Learn

Quantum Computing
with Python and IBM
Quantum Experience

A hands-on introduction to quantum computing and
writing your own quantum programs with Python

(Y

Robert Loredo

Learn Quantum Computing with Python and
IBM Quantum Experience

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Richa Tripathi

Acquisition Editor: Alok Dhuri

Senior Editor: Rohit Singh

Content Development Editor: Rosal Colaco

Technical Editor: Gaurav Gala

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Production Designer: Aparna Bhagat

First published: September 2020

Production reference: 1250920

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83898-100-6

www.packt.com

Table of Contents

Preface

Section 1:

Tour of the IBM Quantum Experience (QX)

1

Exploring the IBM Quantum Experience

Technical requirements 4 Learning about your backends 8
Navigating the IBM Quantum Learning about pending and latest
Experience 4 results 10
Registering to the IBM Quantum Exploring My Account 12
Experience 5

Summar 15
Understanding the Personal profiletab 7 . y

Questions 15
Getting started with IBM
Quantum Experience 7
Circuit Composer - Creating a Quantum Circuit
Technical requirements 18 Building a quantum circuit with
Creating a quantum circuit classical bit behaviors 26
using the Composer 18 Building a coin-flipping
Launching the Composer editor 18 experiment 32
Familiarizing yourself with the Circuit Entangling two coins together 35
Composer components 19
Creati first ¢ Summary 37

reating our Tirst quantum .
g q Questions 38

circuit 26

ii Table of Contents

3

Creating Quantum Circuits using Quantum Lab Notebooks

Technical requirements 40 Quantum Lab Notebooks 48
Creating a quantum circuit Reviewin
) g the results of your

using Quantum Lab Notebooks 40 quantum circuit on Quantum
Launching a Notebook from the Lab Notebooks 51
Quar‘ujcur.n.Lab) 41 Executing a quantum circuit on a
Familiarizing yourself with the quantum computer 53
Quantum Lab components 41
Opening and importing existing Summary 55
Quantum Lab Notebook 47 Questions 56
Developing a quantum circuit on
Section 2:
Basics of Quantum Computing
Understanding Basic Quantum Computing Principles
Technical requirements 60 interference between qubits 77
Introducing quantum computing 60 Creating a quantum
Understanding superposition 62 teleportation circuit 78
Learning about classical randomness 62 Executing the quantum tele portation
Preparing a qubit in a superposition circuit 80
state 64

Summary 83
Understanding entanglement 71 Questions 84
Learning about the effects of
Understanding the Quantum Bit (Qubit)
Technical requirements 86 Understanding the qubit 88
Learning about quantum bits Visualizing the state vector of a
(qubits) 86 qubit 89

Reviewing the classic bit 86

Table of Contents iii

Creating the Bloch sphere
representation of a qubit 91

Understanding multi-qubits 926
Learning about superconducting qubits 98

6

Coupling the qubits together 103
Summary 103
Questions 104

Understanding Quantum Logic Gates

Technical requirements 106 Summary 150

Reviewing classical logic gates 106 Questions 151

Understanding unitary operators 109

Section 3:

Algorithms, Noise, and Other Strange

Things in Quantum World

Introducing Qiskit and its Elements

Technical requirements 156 Installing and configuring Qiskit

Understanding quantum on your local machine 166

and classical system Preparing the installation 166

interconnections 156 Installing Anaconda 167

Reviewing the quantum programming Installing Qiskit 167

process 157 Configuring your local Qiskit

Understanding how to organize and environment 169

i ith Qiski 1

interact with Qlsiit > Getting support from the Qiskit

Understanding Qiskit basics community 172

and its elements 160 Introducing the Qiskit community 173

Terra 161 Contributing to the Qiskit community 174

Aer 161

\gnis 164 Summ.ary 175
Questions 176

Aqua 164

iv Table of Contents

8

Programming with Qiskit Terra

Technical requirements 178 Understanding pulses and Pulse
Understanding quantum libraries 194
circuits 178 Generating and executing schedules 197
Creating a quantum circuit 178 Scheduling existing quantum circuits 202
Obtain.ing circuit properties and Leveraging provider
analysls N 183 information 210
C.ustt.)n;.lgmg'and parameterizing Learning about the IBM Quantum
clrcuitfibraries 188 Experience components 210
Generating pulse schedules on Summary 220
hardware 192 .
:)) Questions 220
Learning about instructions 193
Monitoring and Optimizing Quantum Circuits
Technical requirements 222 Understanding passes and pass
Monitoring and tracking jobs 222 Managers 235
Optimizing circuits using the Visualizing and enhancing
Transpiler 225 circuit graphs 248
Transformation of a quantum circuit 225 Learning about customized visual
Optimizing the circuit by leveraging circuits 248
the layout optimizer 228 Drawing the DAG of a circuit 252
Leaning about backend configuration
and optimization 231 Summary 254
Questions 254
Executing Circuits Using Qiskit Aer
Technical requirements 258 Running circuits on the Qasm
Understanding the differences simulator 262
between the Aer simulators 258 Adding parameters to the backend
Viewi I ilable backend 260 options 204
Iewing al avarlable backends Initializing the qubits on a circuit 266

Table of Contents v

Running circuits on the statevector

Building your own noise model 295

simulator _ 272 Executing quantum circuits
Running circuits on the unitary with custom noise models 298
simulator 280 . .

. . h | imul Adding custom noise models to our
Running circuits on the pulse simulator 284 . .. 299
Generating noise models 287 Summary 300
Understanding decoherence (T, and T,) 291 Questions 300
Understanding single-gate, multi-gate,
and readout errors 295
Mitigating Quantum Errors Using Ignis
Technical requirements 304 Estimating T, decoherence
Generating noise effects of times 318
relaxation 305 Generating and executing T,* test
Generating noise models and test circuits 319
clreults 303 Estimating the T,* dephasing
Estimating T, decoherence time 323
times 311 Mitigating readout errors 324
Generating the noise effects of Summary 332
dephasing 313 Questions 333
Generating and executing T2 circuits 313 Further readlng 333
Learning about Qiskit Aqua
Technical requirements 336 Using Aqua utilities to simplify
Understanding the components your work 346
and their usability 336 Familiarizing yourself with the
Initializing a fixed quantum state 337 quantum algorithmsin Aqua 350

i Implementing the Logical Expression
Creating a neural network Oracle 350
discriminator 340 Implementing a truth table Oracle 354

Implementing state function operators 342

vi Table of Contents

Creating your first classical/ Implementing Simon's algorithm 357
guantum application (Simon's) 356 S 358
Stating Simon's problem 356 umm'ary

Questions 359
Understanding Quantum Algorithms
Technical requirements 363 Learning about the
Understanding the meaning foundational oracle-based
of outperforming classical quantum algorithm 395
systems 363 Learning about the Bernstein-Vazirani
Understanding the Bell states algorithm 395
aIgothm _ 365 Summary 405
Learning about Deutsch's algorithm 371) 406
Understanding the Deutsch-Jozsa Questions
algorithm 384
Applying Quantum Algorithms
Technical requirements 408 algorithm 429
Understanding periodic Learning about the problem 429
qguantum algorithms 408 Understanding Grover's search
Learning Simon's algorithm 409 algorithm 430
Learning about the Quantum Fourier 'mple_me”t'”g Grover's search
Transform algorithm 416 algorithm 433
Understanding Shor's algorithm 424 Summary 441
Learning about Grover's search Questions 441

Appendix A

Resources

Assessments

Other Books You May Enjoy

Index

Preface

IBM Quantum Experience is a platform that enables developers to learn the basics of
quantum computing by allowing them to run experiments on a quantum computing
simulator and a real device. This book will explain the basic principles of quantum
computing, along with one principle of quantum mechanics, entanglement, and the
implementation of quantum algorithms and experiments on IBM's quantum processors.

This book provides you with a step-by-step introduction to quantum computing using
the IBM Quantum Experience platform. You will learn how to build quantum programs
on your own, discover early use cases in your business, and help to get your company
equipped with quantum computing skills.

You will start working with simple programs that illustrate quantum computing principles
and slowly work your way up to more complex programs and algorithms that leverage
advanced quantum computing algorithms. As you build on your knowledge, you'll
understand the functionality of the IBM Quantum Experience and the various resources
it offers.

We'll explore quantum computing principles such as superposition, entanglement, and
interference, then we'll become familiar with the contents and layout of the IBM Quantum
Experience dashboard.

Then, we'll understand quantum gates and how they operate on qubits and discover the
Quantum Information Science Kit (Qiskit) and its elements such as Terra and Aer.

We'll then get to grips with quantum algorithms such as Deutsch-Jozsa, Simon, Grover,
and Shor's algorithms, and then visualize how to create a quantum circuit and run the
algorithms on any of the available quantum computers hosted on the IBM Quantum
Experience.

Furthermore, you'll learn the differences between the various quantum computers and

the different types of simulators available. Later, you'll explore the basics of quantum
hardware, pulse scheduling, quantum volume, and how to analyze and optimize your
quantum circuits, all while using the resources available on the IBM Quantum Experience.

viii Preface

By the end of this book, you'll have learned how to build quantum programs on your
own and will have gained practical quantum computing skills that you can apply to your
research or industry.

Who this book is for

This book is for Python developers who are interested in learning about quantum
computing and expanding their abilities to solve classically intractable problems with the
help of the IBM Quantum Experience and Qiskit. Some background in computer science,
physics, and some linear algebra is required.

What this book covers

Chapter 1, Exploring the IBM Quantum Experience, will be your guide to the IBM Q
Experience dashboard. This chapter will describe the layout and what each section in the
dashboard means. The dashboard might alter over time, but the basic information should
still be available to you.

Chapter 2, Circuit Composer — Creating a Quantum Circuit, will help you learn about
Circuit Composer. This chapter will outline the user interface that will assist you in
learning about quantum circuits, the qubits, and their gates that are used to perform
operations on each qubit.

Chapter 3, Creating Quantum Circuits Using Quantum Lab Notebooks, will help you learn
how to create circuits using the Notebook with the latest version of Qiskit already installed
on the IBM Quantum Experience. You will learn how to save, import, and leverage
existing circuits without having to install anything on your local machine.

Chapter 4, Understanding Basic Quantum Computing Principles, will help you learn about
the basic quantum computing principles used by the IBM Quantum systems, particularly,
superposition, entanglement, and interference. These three properties, often used together,
serve as the base differentiators that separate quantum systems from classical systems.

Chapter 5, Understanding the Quantum Bit (Qubit), will help you learn about the basic
fundamental component of a quantum system, the quantum bit or qubit, as it is often
called. After reading this chapter, you will understand the basis states of a qubit, how they
are measured, and how they can be visualized both mathematically and graphically.

Preface ix

Chapter 6, Understanding Quantum Logic Gates, will help you learn how to perform
operations on a qubit. These operations are often referred to as quantum gates. This
chapter will enable you, via the IBM Quantum Experience, to get to grips with the
operations that each of these quantum gates performs on a qubit and the results of each of
those operations. Examples of the quantum principles such as reversibility, which is a core
principle for all quantum gates, will be included.

Chapter 7, Introducing Qiskit and its Elements, will help you learn about Qiskit and all

of its libraries that can help you develop and implement various quantum computing
solutions. Qiskit is composed of four elements, each of which has a specific functionality
and role that can be leveraged based on the areas you wish to experiment in. The elements
are Terra (Earth), Aer (Air), Ignis (Fire), and Aqua (Water). This chapter will also discuss
how to contribute to each of the elements and how to install it locally on your machine.

Chapter 8, Programming with Qiskit Terra, will help you learn about the basic foundational
element, Terra. Terra is the base library upon which all the other elements of Qiskit are
built. Terra allows a developer to code the base of an algorithm to the specific operator

on a qubit. This is analogous to assembly language with just a slightly easier set of library
functions. It will also include a section on the Pulse library, which allows you to create
pulse schedules to manipulate the quantum qubits via the hardware.

Chapter 9, Monitoring and Optimizing Quantum Circuits, will help you learn how to
monitor the job requests sent to either the simulator or the quantum computers on the
IBM Quantum Experience. Optimization features will also be covered here to allow you
to leverage many of the existing optimization features included in the Qiskit libraries or to
create your own custom optimizers.

Chapter 10, Executing Circuits Using Qiskit Aer, will help you learn about Qiskit Aer,

a high-performance framework that you will use to simulate your circuits on various
optimized simulator backends. You will learn what the differences are between the four
various simulators of Qasm, State vector, Unitary, and Pulse, and what functionality each
one exhibits. Aer also contains tools you can use to construct noise models, should you
need to perform some research to reproduce errors due to noise.

Chapter 11, Mitigating Quantum Errors Using Ignis, will help you learn about the

various errors that currently affect experiments on read devices, such as relaxation and
decoherence, so you can design quantum error correction codes. You will also learn about
readout error mitigation, which is a way to mitigate the readout errors returned from a
quantum computer.

x Preface

Chapter 12, Learning about Qiskit Aqua, will, in essence, pull everything together so that
end users such as researchers and developers from the various domains of chemistry,
machine learning, finance, optimization, and more can run their computations on a
quantum computer system without having to know all the inner workings. Aqua is the
tool connected to quantum algorithms that has been created to do just that. You will learn
how to extend your classical application to include running a quantum algorithm.

Chapter 13, Understanding Quantum Algorithms, will dig into some basic algorithms
using the IBM Quantum Experience Composer. This chapter will start with some simple
algorithms that illustrate the advantages of superposition and entanglement, such as Bell's
state theorem, and extends into some more common algorithms to solve some problems
that illustrate uses of superposition and entanglement such as Deutsch-Josza and a few
others, each of which provides some variance to the different algorithm types.

Chapter 14, Applying Quantum Algorithms, describes the various quantum computing
properties and algorithms used to create some of the more well-known algorithms such as
Quantum Amplitude Estimation, Variational Quantum Eigensolvers, and Shor's algorithm.

Appendix A, Resources, will help you get familiar with all the available resources in

the IBM Quantum Experience and Qiskit community. These resources that have been
contributed either by the Qiskit open source community, or the IBM Quantum research
teams themselves. The information is laid out so anyone with basic to expert-level
knowledge can jump in and start learning. There is a full quantum course, textbook, and
Slack community that you can connect to in order to extend your learning and collaborate
with others.

