universe
for each sort. A variable will range over its own sub-universe, and a term will denote an
element in its corresponding sub-universe. A predicate will be syntactically restricted to
take arguments of certain prespecified sorts, as will functions. Moreover, functions will
be required to deliver values of a prespecified sort. Many-sorted logical languages are
strongly analogous to typed programming languages.

Syntax of a Many-Sorted First-Order Language. Assume given a nonempty set /,
whose members are called sorts.

1. Logical symbols: As before, except that for each sort i, there are infinitely many
variables x!, x5, . .., of sort .

2. Parameters:
(a) Quantifier symbols: For each sort i there 1s a universal quantifier symbol V;.

(b) Predicate symbols: For each n > 0 and each n-tuple < iy, ..., i, > of sorts, there
is a set (possibly empty) of n-ary predicate symbols, each of which is said to be
of sort < iy,...,i, >.

(c) Function symbols: For eachn > 0 and each (n + 1)-tuple < iy, ...,in,in4+1 >
of sorts, there is a set (possibly empty) of n-ary function symbols, each of which
1s said to be of sort < iy, ..., in, In+1 >.

Each term 1s assigned a unique sort, as follows:

1. Any variable of sort i is a term of sort ;.

2. Ifty, ..., t, are terms of sort iy, ..., i, respectively, and f is a function symbol of sort
< Ily...yipyingy1 >, then f(f1,...,1,) 1s aterm of sort i,41.

Atomic formulas are defined as follows:
1. When ¢ and ¢’ are terms of the same sort, t = ¢’ is an atomic formula.

2. When P is an n-ary predicate symbol of sort < iy,...,i, > and 11, ..., 1, are terms
of sort iy, ..., i, respectively, then P(ty,...,t,) is an atomic formula.

Well-formed formulas are defined as usual, except that quantifiers must be applied to vari-
ables of the same sort. So (V;x') is permitted, but not (V;x’) when i and j are different.
Semantically, sorted formulas are interpreted by many-sorted structures as follows: As
before, S 1s a function on the set of parameters, except this time it must assign to each
parameter the correct sort of object.

l. & assigns to V; a nonempty set |S|;, called the universe of S of sort i. The universes
of different sorts are required to be disjoint.
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2. To each predicate symbol P of sort < iy, ..., i, >, S assigns a relation
PS C |8y x - x |,
3. To each function symbol f of sort < iy, ..., I,,iy+1 >, S assigns a function

fS 18l x -+ x |Sli, = |Si,.,-

The definitions of truth and satisfaction are as expected, under the intuition that ¥; means
“for all members of the universe |S);.”

2.1.5 Reducing Many-Sorted Logic to Standard Logic

It turns out that many-sorted logics are no more powerful than ordinary unsorted first-
order logic. To see why, consider an ordinary first-order language with all the predicate
and function symbols of a given many-sorted language. In addition, it will have a new
unary predicate symbol Q; for each sort i. The intended meaning of Q;(¢) is that term ¢
is of sort i. Then we can transform every sentence ¢ of the many-sorted language into an
ordinary first-order sentence o™ in the following way:

Replace every subexpression (V;x')E(x') of o by (Vx)[Q;(x) D E(x)] where x is a vari-
able chosen not to conflict with the others. Next define the following set & of ordinary
first-order sentences:

. (3x)Q;(x) for each sort i.

2. (Vxp, 000 x0) Qi (XA - A Qi (xp) D Qi (f(x1, ..., Xp)) for each function sym-
bol fofsort <iy,...,ipn,ins1 >.

Theorem In a many-sorted language, ¥ = o iff in its corresponding ordinary first-order
language, Z* U & = o™,

Finally, a convention: When writing formulas in a sorted language, we will not use
sorted quantifiers; their sorts will always be obvious from context.

2.1.6 Some Useful First-Order Inference Rules

For finding proofs by hand of the complex logical theorems required throughout this book,
it is essential to use a collection of theorem-proving rules that reflect the natural thought
processes that a mathematician invokes in proving theorems. Appendix A describes one
such set of rules. They are not complete, but seem to work well surprisingly often. Of
course, they are sound. If you have your own favorite theorem-proving methods, suitable
for proving complicated theorems by hand, you can safely skip over this material.

2.1.7 A Limitation of First-Order Logic

Certain kinds of relations are not definable in first-order logic, for example, the fransitive
closure of a binary relation. We can think of a binary relation G as a directed graph
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1. s(x) 1s a member of the universe.

2. s(X"™) is an n-ary relation on the universe, i.e. a set of n-tuples of elements of the
universe,

3. s(F") 1s an n-ary function, i.e. a function from n-tuples of elements of the universe
into the universe.

Now extend s to 5 as follows: 5(F(ty,...,1,)) = s(F)(5(t1),...,5(t;)). Here, F is an n-

ary function variable. Next, extend the definition of satisfaction of a formula by a structure
S:

e Satisfaction of atomic formulas must be extended: For an n-ary predicate variable X,
—=c X (11, ..., t)s]iff < 5(11),...,5(ty) >€ s(X).

e Satisfaction must be extended to include the new quantifiers:

1. =5 (VX™)¢[s] iff for every n-ary relation R C |S|", =s ¢[s(X"|R)]. Here,
s(X"|R) is the function that is exactly like s except that for the predicate variable
X" it takes the value R.

This is the formal way of capturing the intuition that (VX" )¢ means that no matter
what extension the n-ary predicate variable X" has in a structure, ¢ will be true
in that structure.

2. =5 (VF™")¢[s] iff for every n-ary function f : |[S|" — |S|, E=s ols(F"| f)].
Here, s(F"|f) is the function that is exactly like s except that for the function
variable F" it takes the value f.

The notions of model, validity, unsatisfiability and logical entailment for first-order
sentences, as defined in Section 2.1.2, have their natural generalization to second-order
languages.

2.2.3 Inductive Definitions and Second-Order Logic

In this book, we shall be appealing to second-order logic to characterize the situation cal-
culus. We will not need to quantify over function variables to do this. The major use we
will make of second-order logic will be to describe smallest sets with certain properties.
This 1s the sort of thing one does in logic and computer science all the time. For example,
the concept of an arithmetic expression over the natural numbers can be defined to be the
intersection of all sets P such that:

. Every natural number 1s in P.

2. It ey and e; are In A, then so also are —(e1), +(ey, e2) and *(ey, €3).

The following second-order sentence is a way to specify the set of all such arithmetic
expressions:
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(Yw).ae(w) =
(VP).{(VYx)[natnum(x) D P(x)] A
(Ve)[P(e) D P(—(e))] A
(Vey, e2)[P(e1) A P(e2) D P(+(e1,e2))] A
(Vey, e2)[P(e1) A P(e2) D P(x(e1, e2))]}
D P(w).

The informal concept of the intersection of all sets P with the above two properties 1s
captured by universal second-order quantification over P.

Here is transitive graph closure again, which informally is defined as follows:
The transitive closure, closure(G), of G is the smallest set such that:

1. (v, V) € closure(G) whenever (v, V') € G.
2. If (v, V) € G and (V', V") € closure(G), then (v, v"”) € closure(G).

Its second-order definition is:

(Vx, v).T(x,y) =
(VP).{(Yv, v)[G(v,v) D P(v, V)] A
Vv, v, v")[G(v, V) A PV, V") D P(v,v")]}
D P(x,y).

The definitions of the above two concepts—the arithmetic expressions, and the tran-
sitive closure of a graph—are examples of so-called inductive definitions. They normally
consist of one or more base cases, together with one or more inductive cases. For the
arithmetic expressions, the base case treats natural numbers, and there are three induc-
tive cases, one for characterizing the negative expressions, one for addition, and one for
multiplication.

One cannot freely formulate inductive definitions and expect always to obtain some-

thing meaningful. There are rules to this game; for an example, and one of the rules, see
Exercise 5 below.

The second-order versions of such inductive definitions naturally lead to second-order
induction principles for proving properties of the members of these sets. Induction will
play a major role in our theory of actions. To see how induction principles emerge from
such second-order inductive definitions, consider the above definition of the arithmetic ex-
pressions. The following sentence is a trivial consequence of the definition:

(VP).{(Vx)[natnum(x) D P(x)] A
(Ve)[P(e) D P(—(e))] A
(Vey, e2)[P(e1) A P(e2) D P(+(e1, €2))] A
(Vey, e2)[P(e1) A P(e2) D P(x(e1, e2))]}
D (Ve).ae(e) D Ple).
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This informs us that in order to prove that every arithmetic expression has a certain prop-

erty P, say for the purposes of proving the correctness of an algorithm for parsing such
expressions, it is sufficient to show that:

1. All natural numbers have property P.
2. Whenever e has property P, so does —(e).
3. Whenever ¢; and e; have property P, so do +(ey, e2) and *(ey, €7).

This 1s simply the principle of induction on the syntactic structure of arithmetic expres-
sions.

In the same way, we can obtain the following induction principle for transitive closure:

(VP).{(Vv,V)[G(v, V) D P(v,v)] A
(Yv, v, v")[G(v, V) A PV, V") D P(v, v")])
D (Vx,y).T(x,y) D P(x,y).

2.24 The Incompleteness of Second-Order Logic

Second-order logic 1s incomplete, meaning that there is no recursive axiomatization and
rules of inference that can recursively enumerate all and only the valid second-order sen-
tences. This is a consequence of the Godel incompleteness theorem for arithmetic. So why,
in this book, do we appeal at all to second-order logic? The main reason is that we shall
be interested in semantically characterizing actions and their properties. This will mean,
however, that our theory of actions will be incomplete in the same way as number theory is

incomplete. We shall therefore also be interested in finding important special cases of our
theory of actions, and special kinds of computations, that have first-order axiomatizations.

2.3 Exercises

1. Give second-order definitions for the following sets. In each case, obtain a second-
order induction principle from the definition.

(a) The set of natural numbers is the smallest set containing 0 and that is closed under
the successor function. In other words, the smallest set N such that:

1. 0 e N.
ii. If x € N then s(x) € N.

(b) The set of LISP S-expressions is the smallest set containing all atoms, and that is

closed under the binary function cons. Assume that the unary predicate atom has
already been defined.

(c) The set of all of Adam and Eve’s descendents, defined as the smallest set D such
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that:
. Adam € D and Eve € D.
ii. If x € D and y is an offspring of x, then y € D.

(d) The set of all propositional well-formed formulas, defined to be the smallest set
P such that:

1. Every propositional atom is in P.
ii. If wy and wy € P, then so also are not (wy) and implies(wy, w»).
Assume that the unary predicate atom has already been defined.

Give second-order definitions for the following relations on LISP lists. Use the con-
stant symbol Nil to denote the empty list, and the binary function symbol cons, where
cons(a, l) denotes the result of adding the element a to the front of list /.

(a) evenLength(l), meaning that list / has an even number of elements.

(b) sublist(ly, ), meaning that list /; is the result of deleting 0 or more elements
from list /5.

(c) append(l, I2, 1), meaning that list / 1s the result of appending list /; to />.

. This exercise will lead you to a proof that transitive closure is not first-order definable.

It relies on the Compactness Theorem, which informs us that any unsatisfiable set of
first-order sentences has a finite unsatisfiable subset. The proof is by contradiction,
so assume that r(x, y) 1s a first-order formula with two free variables, defining the
transitive closure of a binary relation G. By this, we mean that for any structure S as-
signing an extension to the binary predicate symbol G, and for any variable assignment
s, E=s t(x, y)[s] iff s assigns to the variables x and y a pair of domain elements of S
that is in the transitive closure of G in that structure. All of which is a fancy way of
saying that the set of pairs of domain elements of S that are in the transitive closure of
G is precisely the set of domain element pairs that make t true in the structure. Notice
that the same formula r must work for every graph G and every structure assigning an
extension to G. Notice, finally, that t(x, y), by hypothesis, says that, for some n, there
is a sequence of n edges in the graph of G leading from x to y. Consider the following,
infinitely many first-order formulas, each with two free variables x and y:

ai(x,y) G(x,y),
o2(x,y) (321).G(x, 21) A G(21, ),

an(x,y) (3z1,...20-1).Gx, 21) AG(z1,22) A -+ - A G(Zp—-1, Y),

a,(x, y) says that there is a sequence of n edges in the graph of G leading from vertex
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x to vertex y. Now, assume that the underlying first-order language has at least two
constant symbols A and B. (Later, we shall see that this assumption 1s not necessary;
it does, however, considerably simplify the proof.) For n > 1, let 8, be the sentence:

(A, B) A—ai(A,B)A--- A=ay(A, B).

Bn says that (A, B) is in the transitive closure of G, and A and B are not connected by
any sequence of edges of length n or less.

Consider the infinite set of sentences {Bi, ..., Bn, ...}. Notice what this set claims:
that (A, B) is in the transitive closure of G, but no finite sequence of edges in the graph
G leads from A to B. So this set is obviously unsatisfiable. Now, use the compactness
theorem to obtain a contradiction.

The above proof assumed that the underlying first-order language had at least two
constant symbols A and B. But this assumption is unimportant; it is easy to see that if
7(x, v) defines the transitive closure of G in a first order language, it continues to do
so for the enlarged language obtained by adding two new constant symbols A and B
to the original language. We then use exactly the same proof as before.

4. Statements about the size of the domain of discourse are often not first-order definable.

(a) Using the compactness theorem—see the previous exercise—prove that there is
no first-order sentence that is true 1n a structure iff that structure has a finite do-
main. As before, the proof is by contradiction. Suppose that ¢ is such a first-order
sentence. For n > 2, let 0>, be the sentence

(3xy, ... Xn) X1 FX2AXL FXZA - A Xp—1 F Xn.

Here, there are n(n — 1) /2 conjuncts, expressing that the x’s are pairwise unequal.
0>pn Says that there are at least n distinct individuals in the domain of discourse.
Next, consider the infinite set of sentences {¢, 02, 0>3, ..., }. This is unsatisfi-
able. Now use compactness to obtain a contradiction.

(b) Prove the stronger result that there is no set (finite or infinite) of first-order sen-
tences all of which are true on a structure iff that structure has a finite domain.

5. Weird Inductive Definitions. The very idea of an inductive definition can be prob-

lematic. Consider the following “inductive definition™ of a smallest set W of natural
numbers such that:

(a) De W.
(b) If x ¢ W,thenx + 1€ W.

Give some examples of sets W that can reasonably be said to be characterized by this
definition. What set(s) do we get by replacing the words “a smallest set W” by the
words “the intersection of all sets W™'?
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reached by performing the action sequence s, the robot r will be close to the object x.
3.1.2 Axiomatizing Actions in the Situation Calculus

The first observation one can make about actions is that they have preconditions: require-
ments that must be satisfied whenever they can be executed in the current situation. We
introduce a predicate symbol Poss; Poss(a, s) means that it is possible to perform the ac-
tion a in that state of the world resulting from performing the sequence of actions s. Here
are some examples:

e If it is possible for a robot r to pick up an object x in situation s, then the robot is not
holding any object, it is next to x, and x is not heavy:
Poss(pickup(r,x),s) D [(Vz)—holding(r, z, s)] A ~heavy(x) AnextTo(r, x, ).

e Whenever it is possible for a robot to repair an object, then the object must be broken,
and there must be glue available:

Poss(repair(r,x),s) D hasGlue(r, s) A broken(x, s).

The next feature of dynamic worlds that must be described are the causal laws—how
actions affect the values of fluents. These are specified by so-called effect axioms. The
following are some examples:

e The effect on the relational fluent broken of a robot dropping a fragile object:
fragile(x, s) D broken(x,do(drop(r, x), 5)).

This is the situation calculus way of saying that dropping a fragile object causes it
to become broken; in the current situation s, if x is fragile, then in that successor
situation do(drop(r, x), s) resulting from performing the action drop(r, x) in s, x will
be broken.

¢ A robot repairing an object causes it not to be broken:

—broken(x, do(repair(r, x), 5)).

¢ Painting an object with colour c:

colour(x,do(paint(x,c), s)) = c.
3.1.3 The Qualification Problem for Actions

With only the above axioms, nothing interesting can be proved about when an action is
possible. For example, here are some preconditions for the action pickup:

Poss(pickup(r, x), s) D [(Vz)—holding(r, z, s)] A —heavy(x) A nextTo(r, x, s).

The reason nothing interesting follows from this is clear; we can never infer when a pickup
1s possible. We can try reversing the implication:
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[(Vz)—holding(r, z, s)] A mheavy(x) AnextTo(r,x,s) D Poss(pickup(r,x), s).

Now we can indeed infer when a pickup is possible, but unfortunately, this sentence 1s
false! We also need, in the antecedent of the implication:

—gluedToFloor(x,s) A —~armsTied(r,s) A —~hitByTenTonTruck(r,s) A ---

i.e, we need to specify all the qgualifications that must be true in order for a pickup to be
possible! For the sake of argument, imagine succeeding in enumerating all the qualifica-
tions for pickup. Would that help? Suppose the only facts known to us about a particular
robot R, object A, and situation § are:

[(Vz)—holding(R, z, S)] A —~heavy(A) A nextTo(R, A, S).

We still cannot infer Poss(pickup(R, A), S) because we are not given that the above qual-
ifications are true! Intuitively, here is what we want: When given only that the “important”
qualifications are true:

[(Vz)—holding(R, z, S)] A mheavy(A) A nextTo(R, A, S),

and if we don’t know that any of the “minor” qualifications——gluedT oFloor(A, §),
—hitByTenTonTruck(R, S)—are true, infer Poss(pickup(R, A), §). But if we hap-
pen to know that any one of the “minor’” qualifications is false, this will block the inference
of Poss(pickup(R, A), S). Historically, this has been seen to be a problem peculiar to
reasoning about actions, but this is not really the case. Consider the following fact about
birds, which has nothing to do with reasoning about actions:

bird(x) A —mpenguin(x) A —ostrich(x) A ~peking Duck(x) A --- D flies(x).