Assessments contains the answers to the questions asked in the chapters.

To get the most out of this book

You will need to have internet access to connect to the IBM Quantum Experience. Since
the IBM Quantum Experience is hosted on the IBM Cloud, you will not need anything
more other than a supported browser and to register with the IBM Quantum Experience.
Everything else is taken care of on the IBM Quantum Experience.

Software/hardware covered in the book OS requirements

Latest browser (Firefox, Chrome, Safari) Windows, Mac OS X, and Linux (any)

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Preface xi

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit www . packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Login or register at www.packt . com.
2. Select the Support tab.

3. Click on Code Downloads.

4,

Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

« WinRAR/7-Zip for Windows
« Zipeg/iZip/UnRarX for Mac

« 7-Zip/PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-

Quantum-Experience. In case there's an update to the code, it will be updated on
the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action

Code in Action videos for this book can be viewed at https://bit.1ly/3505M80.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838981006 ColorImages.pdf.

xii Preface

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "This will initialize our t1, a, and b parameters, which we will
use to generate TLFitter."

A block of code is set as follows:

Initialize the parameters for the T1lFitter, A, Tl, and B
param tl = tl*1.2
param a = 1.0

param b = 0.0
Any command-line input or output is written as follows:

[[1. 0. 0. ... 0. 0. 0.]
[0. 1. 0. ... 0. 0. 0.]
[0. 0. 1. ... 0. 0. 0.]
[0. 0. 0. ... 1. 0. O
[0. 0. 0. ... 0. 1. 0
[0. 0. 0. ... 0. 0. 1

-

et e

.11
Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:

"As shown in the following screenshot, ibmq_gqasm_simulator can run wider circuits
than most local machines and has a larger variety of basis gates."

Tips or important notes

Appear like this.

Preface xiii

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

Copyrighted material

Section 1:

Tour of the

IBM Quantum
Experience (QX)

In this section, we will tour all the features and resources available to you on the IBM
Quantum Experience. These will include some educational materials for all levels,
information on the many simulators and real devices available to you, and tools that you
can use to perform experiments from the many tutorials as you learn, or to simply create
experiments on your own.

This section comprises the following chapters:
« Chapter 1, Exploring the IBM Quantum Experience
« Chapter 2, Circuit Composer — Creating a Quantum Circuit

o Chapter 3, Creating Quantum Circuits Using Quantum Lab Notebooks

Copyrighted material

1

Exploring the
IBM Quantum
Experience

Quantum computing has been growing in popularity over the past few years, most
recently since IBM released the IBM Quantum Experience (IQX) back in May 2016.
This release was the first of its kind, hosted on the cloud and providing the world with
the opportunity to experiment with a quantum computer for free. The IQX includes a
user interface that allows anyone to run experiments on both a simulator and on a real
quantum computer.

The goal of this chapter is to first introduce you to the IBM Quantum Experience
site, specifically the dashboard, which contains everything you need in order to run
experiments. It also allows you to experiment with existing experiments contributed
by other developers from around the world, the benefits of which can help you to
understand how others are experimenting, and you can perhaps collaborate with
them if the experiments correlate with your own ideas.

4 Exploring the IBM Quantum Experience

This chapter will help you understand what actions and information are available in each
view. This includes creating an experiment, running experiments on a simulator or real
quantum device, information about your profile, available backends, or pending results
to experiments. So, let's get started!

The following topics will be covered in this chapter:

» Navigating the IBM Quantum Experience

+ Getting started with IBM Quantum Experience

Technical requirements

Throughout this book, it is expected that you will have some experience in developing
with Python and, although it isn't necessary, some basic knowledge of classical and
quantum mechanics would help.

Most of the information will be provided with each chapter, so if you do not have
knowledge of classical or quantum mechanics, we will cover what you need to know here.

For those of you that do have knowledge, the information here will serve as a refresher.
The Python editor used throughout this book is Jupyter Notebook. You can, of course,
use any Python editor of your choice. This may include Watson Studio, PyCharm,
Spyder, Visual Studio Code, and so on. Here is the link for the CiA videos:
https://bit.ly/3505M80

Here is the source code used throughout this book: https://github. com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-
Quantum-Experience.

Navigating the IBM Quantum Experience

As mentioned earlier, the dashboard is your high-level view of what you will normally
see once you log in to IQX. It aggregates multiple views that you can see, and this helps
you to get an idea as to what machines you have access to and what experiments you
have pending, running, or completed.

In this section, we will go through the steps to get registered on IQX. Let's do that in
the next section.

Navigating the IBM Quantum Experience 5

Registering to the IBM Quantum Experience

In this section, we will get registered and explain what happens in the background once
you sign up to IQX for the first time. This will help you understand what features and
configurations are prepared and available to you upon registration.

To register to the IBM Quantum Experience, follow these steps:

1. The first step is to head over to the IBM Quantum Experience site at the following
link: https://quantum-computing.ibm.com/

2. Sign-in to your account from the login screen, as shown in Figure 1.1. Your
individual situation will determine how to proceed from there.

If you already have an account or are already signed in, you can skip this section
and move on to the next one.

If you have not registered, then you can select the login method of your choice from
the sign-in screen. As you can see, you can register using various methods, such as
with your IBM ID, Google, GitHub, Twitter, LinkedIn, or by email.

If you do not have any of the account types listed, then you can simply register for
an IBMid account and use that to sign in:

Sign in to get started

Figure 1.1 - The IBM Quantum Experience sign-in page

3. Once you select the login method of your choice, you will see the login screen
for that method. Simply fill out the information, if it's not already there, and
select login.

6 Exploring the IBM Quantum Experience

4. Once signed in, you will land on the Home page. This is the first page you will see
each time you log in to the IBM Quantum Experience site:

IBM Quantum Experience

o Circuit Composer has some exciting new visualization and customization options! Check out the updates here / ‘

Welcome Recent circuits (59)
RO BE RT Name Last ed These are the quantum

systems and simulators

- that you have access to.
I_O R E DO Untitled circuit 4 days ago

Untitled circuit € days ago online
Your providers
Untitled circuit 8 days ago ibma_16_melbourne (15 qubits)
RERAERRRRRRRENRS
Experiment #20190528170154 20 days ago Queve: 17 jobs
Quantum Demo a month age
online
View All . .
ibmg_santiago (s qubits)
s
Queve: b jobs
el [
onling
You have no circuit runs in the queue. ibmq_london (5 qubits)
Queve: 0 jobs
Latest results (331 online

ibmg_burlington (s qubits)

Figure 1.2 - The IBM Quantum Experience home page

Now that you have registered to the IBM Quantum Experience, let's take a quick tour and
delve into some features that make up the IQX home page. Let's start by reviewing the
home page, specifically the Personal profile tab. You can access your personal profile via
your avatar, located at the top right of the page (as pointed out in Figure 1.2).

Getting started with IBM Quantum Experience 7

Understanding the Personal profile tab

This section explains the profile of the logged-in user. This is helpful if you have multiple
accounts and you wish to keep track of them. The provider limits the number of jobs that
can be executed or queued on a given device at any one time to a maximum, as specified
in the documentation. There are many ways to access all the various quantum devices;
those listed in the open group will see all freely available quantum devices, as illustrated
along the right side of Figure 1.2. For those who are members of the IBM Q Network, you
will have access to the open devices, as well as premium quantum devices such as the 65
qubit quantum computer.

Now that you have completed the sign-up process and successfully logged in, we can

start off by taking a tour of the IBM Quantum Experience application. This will be where
most of the work within this book will take place, so it will benefit you in understanding
where everything is so that you can easily make your way around it while developing your
quantum programs.

Getting started with IBM Quantum Experience

This section provides a quick way to launch either Circuit Composer or the notebooks
located in the Quantum Lab views, herein simply referred to as Qiskit notebooks, each
of which we will cover in detail in Chapter 2, Circuit Composer - Creating a Quantum
Circuit, and Chapter 3, Creating Quantum Circuits Using Qiskit Notebooks, respectively, so
hang in there. But as with other views, know that you can kick-start either from the main
dashboard view or from the left panel. Each button easily provides a quick launch for
either of the two circuit generators.

8 Exploring the IBM Quantum Experience

Learning about your backends

This section lists the available backend quantum systems that are provisioned for your
use (as shown in Figure 1.3). It not only provides a list of the available backends but also
provides details for each, such as the status of each backend. The status includes whether
the device is online or in maintenance mode, how many qubits (quantum bits) each
device contains, and how many experiments are in the queue to be run on the device.

It also contains a color bar graph to indicate queue wait times, as illustrated between
ibmq_16_melbourne and ibmq_rome in the following screenshot. Be aware that the
quantum devices listed for you may be different from those listed here:

IBM Quantum Experience

Welcome Recent circuits (56)
= ROBERT LOREDO . s

simulators that you have access to.

= Quantum Demo amaonth ago

okl
o Grover Search 010 amanth ago o

ibmg_16_melbourne (15 qubits)
1BM Q Community Demo Sp 2 months ago

1BM Q Network member (LTI

Fairfield demo 2 months ago Queus: B jobs

m Untitled Experiment 2 months ago
—~ onling
ibmq_rome (5 qubits)

Queue: 8 jobs
Pending results (0
: online
You have no experiment runs in the queue.
ibmqg_london (s qubits)

]
Queue: 1 jobs

Latest results (249)

online

ibmg_burlington (s qubits)

Figure 1.3 - Provisioned backend simulators and devices

From the preceding screenshot, you can see that another great feature that IQX has
with respect to the backend service is the ability to see the hardware details of each

real quantum device. If you hover your mouse over each device listed, you will see an
expansion icon appear at the top right of the device information block. If you select a
device (for example, ibmq_16_melbourne), you will see the device details view appear,
as shown in the following screenshot:

Getting started with IBM Quantum Experience

9

ibmq_16_melbourne v2.3.0

O Qubits 11 Connectivity
online

EEEEEEENEENENENENENENEEE
Queue: 24 jobs

Providers with access:

ibm-q/open/main

Single-qubit U2 error rate CNOT error rate

3.436e-4 4.219e-3 1.26%e-2 5.351e-2

Download Calibrations

—

Qubits Online since

15 Nov 06, 2018

Basis gates Last calibration update
id, ul, u2, u3, cx Aug 14, 2020 2:37 AM
Maximum shots Maximum circuits

8192 75

Figure 1.4 - Device details view: The status (left) and configuration and error rates (right)

From the previous screenshot, you can see that the device details view contains some
very relevant information, particularly if you are working on any experiments that have
intricate connectivity between qubits or analyzing error mitigation techniques. On the
left of the screenshot (Figure 1.4), you can see the basic status information of the device.
This is similar to what you see before expanding the device information. In the square
on the right, we get into a little more detail with respect to the devices' configuration,
connectivity, and error rates.

As described in the shaded bar area, where the error rate range is illustrated by Single-
qubit U3 error rate, and CNOT error rate (single qubit and multi-qubit, respectively),
qubits are identified as the circles where the number specifies the qubit number in the
device. The arrows in between identify how each qubit is connected to the other qubits.
The connections are specific to how the multi-qubit operations are specified.

10 Exploring the IBM Quantum Experience

For example, in the 15 qubit configuration in Figure 1.4 (on the right), you can see that
qubit number 4 is the source for target qubits 3 and 10 (we will get into what source and
target mean later, but for now just assume that actions to the target qubit are triggered by
the source qubit). You can also see that qubit 4 is the target qubit of qubit 5. This visual
representation is based on information provided by the device configuration, which you
can also access programmatically using Qiskit.

Another piece of information you can get here is the error rates. The devices are calibrated
at least once a day or so, and each time they are calibrated, they calculate the average error
rates for a single gate (u3) and multi-gates (CNOT). The error rates vary per qubit, or
qubits for multi-gates, and therefore, the diagram uses a color heat map to identify where
the qubit sits on the error rate scale. Each qubit has a different color associated with it. This
color makes it possible to visually identify where on the error rate scale that qubit falls. If
you are running an experiment on a qubit that requires low error rates, then you can see
from this diagram which of these qubits has the lowest error rate when last calibrated.

Below the qubit configuration, you will see a link that also allows you to download
the entire configuration information in a spreadsheet. The details there are very
specific to each qubit and they provide more information that isn't visible on the
qubit configuration diagram.

Finally, at the bottom of the view are the specifics of the device itself, which includes
the number of qubits, the date the device went online, and the basis gates available on
the device.

You can now close the device configuration diagram to return to the dashboard, where
we will next learn about the quantum programs and how to monitor them.

Learning about pending and latest results

The table shown in Figure 1.5 contains the experiments that are pending completion on
the backend devices. You can use this view to quickly see whether your experiments have
run, and if not, where in the queue your experiment is set to run next.

Under your pending results table is the table where all your latest results are stored. These
are the last few experiment results that were run on either the simulator or real devices
on the backend. Each device is initially sorted by creation date but can be sorted by either
backend or status, if need be.

Getting started with IBM Quantum Experience

11

Important Note

Using Qiskit Aer.

Details regarding job objects will be covered in Chapter 9, Executing Circuits

As well as this, the job ID is listed so that you can call back the details from that job at
a later time, as seen in the following screenshot:

Welcome

1BM Q Community
IBM Q Network member

Recent circuits (56)

ROBERT LOREDO

Quantum Demo a month ago

Grover Search 010 a month ago
Demo Sp 2 months ago
Fairfield demo 2 months ago

Untitled Experiment 2 months ago

View All

Pending results (0

You have no experiment runs in the queue.

Latest results (249)

Figure 1.5 — Pending results and latest results

In this section, you have learned where to
hardware details about the simulators and
explore your account profile.

find information about your experiments,
the real quantum devices. Next, we will

12 Exploring the IBM Quantum Experience

Exploring My Account

In this section, you will explore your account details view, where you will find information
about your account and what services are available to you. This includes services such as
the ability to view the list of backend systems available to you, notification settings, and
resetting your password.