But given only the fact bird(T weety), we want intuitively to infer flies(T weety). For-
mally, this is the same problem as action qualifications:

e The “mmportant” qualification is bird(x).
e The “minor” qualifications are: —penguin(x), —ostrich(x), - - -

This 1s the classical example of the need for nonmonotonic reasoning in artificial intel-
ligence. For the moment, it 1s sufficient to recognize that the qualification problem for

actions is an instance of a much more general problem, and that there is no obvious way to
address 1it. We shall adopt the following (admittedly idealized) approach: Assume that for
each action A(x), there is an axiom of the form

Poss(A(X),s) = TT4(x, s),

where IT4 (X, s) is a first-order formula with free variables X, s that does not mention the
function symbol do. We shall call these action precondition axioms. For example:

Poss(pickup(r, x),s) = [(Vz)—holding(r, z, s)] A —~heavy(x) A nextTo(r, x, s).
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In other words, we choose to 1gnore all the “minor” qualifications, in favour of necessary
and sufficient conditions defining when an action can be performed. Appendix B further
discusses the qualification problem along with its close relative, the ramification problem.

3.1.4 The Frame Problem

As if the qualification problem were not bad enough, there 1s another well known prob-
lem associated with axiomatizing dynamic worlds; axioms other than effect axioms are
required. These are called frame axioms, and they specify the action invariants of the

domain, i.e, those fluents unaffected by the performance of an action. For example, the
following is a positive frame axiom, declaring that the action of robot r” painting object x’

with colour ¢ has no effect on robot r holding object x:
holding(r, x,s) D holding(r, x, do(paint(r', x’, ¢), 5)).
Here is a negative frame axiom for not breaking things:
—broken(x,s) A[x # yV = fragile(x,s)]| D —broken(x,do(drop(r, y), s)).

Notice that these frame axioms are truths about the world, and therefore must be included
in any formal description of the dynamics of the world. The problem 1s that there will be
a vast number of such axioms because only relatively few actions will affect the value of
a given fluent. All other actions leave the fluent invariant, for example: An object’s colour
remains unchanged after picking something up, opening a door, turning on a light, electing
a new prime minister of Canada, etc. Since, empirically in the real world, most actions
have no effect on a given fluent, we can expect of the order of 2 x A x F frame axioms,
where A is the number of actions, and F the number of fluents.

These observations lead to what is called the frame problem:

1. The axiomatizer must think of, and write down, all these quadratically many frame
axioms. In a setting with 100 actions and 100 fluents, this involves roughly 20,000
frame axioms.

2. The implementation must somehow reason efficiently in the presence of so many ax-
1oms.

WHAT COUNTS AS A SOLUTION TO THE FRAME PROBLEM?

Suppose the person responsible for axiomatizing an application domain has specified all

the causal laws for that domain. More precisely, she has succeeded in writing down all
the effect axioms, i.e. for each relational fluent F and each action A that causes F'’s truth

value to change, axioms of the form:
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R(X,s) D (m)F(X,do(A,s)),"

and for each functional fluent f and each action A that can cause f's value to change,
axioms of the form:

R(x,y,s) D f(x,do(A,s)) =y.

Here, R is a first-order formula specifying the contextual conditions under which the action
A will have its specified effect on F and f. There are no restrictions on R, except that it
must refer only to the current situation s. Later, we shall be more precise about the syntactic
form of these effect axioms.

A solution to the frame problem is a systematic procedure for generating, from these
effect axioms, all the frame axioms. If possible, we also want a parsimonious representa-
tion for these frame axioms (because in their simplest form, there are too many of them).

WHY SEEK A SOLUTION TO THE FRAME PROBLEM?

Frame axioms are necessary to reason about the domain being formalized; they cannot be
ignored. Nevertheless, one could argue that there is no need to have a solution to the frame
problem; instead, the onus should be on the axiomatizer to provide the frame axioms. Still,
a solution to the frame problem would be very convenient by providing:

e Modularity. As new actions and/or fluents are added to the application domain, the
axiomatizer need only add new effect axioms for these. The frame axioms will be
automatically compiled from these (and the old frame axioms suitably modified to
reflect these new effect axioms).

e Accuracy. There can be no accidental omission of frame axioms.

We shall also find that a systematic solution to the frame problem, in particular the one
we shall describe shortly, will make possible a very rich theory of actions, accompanied by
a natural implementation.

3.2 A Simple Solution to the Frame Problem (Sometimes)

This section describes a straightforward solution to the frame problem, one that can be
very efficiently computed and that yields extremely compact axioms. It is not, however,
completely general; hence the caveat “Sometimes” in the section title. In fact, the solution
applies only to deterministic actions without ramifications (state constraints). Readers un-
familiar with the concept of state constraints can safely ignore this comment for the time
being; we shall return to this topic in Section 4.3.2 and Appendix B.

1 The notation (—) means that the formula following it may, or may not, be negated.
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The solution that we shall describe is a synthesis of two proposals, one by Edwin
Pednault, the other by Andrew Haas, as elaborated by Len Schubert, and proposed inde-
pendently by Ernie Davis. To begin, we shall only consider relational fluents, i.e. relations
whose truth values depend on the situation. Later, we shall consider functional fluents.

3.2.1 Frame Axioms: Pednault’s Proposal

We illustrate this proposal with an example.

Example 3.2.1: Consider a simple electrical circuit consisting of various lightbulbs, each
having its own on-off switch. When lightbulb x is on, flipping its switch, flip(x), causes
it to go off, and symmetrically when x is off. The fluent on has the following positive and
negative effect axioms:

—on(x,s) D on(x,do(flip(x),s)),
on(x,s) D —on(x,do(flip(x),s)).

Now, rewrite these 1n the logically equivalent forms:
=on(x,s) Ay =x Don(x,do(flip(y), s)),
on(x,s) ANy=x D —on(x,do(flip(y),s)).

Next, suppose that these are all the causal laws relating the action f/ip and the fluent on;
we have described all the ways that flipping a switch can affect a light. Now, suppose
that both on(x, s) and —on(x, do(flip(y), s)) are true. In other words, light x was on in
situation s, and in the situation resulting from flipping switch y, light x was off. Therefore,
flipping the switch for y must have caused x to become off. Because we have axiomatized
all the ways action flip can affect on, the only way —on(x, do( flip(y, s)) could have
become true is if the antecedent of its causal law, namely on(x,s) A y = x was true.
Therefore, we conclude:

on(x,s) A—on(x,do(flip(y),s)) Don(x,s) Ay = Xx.
This 1s logically equivalent to:
on(x,s) Ay #x Donl(x,do(flip(y),s)).

This is exactly a positive frame axiom. It says that the action f/ip(y) has no effect on the

fluent on(x, s) whenever y is different than x. We have obtained a frame axiom through

purely syntactic manipulation of the effect axioms, by appealing to the assumption that

these effect axioms capture all the causal laws relating the action fl/ip and the fluent on.
A symmetric argument yields the following negative frame axiom:

—on(x,s) Ay #x D —on(x,do(flip(y),s)).
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as a frame axiom, rewrite it in the logically equivalent form:

holding(r, x,s) Aa # putDown(r,x) Na # drop(r, x)

D holding(r, x,do(a, s)). (3.3)

This says that all actions other than put Down(r, x) and drop(r, x) leave holding invari-
ant,? which is the standard form of a frame axiom (actually, a set of frame axioms, one for
each action distinct from put Down and drop).

In general, an explanation closure axiom has one of the two forms:
F(x,s) A—F(x,do(a,s)) D ar(x,a,s),
—F(x,s) A F(x,do(a, s)) D Br(X,a,s).

In these, the action variable a is universally quantified. These say that if ever the fluent F
changes truth value, then ar or B provides an exhaustive explanation for that change.

As before, to see how explanation closure axioms function like frame axioms, rewrite
them in the logically equivalent form:

F(x,s)A—ar(x,a,s) D F(x,do(a, s)),
and
-F(x,s) A=Br(x,a,s) D —F(x,do(a,s)).

These have the same syntactic form as frame axioms with the important difference that
action a is universally quantified. Whereas, in the worst case, we expect 2 x A x F frame
axioms, there are just 2 x 7 explanation closure axioms. This parsimonious representation
1s achieved by quantifying over actions in the explanation closure axioms.

Schubert argues that explanation closure axioms are independent of the effect axioms,
and it i1s the axiomatizer’s responsibility to provide them. Like the effect axioms, these
are domain-dependent. In particular, Schubert argues that they cannot be obtained from
the effect axioms by any kind of systematic transformation. Thus, Schubert and Pednault
entertain conflicting intuitions about the origins of frame axioms.

Like Pednault, Schubert’s appeal to explanation closure as a substitute for frame ax-
1oms involves an assumption.

The Explanation Closure Assumption

ar completely characterizes all those actions a that can cause the fluent F's truth value to
change from true to false; similarly for BF.

2 To accomplish this, we require unique names axioms like pickup(r, x) # drop(r’, x"). We shall explicitly
introduce these later.



28 Chapter 3

We can see clearly the need for something like this assumption from the example ex-
planation closure axiom (3.3). If, in the intended application, there were an action (say,
eat(r, x)) that could lead to r no longer holding x, axiom (3.3) would be false.

Summary: The Davis/Haas/Schubert Proposal

e Explanation closure axioms provide a compact representation of frame axioms: 2 x F
of them. (This assumes the explanation closure axioms do not become too long. Later
we shall provide an argument why they are likely to be short.)

e But Schubert provides no systematic way of automatically generating them from the
effect axioms. In fact, he argues this is impossible in general.

Can we combine the best of the Pednault and Davis/Haas/Schubert ideas? The next
section shows how to do this.

3.2.3 A Simple Solution (Sometimes)

We illustrate the method with an example.

Example 3.2.4: Suppose there are two positive effect axioms for the fluent broken:
fragile(x,s) D broken(x,do(drop(r, x), 5)),
nextTo(b, x,s) D broken(x,do(explode(b), s)),

i.e, exploding a bomb next to an object will break the object. These can be rewritten in the

logically equivalent form:

[((3r)a = drop(r, x) A fragile(x, s)
v(3b){a = explode(b) A nextTo(b, x, 5)}] (3.4)
D broken(x, do(a, s)).
Similarly, consider the negative effect axiom for broken:

=broken(x,do(repair(r, x), s)).
In exactly the same way, this can be rewritten as:

(dr)a = repair(r, x) O —broken(x,do(a, s)). (3.5)
Now appeal to the following causal completeness assumption:

Axiom (3.4) characterizes all the circumstances that can cause x to become broken.

Next, suppose —broken(x, s) and broken(x, do(a, s)) are both true. Then action a must
have caused x to become broken, and by the completeness assumption, this can happen
only because

(3r)a =drop(r, x) A fragile(x,s) Vv (3b){a = explode(b) A nextTo(b, x, s)}
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was true. This intuition can be formalized by the following explanation closure axiom:

—broken(x, s) A broken(x,do(a,s)) DO (3r)a =drop(r,x) A fragile(x,s) V
(3b){a = explode(b) A nextTo(b, x, s)}.

Similarly, (3.5) yields the following explanation closure axiom:

broken(x, s) A —broken(x,do(a,s)) D (3r)a = repair(r, x).

3.2.4 Aside: Normal Forms for Effect Axioms

In the previous example, we rewrote one or more positive effect axioms as a single, logi-
cally equivalent positive effect axiom with the following syntactic normal form:

y;{f, a,s) D F(x,do(a, s)),
Similarly, we rewrote one or more negative effect axioms in the normal form:
yr (X,a,s) D =F(X,do(a, s)).

Here, y_;'.’ (x,a,s)and y (X, a, 5) are first-order formulas with free variables among x, a, s.
The automatic generation of frame axioms appealed to these normal forms for the effect ax-
ioms. In this section, we precisely describe this transformation to normal form sentences.
Readers who already understand this mechanism can skip to the next section.

Transformation of Effect Axioms to Normal Form: Each of the given positive effect
axioms has the form:

¢F O F(t,do(a, s)).

Here « is an action term (e.g. pickup(x), put(A,y)) and the 7 are terms. We write these
effect axioms without leading quantifiers, so the free variables (if any) in these axioms are
implicitly universally quantified.
Write this in the following, logically equivalent form:

a=aAX=1A¢y D F(X, do(a,s)). (3.6)
Here, X = 1 abbreviates x; = f; A --- A X, = I,, and X are new variables, distinct from
one another and distinct from any occurring in the original effect axiom. Now, suppose

¥1,..., ym are all the free variables, except for the situation variable s, occurring in the
original effect axiom, i.e. all the variables (if any) that are implicitly universally quantified
in this axiom. Then (3.6) is itself logically equivalent to:

Gyt ....ymMla=aAx = { A er;-'] O F(x,do(a,s)).
So, each positive effect axiom for fluent F can be written in the logically equivalent form:

Ve D F(x,do(a,s)),
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where W is a formula whose free variables are among x, a, s. Do this for each of the k
positive effect axioms for F, to get:

v 5 FF, do(a, s)),

v 5 F(Z,do(a,s)).
Next, write these k sentences as the single, logically equivalent
(W v...veW] o F@F, do(a, s)).

This is the normal form for the positive effect axioms for fluent F.

Similarly, compute the normal form for the negative effect axioms for fluent F.

Readers familiar with the Clark completion semantics for logic programs will recog-
nize the above transformation to normal form as very similar (but not 1dentical) to the
preliminary transformation of logic program clauses, in preparation for computing a pro-
gram'’s completion.

Example 3.2.5: Suppose the following are all the positive effect axioms for fluent tired:
tired(Jack,do(walk(A, B), s5)),
-marathonRunner(y) A distance(u, v) > 2km D tired(y,do(run(u, v), s)).
Their normal form is:

{[a = walk(A, B) A x = Jack] v [(3u, v, y).a = run(u, v) A
—marathonRunner(y) A distance(u, v) > 2km A x = y]}
D tired(x,do(a,s)).

By properties of equality and existential quantification, this simplifies to:

{la = walk(A, B) A x = Jack] v [(3u, v).a = run(u, v) A
—marathon Runner(x) A distance(u, v) > 2km]}
D tired(x,do(a,s)).

3.2.5 A Simple Solution: The General Case

The example of Section 3.2.3 obviously generalizes. Suppose given, for each fluent F, the
following two normal form effect axioms:

Positive Normal Form Effect Axiom for Fluent F

yi(%,a,5) D F(%,do(a, s)). 3.7)
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Negative Normal Form Effect Axiom for Fluent F

vr (X,a,s) D —F(xX,do(a,s)). (3.8)
Here, }f;' (X,a,s)and y. (X, a, s) are first-order formulas with free variables among X, a, s.

We make the following:

Causal Completeness Assumption:
Axioms (3.7) and (3.8), respectively, characterize all the conditions under which action a
causes F to become true (respectively, false) in the successor situation.
In other words, these two sentences completely describe the causal laws for fluent F.

Hence, if F's truth value changes from false in the current situation s to frue in the next
situation do(a, s) resulting from doing a, then y; (X, a, s) must have been true; similarly,
if F’s truth value changes from frue to false. This informally stated assumption can be
captured axiomatically by the following:
Explanation Closure Axioms
F(x,s) A—=F(x,do(a,s)) Dy (x,a,s), (3.9)
—~F(%,s) A F(X,do(a,s)) D yp (X,a,s). (3.10)
To make this work, we need:
Unique Names Axioms for Actions.

For distinct action names A and B,

A(x) # B(y).

Identical actions have identical arguments:

AX1, ooy Xp) = A(YV1, oo Yn) DXL =YL A - A Xy = Yn.

Proposition 3.2.6: Suppose that T is a first-order theory that entails
~(3%, a,5).vf (X,a,5) Ayp (X,a,5). (3.11)

Then T entails that the general effect axioms (3.7) and (3.8), together with the explanation
closure axioms (3.9) and (3.10), are logically equivalent to:

F(X,do(a,s)) = yg (X,a,5) V F(X,5) A—yp (X,a,s). (3.12)

Proof: Straightforward, but tedious. |

The requirement that ~(3%, a, 5).y, (¥, a,s) A v (X, a, s) be entailed by the back-
ground theory 7 simply guarantees the consistency of the effect axioms (3.7) and (3.8).
To see why, suppose this requirement were violated, so that for some X, A, § we have

yi(X,A,S), and y; (X, A, S). Then we could simultaneously derive F(X, do(A, S))
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Continuing with the above blocks world example, and assuming that the above effect
axioms describe all the ways an action can affect the height of a block (the causal com-

pleteness assumption for this example), we obtain the following successor state axiom for
height:

height(b,do(a,s)) =y =
Yheighr(ba y.a,s)Vy=height(b,s) A _'(ay,)neighr(br _}’,1 as),

where yheight (b, ¥, a, s) is the above bracketed formula.

3.2.7 A Simple Solution: Summary

Our proposed solution to the frame problem appeals to the following axioms:

1. Successor state axioms:
(a) For each relational fluent F':
F(X,do(a,s)) = yp (X,a,5) vV F(X,5) A =yp (%, a,s).
(b) For each functional fluent f:
f(x,do(a,s)) =y=ysX, y,a,5)V f(X,s) =y A—=3Y)yr(X,y, a,s).
2. For each action A, a single action precondition axiom of the form:
Poss(A(x), s) = T1a(x, s),
where IT4(x, s) is a first-order formula with free variables among x, s.

3. Unique names axioms for actions.
[gnoring the unique names axioms (whose effects can be compiled), this axiomatization
requires F +.A axioms in total, compared with the roughly 2 x A x F explicit frame axioms
that would otherwise be required. Here, F is the number of fluents and A the number

of actions. There still remains the possibility that fewer axioms come at the expense of
prohibitively long successor state axioms, but fortunately, this is unlikely.

e A successor state axiom’s length is roughly proportional to the number of actions that
affect the value of the fluent.

e The intuition leading to the frame problem is that most actions do not affect the fluent.
So few actions affect it. So its successor state axiom is short.

The conciseness and perspicuity of this axiomatization relies on two things:

1. Quantification over actions.

2. The assumption that relatively few actions affect a given fluent.
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3.2.8 Some Limitations of These Action Descriptions

Recall that the solution to the frame problem applies only when the effect axioms have the
special syntactic form:

R(X,s) D (m)F(x,do(A,s)).

Such axioms describe deterministic actions, and preclude indeterminate actions with un-
certain effects, for example:

heads(do(flip, s)) Vv tails(do(flip, 5)),
(3x)holding(x, do(pickupAblock, s)).
Effect axioms, and therefore the solution to the frame problem, are for primitive actions

only; as yet, there are no constructs for complex actions, like the following:

e Conditional actions:

if carInDriveway then drive else walk endif.

e Iterative actions:

while [(3 block)ontable(block)] do remove Ablock endwhile.

e Nondeterministic actions:

removeAblock = (rr block)|pickup(block); put OnFloor(block)].