To open the account view, follow these steps:

1. Click on your avatar at the top right of the dashboard (as highlighted in the
following screenshot) and select My Account:

Signed in as
ROBERT LOREDO
loredo@us.ibm.com

My Account

Your backends (11)

Logout
These are the quantum systems g

simulators that you have access to.
online

Figure 1.6 - The My Account option on the dashboard

2. Once the My Account view is loaded, you will see a page similar to this:

Exploring My Account

13

IBM Quantum Experience

ROBERT
LOREDO

loredo@us.ibm.com

IBM

From the preceding screenshot, you can see that on your account page, you will see the

Qiskit in IBM Quantum Experience Qiskit in local environment

1. Install

API Token:

Copy token

Regenerate

IBM Quantum newsletter

Figure 1.7 - The My Account view

following information sections:

« Account details: This section has your account and contact information that you
used to register. It also includes options such as resetting your password, privacy

and security information, and the option to delete your account.

« Qiskit in IBM Quantum Experience: This includes a quick link to launch a Qiskit
notebook to run your experiments. We will review the Qiskit notebook later in
this book, but for now, just know that you can launch a Qiskit notebook from

here as well.

14 Exploring the IBM Quantum Experience

+ Qiskit in local environment: This section allows you to install Qiskit and run
experiments from your local machine without the need to connect to IQX via the
cloud. This is exceptionally helpful when you wish to run experiments but do not
have access to a network. By running experiments from your local machine, this
allows you to run simulators that are installed as part of the Qiskit installation.
However, keep in mind that in order to run the experiments on a real quantum
device, you will need network connectivity to those real devices.

If you want to run the experiments on a real device from your local machine, then
you will need to copy the token (highlighted in Figure 1.7) that was generated for
you in the background. You should then assign it to the Qiskit IBMQ provider
class. Details of the IBMQ provider class will be discussed in Chapter 9, Executing
Circuits Using Qiskit Aer, but for now, this is where you can copy the Application
Programming Interface (API) token.

Also, note that there is an option to regenerate the API token. If you choose to
regenerate the token, you will need to delete your old token and save the regenerated
one in your local IBMQ provider class. The save account method of the IBMQ
provider class will persist the value in your local machine, so you will only have to
save it once and then load the account each time you wish to use a real quantum
device for your experiment.

Since this book is written primarily for use on the IBM Quantum Experience site,
we will cover running and setting up on your local machine. Just in case you happen
to not have network connectivity, you can still run simulated experiments locally.

+ Notification Settings: This section simply allows you to set your notifications and
how you prefer to receive information, such as when experiments have completed
or other information or surveys that you wish to contribute.

+ Your accounts: This last section toward the bottom of the My Account view is an
overview of the accounts that you have and a list of the provisioned systems you
have access to. These provisions are selected and assigned as part of the sign-up
process. This includes information such as when you first signed up, the project that
you are associated with (main is usually the default project), provider information,
and the allocated backend systems that you have access to. These allocated backends
that you can see are either real devices, such as ibmq_16_melbourne, or simulators,
such as ibmq_gasm_simulator, which are running on the IQX cloud. We will
discuss the details of the simulators and devices in later chapters.

Now that we are done with our tour of the IBM Quantum Experience layout, we're ready
to get to work. In the following chapters, we will delve into each section and progress to
writing quantum programs.

Summary 15

Summary

In this chapter, we reviewed the dashboard, which provides plenty of information to help
you get a good lay of the land. You now know where to find information regarding your
profile, details for each of the devices you have available, the status of each device, as well
as the status and results of your experiments.

Knowing where to find this information will help you monitor your experiments and
enable you to understand the state of your experiments by reviewing your backend
services, monitoring queue times, and viewing your results queues.

You also have the skills to create an experiment using either Circuit Composer or the
Qiskit notebooks. In the next chapter, we will learn about Circuit Composer in detail.

Questions

1. Which view contains your API token?

2. Which device in your list has the fewest qubits?

3. How many connections are there in the device with the fewest qubits?

4. What are the two tools called that are used to generate quantum circuits?
5

Which view would provide you with the list of basis gates for a selected device?

Copyrighted material

2

Circuit Composer -
Creating a Quantum
Circuit

In this chapter, you will learn how to use the Circuit Composer and what each of the
composer's component functions are with respect to creating and running experiments.
The composer will help you to visually create a quantum circuit via its built-in user
interface, which in turn will help you to conceptualize how the basic principles of
quantum mechanics are used to optimize your experiments. You will also learn how to
import quantum circuits, preview the results of each experiment, and create your first
quantum circuit.

The following topics will be covered in this chapter:
« Creating a quantum circuit using the Composer

« Creating our first quantum circuit

« Building a coin-flipping experiment

18 Circuit Composer - Creating a Quantum Circuit

By the end of this chapter, you will know how to create a quantum circuit using the
Graphical Editor to create experiments that simulate classic gates and some quantum
gates. You will also learn where to examine the various results of your experiment, such
as state vectors and their probabilities. This will help you understand how some quantum
gate operations affect each qubit.

Technical requirements

In this chapter, some basic knowledge of computing is assumed, such as understanding
the basic gates of a classic computing system; for example, bit flip (0 to 1), NOT gates,
and so on. Here is the full source code used throughout the book: https: //github.
com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-
IBM-Quantum-Experience. Here is the link for the CiA videos: https://bit.
ly/3505M80

Creating a quantum circuit using the Composer

In this section, we will review the Composer layout so that you can understand the
functionality and behavior of the Composer when creating or editing your quantum
circuits. Here, you will also create a few circuits, leveraging the visualization features from
the Composer to make it easy for you to understand how quantum circuits are created.
So, let's start at the beginning: by launching the Composer editor.

Launching the Composer editor

To create a quantum circuit, let's first start by opening up the Circuit Composer. To open
the Composer view, click on the Circuit Composer icon located on the left panel as shown
in the following screenshot:

IBM Quantum Experience

’ « Circuit Composer has

Figure 2.1 - Launching the Circuit Composer (left panel)

Now that you have the Composer open, let's take a tour of what each component of the
Composer editor provides you with.

Creating a quantum circuit using the Composer 19

Familiarizing yourself with the Circuit Composer
components

In this section, we will get familiar with each of the components that make up the
Composer. Each of these has features specific to the various components of the Composer
editor. These can provide insights by allowing you to do things such as visually inspecting
the results of your experiments by displaying the results in a variety of ways. Visualizing
the construction of the quantum circuit will help you conceptualize how each quantum
gate affects a qubit.

Understanding the Circuit Composer

In this section, we will review the various functionalities available to ensure you have a
good understanding of all the different features available to you.

In the following screenshot, you can see the landing page of the Circuit Composer
editor view:

View Share Help Run Settings ~

3 Circuits / Untitled circuit <[> code T 0xcs G Jobs

HEBHERNEEE L KT
DODODEEERREEEEE - - :

OPENQASM 2.0;

2 include “gelibl.inc®:
3 aqreg q(3];
4 cIeg

Measurement Probabilities @ : Q-sphere v @

No
Measurement probability (% pre B State [0 Phase angle

Figure 2.2 — Circuit Composer view

20 Circuit Composer - Creating a Quantum Circuit

From the preceding screenshot, you can see at the center of the page is the Circuit
Composer view. In the following screenshot, you can see a series of gates and operations:

HEBHBHHB S 2 s 5 W o
[3 (3 I C T O
Figure 2.3 — Gates and Operations

As you can see in the preceding screenshot, each of these components has a specific
function or operation that acts upon the qubit(s), which we will cover in detail in
Chapter 6, Understanding Quantum Logic Gates.

As we can see in the following screenshot, below the collection of gates and operations,
we have the Circuit Composer itself:

Qo
01

Q2

c3

Figure 2.4 - Circuit Composer

As you can see from the preceding screenshot, the default circuit includes three qubits, each
of which is labeled with a q, and the index appended in order from least significant bit (in this
case, q,, q, q,)- Each qubit is initialized to an initial state of 0 before running the experiment.

Next to the qubit you will see a line, which looks like a wire running out from each qubit,
in the circuit:

do
Qi1

Q2

c3

Figure 2.5 - Qubits and circuit wires

Creating a quantum circuit using the Composer 21

As you can from the preceding screenshot, this line is where you will be creating a circuit
by placing various gates, operations, and barriers on them. The circuit has three wires,
each of which pertains to one of the three qubits on the quantum computer. The reason it
is called a Composer is primarily due to the fact that it looks very similar to a music staff
used by musicians to compose their music. In our case, the notes on the music staff are
represented by the gates and operations used to ultimately create a quantum algorithm.

In the next section, we will review the various options you have available to customize
the views of the IQX. This will allow you to ensure you can only see what you need to see
while creating your quantum program.

Learning how to customize your views

Continuing with our Composer tour, at the top of the Composer view is the circuit view
menu option that allows you to save your circuit, clear the circuit, or share your quantum
circuit. First, we will cover how to save your circuit. To do this, simply click on the default
text at the top left of the circuit composer where it currently reads (Untitled circuit) and
type in any title you wish. Ideally, select a name that is associated with the experiment. In
this case, let's call it My First Circuit and save it by either hitting the Enter key or clicking
the checkmark icon to the right of the title.

Across the top of the Composer, you will see a list of drop-down menu options. We can
see these in the following screenshot:

IBM Quantum Experience

File Edit Inspect View Share Hel

[Circuits / My First Circuit s.

HEBAHHHATEE

Figure 2.6 - Composer menu options

The menu items in the preceding screenshot have the following options:

« File provides options to create, copy, open a new circuit, or view all
quantum circuits.

« Edit allows you to manage your circuit, clear all operators, and edit the
circuit description.

« Inspect provides the ability to step through your circuit, similar to debug mode.

22 Circuit Composer - Creating a Quantum Circuit

« View enables the various view options.
+ Share allows you to share your quantum circuit with others.

« Help provides various guides, tours, and content related to quantum computing.

Let's now take a look at each of the various views in the following sections.

The Graphical Editor view

The Graphical Editor view contains a few components used to create quantum circuits.
Which includes the following:

+ Circuit Composer: Ul components used to create quantum circuits

+ Gates and Operators: A list of available drag and drop gates and operators available
to generate a quantum circuit

+ Options: A list of options such as the gate glossary, collapse gates, and options for
downloading an image representation of your quantum circuit

The following is a screenshot illustrating each of the preceding components:

HEEHOHNEEERENSNAOINDDODEEE o
DEEmEEE - —

. Collapse gates

Download PNG

Download SVG

Figure 2.7 - Graphical Editor view

Now that we know where we can create a quantum circuit, let's move on to displays, which
provide the results of our quantum circuit.

The Statevector view

The Statevector view allows you to preview the state vector results of your quantum
circuit. The state vector view presents the computational basis states along the x axis, and
the Amplitude along the y axis. In this case, since we do not have any gates or operators
on our circuit, the state vector representation is that of the initial state. Where the initial
state indicates that all qubits are initialized to the 0 (zero) state and with an amplitude of 1,
we see that presented in the following screenshot:

Creating a quantum circuit using the Composer 23

Statevector v @
! State 000 Download PNG
0E Amplitude: 1
Download SVG
§ 0.6 Phase angle: 0 ®
g 0.4 Download PDF

Download CSV

T T T T
000 001 010 D11 100 101 110 111
Computational basis states Close window

Figure 2.8 - Statevector view

Other options available to us include various ways to download the state vector information,
as illustrated in the drop-down menu at the top right of the previous screenshot.

The state vector information is just one of the visual representations of your quantum
circuit. There are a couple of others we want to visit before moving on.

The Measurement Probabilities view

The next view is the Measurement Probabilities view. This view presents the expected
measurement probability result of the quantum circuit. As mentioned in the previous
description, and illustrated in the following screenshot, since we do not have any
operators on the circuit, the results shown are all in the initial state of 0:

Measurement Probabilities @
100 Download PNG

g 80

= Download SVG

2

= 60

g Download PDF

% 40

= Download CSV

w

2 20

Close window

000

Computational basis states
Figure 2.9 - Measurement Probabilities view

The options here also provide various formats to download the measurement probabilities.

24 Circuit Composer - Creating a Quantum Circuit

The Q Sphere view

Finally, the last of the state visualizations we have to review is the Q Sphere view. The

Q sphere is similar to the Bloch sphere; however, the Bloch sphere does have some
limitations, particularly when working with more than one qubit. The Bloch sphere is
used to represent the vector of the current state of a qubit. The Q sphere can be used to
represent the state information of a single qubit or multiple qubits, including the phase
information. The following screenshot shows a representation of the three qubits we have
in our circuit, all of which are in the initial state:

Q-sphere v @

1000) 0

Download PNG

State 000
Download PDF
Probability: 1

Phase angle:0 ® Download CSV

Close window

nf2

n [l Phase i O

o State Phase angle
|

Figure 2.10 — Q Sphere view

The Q-sphere view has two components, the first is the Q-sphere itself that captures the
state vector of the various qubit states represented by a vector that originates at the center
of the sphere. At the end of the vector is a smaller sphere, which represents the details of
the state. The states represented by these small spheres are visible when hovered over. The
previous screenshot illustrates the 3 qubits in an initial state of 000, with a probability of 1,
and a phase angle of 0.

The second component is located at the bottom left, which is the legend that describes the
phase of the states. Since the small sphere represents the phase angle of 0, the color of the
sphere is blue, which is the same that the legend indicates for the phase of 0. If the states
were out of phase by a value of mr, then the color of the sphere would be red.

There are various options here; to the top right you have various options to download
visualizations in different image formats, and at the bottom right you can select whether
to enable the state or phase angle information of the Q-sphere.

Creating a quantum circuit using the Composer 25

One last thing to note is at the top left, you can see a dropdown that allows you to switch
between all the views we reviewed, such as the measurement probabilities and state vector.

Now that we are familiar with the various state representation views, let's look at the last
view that allows us to write code and execute our quantum circuits.

The Code Editor view

The last view we will cover here is the Code Editor view. Here we can write code to build
the circuit itself. At the top of the Code Editor view there are three tabs, namely, Code,
Docs, and Jobs. Each tab displays details about itself.

The Code tab has the code editor itself, which you can use to code using QASM or Qiskit
code, for which you make your selection with the drop-down menu at the top left of

the editor. The options available in the Code Editor provide a way to copy, import, and
export code. Also included is the QASM reference link, which redirects you to details of
the QASM language. The following screenshot illustrates the Code editor view with the

options expanded:

<[> Code 'E Docs f@ Jobs

Code editor Open in Quantum Lab

QASM v

1 OPENQASM 2.0;
Copy code
2 include "gelibl.inc";
3
4

Import code
qreg ql3]; 2

creg c[3];
6 Export code

(91

QASM reference

Figure 2.11 - Code Editor view

26 Circuit Composer - Creating a Quantum Circuit

The Docs tab displays the documentation available and the Jobs tab displays your pending
and completed job running on the simulators or quantum devices.

In this section, we learned about how to create a quantum circuit using the Composer. We
also learned about the views and components of the Circuit Composer views.

Now that you have an understanding of the various views and components that make up
the Circuit Composer views, we can start creating our first quantum circuit and leveraging
a lot of these views.

Creating our first quantum circuit

Now that we know where everything is in the Circuit Composer, we will create our
first quantum circuit. This will help you to get a better understanding of how all
these components work together and it will show you how these components provide
insights such as current state and probabilistic estimation as you build your first
quantum experiment.

Building a quantum circuit with classical bit behaviors

We are all familiar with some of the basic classic bit gates such as NOT, AND, OR,
and XOR. The behavior that these classic gates perform on a bit can be reproduced
on a quantum circuit using quantum gates. Our first experiment will cover these basic
building blocks, which will help you to understand the correlation between quantum
and classic algorithms.

Our first experiment will be to simulate a NOT gate. The NOT gate is used to flip the
value, in this case from [0) to |1), and vice versa. The gate we will use to do this is the NOT
gate. We will cover details on how this gate operates on qubits in Chapter 6, Understanding
Quantum Logic Gates.

Creating our first quantum circuit 27

To simulate the NOT gate on a quantum circuit, follow these steps:

1. From the open composer circuit that you previously created and titled My First
circuit, click and drag the NOT gate, which is visually represented by the @ symbol,
from the list of gates down onto the first qubit, as shown in the following screenshot:

(3 Circuits / My First Circuit saveq

(51 2 I o 0
a o é-”.

q

c3

Figure 2.12 - Add an X (NOT) gate to the first qubit

2. Next, click and drag the measurement operation onto the first qubit, just after the
NOT gate. By taking a measurement of the qubit and having its value sent out to
the pertaining classic bit, we are essentially reading the state of the qubit.

A measurement occurs when you want to observe the state of the qubit. What

this means is that we will collapse the state of the qubit to either a 0 or a 1. In this
example, it is pretty straightforward that when we measure the qubit after the NOT
gate, the reading will be 1. This is because since the initial state is set to 0, applying a
NOT gate will flip it from 0 to 1. Therefore, we expect the measurement to read 1.

3. Click and drag another measurement operation onto the second qubit. We'll do this
just to contrast the difference between what we would see when we measure a qubit
in the initial state, and after a NOT gate.

28 Circuit Composer - Creating a Quantum Circuit

4. Before we run this experiment, let's note a few things. First, note that the classic
bits are all on one line (as shown in the following screenshot). This is mostly to save
space. In lieu of having three additional wires where each represents a classic bit, a
single wire is used to denote the classic bits. They are labeled ¢3 to indicate a set of
three classic bits:

[Circuits / My First Circuit

DEEEEmEmE

[+ I

'
12
o 1

Figure 2.13 - Add a measurement operation to the first qubit
The second thing to notice is that the measurement operations match the qubit
number to the classic bit number; in this case, qubit 0 will read out to bit 0, and
qubit 1 will read out to bit 1, where bit 0 is the least significant bit.

5. Select the Run Settings drop-down option located at the top right of the circuit
composer view. This will display the run settings, illustrated as follows:

Run Settings ~ Run on ibmq_valencia
Backend: 5q-ibmq_valencia ~ Provider: ibm-q/open/main v Shots (max 8192): 1024 Job limit: 5 remaining
329~ <[> code 0F Docs [i@ Jobs
ibmgq_gasm_simulator —

B 5q - ibmq_santiago H @ : Jobs from this circuit View all

5q - ibmq_valencia Pending jobs (0)
5q - ibmq_vigo Completed jobs (0)

5q - ibmax2

Figure 2.14 - Run settings drop-down view

Creating our first quantum circuit 29

The run dialog provides you with three options:

First, to select which backend device you would like to run the experiment with,
the choices are either on a simulator called ibmq_qasm_simulator or on an actual
quantum device. Select any of the options you wish to run. In this example, we'll
select ibmgq_valencia.

The second option allows you to select the Provider. There are different providers
— the open/main is for the open free quantum devices, and if you are a member of
the IBM Q Network then you'll have a provider that assigns you to the available
premium quantum devices. For now, leave it at the default setting.

The last option allows you to select how many shots of the quantum circuit you wish
to run. What this means is how many times you wish the quantum circuit to run
during your experiment. For now, since this is a simple experiment, let's simply set
it to the default value, 1024.

Now that you have selected your run options, let's run the circuit. Click Run on
ibmgq_valencia. If you selected a different device, it will indicate it accordingly.

Once your experiment begins, you should see an entry of this experiment in the
Pending Jobs view to the right of the Composer view. This indicates that your
experiment is pending. Once completed, you will see it in the Results view shown

as follows:
e senings :

Shots (max 8192): 1024 : Job limit: 5 remaining

<[> Code 0 Docs [@ Jobs

Jobs from this circuit View all
Pending jobs (0)
Completed jobs (1)

5f41e191dd8f98001489... COMPLETED

Backend: ibmq_valencia

Provider: ibm-g/open/main

I: Aug 22, 2020 11:25 PM

Figure 2.15 - Results view displaying pending and completed jobs for the selected circuit

30 Circuit Composer - Creating a Quantum Circuit

9.

While the job is in the Pending jobs list, it will display the status of the job. Once
completed, it will automatically move from the Pending jobs to the Completed

jobs list.

Upon completion, open your experiment from the Completed jobs list by clicking
on the job. This opens the experiment results view; you will see details regarding
your experiment at the top of the report, as illustrated in the following screenshot:

IBM Quantum Experience

Untitled circuit job

Job Id: 5f41e191dd8f980014893daa

Q

g+
¥ F e ed
Composer ibm-g/open/main 1 Aug 22, 202011:25PM
Created Transpiling = Validating In queue Running = Completed
Run details
ibmq_valencia fairshare 1024
46.9s Aug 22, 2020 11:25PM

Figure 2.16 - Completed job result overview

This view provides details about the results such as the Time taken during each
task, the Backend system it had run on, the number of Sheots, the current Status,
and the total time taken to execute. As you look further down the view you will see
a histogram of the results from the circuit you just ran on the backend, as illustrated

in the following screenshot:

Creating our first quantum circuit 31

Result
Histogram
100 95.801%
90
g 80
2 70
E
F 60
[
a 50
]
E 40
=
2 30
o
@
x 20
10
. 3.613% 0.098% 0.488%
000 001 010 011

Computational basis states

Figure 2.17 - Histogram representation of the circuit results

When you further scroll down the view/page you will see the diagram of the circuit
you created, illustrated in the following screenshot:

Circuit

% Diagram < Qasm 2 Qiskit

Original circuit Transpiled circuit

- ® - R
a1 1 -

i
i

c3

Figure 2.18 — Circuit diagram of the circuit

The diagram of the circuit is just one of the three representations of the circuit. The
other two tabs will display the QASM and Qiskit representations.

32 Circuit Composer - Creating a Quantum Circuit

Now that we have the results from running our first quantum circuit, let's take a closer
look at our results and see what we got back.

Reviewing your results

The histogram result in Figure 2.21 provides information about the outcome of your
experiment. Some parts might seem straightforward, but let's review the details.

It may seem trivial now, but later on when we work on more elaborate quantum
algorithms, understanding the results will prove invaluable.

There are two axes to the results. Along the x axis, we have all the possible states of our
circuit. This is what the measurement operations observed when measuring the qubits.
Recall that we measured the first and second qubits, so from least significant bit (on the
far right), we see that the first two bits are set to 1 and 0 respectively. We know that this
is correct due to the fact we placed a NOT gate on the first qubit, which changes its state
from 0 to 1. For the second qubit, we simply took a measurement that equates to simply
measuring the initial state, which we know to be 0.

The y axis provides the probability of the measurement. Since we ran the experiment
1024 times, the results show that we have approximately a 95% probability of the first
qubit resulting in the state of 001. The reason why the probability is 95% and not 100% is
due to noise from the quantum device. We will cover the topic of noise in later chapters,
but for now we can be confident to a pretty high of probability that the NOT gate worked.

So, when would the probability be different? We'll explore this in the following experiment.

In this section, we simulated a simple NOT gate operation on a qubit and ran the circuit
on a quantum device. Pretty simple and straightforward. So now that you were able to
create and run your first quantum program, let's start learning something a little more
interesting than just changing the state of a qubit.

Building a coin-flipping experiment

If you've ever taken a course in probability and statistics, you might have seen the coin
flip example. In this example, you are given an unbiased coin to flip multiple times and
track the results of each flip (experiment) as either heads or tails. What this experiment
illustrates is that with an unbiased coin and enough samples, you will see that the
probability of either heads or tails start to converge to about 50%.

This means that, after running a sufficient number of experiments, the number of times
the coin lands on heads becomes very closely equal to the number of times that it lands
on tails.

Building a coin-flipping experiment 33

Let's take a moment to make an important note regarding the previously stated analogy
with respect to the reality of the preceding experiment. It has been proven that in many
ways, any coin could be easily made biased so that when it is flipped, it can land on the
same side each time.

That being said, I want to ensure that this is a basic example of an attempt to create a
classical analogy of a quantum computing principle in order to get an understanding of
the experiment we will be creating, and not to insinuate that this classical experiment
equates to a quantum experiment. I will cover these differentiations as we create the next
circuit that will simulate flipping a coin over 1,000 times. Let's give this a try:

1. Open the Composer Editor and create a new blank circuit.

2. Click and drag the Hadamard (H) gate onto the first qubit.

3. Click and drag the measurement operation onto the first qubit after the H gate. This
will indicate that you wish the value of this qubit to be measured, and assign its
resulting value of either 1 or 0 to the corresponding classic bit; in this case, the bit
at position 0, as shown in the following screenshot:

(3 Circuits / Coin flip saved

ST

+ Add

q

(o]

H A
g1

Q2

c3 Y
0

Figure 2.19 - Coin flip experiment
4. Name your circuit as Coin flip and save it.

5. Click Run Settings to expand the options.

34 Circuit Composer — Creating a Quantum Circuit

6. Select the ibmq_qasm_simulator as the backend device and select the run count to
1024. This will run the experiment 1,024 times.

7. Click Run on ibmq_qasm_simulator.

8. Once completed, click on the completed experiment in the Completed jobs list.

The results will now show two different states. Remember that the Computational basis
states are represented along the x axis. The main difference you will now see is highlighted
by the first classic bit of the experiment (the least significant bit on the far right of each
state), which you can see is either a 0 or 1.

Another thing to note is the Probabilities (the y axis) of each of the two states. This
will differ each time you run the experiment. For example, the results in the following
screenshot will have a different result for the probability than your experiment:

Result

Histogram
55
50 48.145%
45
40
35
30
25
20
15

Measurament probability (%)

10
5
0

Computational basis states

Figure 2.20 — Coin {flip results

That being said, one thing you will notice from the preceding screenshot is that the results
will fall fairly close to 50% each time you run the experiment. Rerun the experiment a few
more times and examine the results for yourself.

The reason for this is our use of the Hadamard gate. This special gate leverages one of

the two main quantum computing principles, superposition, that provides quantum
computers with the potential to solve complex computations. We will cover what and how
superposition works in Chapter 4, Understanding Basic Quantum Computing Principles,
and how the Hadamard gate performs this gate operation on the qubit in Chapter 6,
Understanding Quantum Logic Gates.

Building a coin-flipping experiment 35

The use of the Hadamard gate, as you can see, allows your circuit to execute itself by
leveraging a linear combination of two states, 0 and 1. As mentioned earlier, this helps to
leverage superposition.

The second quantum computing principle used by quantum computers is entanglement.
This quantum mechanical phenomenon helps us to entangle two or more qubits

together. By entangling two qubits, we are in essence linking the value of one qubit and
synchronizing it with another qubit. By synchronizing it, we mean that if I measure
(observe) the value of one of the entangled qubits, then we can be sure that the other qubit
will have the same value, whether you measure it at the same time or sometime later. The
next experiment will cover this in more detail.

Entangling two coins together

Let's extend our coin-flipping example to include superposition by adding another coin
and entangling them together so that when we run our experiment, we can determine
the value of one coin without having to measure the other.

In the same way as our previous experiment, each qubit will represent a coin. In order to
do this, we will use a multi-qubit gate called a Control-Not (CNOT) gate (pronounced
see-not). The CNOT gate connects two qubits, where one is the source and the other the
target. We will cover these gates in detail in Chapter 6, Understanding Quantum Logic
Gates, but for now, here is a brief introduction so you can understand what you will
expect to see.

When the source qubit (the qubit that is connected to the source of the CNOT gate) has
a value equal to 1, then this enables the target of the CNOT, which as we can tell by the
name is a NOT gate. This gate performs the same operation as the X gate that we ran in
our previous first experiment, where we flipped the value of the qubit. Therefore, if the
target qubit was set to 0, then it would flip the target qubit to 1 and vice versa. Let's try
entangling our coins (qubits) to see how this works:

1. Open the Circuit Composer and create a new blank circuit.
2. Click and drag a Hadamard (H) gate onto the first qubit.

3. Click and drag the CNOT gate onto the first qubit (round white gate with crosshairs
on blue background). This will drop the source onto the first qubit. When selecting
the CNOT gate, the first qubit you drop it on will be set as the source. Visually, the
source of the CNOT gate is a solid dot on the qubit to which the gate was dragged
(see Figure 2.21).

36 Circuit Composer - Creating a Quantum Circuit

By default, the target will set itself to the next qubit. In this case, it will drop to qubit
2. Visually, the target for a CNOT is a large dot with a cross in the middle, made to
resemble a target.

4. Click and drag a measurement operator onto each of the two first qubits as shown
in the following screenshot:

(3 Circuits / Entangled coins saved

EEHHAHEE
I (1 3 [K)

+ Add

« oy &
a é m’

Y

0 1

Figure 2.21 - Entangled qubit circuit representing entangled coins
5. Title and save your experiment as Entangled coins.
6. Click Run Settings on the circuit to launch the Run Settings dialog.