Here, ; means sequence and (w block) means nondeterministically pick a block, and
for that choice of a block, do the complex action following this operator.

e Recursive actions: If down means move an elevator down one floor, define d(n), mean-
ing move the elevator down n floors.

proc d(n)
if n = 0 then no_op
else down; d(n — 1) endif
endproc
In Chapter 6, we shall see how to define such complex actions within the situation calculus.
Moreover, having done this, we will have a situation calculus-based programming language
for tasks like discrete event simulation and high level robotic control. Probabilistic actions,
like flipping a coin, will be treated in Chapter 12.

3.3 Deductive Planning with the Situation Calculus

Historically, the situation calculus has been most strongly identified with planning appli-
cations 1n artificial intelligence. This has basically been a textbook identification, since
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(rightly or wrongly) very few people actually use the situation calculus to do real world
planning. Despite this, there is considerable value in giving a logical account of the plan-
ning problem; at the very least, this provides a specification of the planning task, one that
planning systems—Ilogic-based or not—ought to respect. This section gives such a formal
account of planning within the situation calculus.

The planning problem is this: Given an axiomatized initial situation, and a goal state-
ment, find an action sequence that will lead to a state in which the goal will be true.

Example 3.3.1: We treat the simple setting of a one-handed robot that can hold at most
one object in its hand, pick up and drop things, and walk about.

Action precondition axioms:
Poss(pickup(r, x), s) = robot(r) A [(Vz)—holding(r, z, s)] A nextTo(r, x, 5),
Poss(walk(r, y), s) = robot(r),
Poss(drop(r, x),s) = robot(r) A holding(r, x, s).
Effect axioms:
holding(r, x, do(pickup(r, x), s5)),
—holding(r, x,do(drop(r, x), 5)),
nextTo(r, y,do(walk(r, v), 5)),
nextTo(r,y,s) D nextTo(x,y,do(drop(r, x), 5)),
y # x D —nextTo(r, x, do(walk(r, y), 5)),
onfloor(x,do(drop(r, x), 5)),
=onfloor(x, do(pickup(r, x), 5)).
The solution to the frame problem of the previous section yields the following:

Successor state axioms:

holding(r, x,do(a, s)) =

a = pickup(r, x) V holding(r, x,s) Aa # drop(r, x), (3.16)

nextTo(x, y,do(a,s)) =
a = walk(x, y) Vv (3r)[nextTo(r, y,s) Aa = drop(r, x)]V (3.17)
nextTo(x,y,s) A=(3z)[la = walk(x, z) Az # y],

onfloor(x,do(a, s)) =

(HF)H = drﬂp(r* I) \% ﬂﬂf!ﬂﬂr(_r, _5‘) A —l(ar)a — Pff.‘kup(r, I). (3'18)
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Initial situation:
chair(C), robot(R), nextTo(R, A, Sy), (Vz)—holding(R,z, S0). (3.19)

The distinguished constant Sp always denotes the initial situation in the situation calculus.
So initially, a robot R is next to the object A; moreover, R is not holding anything.
As specified in our approach to the frame problem, we also need:

Unique names axioms for actions:
pickup(r, x) # drop(r', y),
pickup(r, x) # walk(r', y),
walk(r, y) = walk(r',y)Dr=r'Ay =Y,
etc.

Here are some facts derivable from these axioms:

From (3.16),

holding(R, A, do(pickup(R, A), S9)). (3.20)
From (3.20), (3.16) and unique names for actions,

holding(R, A, do(walk(R, y),do(pickup(R, A), Sp))). (3.21)
From (3.17),

nextTo(R, y,do(walk(R, v),do(pickup(R, A), S0))). (3.22)

From (3.22) and (3.17),

nextTo(A, y,do(drop(R, A),do(walk(R, y),do(pickup(R, A), Sp)))). (3.23)
From (3.18),

onfloor(A,do(drop(R, A), do(walk(R, y),do(pickup(R, A), Sp)))). (3.24)
Suppose we want to derive:

(Is).nextTo(A, B,s) Aonfloor(A,s).

1.e., that there is an action sequence leading to a state of the world 1n which the object A 1s
next to B and A is on the floor. The above is a constructive proof of this sentence, with

s =do(drop(R, A),do(walk(R, B),do(pickup(R, A), $9))).

We can interpret this situation term as a plan to get A onto the floor next to B: First, R
picks up A, then it walks to B, then it drops A. The key idea here is that plans can be
synthesized as a side-effect of theorem-proving.

So the general picture of planning in the situation calculus, with respect to some back-
ground axioms, 1s to prove that some situation satisfies the goal statement G:

Axioms F (3s)G(s).
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Any variable-free binding for s obtained as a side-effect of a proof is a plan guaranteed
to yield a situation satisfying the goal G. This is exactly the idea behind Prolog, in which
programs are executed by a theorem-prover for the side-effect of obtaining bindings for the
existentially quantified variables in the goal theorem.

There is one slight problem with this pretty picture of deductive planning that needs
fixing. Notice that the proof of (3.23) and (3.24), from which the above plan was obtained,
did not use any of the action precondition axioms. Therefore, the following two sentences
could just as easily have been derived:

nextTo(A, y,do(drop(C, A),do(walk(C, y),do(pickup(C, A), 5y)))),
onfloor(A,do(drop(C, A),do(walk(C, y),do(pickup(C, A), Sp)))).
These also give a constructive proof of the sentence
(3s).nextTo(A, B,s) ANonfloor(A,s),
with
s =do(drop(C, A),do(walk(C, B),do(pickup(C, A), So))).

In other words, the chair C picks up A, then it walks to B, then it drops A. The obvious
problem here is that the first plan, in which the robot R does the work, conforms to the
action precondition axioms, while the second plan does not; according to these axioms,
robots can pick things up, and go for walks, but chairs cannot. More precisely, the robot’s
plan is executable according to the action precondition axioms, meaning that one can prove,
from the axioms, that:

Poss(pickup(R, A), So) A Poss(walk(R, B),do(pickup(R, A), Sg)) A
Poss(drop(R, A), do(walk(R, B), do(pickup(R, A), Sp))).

In other words, the action pickup(R, A) is possible initially; walk(R, B) is possible in
the next situation resulting from doing the first action; finally, drop(R, A) is possible in
the situation resulting from doing the first two actions. On the other hand, there is no proof
that this sequence of actions, as performed by the chair, 1s executable, and so the chair’s
actions should not be viewed as a plan. These considerations lead to the following,

Definition 3.3.2: Official Definition of a Plan for the Situation Calculus
Let D be a set of situation calculus axioms characterizing some application domain, o a
variable-free situation term, and G (s) a situation calculus formula whose only free variable

is the situation variable s. Then o is a plan for G (relative to D) iff

D k= executable(o) A G(o).

One way to determine such a o 1s to prove the sentence (ds).executable(s) A G(s). Any
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e A student may drop a course iff the student is currently enrolled in that course:

Poss(drop(st, c),s) = enrolled(st, c, 5).
Transaction Effect Axioms:

—enrolled(st, c,do(drop(st, ¢), §)),

enrolled(st, c,do(register(st,c),s)),

grade(st,c, g,do(change(st,c, g),s)),

g’ # g D —grade(st,c, g',do(change(st, c, g), 5)).

By solving the frame problem with respect to these effect axioms, we obtain the following
successor state axioms for the database relations:

enrolled(st,c,do(a, s)) = a = register(st,c) V
enrolled(st, c,s) Aa # drop(st, c),

grade(st,c, g, do(a, s)) = a = change(st,c, g) VvV
grade(st,c, g,5) A (Vg')a # change(st,c, g').

3.4.4 Querying a Situation Calculus Database

Notice that on the above situation calculus perspective on databases, all updates are virtual,
the database, consisting as it does of a set of logical sentences, is never physically changed.
Axioms are forever. How then do we query a database after some sequence of transactions
has been “executed”? For example, suppose we want to know whether John is enrolled
" 1n any courses after the transaction sequence drop(John, C100), register(Mary, C100)
has been “executed”. The trick is to formulate this as a query with respect to the hypothet-
ical future resulting from the performance of this transaction sequence:

Database = (dc)enrolled(John, c,do(register(Mary, C100),
do(drop(John, C100), S))).

This 1s an example of what 1s called the projection problem in Al planning. Such a se-
quence of update transactions is called a database log in database theory. In this setting,
the Al projection problem becomes formally identical to the database problem of evaluat-
ing a query with respect to a database log. We shall have much more to say later about the
projection problem, database logs and queries, and related issues.

3.5 Exercises
1. Suppose that the following are all of the effect axioms about an electrical system:
fuseOk(s) A —=lightOn(s) D lightOn(do( flipSwitch, s)),
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lightOn(s) D =lightOn(do(flipSwitch, s)),
— fuseOk(do(shortCircuit,s)),
lightOn(s) D —lightOn(do(shortCircuit, s)).

(a) Give the normal form positive and negative effects axioms (Section 3.2.5) for the
fluent light On.

(b) Obtain Pednault’s solution to the frame problem for fluent light On.

(c) Give the explanation closure axioms (positive and negative) for the light On flu-
ent.

(d) Obtain the successor state axioms for the fluents lightOn and fuseOk.
(e) Prove that the resulting action theory entails that

fuseOk(So) D (dAs)lightOn(s).