7. Select the ibmq_qasm_simulator or any other device from the backend selection as
the backend device and select the run count to 1024. This will run the experiment
1,024 times.

8. Click Run on ibmq_gasm_simulator (or whichever device you selected in the
previous step).

9. Once completed click the Coin flip experiment from the Completed jobs list.

Summary 37

Now let's review the results and see what happens when we entangle two qubits:

Result
Histogram

55 52.344%
50 47.656%

Measurement probability (%)

Computational basis states

Figure 2.22 - Entangled coins results

As you can see in the preceding screenshot, the results still have two states, as they did
in the previous experiment. However, one thing to observe here is the results of the two
qubits. Note that the state of both qubits is either 000 or 011. Recall that the third bit
(the most significant bit) was not operated on, so it remains in the initial state of 0.

What makes this experiment interesting is when we flipped one coin in the previous
experiment, you saw that the results were 50% (0 or 1). However, now we are running the
same experiment, but we are entangling another coin. In effect, this results in both coins
becoming entangled together and thus their states will always be the same as each other.
This means that if we flip both coins and we observe one of the coin values, then we know
that the other entangled coin will be the same value.

Summary

In this chapter, you learned about the Circuit Composer view and its many components.
You created three circuits. The first one was an experiment that simulated a classic NOT
gate. The second one was an experiment in which a circuit was created using the Hadamard
gate, which leveraged superposition. You then viewed the results of the experiment.

The third one was a circuit in which you expanded on the second circuit in order to include
your first multi-gate, that is, a CNOT gate. From here, you demonstrated entanglement.

38 Circuit Composer - Creating a Quantum Circuit

You were also able to review your results on a histogram, which allows you to examine
how both superposition and entanglement results map from your quantum circuit to the
classical bit outputs, as well as how to read the probabilities based on the results.

This has provided you with the skills to experiment with other gates and see what effect
each operation has on each qubit and what information might be determined or used
based on the results of the operation. This will be helpful when we look at some of the
quantum algorithms and how these operations are leveraged to solve certain problems.

In the next chapter, we will move away from the click-and-drag work of the user interface
and instead create experiments using Jupyter Notebooks, as well as beginning to program
quantum circuits using Python.

Questions

1. Using the entangled coin-flip experiment, re-run the experiment. What is the
statevector of the results?

2. What are the result states if you were to add a NOT gate before the Hadamard gate
in the entangled coin-flip experiment's circuit?

3. Using the entangled coin-flip experiment from the Circuit Editor, switch the
measurements so that the output of g, reads out to classic bit 1, and q, reads out to
classic bit 0. What are the two states in the result and what are their probabilities?

4. What would the result states be if you were to add a Hadamard gate to the second
qubit before the CNOT gate in the entangled coin-flip experiment's circuit?

3

Creating Quantum
Circuits using
Quantum Lab

Notebooks

In this chapter, you will learn how to create circuits using the Quantum Lab Notebooks
installed on the IBM Quantum Experience. You will learn how to save, import, and
leverage existing circuits without having to install anything on your own computer. This
will allow you to get a jump start on developing quantum circuits right away and ensure
that you will be able to run the tutorials based on the currently installed version.

The following Quantum Information Science Kit (Qiskit) notebook topics will be
covered in this chapter:

« Creating a quantum circuit using Quantum Lab Notebook
« Opening and importing existing Quantum Lab Notebook
+ Developing a quantum circuit on Quantum Lab Notebook

« Reviewing results of your quantum circuit on the Quantum Lab Notebook

40 Creating Quantum Circuits using Quantum Lab Notebooks

After completing this chapter, you will be able to leverage the capabilities of the Quantum
Lab Notebooks, which will allow you to collaborate with others, share notebooks with
others, import notebooks such as those that accompany this book, and run them directly
from Quantum Lab. The Qiskit textbook is also capable of running on a Notebook, so as
new features are released, you can be assured that you will be able to run them directly
from your Notebook.

Technical requirements

In this chapter, some basic knowledge of programming is required, and some Python
development is preferred. If you are familiar with other Notebook applications such as
Jupyter Notebook then you may want to peruse this chapter, as most of the content here
might be familiar to you.

We will not be using much Python-specific code here yet, but there will be some Qiskit
code to help get you started in understanding and using the Qiskit Notebook. Here, I
will cover the Qiskit basics as we go along, but rest assured we will have plenty of time in
Chapter 7, Introducing Qiskit and Its Elements to review the many functions and features
of Qiskit. Here is the source code used throughout this book: https://github. com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-
Quantum-Experience.

Here is the link for the CiA videos: https://bit.1ly/3505M80

Creating a quantum circuit using Quantum
Lab Notebooks

Quantum Lab Notebooks provided to you via the IBM Quantum Experience platform
will help you generate robust experiments that allow you to create quantum circuits
and integrate those circuits with classical experiments or applications. Quantum Lab
Notebooks generally contain a set of cells that you can use to write, test, and run your
code in each cell individually.

You can also include Markdown language in the cells to capture any notes or non-code
content, to help keep track of your learning or project. In this section, we will recreate the
same quantum circuit you completed in Chapter 2, Circuit Composer - Creating a Quantum
Circuit, only this time you will be using the Qiskit Notebook. So, let's get started!

Creating a quantum circuit using Quantum Lab Notebooks 41

Launching a Notebook from the Quantum Lab

To create a quantum circuit, let's start by launching the Quantum Lab Notebook from the
Quantum Lab view. From the left panel under Tools, select Quantum Lab to launch the
view, as illustrated in the following screenshot:

IBM Quantum Experience

Quantum Lab

Qiskit Tutorials

Quantum Lab

Figure 3.1 - Launching the Quantum Lab view (left panel)

Now that you have the Quantum Lab view open, let's take a look at what each component
of the Notebook provides.

Familiarizing yourself with the Quantum Lab
components

In this section, we will become familiar with each of the components that make up the
Quantum Lab view. As you see in Figure 3.2 (starting from the top section, where you
can see there are quick links to the Qiskit tutorials), the quick links are grouped into
three sections, as follows:

« The first one is for starters, titled 1_start_here.ipynb. This will review the
introductory functions and features of Qiskit.

+ The second group contains more advanced level tutorials.

« The third contains tutorials specific to certain fundamentals such as optimization,
artificial intelligence, and many other domains.

42 Creating Quantum Circuits using Quantum Lab Notebooks

Under the quick links is the list of all previously saved notebooks. You can choose to open
any of those listed, or you can create or import notebooks by selecting either the New
Notebook + or Import button respectively, as illustrated in the following screenshot:

Quantum Lab

Qiskit Tutorials Qe tutoniats

Name - Last modified 2 Date created 2
We've collected a core reference
set of notebooks outlining the B 1_start_here.ipynb 5 months ago Aug 04, 2020 3:34 AM
features of Qiskit.
th A 4, 134 AM
Check them out or create your [advanced 5 months ago ug 04, 2020 3:3
own.
[fundamentals 5 months ago Aug 04, 2020 3:34 AM
Items perpage: 10 1-3of3items t
Import 7
O Name a Type 2 Last modified 2 Date created 2
O Aer Noise models demo.ipynb notebook 21 days ago Jul 29, 2020 11:49 AM
O Basic circuit demo.ipynb notebook 13 days ago Aug 06, 2020 8:42 AM
O open Pulse - Schedule demo.ipynb notebook 21 days ago Jul 29, 2020 11:26 AM
a OpenPulse freq sweep.ipynb notebook 6 months ago Apr 09, 2020 10:30 AM
(m] Qiskit Developer Certification L1.ipynb notebook 3 months ago May 05, 2020 6:20 AM
O Quantum Circuits and Bloch spheres.ipynb notebook 4 months ago Apr 27,2020 5:10 PM

Figure 3.2 - Quantum Lab view

In the next step, we will create a new Notebook.

Creating a new Notebook

In this section, we will review the various functionalities available to ensure that you have
a good understanding of all the different features available to you.

In the following screenshot, we can see the landing page of the Circuit Composer
editor view:

Creating a quantum circuit using Quantum Lab Notebooks 43

18 QExperience : Unrl“ccl".lpynh) _

File Edit View Insert Cell Kernel Widgets Help

B + = @B 4+ % »Run B C » Code F = + ©

%matplotlib inline

from qiskit impoxrt QuantumCircuit, execute, Aexr, IBMQ
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *

from qiskit.visualization import =

provider = IBMQ.load_account()

Figure 3.3 - Notebook landing page

The following points provide a description of the functions and features and what they
contribute to the creation of a quantum circuit:

« When the Notebook loads up, you'll notice the first cell contains autogenerated
code that includes some from Qiskit. Qiskit will be discussed in detail in Chapter 7,
Introducing Qiskit and its Elements.

The autogenerated code functions help to get your code up and running by adding
some libraries and objects that are common when creating and running a quantum
circuit. We'll review details of these objects further so that you can understand what
each line pertains to and what the objects are generally used for.

Important note

Note that these may change as new features are added or updated to Qiskit, so
the content of these lines may alter over time.

« The following lines of code, which can also be seen in the preceding screenshot,
contain the most commonly used objects from the Qiskit library and the code for
loading of your account details so that you can connect to the quantum systems.
This is the first line of the autogenerated code block in your Notebook:

$matplotlib inline

44 Creating Quantum Circuits using Quantum Lab Notebooks

The preceding code imports the Matplotlib plotting library, which provides the
ability to embed plots and publication quality figures into applications. Details about
Matplotlib can be found on their home page here: https://matplotlib.org/

The next line imports four Qiskit objects that are commonly used to create and run
a quantum circuit. QuantumCircuit is used to create a new circuit, which is a list
of instructions bound to some registers. execute is an asynchronous call to run a
circuit and return a job instance handle. Aer and IBMQ are providers for backend
simulators and devices and to manage account details, respectively.

In the following code snippet, you can see we import each of these from the
giskit package:

from giskit import QuantumCircuit, execute, Aer, IBMQ

transpile and assemble are compiler objects used to translate and compile
circuits, while assemble provides a list of circuit schedules, as shown in the
following code snippet:

from giskit.compiler import transpile, assemble

« The following lines in the autogenerated block of code import all tools and objects
from the Jupyter Notebook and visualization libraries, respectively. Jupyter
Notebooks is what the Qiskit Notebook is built upon, so it will leverage existing
features already familiar to those of you who compose experiments on a Jupyter
Notebook.

These features include creating new files, running kernels, and triggering cells.
The visualization library includes many features used to visualize results from
experiments such as histograms and bar charts, and in various formats, including
Matplotlib, Latex, and so on. The code can be seen here:

from giskit.tools.jupyter import *

%from giskit.visualization import *

+ And finally, the TBMQ . load_account () function loads your account
information, particularly the application programming interface (API) token that
was assigned to you when you initially registered. This is done if you desire to run
an experiment on an actual device; the loading of your API token and other account
information needed to run an experiment is already available without any extra
work on your part. The following code snippet shows this:

provider = IBMQ.load account ()

This way, the content of your experiment is not cluttered with information that is
not relevant to your experiment and conclusions.

Creating a quantum circuit using Quantum Lab Notebooks 45

Now that we are familiar with the autogenerated code, we'll take a quick look at the Qiskit
Notebook itself. You'll note that its layout is very similar to that of a Jupyter Notebook,

so those who are already familiar with Jupyter Notebooks will undoubtedly recognize

the layout.

Learning about the Qiskit Notebook

For those who are new to the Qiskit Notebook, there are a couple of things to note that
will help you understand how coding and running your code work. Those of you who
are already familiar with Jupyter Notebooks can skip this section.

The Quantum Lab Notebooks run code one cell at a time. As shown in the following
screenshot, a cell is a section of the Notebook that can contain text, metadata, and source
code, such that it encapsulates the autogenerated code we looked at earlier. It simplifies
coding by breaking up the code into these cells. The cells can be run individually by
selecting the cell with your mouse and clicking the Run button, as illustrated in the
following screenshot:

i = Unitledd jpymb X _

File Edit View Insert Cell Kernel Widgets Help

+3Q]l'_":$~blc‘» Code = 0 o+

Button %¥matplotlib inline

- /' from qiskit import QuantumCircuit, execute, Aer, IBMQ

from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import
from qiskit.visualization import =

provider = IBMQ.load_account()

Figure 3.4 - Notebook cell and operations

From the preceding screenshot, in the top row of the Qiskit Notebook menu options you
will see some usual operations you would find in a typical document editor, as follows:

« File: Save, Checkpoint, Print Preview, Close, and Halt
« Edit: Modify Cells, Move Cells, Merge Cells, and so on

« View: Toggle Headers, Toolbars, and other views

« Insert: Insert cells above or below selected cell

46 Creating Quantum Circuits using Quantum Lab Notebooks

« Cell: Run cell, run all cells, and more
» Help: Provides support content
There is one specific operation in the Notebooks menu list to take note of, and that is the

Kernel. For those of you with an existing version(s) of Python, do take note that Qiskit,
at the time of this writing, is running on Python version 3.

To confirm this, you can select Kernel from the drop-down menu and note that there is a
Change Kernel option. You will see Python 3 as the only option. However, if you install
Qiskit on your local machine that contains other versions of Python, you might see them
listed here as well. I mention this so as to ensure you have the correct kernel selected

to run Qiskit experiments. Otherwise, you may encounter some errors due to version
incompatibility.

Another thing to note is related to the various different formats in which you can download
a Qiskit Notebook. By selecting the File | Download as option you will see the various
formats, as shown in the following screenshot:

IBM Quantum Experience

File Edit View Insert Cell Kernel
Save and Checkpoint [) +»* »Run B
Revert to Checkpoint »

Print Preview

Download as * AsciiDoc (.asciidoc)
HTML (_html)
Close and Halt LaTeX (.tex)

Markdown (.md)
Notebook (.ipynb)
PDF via LaTeX (.pdf)
reST (.rst)

Python (.py)

Reveal.js slides (.slides.html)

Figure 3.5 - Download formatting options

Creating a quantum circuit using Quantum Lab Notebooks

47

Up to now, you should be familiar with the functionality and features available on the
Qiskit Notebook. These are features that make it easy to share experiments and make

quick changes to them. We can now start creating and running quantum experiments
on our notebooks using Qiskit.