2. The Al literature on change frequently appeals to one or more “classical” examples.
Usually, despite their seeming simplicity, there 1s some historical reason for the exam-

ple; it illustrates some desirable general property, or some special difficulty for existing
(at the time) approaches. For each of the following examples, axiomatize it appropri-

ately with action precondition and effect axioms, obtain successor state axioms, then
solve the problem.

(a) The monkey and bananas problem: (The very first planning problem!)
A monkey is in a room containing a bunch of bananas hanging from the ceiling,
and a chair. The monkey can’t reach the bananas from the floor, but can if standing
on the chair, provided the chair is underneath the bananas, which initially it is not.

Neither, initially, is the monkey near the chair. In this scenario, four actions are
possible:

e walk(x) - The monkey walks to object x.
e pushUnder(x, y) - The monkey pushes object x to a location under y.
e climb(x) - The monkey climbs onto object x.
e grab(x) - The monkey grabs object x.
Fluents:
e onCeiling(x, s) - Object x is on the ceiling in situation s.
e holding(x, s) - The monkey is holding x 1n situation s.
e nextTo(x,s) - The monkey is next to x in situation s.
e on(x, s), - The monkey 1s on x in situation s.

e below(x, y, s) - Object x 1s below object y in situation s.
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Deductively obtain a plan whereby the monkey gets the bananas. Make sure that
the plan you obtain is executable.

(b) The Yale shooting problem:

Fluents:

e alive(s) - Joe is alive in situation s.

e loaded(s) - The gun 1s loaded 1n situation s.
Actions:

e load - Load the gun. This can always be done, whether or not the gun is
currently loaded.

e shoot - Shoot the gun. This requires that the gun be loaded, and has the effect
that Joe will not be alive.

e wait - A no-op; it has no effect on any fluent, and can always be performed.

Show that, regardless of the initial situation, Joe will not be alive after the se-
quence load, wait, shoot takes place.

3. Axiomatize the game of tic-tac-toe on a 3 x 3 board, with two players, X and O who
move alternately. When X moves, she chooses a blank square and marks an “X” in it.
Player O marks unmarked squares with an “O”. Use the following relational fluents:

e xsquare(squ,s): The square squ contains an “X” in situation s. Similarly,
osquare(squ, s) means squ contains an “O”, and bsquare(squ, s) means squ is
blank. Assume the squares are numbered 1, ..., 9.

e xturn(s) : In situation s it is X’s turn to make a move.

e oturn(s) : In situation s it i1s O’s turn to make a move.
Use the following actions:

e xmove(squ) : X places an X in square squ.

e omove(squ) : O places an O in square squ.

You will find it useful to introduce an abbreviation wins(p, s), meaning that player
p wins the game in situation s. wins can be easily expressed in terms of the fluents
xsquare and osquare.

4. Let favoriteBook(p, s) be a functional fluent, denoting person p’s favorite book in
situation s. Give effect axioms for the following facts about this fluent:
After John reads what is, in the current situation, Mary’s favorite book, that book will
become his favorite book in the next situation.
After Mary reads Moby Dick, her favorite book will be Moby Dick.

Using these, determine the successor state axiom for favorite Book. Then prove that
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in the situation resulting from Mary reading Moby Dick, followed by Mary reading
Middlemarch, followed by John reading what is, in the current situation, Mary’s fa-
vorite book, John’s favorite book will be Moby Dick.

5. Formalize the following toy airline reservation system along the lines of the example
database system of this chapter. This will involve formulating suitable intuitively plau-
sible effect and action precondition axioms, and deriving the corresponding successor
state axioms.

Fluents:

e seatsAvailable( flight#, date, n, s) - There are n seats available in the situation
s for flight#ondate.

e hasReservation(person, flight#, date, s) - person has a reservation in the sit-
uation s for flight#on date.

e seat Reserved(person, seat#, flight#, date, s) - Obvious meaning.
Transactions:

o reserve(person, flight#, date) - Reserve space for person on flight# for date.

e assignSeat(person, seat#, flight#, date) - Obvious meaning.

e cancel Reservation(person, flight#, date) - Cancel the booking.

3.6 Bibliographic Remarks

The situation calculus has been a part of the artificial intelligence zeitgeist almost from the
very beginning of the field. It is included in the standard material of every introductory
course on Al, and it is the language of choice for investigations of various technical prob-
lems that arise in theorizing about actions and their effects. Nevertheless, historically the
Al community has not taken the situation calculus seriously as a foundation for practical
work in planning, control, simulation or robotics. There were good representational and
computational reasons for this. Representationally, there were no suitably rich accounts
for the most basic ingredients of a theory of actions, like time, concurrency, continuous
processes, or procedures. Neither was there a good story for the frame and qualification
problems. Computationally, it was seen as a first-order language requiring necessarily inef-
ficient theorem-proving methods. One purpose of this book is to show that these historical
limitations of the situation calculus have been largely overcome by recent research, and that
the resulting enriched language has many representational and computational advantages
for modeling dynamical systems.

The basic conceptual and formal ingredients of the situation calculus are due to John
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McCarthy [136] in 1963. The frame problem was first observed by John McCarthy and
Pat Hayes [141]; since then, it has been the subject of a large body of technical research
(e.g. Brown [28]), as well as philosophical speculation (e.g. Pylyshyn [170]). Two ex-
cellent recent books on theories of actions, with specific focus on solutions to the frame
and related problems are by Sandewall [187] and by Shanahan [195]. See also the book by
Shoham [199] for an earlier treatment of causality and the frame problem. The companion
to the frame problem-—the qualification problem—was also first observed by McCarthy
[137], although he had in mind a somewhat more general notion of the scope of this prob-
lem than that prevailing today, which concerns only the qualifications relevant to action
preconditions.

The first uses of the situation calculus were in planning, following the influential pro-
posal of Green [71]. Indeed, Shakey, the very first autonomous robot project, was based on
Green’s account of planning, using resolution theorem-proving with a situation calculus
axiomatization of the robot’s actions and environment. This was in the late 1960’s and
early 1970s, before very much was known about the frame problem or theorem-proving,
and this first attempt at a situation calculus-based approach to high level robotics was aban-
doned in the face of the extreme computational inefficiencies that were encountered (Fikes
and Nilsson [50]).

The solution to the frame problem of Section 3.2 was described in Reiter [173]; it
combines elements of earlier proposals by Pednault [154], Davis [36], and by Haas [76],
as elaborated by Schubert [192]. Independently, Elkan [41] proposed a similar solution.
The significance of the consistency condition (3.11) in deriving successor state axioms
(Proposition 3.2.6) was first noted by Pednault [154], and generalized slightly by Reiter
[173] to fit his solution to the frame problem.

The situation calculus-based approach to formalizing databases evolving under update
transactions was described by Reiter in [175]. This approach to database updates is ex-
tended by Bertossi, Arenas and Ferretti [18], who also provide an implementation that
interfaces to a relational database system, and to automated theorem-provers for prov-
ing properties of the situation calculus database description. For more information on
relational databases, see Maier [131], and for a relational database perspective on update
transactions, see Abiteboul [1]. Our perspective on databases, in which the initial database
is any first-order theory, not necessarily relational, is closest to that held by the deductive
database community; see, for example, Minker [147].

The monkey-bananas problem—the very first planning problem—was proposed by
John McCarthy in 1963 and reprinted in [136]; in that paper, McCarthy also gave an ax-
1omatization from which he showed that the monkey can indeed get the bananas.

The Yale Shooting Problem was proposed by Hanks and McDermott in 1986 [80], not
because it 1s very difficult—it is trivial under our approach to the frame problem—but be-
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These are used to denote situation-independent functions like

sqrt(x), height(MtEverest), agent(pickup(person,object)).

For each n > 0, a finite or countably infinite number of function symbols of sort
(action U object)" — action.

These are called action functions, and are used to denote actions like pickup(x),
move(A, B), etc. In most applications, there will be just finitely many action func-
tions, but we allow the possibility of an infinite number of them.

Notice that we distinguish between function symbols taking values of sort object and
those—the action functions—taking values of sort action. In what follows, the latter
will be distinguished by the requirement that they be axiomatized in a particular way
by what we shall call action precondition axioms. |

For each n > 0, a finite or countably infinite number of predicate symbols with arity
n+1, and sorts (actionUobject)" x situation. These predicate symbols are called re-
lational fluents. In most applications, there will be just finitely many relational fluents,

but we do not preclude the possibility of an infinite number of them. These are used
to denote situation dependent relations like ontable(x, s), husband(Mary, John, s),

etc. Notice that relational fluents take just one argument of sort situation, and this is
always 1ts last argument.

For each n > 0, a finite or countably infinite number of function symbols of sort
(action Uobject)" x situation — action U object.

These function symbols are called functional fluents. In most applications, there will
be just finitely many functional fluents, but we do not preclude the possibility of an
infinite number of them. These are used to denote situation dependent functions like
age(Mary, s), primeMinister(Italy, s), etc. Notice that functional fluents take just
one argument of sort situation, and this is always its last argument.

Notice that only two function symbols of L;;caic—S0 and do—are permitted to take values
In sort situation.

4.2 Axioms for the Situation Calculus

There is a strong analogy between the situation calculus and a part of number theory.
Accordingly, we begin with a diversion into the world of natural numbers.

4.2.1 Number Theory

In 1889, Giuseppe Peano provided the first axiomatization of the natural numbers. Here,
we focus on a fragment of full number theory that characterizes the successor function, and
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the less-than relation. Full number theory would also have axioms characterizing addition
and multiplication, but these turn out not to be relevant here. Accordingly, we introduce
the following vocabulary for a second-order language (with equality):

e A single constant symbol 0.

e A unary function symbol o (successor function).

e A binary relation symbol < (the less than relation).

The axioms for this part of number theory are:
ox)=0(y) Dx=y,
(VP).P(O) A (Vx)[P(x) D P(o(x))] D (Vx)P(x),
—x < 0,
x <o(y)=x<y.

Here, x < y is an abbreviation forx < yvx = y.
The second sentence is a second-order induction axiom; it is a way of characterizing
the domain of discourse to be the smallest set such that

1. 01s in the set.

2. Whenever x 1s 1n the set, so 18 o (x).

This second-order fragment of arithmetic 1s categorical (it has a unique model). Normally,
textbooks on the subject describe first-order number theory, which you obtain by replacing
the second-order axiom by an induction schema representing countably infinitely many
first-order sentences, one for each instance of P obtained by replacing P by a first-order
formula with one free variable. The resulting first-order fragment of arithmetic is not
categorical; 1t has (infinitely) many distinct models.

This leads to the natural question: Why not use the second-order axiom instead of
the axiom schema? The answer is, because second-order logic 1s incomplete; there is no
“decent” axiomatization of second-order logic that will yield all the valid second-order
sentences; the valid sentences of second-order logic are not recursively enumerable, or
equivalently, there is no recursive axiomatization for second-order logic (Section 2.2.4).
That being the case, why appeal to second-order logic at all? The main reason is that
semantically, but not syntactically, it characterizes the natural numbers. We shall encounter
the same phenomenon in semantically characterizing the situation calculus.

4.2.2 Foundational Axioms for Situations

We now focus on the domain of situations. The primary intuition about situations that we
wish to capture axiomatically is that they are finite sequences of actions. We want also to
be able to say that a certain sequence of actions precedes another. The four axioms we are
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about to present capture these two properties of situations:
do(ay, s1) =do(az, 52) D ay = ay A 51 = 52, 4.1)
(VP).P(S0) A (Va, s)[P(s) D P(do(a, s))] D (Vs)P(s). 4.2)
Compare these to the first two axioms for the natural numbers.
Axiom (4.2) is a second-order induction axiom, and has the effect of limiting the sort
situation to the smallest set containing Sy, and closed under the application of the function

do to an action and a situation. Any model of these axioms will have as its domain of
situations the smallest set S satisfying:

l. 09 € &, where oy is the interpretation of Sy in the model.

2.lfo € §,and A € A, then do(A,o0) € S, where A is the domain of actions in the
model.

Notice that axiom (4.1) is a unique names axiom for situations. This, together with
the induction axiom, imply that two situations will be the same iff they result from the
same sequence of actions applied to the initial situation. Two situations S} and S> may
be different, yet assign the same truth values to all fluents. So a situation in the situation
calculus must not be identified with the set of fluents that hold in that situation, i.e with a
state. The proper way to understand a situation is as a history, namely, a finite sequence
of actions; two situations are equal iff they denote identical histories. This is the major
reason for using the terminology “situation™ instead of “‘state’; the latter carries with it
the connotation of a “snapshot” of the world. In our formulation of the situation calculus,
situations are not snapshots, they are finite sequences of actions. While states can repeat
themselves—the same snapshot of the world can happen twice—situations cannot.

There are two more axioms, designed to capture the concept of a subhistory:

=8 S, (4.3)

sCdola,s'Y=sCys', (4.4)

where s C s’ is an abbreviation for s T s’ v s = s".! Here, the relation C provides an

ordering on situations; s s’ means that the action sequence s’ can be obtained from the
sequence s by adding one or more actions to the front of s.> These axioms also have their

| Unlike [C, C is not a predicate symbol of Lg;;cq1c1 it is an external notation—a convenient shorthand—standing
for the situation calculus formula that it abbreviates. So whenever you encounter an external expression of the
form s C s’, you are to mentally replace it with the legitimate situation calculus formula s 5" v s = s’ for
which it is an abbreviation. A good way to view abbreviations in logic is as macros that expand, wherever they
are used, into their definitions. Logicians often appeal to such macros as a way of keeping a language, and an
axiomatization, to a bare minimum. That is what we are doing here by treating C as an abbreviation. First, it
need not be included in L0410 secondly, an axiom s C 5" = s C 5" v 5 = 5" need not be included among the
foundational axioms of the situation calculus.

2 Readers familiar with the programming language LISP will have noticed that in the situation calculus, the
constant S 1s just like NIL, and do acts like cons. Situations are simply lists of primitive actions. For exam-
ple, the situation term do(C, do(B,do(A, Sp))) is simply an alternative syntax for the LISP list (C B A) (=
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analogues in the last two axioms of the preceding fragment of number theory.

The above four axioms are domain independent. They will provide the basic proper-
ties of situations in any domain specific axiomatization of particular fluents and actions.
Henceforth, call them X. It takes a little bit of proving, but one can show that the situations
in any model of  can be represented by a tree. Figure 4.1 shows one such tree, for a
model M of X with n individuals a1, ..., @, in M’s domain of actions.

So

do(ag, Sp) do(an, So)

cee
do(an, do(az, Sp))

a Qn

Figure 4.1: The tree of situations for a model with n actions.

We have abused notation slightly in this figure; strictly speaking, do should be do™, and
So should be Sg’ . Nothing in this figure should suggest to the reader that there can be only
finitely many actions in a model of . There are models of ¥ with action domain of any

cons(C, cons(B, cons(A, NIL)))). Notice that to obtain the action history corresponding to this term, namely
the performance of action A, followed by B, followed by C, we read this list from right to left. Therefore, when
situation terms are read from right to left, the relation s [ s’ means that situation s is a proper subhistory of the
situation s”. The situation calculus induction axiom (4.2) is simply the induction principle for lists: If the empty
list has property P and if, whenever list s has property P so does cons(a, s), then all lists have property P.
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cardinality.

4.2.3 Some Consequences of the Foundational Axioms

The following are some logical consequences of the foundational axioms X:
So # do(a,s),
do(a,s) # s,
Existence of a predecessor: s = Sp Vv (3a. s')s = do(a. s'),
So C s,
Transitivity: s C 52 As2 C 53 D 51 C 53,
Anti-reflexivity: —s [ s,
Unique names: 51 [ 52 D 51 # 52,
Anti-symmetry: s C 5" D =s' [C s,
—do(a,s) C s,
sCsAsCsDOs=y.
The Principle of Double Induction
(VR).R(Sp, So) A
[(Va,s).R(s,s) D R(do(a, s),do(a, s))] A

[(Va,s,s").s ©s" AR(s,s") D R(s.do(a, s"))]
O (Vs,s)s C s’ D R(s, s)).

4.2.4 Executable Situations

A situation is a finite sequence of actions. There are no constraints on the actions en-
tering 1nto such a sequence, so that it may not be possible to actually execute these ac-
tions one after the other. For example, suppose the precondition for performing the action
putdown(x) in situation s is that the agent is holding x: holding(x, s). Suppose also that
In situation Sp, the agent is not holding A: —holding(A, S¢). Then do(putdown(A), Sp)
1s a perfectly good situation, but it i1s not executable; the precondition for performing
putdown(A) 1s violated in Sg. Moreover, do(pickup(B), do(putdown(A), Sp)) is not
an executable situation either. In fact, no situation whose first action is putdown(A) is
executable. Similarly, an action A; may be executable in Sy, but the action A; may not
be possible in do(Aq, Sp), in which case no sequence of actions beginning with these two
would be executable. We emphasize that action sequences in which an action violates its
precondition are perfectly good situations. They simply are not physically realizable; they
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e Grades are functional: No matter how the database evolves, no one may have two
different grades for the same course in the same database situation.

e No one’s salary may decrease during the evolution of the database.

The concept of an integrity constraint is intimately connected with that of database
evolution. No matter how the database evolves, the constraint must be true in all database
futures. Therefore, in order to make formal sense of integrity constraints, we need a prior
theory of database evolution. How do databases change? One way (not the only way)
is via predefined update fransactions, as formally specified using the situation calculus
in the last chapter. We shall assume that transactions provide the only mechanism for
such database changes. Therefore, we can appeal to our earlier situation calculus theory
of database transactions (Section 3.4) in defining integrity constraints and their role in
maintaining database integrity. We shall identify a possible future of a database with a
situation, and represent integrity constraints as first-order sentences, universally quantified
over situations.

e No one ever has two different grades for the same course in any database situation:
(Vs, st,c, g, 8').grade(st, c, g, s) A grade(st,c,g’,s) Dg=¢g". (4.6)
e Salaries never decrease in any executable situation:
(Vs,s', p, $, 9 ).executable(s'y As T s" Asal(p,$,s) Asal(p, ¥, s")
08§ <¥.
We can now define what we mean by a database satisfying its constraints.

(4.7)

Definition 4.3.1: Constraint Satisfaction
A database satisfies an integrity constraint / C iff

Database = IC.