Opening and importing existing Quantum Lab
Notebook

Oftentimes, we wish to share our experiments with others and run others' experiments
ourselves. Importing a Qiskit Notebook is easy in that the Quantum Lab home page has
a link to Import button, next to the New Notebook + button, as shown in the following
screenshot:

Quantum Lab

Qiskit Tutorials

We've collected a core reference set of notebooks
outlining the features of Qiskit.

Check them out or create your own.

New Notebook -+ Import 4+

Figure 3.6 - Quantum Lab home page

48 Creating Quantum Circuits using Quantum Lab Notebooks

This will launch your machine's file dialog to select the Qiskit Notebook you wish to
import into your workspace on IBM Quantum Experience (IQX). To open an existing
Qiskit Notebook, or one you have just imported, simply go back to your Qiskit Notebook
page and select the Notebook you wish to open from the file list at the bottom of the view,
as illustrated in the following screenshot:

New Notebook -+ Import N

O Name

O grover_search_party.ipynb

O Quantum Teleportation.ipynb
O Untitled.ipynb

O untitledl.ipynb

O untitled10.ipynb

O untitled1l.ipynb

Figure 3.7 — List of previously opened notebooks

Now that you are familiar with the Notebooks and the autogenerated code, let's quickly
create the same circuit we generated in the previous chapter, only this time we will create
it using only the Notebook.

Developing a quantum circuit on Quantum Lab
Notebooks

Let's take a quick look at the quantum circuit we created in the previous chapter. For
convenience, the circuit is given as follows:

Creating a quantum circuit using Quantum Lab Notebooks 49

IBM Quantum Experience

File Edit Inspect View Share

(3 Circuits / MyFirstCircuit saved

LLEELEE
I 2 9 D

Je . m’
1 é mz
qs

c3 Y J

Figure 3.8 - Quantum circuit previously created using the Circuit Composer

The preceding circuit comprises of two gates—Hadamard and Controlled-Not—and two
measurement operations on 2 qubits, respectively. This circuit was very easily constructed
on the Circuit Composer; however, as we learn more about quantum circuits and begin
to work on more complicated algorithms and circuits, it will be difficult to leverage a user
interface such as the Circuit Composer. So, we will code the construction of quantum
circuits and algorithms as we move forward instead.

To create the previous quantum circuit on a Notebook, follow these steps:

1. From the Quantum Lab Notebook, create a new Notebook and enter the following
code in an empty cell:

gc = QuantumCircuit (2,2)
gc.h(0)
gc.cx (0, 1)

The preceding code creates QuantumCircuit. The two parameters pertain to the
number of quantum bits (qubits) and classic bits we want to create, respectively. In
this example, we will create two of each.

50

Creating Quantum Circuits using Quantum Lab Notebooks

2.

The second line adds a Hadamard gate onto the first qubit. Note that the index
values of the qubits are 0 based. The third line adds a Controlled-Not gate that
entangles the first qubit (q,) as the control to the second qubit (q), the target. The
parameters in the function pertain to the control and target, respectively.

Now, select Run to run the cell. Once the cell has completed running, you
should see the output display InstructionSet of the results and a new cell
generated below the one you just ran, as shown in the preceding code snippet.
InstructionSet is a class of instruction collections and their contexts
(classic and quantum arguments), where each context is stored separately

per each instruction.

Here is the output we are given after running the preceding code:

<giskit.circuit.instructionset.InstructionSet at
0x7£c632176eb8>

Next, we will add the measurement operators to our circuit so that we can observe
our results classically. Notice in the following code snippet that we are using the
range method so as to simplify the mapping of each qubit to its respective classic
bit:

gc.measure (range (2) , range(2))

Run the preceding cell to include the measurement operators to our circuit. Now
that we have created the circuit and included the same gates and operations we did
in Chapter 2, Circuit Composer - Creating a Quantum Circuit, let's draw the circuit
and compare. Draw the circuit using the draw function, shown as follows:

gc.draw ()

You should now see the following results, after the draw method is complete:

o —-H
a1
2 0 1
C

Figure 3.9 - Rendered image of the quantum circuit

Reviewing the results of your quantum circuit on Quantum Lab Notebooks 51

Notice that the preceding circuit is identical to that which you created earlier. The only
difference is the initial number of qubits. The Circuit Composer defaults to 5 qubits,
whereas here we specified only 2. The circuit will run the same, both on the simulator
and on an actual quantum device, since we are only using 2 qubits.

In this section, we have learned to navigate the Quantum Lab Notebook. We also learned
how to open an existing Notebook, along with opening, creating, and importing the
Notebook. We also saw how to develop a quantum circuit.

Now, we will move on to review the results of the quantum circuit.

Reviewing the results of your quantum circuit
on Quantum Lab Notebooks

In this section, we'll conclude this chapter by running the circuit on a quantum simulator
and a real device. We'll then review the results by following these steps:

1. From the open Notebook, enter and run the following in the next empty cell:
backend = Aer.get_backend('gasm_simulator')

The preceding code generates a backend object that will connect to the specified
simulator or device. In this case, we are generating a backend object linked to the
QASM simulator.

2. In the next empty cell, let's run the execute function. This function takes in three
parameters—the circuit we wish to run, the backend we want to run it on, and how
many shots we wish to execute. The returned object will be a job object with the
contents of the executed circuit on the backend. The code for this can be seen here:

job_simulator = execute(gc, backend, shots=1024)

3. We now want to extract the results from the job object. In order to do that, we will
call the result function, illustrated as follows, and save it in a new variable:

result simulator = job simulator.result ()

52 Creating Quantum Circuits using Quantum Lab Notebooks

4. Since we ran our experiment with 1024 shots, we want to get the results from the
counts. In order to do that, we can call the get _counts () method by passing in
our circuit as the argument. Once we receive the counts, let's print out the results
by running the following code:

counts = result simulator.get counts(gc)

print (counts)

Note that the count results, shown as follows, may be different from your count
results, which are based on the randomness of the qubits. But overall, the results
will be similar by approximately 50%:

In 8]

counts = results.get_counts(qc)

print(counts)
1'00': 493, '11': 531t

Figure 3.10 - Count results from the quantum circuit

5. Finally, let's visualize the result counts by plotting them using a histogram. We'll
first import the plot _histogram method from the giskit.visualization
library and pass our count s in as an argument, as follows:

from giskit.visualization import plot histogram

plot_histogram(counts)

As you can see in the following screenshot, the results are very similar to our results
from the Circuit Composer in that 50% of the time our results are 00, and the other
half of the time they are 11:

Reviewing the results of your quantum circuit on Quantum Lab Notebooks 53

0.60

0519

0.45

0.30

Probabilities

0.15

0.00
8 -

Figure 3.11 — Histogram view of the count results

Now that we have run our quantum circuit on a simulator, let's run this same quantum
circuit on a real quantum computer.

Executing a quantum circuit on a quantum computer

To run this quantum circuit on a quantum device, we will continue with the
following steps:

1. The only change you need to update in the steps from the preceding section is to
go from running on a simulator to a real device in Step 1 from the previous steps,
which is where you specify the name of the backend. In Step 1, we set the backend
to the gasm_simulator. In this step, we will update to an actual device. So, let's
first get a list of backends from our providers by running the following code in a

new cell:

provider.backends ()

54 Creating Quantum Circuits using Quantum Lab Notebooks

The preceding method will return a list of all the simulators and real devices
currently available to you, shown as follows. Note that the devices listed may change
over time, so the results shown may be different when you run the method:

provider.backends()

[<IBMQSimulatox('ibmg_gasm_simulator') from IBMQ(hub='ibm-q', group='open', project='main’')>,
<IBMQBackend('ibmgx2') from IBMQ(hub='ibm-q', group='open', project='main')>,
<IBMQBackend('ibmq_16_melbourne') from IBMQ(hub='ibm-q', group='open', project='main')>,
<IBMQBackend('ibmg_vigo') from IBMQ(hub='ibm-q', group='open', project='main')>,
<IBMQBackend('ibmq_ourense') from IBMQ(hub='ibm-q', group="open', project=‘main’)>,
<IBMQBackend('ibmg_london') from IBMQ(hub='ibm-q"', group='open', project='main')>,
<IBMQBackend (' ibmg_burlington') from IBMQ(hub='ibm-q', group='open', project='main'})>,
<IBMQBackend('ibmq_essex') from IBMQ(hub='ibm-q', group='open', project='main')>,
<IBMQBackend('ibmq_armeonk') from IBMQ(hub='ibm-q', group='open', project='main')>)

Figure 3.12 - List of available quantum computers (quantum devices)

2. The only change you need to update from the steps in the previous section is
to specify which quantum computer from the list of backend devices you wish
to run the experiment. In the previous steps, we set the backend to the gasm
simulator, whereas in this step we will update our backend to use a real device
from the list. In this case, we'll choose ibmg_vigo. This list may appear different
to you, so pick one from your list if ibmg_vigo is not listed. To do this, run the
following code in a new cell:

backend = provider.get backend('ibmg vigo')
The preceding code assigns the ibmg vigo quantum computer as our backend.

3. From the previous steps, repeat Step 2 to Step 5 to run the circuit on a real device.
Your results will seem a little different. Rather than just the 00 and 11 results, you
will see that there are some 01 and 10 results, shown in the screenshot that follows,
albeit only a small percentage of the time.

This is due to noise from the real device, which is why they are often referred to as
Noisy Intermediate-Scale Quantum (NISQ) systems or near-term devices. The
noise can come from an array of things, such as ambient noise and decoherence.
Details about the different types of noise and their effects will be discussed in detail
in Chapter 11, Mitigating Quantum Errors Using Ignis.

Summary 55

The results can be seen in the following screenshot:

Histogram

42578%

Probabeties

1.855% 1.66%

00 n 10 n

Figure 3.13 — Histogram plot of results

Congratulations! You have just completed running a quantum circuit on both a quantum
simulator and a real quantum device using the Quantum Lab Notebooks. As you can see,
by using the Notebook you can use many built-in Qiskit methods to create circuits and run
them on various machines with a simple line of code, whereas on the Circuit Composer
you would have to make various changes that would take a lot of time to complete.

Summary

In this chapter, you learned about the Quantum Lab Notebooks and ran a simple quantum
circuit. You completed three basic functional steps: creating a quantum circuit using the
Notebook and the Qiskit library, executing your circuit with a backend simulator and real
device, and reviewing and visualizing your results from within the Notebook.

One thing you might have noticed is that using the Notebook with Qiskit also simplifies
integrating your classical experiments with a quantum system. This has provided you with
the skills and understanding to enhance your current Python experiments and run certain
calculations on a quantum system, making them a hybrid classical/quantum experiment.

When the quantum calculations have completed, the results can be very easily used by
your classical experiments.

Now that we are familiar with the Quantum Lab Notebooks and are able to create
and execute a circuit, in the next chapter, we will start learning the basics of quantum
computing and the quantum mechanical principles of superposition, entanglement,
and interference.

56 Creating Quantum Circuits using Quantum Lab Notebooks

Questions
1. Quantum Lab notebooks are built upon which application editor?

2. How would you create a 5-qubit circuit, as we did in Chapter 2, Circuit Composer -
Creating a Quantum Circuit?

3. 'To run the experiment on another real device, which quantum computer would you
select if your quantum circuit has more than 5 qubits?

4. When you run on a real device, can you explain why you get extra values when
compared to running on a simulator?

Section 2:
Basics of Quantum
Computing

In this section, you will learn the basics needed to understand quantum computing,
with particular focus on the mathematics and principles of quantum computing that
most quantum algorithms leverage to potentially solve many intractable problems. You
will also learn about the basic components, such as quantum bits, quantum gates, and
guantum circuits, that we use to develop quantum algorithms.

This section comprises the following chapters:
« Chapter 4, Understanding Basic Quantum Computing Principles
« Chapter 5, Understanding the Quantum Bit (Qubit)
o Chapter 6, Understanding Quantum Logic Gates

Copyrighted material

4

Understanding
Basic Quantum
Computing
Principles

Quantum computing, particularly its algorithms, leverage three quantum computing
principles, namely, superposition, entanglement, and interference. In this chapter, we'll
review each of these so that we can understand what each provides, the effect it has on each
qubit, and how to represent them using the quantum gate sets provided to us. As a bonus, we
will also create a quantum teleportation circuit that will leverage two of the three quantum
computing principles to teleport an unknown state from one person to another.

The following topics will be covered in this chapter:

« Introducing quantum computing

« Understanding superposition

« Understanding entanglement

+ Learning about the effects of interference between qubits

« Creating a quantum teleportation circuit

60 Understanding Basic Quantum Computing Principles

This chapter will focus on the three main quantum computing principles that will help you
better understand how they are used in the various quantum algorithms. The quantum
computers hosted on the IBM Quantum Experience leverage all these principles by

use of the various quantum gates, some of which you used earlier in this book.

Technical requirements

In this chapter, some basic knowledge of programming is required. Some Python
development knowledge is preferred as the experiments leverage Python libraries.

Some general knowledge of physics is recommended; however, my goal is for the
explanations to help you understand the quantum principles without the need for you

to register for a physics course or read the Feynman lectures. Here is the full source code
used throughout this book: https://github.com/PacktPublishing/Learn-
Quantum-Computing-with-Python-and-IBM-Quantum-Experience.

Please visit the following link to check the CiA videos: https://bit.1ly/3505M80

Introducing quantum computing

Quantum computing isn't a subject that is as common as learning algebra or reading some
of the literary classics. However, for most scientists and engineers or any other field that
includes studying physics, quantum computing is part of the curriculum. For some of us
who don't quite recall our studies in physics, or have never studied it, need not worry, as
this section aims to provide you with information that will either refresh your recollection
on the topic or at least perhaps help you understand what each of the principles used in
quantum computing mean. Let's start with a general definition of quantum mechanics.

Quantum mechanics, as defined by most texts, is the study of nature at its smallest

scale - in this case, the subatomic scale. The study of quantum mechanics is not new. Its
growth began in the early 1900s by many physicists, whose names still chime in many

of the current theories and experiments. The names of such physicists include Erwin
Schrodinger, Max Plank, Werner Heisenberg, Max Born, Paul Dirac, and Albert Einstein,
among others. As years passed, many other scientists expanded on the foundations

of quantum mechanics and began performing experiments that would either prove,
disprove, or oftentimes illustrate that there is no proof.

One of the more popular experiments is the double slit experiment. Although this is
found in classical mechanics, it is referenced in quantum computing to describe the
behavior of a quantum bit (qubit). It is in this experiment researchers were able to
demonstrate that light (or photons) can be characterized as both waves and particles.

Introducing quantum computing 61

There were many distinct experiments that have been conducted over the years that
illustrate this phenomenon, one of which was to fire particles through a double slit one at

a time where at the other side of the double slit was a screen that captured, as a point, the
location where each particle would hit. When only one slit was open, all the particles would
appear as a stack of points directly in front of the slit, as shown in the following diagram:

Figure 4.1 - Single-slit experiment (image source: https: //commons .wikimedia.org/wiki/
File:SingleSlitDiffraction.GIF)

From the previous diagram, you can see that all the particles are captured in an area
directly across the slit.

However, when the second slit was open, it was imagined that there would be an identical
stack of points on the screen. But this was not the case, as what was captured appeared to
be a formation altogether different than what would be expected from a particle. In fact,
it had the characteristics of a wave in that the points on the screen seemed to display a
diffraction pattern, as shown in the following diagram:

Double- Observing
slit screen

electron

Electron Gun

mer‘rerence
pattern

Figure 4.2 - Double-slit experiment (image source: https://commons.wikimedia.org/wiki/
File:Double-slit.PNG)

62 Understanding Basic Quantum Computing Principles

From the previous diagram, you can see that all the particles are spread out from the
center with interference gaps.

This diffraction pattern is caused by the interference of the light waves passing through
the slits. Here, there are more points at the center of the screen than there are toward the
outer ends of the observing screen. This wave particle phenomenon gave birth to lots of
interesting research and development such as the Copenhagen interpretation, many-
worlds interpretation, and the De Broglie-Bohm theory.

What this illustrated was that the light appeared as bands of light in certain areas of

the board with some probability. By observing the preceding diagram, you can see that
there is a higher probability that the electron fired from the gun will land in the center
band of the screen as opposed to the outer bands. Also, note that due to interference, the
spaces in between the bands that capture the electrons have less probability (blank areas
between bands).

It is these effects of wave interference and probabilities that we will cover in this chapter,
but first, we will start with the electron itself to understand superposition.

Understanding superposition

Superposition is something we generally can't see with the naked eye. This is typically the
case when discussing the superposition of an electron. Since an electron is very small and
there are so many of them, it is hard to distinguish one with even a powerful microscope.
There are, however, some analogies in the classical world that we can use to illustrate
what superposition is. For example, a spinning coin is what most texts use to describe
superposition. While it is spinning, we can say that it is in the state of both heads and
tails. Tt isn't until the coin collapses that we see what the final state of the coin is.

In this chapter, we're going to use this spinning coin analogy just to help you understand
the general principle of superposition. However, once we start working on our quantum
circuits, you will see some of the differences between superposition and its probabilistic
behavior in the classical world versus its behavior in the quantum world. Let's start by
reviewing the random effects in the classical world.

Learning about classical randomness

Previously, we discussed the randomness of a spinning coin as an example. However, the
spinning coin and its results are not as random as we think. Just because we cannot guess
the correct answer when a coin is spun on a table or flipped in the air does not make it
random. What leads us to believe that it's random is the fact that we don't have all the
information necessary to know or predict or, in fact, determine that the coin will land
on either heads or tails.

Understanding superposition 63

All the relevant information, such as the weight of the coin, its shape, the amount of force
required to spin the coin, the air resistance, the friction of the platform the coin is rolling
on, and so on, all of this information, and the information of the environment itself, is
not known to us in order for us to determine what the outcome would be after spinning
a coin. It's because of this lack of information that we assume the spinning of the coin is
random. If we had some function that could calculate all this information, then we would
always successfully determine the outcome of the spinning coin.

The same can be said about random number generators. As an example, when we trigger
a computer to generate a random number, the computer uses a variety of information to
calculate and generate a random number. These parameters can include information such
as the current daytime that the request was triggered, information about the user or the
system itself, and so on.

These types of random number generators are often referred to as pseudorandom
number generators (PSRN) or deterministic random bit generators (DRBT). They are
only as random as the calculation or seed values provided that is allowed. For example, if
we knew the parameters used and how they were used to generate this random number,
then we would be able to determine the generated random number each and every time.

Now, that being said, I don't want you to worry about anyone determining the calculations
or cryptic keys that you may have generated. We use these pseudorandom number
generators because of the precision and granularity that they encompass to generate

this number, which is such that any deviation can drastically alter the results.

So, why bother reviewing the probabilistic and random nature of a spinning coin? One,
it's to explain the difference between randomness, or what we believe is random, in the
classical world versus the randomness in the quantum world.

In the classic world, we learned that if we had all the information available, we can more
than likely determine an outcome. However, in the previous section, where we described
the double-slit experiment, we saw that we couldn't determine where in the screen the
electron was going to hit. We understood the probabilities of where it would land based
on our experiment. But even then, we could not deterministically identify where precisely
the electron was going to land on the screen. You'll see an example of this when we create
our superposition circuit in the next section.

For those who wish to learn a little more about this phenomenon, I would suggest reading
the book by the famous physicist Richard Feynman titled QED: The Strange Theory of
Light and Matter.

64 Understanding Basic Quantum Computing Principles

Preparing a qubit in a superposition state

In this section, we are going to create a circuit with a single qubit and set an operator on
the qubit to set it in a superposition state. But before we do that, let's quickly define what
a superposition state is.

We define the qubit as having two basis energy states, one of which is the ground (0)

state and the second of which is the excited (1) state, as illustrated in Figure 4.3. The state
value name of each basis state could be anything we choose, but since the results from
our circuit will be fed back to a classic system, we will use binary values to define our
states — in this case, the binary values 0 and 1. To say that the superposition of two states
is being in both 0 and 1 at the same time is incorrect. The proper way to state a qubit is in a
superposition state is to say that it is in a complex linear combination of states where in this
case, the states are 0 and 1.

The following screenshot is referred to as a Bloch sphere, which represents a single qubit
and its two basis states, which are located on opposite poles. On the north pole, we have
the basis state 0, while the south pole, we have the basis state 1. The symbols surrounding
the basis state values are the commonly used notations in most quantum computing text.
This is called Dirac notation, which was named after the English theoretical physicist
Paul Dirac, who first conceived the notation, which he called the Bra-Ket notation. Both
Bra-Ket and Dirac notation are generally used interchangeably as they refer to the same
thing, as we'll see later.

qubit 0
o).
LY
: oy
X i e
(1)

Figure 4.3 - Two basis states of a qubit on a Bloch sphere

Ok, so let's stop talking and let's start coding. We're going to create a quantum circuit with
a single qubit. We will then execute the circuit so that we can obtain the same result we
can see in the preceding screenshot, which is the initial state of the qubit, state |0}.

Understanding superposition 65

Open a new Qiskit Notebook and enter the following code into the next empty cell:

from giskit.visualization import plot_bloch multivector

gc = QuantumCircuit (1)

execute the guantum circuit
backend = Aer.get backend('statevector simulator')
result = execute(gc, backend).result ()

stateVectorResult = result.get statevector(gc)

#Display the Bloch sphere
plot_bloch statevector (stateVectorResult)

The first line imports the Bloch sphere library so that we can plot our vector. The next
line creates the circuit so that it includes 1 qubit, and in the next three lines, we are
setting up our backend to execute the circuit to the simulator. And finally, we display
the results on our Bloch sphere, which should display the same as what you can see in
the preceding diagram.

So, you might be wondering what all this talk about vectors and statevector simulators is
about. Good! This is what we will discuss now. The reason I wanted to run the experiment
first as opposed to explaining what the vector states are and what the statevector simulator
does is so that you can see it first and then hopefully the description will be a bit clearer.
Let's start with the vector explanation.

Each qubit, as mentioned earlier, is made up of two basis states, which in this example
reside on opposite poles of the Bloch sphere. These two basis states are what we would
submit back to the classical system as our result - either one or the other. The vector
representing these two points originates from the origin of the Bloch sphere, as you can
see in the previous diagram, or the result from your experiment. If we were to notate this
as a vector, we would write the following:

-1

Since the opposite would apply to the opposite pole, we would notate it as follows:

=[]

66 Understanding Basic Quantum Computing Principles

From observing the vector values, you can see that flipping the values of the vector
is similar to a classical bit flip. Now that we understand the vector representation of
a qubit, let's continue and set the qubit in a superposition state:

1. Inserta new cell at the bottom of the current notebook and enter the following code:

#Place the qubit in a superposition state by adding a
#Hadamard (H)gate

gc.h(0)
#Draw the circuit

gc.draw ()

The previous code places a Hadamard (H) gate onto the first qubit, identified by the
qubit's index value (0). It then calls the draw function, which will draw the circuit
diagram.

After running the previous cell, you should see the following circuit image, which
represents adding the Hadamard gate to the qubit:

q - H—

Figure 4.4 - Circuit with a Hadamard (H) gate added to a qubit
The Hadamard gate is an operational gate that places the qubit in a superposition
state, or, more specifically, a complex linear combination of the basis states, which
means that when we measure the qubit, it will have an equal probability result
of measuring a 0 or 1. Or in other words, it would collapse to the basis state value
10} or |1).

Mathematically, the superposition state is represented in the following two
superposition equations, which, as you can see, depends on which of the two basis
states it was in prior to applying the Hadamard gate. The first superposition
equation is as follows and originates from the |0) state:

_10) +11)

|+) 7

The second superposition equation, originating from the |1} state, is as follows:

I U}
vz

Understanding superposition 67

This is equal to a 7v2 rotation about the X and Z axes of the Bloch sphere. These
rotations are Cartesian rotations, which rotate counter-clockwise.

Now, let's execute our circuit, see what this looks like, and where the state vector
lands on the Bloch sphere. In the following code, you will execute the same
circuit again, the results of which will not differ in that the qubit will appear in a
superposition state, which you will see in the resulting Bloch sphere's output:

#Execute the circuit again and plot the result in the
#Bloch sphere

result = execute(gc, backend) .result ()
#Get the state vector results of the circuit

stateVectorResult = result.get statevector(qc)

#Display the Bloch sphere

plot_bloch multivector (stateVectorResult)

Once the circuit has completed executing, the results will be plotted on the Bloch
sphere in a superposition between [0} and [1), as illustrated in the following
screenshot:

qubit 0
|0)

1)

X

Figure 4.5 - Superposition of a qubit after 90° rotation around the X and Z axes
As you can see in the preceding screenshot, this has placed the vector on the positive
X axis, as described previously when adding a H gate from the |0} basis state.

Now, let's clear the circuit. This time, we will initialize the qubit to the [1) state first
and then apply a Hadamard gate to see what happens to the vector this time.
Initialize qubit to the |1) state and place it in a superposition. Clear the circuit and
initialize qubit to 1 before applying Hadamard gate:

#Reset the circuit
gc = QuantumCircuit (1)
#Rotate the qubit from 0 to 1 using the X (NOT) gate

Getting support from the Qiskit community 173

In this section, you will learn about the community, its many programs, and how you
can contribute and become a Qiskit Advocate. Qiskit Advocates are members of the
Qiskit community who have passed a rigorous exam, have made many contributions to
the Qiskit community, and who have helped many others along the way. Let's start by
introducing you to the community itself.

Introducing the Qiskit community

Ever since Qiskit was first deployed as an open source project, the open source
community has contributed so many features and enhancements that it has only improved
over time. The development ecosystem itself has flourished so much that it is being used
in universities, industry, and governments around the world, even in Antarctica!

Members of the Qiskit community, often referred to as Qiskitters, often work together
as a solid diverse group to ensure everyone is supported. Whether they are newbies

to quantum computing or veteran quantum researchers, they all share a passion for
collaborating and connecting on various projects. The link to the Qiskit community
ishttps://www.qgiskit.org/education.

One of the early projects was to create resources for those new to quantum computing.
These resources vary from generating enablement materials to YouTube video series.
The topics included both hardware and software, which describes what happens on the
backend, to software that describes new research that others are working on. Along with
the resources, there are also events that are planned all over the world at any given time.
This includes events such as workshops, where communities join either in person or
virtually in order to learn the latest in quantum computing.

Other events also include hackathons and code camps, of which the largest is the Qiskit
Camp, which the IBM Quantum team hosts quarterly in different continents around the
world. The 3-to-4-day camp usually includes accommodations in very exotic locations,
meals, transportation to and from airports, and so on. Researchers from IBM Research
also participate as lecturers, coaches, and judges. Teams are created and brainstorm ideas
for projects that they work together on during the weekend, where they then have the
opportunity to compete and win prizes. This is very similar to hackathons.

Recently, the Qiskit community initiated the Qiskit Advocate program. This program
was created to provide support to individuals who have actively been involved with the
Qiskit community and have contributed over time. To become a Qiskit Advocate, you
would need to apply online (https://giskit.org/advocates), where you will

be given an exam to test your knowledge of Qiskit and specify at least three community
contributions. These qualifications, of course, can change over time, so it is recommended
that you check the site for any updates and application deadlines.

174 Introducing Qiskit and its Elements

The test covers all four elements and some quantum computing knowledge. Besides
knowledge and a passing score, the Qiskit Advocate candidate must also have contributed
to the Qiskit community. This can be done in a variety of ways, such as contributing to the
Qiskit open source code and supporting other community members by either providing
assistance or creating educational material that helps others learn about quantum
computing and Qiskit.

Once accepted into the Qiskit Advocate program, you will have the opportunity to
network with other experts and access core members of the Qiskit development team. You
will also gain support and recognition from IBM through the Qiskit community, as well
as receive invitations to special events such as Qiskit Camp, hackathons, and other major
events where you can not only collaborate with others but lead or coach as well.

Contributing to the Qiskit community

Support across members is key, not just for Qiskit Advocates but for all members. The
Qiskit community has set up various channels to offer support to all the members of the
community. They have a Slack workspace (http://ibm.co/joingiskitslack)
that is very active and has various channels so that members can ask questions, post event
updates, or just chat about the latest quantum research that had been recently published.
There are also other collaborative sources that Qiskit connects through. The current list of
collaboration tools can be found at the bottom of the main Qiskit page: https: //www.
giskit.org/.