So, for example, to establish that a database satisfies the integrity constraint (4.6), we must
prove that the database entails it. This sentence has the typical syntactic form calling for
an inductive proof, using the induction axiom (4.2), with induction hypothesis P(s) as:

(Vst,c, g, g').grade(st,c, g,s) A grade(st,c,g',s) Dg=¢g".
4.3.1 Some Examples of Inductive Proofs

Example 4.3.2: Consider an electric circuit with two switches, Sw; and Sw», and an
action toggle(sw) that opens the switch sw if it is closed, and closes it if it is open. The
circuit 1S connected to a light that changes its state from on to off and off to on whenever
one of the switches is toggled.

open(sw,do(a, s)) = —open(sw, s) A a = toggle(sw) Vv
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open(sw, s) A a # toggle(sw).

light(do(a,s)) = =light(s) A |a = toggle(Sw)) vV a = toggle(Sw3)] v
light(s) Aa # toggle(Swy) A a # toggle(Sw»).

The property we wish to prove of this setting 1s:
(Vs).light(s) = lopen(Swy, 5) = open(Sw», 5)]. (4.8)

In other words, it will always be the case that the light will be on iff both switches are
open or closed (= not open) together. This sentence has the right syntactic form for an
application of the induction principle (4.2) for arbitrary situations. So, take P(s) to be:

light(s) = [open(Swy, 5) = open(Swa, 5)].
Assume further that (4.8) is true of the initial situation:
light(So) = |lopen(Swy, So) = open(Sw, Sp)].

The proof 1s long and tedious, but is otherwise straightforward. It requires the fact that
Swi # Swy, as well as a unique names axioms for the action foggle(sw).

Example 4.3.3: We want to prove that no person can carry himself in any executable
situation:

(Vs).executable(s) D (Vx)—carryving(x, x, s). (4.9)
Assume the following action precondition axiom for pickup, and successor state axiom
for carrying:

Poss(pickup(x,v),s) =x # y A—=carrying(x, y, s).

carrving(x, v,do(a, s)) = a = pickup(x, y) Vv
carrying(x, v, s) Aa # putdown(x, y).

Assume further that initially, no one is carrying himself:
=carrying(x, x, So).

The sentence (4.9) has the right syntactic form for a proof by induction on executable sit-
uations (Section 4.2.5), with P(s) as —carrying(x, x, s). The proof is straightforward.
Notice that there are non-executable situations in which someone is carrying himself. For
example, it is trivial to derive carrying(Sam, Sam,do(pickup(Sam, Sam), Sg)). The
situation do(pickup(Sam, Sam), Sp) is simply not physically realizable; it is a ghost situ-
ation. So the restriction in (4.9) to executable situations is essential. This was not the case
for the previous example.

Example 4.3.4: We want to prove that salaries never decrease over any executable situa-
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tion:
(Vs,s', p,$,%).executable(s’) As T s" Asal(p,$,s) Asal(p,$',s") D% <¥§.

Assume the following background axioms:

e To change a person’s salary, the new salary must be greater than the old:
Poss(changeSal(p. $),s) = 3%).sal(p,$,s) A ¥ < 8.

o Successor state axiom for sal:

sal(p,$,do(a, s)) = a = changeSal(p,$) Vv
sal(p,$,s) A (V$)a # changeSal(p, §).
e Initially, the relation sal 1s functional in its second argument:

sal(p,$, So) Asal(p,$,5) OD$=¥Y.

e Unique names axiom for changeSal:

changeSal(p,$) = changeSal(p’,$) D p=p'A$ =Y.

The sentence to be proved 1s logically equivalent to:

(Vs, s").executable(s') AsC s’ DO
vVp,$,8).sal(p,$,5) Asal(p,$,5') D% <¥.

This has the right syntactic form for an application of the double induction principle for
executable situations of Section 4.2.5, with R(s, s'):

vVp,$, %) sal(p,$,s) Asal(p,¥,s) D8 <¥.

The rest of the proof is straightforward. As was the case in the previous example, the
restriction to executable situations in the current example is essential; 1t 1s trivial to derive
sal(Mary, 100, do(changeSal(Mary, 100, Sy)), even when initially, Mary’s salary i1s
200: sal(Mary, 200, S).

4.3.2 State Constraints

The previous discussion of inductive proofs in the situation calculus dealt with two quali-
tatively different classes of sentences whose proofs required induction: Sentences univer-
sally quantified over all situations, executable or not, and sentences universally quantified
over executable situations only. Sentences (4.6) and (4.8) are examples of the first kind,
while (4.7) and (4.9) are of the second. Sentences of the first kind use the simple induction
axiom (4.2) of the foundational axioms for the situation calculus, or the principle of double
induction over all situations derived in Section 4.2.3, and do not make use of action pre-
condition axioms. The second class of sentences require induction (simple or double) over
executable situations, as derived in Section 4.2.5, and typically do require the information
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in action precondition axioms to make the proofs by induction go through. Both classes of
sentences describe global properties of the background theory of actions, global because
these are properties that must be true of all (executable) situations. Our perspective on such
sentences 1s that they are inductive invariants of the background axioms, i.e. they must be
provable, normally using induction, from these axioms.

Both kinds of sentences are examples of what are called srate constraints in the liter-
ature on theories of actions; database researchers generally call them integrity constraints.
By whatever name, they are a source of deep theoretical and practical difficulties in model-
ing dynamical systems, and we do not treat this topic in any depth in this book. Appendix
B contains a brief discussion that clarifies how sentences of the first and second kinds are
intimately connected to the frame and qualification problems (Section 3.1.3), respectively.

4.4 Basic Theories of Action

Recall that ¥ denotes the four foundational axioms for situations. We now consider some
metamathematical properties of these axioms when combined with a specification of the
initial situation, successor state and action precondition axioms, and unique names axioms
for actions. Such a collection of axioms will be called a basic theory of actions. First we
must be more precise about what counts as successor state and action precondition axioms.

Definition 4.4.1: The Uniform Formulas
Let o be a term of sort situation. Inductively define the concept of a term of L;;/cqic that

1S uniform in o as follows:

[. Any term that does not mention a term of sort situation is uniform in o.

2. If g is an n-ary non-fluent function symbol, and 1, ..., 1, are terms that are uniform
in o and whose sorts are appropriate for g, then g(#y, ..., ;) is uniform in o.

3. If f is an (n+ 1)-ary functional fluent symbol, and 71, ..., f, are terms that are uniform
in o and whose sorts are appropriate for f, then f(#y,...,,,0) 1s uniform in o.

The formulas of L;;cqlc that are uniform in o are inductively defined by:
. Any formula that does not mention a term of sort situation 1s uniform in o.

2. When F is an (n + 1)-ary relational fluent and 7, ..., 1, are terms uniform in o whose
sorts are appropriate for F, then F(ry,...,1,,0) 1s a formula uniform in o.

3. If U, and U; are formulas uniform in o, so are =U;, U; A Uz and (3v)U; provided v
1s a variable not of sort situation.

Thus, a formula of L cale 18 uniform in o iff it does not mention the predicates Poss
or [, it does not quantify over variables of sort situation, it does not mention equality
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on situations, and whenever it mentions a term of sort situation in the situation argument
position of a fluent, then that term is o.

Example 4.4.2: When f, g are functional fluents, F is a relational fluent, and P is a
non-fluent predicate, the following is uniform in o:

(Vx).x = f(g(x,0),0) A3y)F(g(A,0),y,0) D
-P(x,B)Vv P(f(f(x,0),0), g(x,0)).

No formula that mentions Poss or C is uniform in any situation term o. The following are
not uniform in o':

holding(x, do(pickup(x),0)), do(a,o) #0o, (3Is)holding(x,s),
resigned(primeMinister(Canada, do(elect(p,0)), 0)).

Definition 4.4.3: Action Precondition Axiom
An action precondition axiom of L;;cqlc 18 a sentence of the form:

PHSS(A(-II': e rxﬂ)nl .5') == Hﬂ(xlr "ty Ay S):
where A is an n-ary action function symbol, and IT4(x;, -, x,, s) is a formula that is
uniform 1n s and whose free variables are among xp, - - -, X, S.

The uniformity requirement on I'T4 ensures that the preconditions for the executability
of the action A are determined by the current situation s.

Definition 4.4.4: Successor State Axiom

1. A successor state axiom for an (n + 1)-ary relational fluent F is a sentence of Lsjtcalc

of the form:

F(x1,...,xp,do(a,s)) = Pr(xy,...,xp,a,s), (4.10)
where ®p(xy,...,Xx,,a,s5) 1s a formula uniform in s, all of whose free variables
are among a, s, X1, ..., Xn. Notice that we do not assume that successor state ax-

ioms have the exact syntactic form as those obtained earlier by combining the ideas
of Davis/Haas/Schubert and Pednault. The discussion there was meant to motivate
one way that successor state axioms of the form (4.10) might arise, but nothing in the
development that follows depends on that earlier approach.

As for action precondition axioms, the uniformity of ® r guarantees that the truth value
of F 1n the successor situation do(a, s) 1s determined entirely by the current situation
s. In systems and control theory, this is called the Markov property.

2. A successor state axiom for an (n + 1)-ary functional fluent f is a sentence of Lsjtcalc
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