Specializing your skill set in the Qiskit community

One of the most common questions asked about contributing to the Qiskit community,
particularly those who are interested in becoming Qiskit Advocates, is, what are the
various ways you can contribute? There are many ways in which you can contribute to
the Qiskit community. Ideally, you want to become familiar with the different forms of
contributions, such as the following:

+ Code contributions: Adding a new feature, optimizing the performance of a
function, and bug fixes are some of the good ways to start if you are a developer. If
you are new to coding, there is a label that the Qiskit development team has created
for this called good first issue. This is an umbrella term for the issues that are ideal
for those who are new to the code base.

Summary 175

« Host a Qiskit event in your area or virtually: You can host an event and invite
a Qiskit Advocate to run a workshop or talk to a group about the latest updates
in Qiskit.
« Help others: You can help others by answering questions asked by other community

members, reporting bugs, identifying features that may enhance the development of
circuits, and so on.

Specializing in an area such as noise mitigation, error correction, or algorithm design is
an advantage to the community. The Qiskit Slack community has a number of channels
that focus on specific areas of quantum computing, including each of the four elements,
quantum systems, quantum experience, Qiskit Pulse, Qiskit on Raspberry Pi, and many
more. If you specialize in any of these areas, you can join the Slack group and collaborate
on the many technologies and topics.

In this section, you learned about the open source contribution process and how to find
tasks for starters and experts so that everyone can contribute.

Summary

In this chapter, you learned about the general features and capabilities provided by each of
the four Qiskit elements so that you can create highly efficient quantum algorithms. You
then learned how to install Qiskit locally, as well as how to contribute and find support
from the Qiskit community.

Out of the four Qiskit elements available, we learned about Terra first. This provided you
with the skills and functionality to create circuits, and you then applied these operations
to the qubits via gates and operators.

Then, we learned about Aer, which allows us to create better simulators, and Ignis, which
helps us mitigate errors and calculate the quantum volume of a system.

After that, we learned about Aqua. We understood that it is generally a high-level view of
quantum computing that eliminates a lot of the underlying details of building a circuit and
mitigating noise and errors. This helps simplify integrating your classical applications into a
quantum system by leveraging the many quantum and classical algorithms available. Then,
we learned about Qiskit community support and its advantages to all, particularly those
who are new to quantum computing and need a little support to understand some of the
challenging content.

A

Aer 161,177, 257
Aer simulators

about 258, 259

backends, viewing 259-262

features 259
amplitude damping error 295
Anaconda

installing 167

reference link 167
ancilla qubit 385, 409
anharmonic oscillator 99
Apache 2.0 license

reference link 166
application programming

interface (API) 14, 44

Aqua

about 164, 177

quantum algorithms 350
Aqua Utilities

using 346-349

arbitrary waveform generator (AWG) 194

Arxiv, Quantum Physics
reference link 444

Index

backend configuration 231-235
backend optimization 231-235
backend options

parameters, adding to 264, 265
basis elements 112
Bell states

implementing 367-371

preparing 365, 366
Bell states algorithm 365
Bernstein-Vazirani algorithm

about 395

implementing 396-405

quantum solution, generating 396
Bernstein-Vazirani problem 395, 396
bitstring 87
black box 373
Bloch sphere 64, 89, 162
Bloch sphere representation, qubit

creating 91-95
Bra-Ket notation 64, 88

482 Index

C

Circuit Composer
about 7,17-21
components, familiarizing 19
editor, launching 18
used, for creating quantum circuit 18
views, customizing 21

Circuit Composer, views
Code Editor view 25, 26
Graphical Editor view 22
Measurement Probabilities view 23
Q Sphere view 24, 25
Statevector view 22, 23

circuit graphs
enhancing 248
visualizing 248

circuit libraries
customizing 188-192
parameterizing 188-192

circuits

custom noise models, adding to 299, 300

Directed Acyclic Graph (DAG),
drawing of 252, 254
optimizing, by leveraging layout
optimizer 228-231
optimizing, with transpiler 225
qubits, initializing on 266-271
running, on Pulse simulator 284-287
running, on Qasm simulator 262-264
running, on Statevector
simulator 272-280

running, on Unitary simulator 280-283

cityscape 162

classical randomness 62, 63
classic systems 156

CNOT (CX) 232

CNOT multi-qubit gate 140-143
Code Editor view 25, 26
coin-flipping experiment

building 32-35

coins, entangling 35-37
collaboration tools, Qiskit

reference link 174
components

about 336, 337

usability 336, 337
constructive interference 77
Control-NOT (CNOT) gate 35,

74,75,77, 140, 228, 378

Control Rotation (CROT) 418
cooper pairs 98
Copenhagen interpretation 62
customized visual circuits 248-251
custom noise models

adding, to circuits 299, 300

quantum circuits, executing with 298

D

De Broglie-Bohm theory 62
decoherence (T, and T,) 291-295
DenseLayout 236
density matrix 162
dephasing 305
depolarizing error 295
destructive interference 77
deterministic random bit
generators (DRBT) 63
Deutsch-Jozsa algorithm
about 384
implementing 386-394
quantum solution, generating 385
Deutsch-Jozsa problem 384, 385

Index 483

Deutsch's algorithm Grover diffusion operator 430
about 371 Grover's oracle 430
implementing 375-383 Grover's search algorithm
problem, defining 373, 374 about 429-432
problem, defining as quantum implementing 433-441

problem 374, 375 problem 429
problem, understanding 372, 373

Dirac notation 64, 88 H

Directed Acyclic Graph (DAG)
about 248, 251 hackathons 173
drawing, of circuit 252, 254 Hadamard (H) gate

Discrete Fourier Transform (DFT) 416 about 66

DiVincenzo criteria 133 using 119, 120

double slit experiment 60, 61 Hahn echo experiment 313

- Hamiltonian dynamics 164
E hardware
pulse schedules, generating on 192, 193

entanglement 71-76 Helper function 113

existing Quantum Lab Notebook Hilbert space 88
importing 47, 48 Hinton 162
opening 47, 48 histograms 162

F |

first classical/quantum application IBM Q Network 7
creating 356 IBM Q Network quantum papers

fixed quantum state reference link 444
initializing 337-340 IBMQ Provider 168

flip flops 87 IBM Q System One 157

foundational oracle-based IBM Quantum Experience components

quantum algorithm 395 about 210
Account component 211, 212
G Backend component 215-217
Job component 218-220

good first issue 174 Provider object 212-215

Graphical Editor view 22 IBM Quantum Experience (IQX)

Graphical Processing Unit (GPU) 262 about 48, 169, 211, 221, 258, 364

greatest common denominator (gcd) 426 account details view, exploring 12-14

484 Index

backends 8-10
navigating 4
pending and latest results 10, 11
Personal profile tab 7
registering 5, 6
starting with 7
URL 5
Identity gate 114
Identity (I) Pauli gate
working with 114
Ignis 164, 177
Inductance Capacitance (LC) 99

interference between qubits
effects 77,78

J

jittery resolution 364
jobs
monitoring 222-225
tracking 222-225
Josephson Junction 99

K

Kronecker product 138

L

layout optimizer
leveraging, to optimize circuit 228-231
Layout Selection type
about 236
DenseLayout 236
NoiseAdaptiveLayout 236-248
TrivialLayout 236
local Qiskit environment
configuring 169-172

Logical Expression Oracle
implementing 350-354
logic gates
about 106-109
unitary operators 109, 110

M

many-worlds interpretation 62
Matplotlib 89
matrix product state 162
measurement 147
measurement calibration 324
measurement filter 324
Measurement Probabilities view 23
multi-gate errors 295
multi-qubit gates
about 138, 139
CNOT multi-qubit gate 140-143
swap gate, using in circuit 145, 146
Toffoli multi-qubit gate 143-145
multi-qubit gates, control gates
Control-H (CH) 143
Control-X (CX) 143
Control-Y (CY) 143
Control-Z (CZ) 143
multi-qubits 96-98

N

neural network discriminator
creating 340-342
state function operators,
implementing 342-345
Nitrogen-vacancy (NV) 98
no-cloning theorem 78
NoiseAdaptiveLayout 236-248

Index 485

noise effects of dephasing
generating 313
T, circuits, executing 313-317
T, circuits, generating 313-317
noise effects of relaxation
generating 305
test circuits, generating 305-311
noise models
about 257
building 257, 295-298
generating 287-291
Noisy Intermediate-Scale
Quantum (NISQ) 54
non-reversible operators 147-150
NOT gate 115
NOT (X) Pauli gate
applying 115-118
NumPy 157

O

OpenPulse documentation 192

outperforming classical systems 363, 364

P

parameters
adding, to backend options 264, 265
passes
about 235
additional passes 236
Basis Change 235
Circuit Analysis 236
Layout Selection 235
optimizations 236
routing 235
types 235
pass managers 227, 235

Pauli error 295
Pauli matrix gates 111
Pauli vector 162
periodic quantum algorithms
about 408
Simon's algorithm 409
phase gate 120
phase kickback 405
phase rotation 136
phase (Z) Pauli gate
working with 120-123
pip
reference link 166

Principle Component Analysis (PCA) 349

provider information
leveraging 210
pseudorandom number
generators (PSRN) 63
Pulse library 192 196
pulses
about 194
of sine waveform 195
pulse functionality, working
instructions and parameters 193, 194
pulse schedules
about 193
executing 197-202
generating 197-201
generating, on hardware 192, 193
Pulse simulator
about 164
circuits, running on 284-287

Q

Qasm simulator
about 161, 162
circuits, running on 262-264

486 Index

Qiskit
about 10, 177, 259
basics 160
components 158, 159
configuring 166
installation, preparing 166
installing 166-168
URL 165
Qiskit Advocate
about 173
URL 443
Qiskit Advocate program 173
Qiskit Camp 173
Qiskit community
about 173
contributing to 174
skill set, specialifng 174
support, obtaining 172
Qiskit documentation
reference link 159, 443
Qiskit, elements
about 160
Aer 161
Aqua 164
Ignis 164
Qasm simulator 162
Terra 161
Qiskit Events
reference link 445
Qiskit GitHub page
reference link 165
Qiskit GitHub repo
reference link 444
Qiskit Interactive Textbook
reference link 443
Qiskit Notebooks 7, 45-47, 260
Qiskit Pulse, channels
types 197

Qiskit Slack community 175
Qiskitters 173
Qiskit YouTube channel
reference link 444
Q Sphere view 24, 25
quantum advantage 364
quantum algorithms, in Aqua
about 350
Logical Expression Oracle,
implementing 350-354
truth table Oracle,
implementing 354-356
Quantum Algorithm Zoo
URL 444
Quantum Assembly language
(Qasm) 139, 262
quantum bits (qubits)
about 8, 86, 88, 89
Bloch sphere representation,
creating 91-95
classic bit, reviewing 86-88
coupling 103
multi-qubits 96-98
state vector, visualizing 89
superconducting qubits 98-102
transformation 225-228
quantum circuits
about 178
analysis 183-188
building, with classical bit
behaviors 26-32
creating 26, 178-182
creating, with Circuit Composer 18
creating, with Quantum
Lab Notebooks 40

executing, on quantum computer 53, 54

Index 487

executing, with custom
noise models 298
properties 183-188
results, reviewing 32
scheduling 202-210
quantum computing
about 60-62
double-slit experiment 61
quantum entanglement 138
Quantum Fourier Transform
(QFT) algorithm
about 416, 417
implementing 417-424
quantum generative adversarial
network (QGAN) 342
Quantum Lab
Quantum Lab Notebooks,
launching from 41
Quantum Lab components
about 41, 42
Notebook, creating 42, 44
Quantum Lab Notebooks
launching, from Quantum Lab 41
quantum circuit, creating with 40
quantum circuit, developing 48-51
quantum circuit results, reviewing 51-53
quantum mechanics 60
quantum programming process
reviewing 157
quantum solution
generating, with Bernstein-
Vazirani algorithm 396
generating, with Deutsch-
Jozsa algorithm 385
generating, with Simon's
algorithm 410, 411
quantum systems 156

quantum teleportation
about 79, 371
flowchart 79
quantum teleportation circuit
creating 78, 79
executing 80-83
Quantum Volume 164
qubit gate
control point 74
target point 74
qubit platforms
coupling 98
qubits
initializing, on circuit 266-271
preparing, in superposition state 64-71

R

Ramsey experiment 313
random circuit generator 182
readout errors

about 295, 305

mitigating 324-332
relaxation 305
relaxation time 292
R¢ gate in circuit

using 130-132

S

Scikit-learn 157
SciRate
URL 445
St (dagger) gate
applying 125, 126
secret bit string 397

488 Index

S gate
applying 123, 124
Shor's algorithm
about 424
implementing 426-428
problem 425
Simon's algorithm
about 409
implementing 357-416
problem 409, 410
quantum solution, generating
with 410, 411
Simon's problem
about 356
stating 356
simulators, Aer
Pulse simulator 164
Qasm simulator 161, 162
Statevector simulator 162
Unitary simulator 163
single-gate errors 295
single-qubit gates
about 111-114
Hadamard (H) gate 119, 120
Identity (I) Pauli gate 114
NOT (X) Pauli gate 115-118
phase (Z) Pauli gate 120-123
R¢ gate in circuit 130-132
St (dagger) gate 125, 126
S gate 123,124
T+ (dagger) gate 128-130
T gate, using in circuit 127, 128
universal UX gates 133-138
Slack workspace
reference link 174
spin echo 292
stabilizer 162

state function operators

implementing 342-345
state vector, qubits

visualizing 89, 90
Statevector simulator

about 162

circuits, running on 272-280
Statevector view 22, 23
superconducting qubits 98, 99
superconductors 98
super dense coding 371
superposition

about 62

classical randomness 62, 63
superposition state

qubits, preparing 64-71
swap gate

about 187

using in circuit 145, 146

T

T, decoherence times
estimating 311-313
T, circuits
executing 313-317
generating 313-317
T,* circuits
executing 319-323
generating 319-323
T, decoherence times
estimating 318
T,* dephasing time
estimating 323, 324
T+ (dagger) gate
working with 128-130

