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Joreword

For most of its history, quantum computing was a field for physicists—perhaps a few
having a proclivity for computer science, but not necessarily so. The popular text-
book, Quantum Computation and Quantum Information, by Michael A. Nielsen and Isaac
L. Chuang, is still considered the go-to textbook, and was written by two quantum
physicists. To be sure, computer scientists have always been around, but some theore-
ticians wear how few lines of code they have written as a badge of honor. This is the
quantum world myself, Kaiser, and Granade came of age in. I could easily shake my
fist at the new cohort of students and vyell, “When I was your age, we didn’t write
code—we choked on chalk dust!”

I met Chris Granade while we were both graduate students. Back then we wrote
academic journal articles for physics journals that contained lines of code which were
rejected for being “not physics.” But we were not deterred. And now, many years later,
this book represents for me the ultimate vindication! This is a book that teaches you
everything you’ll ever want and need to know about quantum computing, without the
need for physics—though, if you really want to know the connection back to physics,
Kaiser and Granade offer that as well &? There are also emojis @&)!

I've come a long way since then, and I owe much to Granade, as does the field of
quantum computing, for showing many of us that between the “quantum” and the

“computing,” there is more than just theorems and proofs. Kaiser has also taught me
more than I thought existed about the need for the software engineer’s touch in
developing quantum technology. Kaiser and Granade have turned their expertise into

words and lines of code so all can benefit from it, as I have.



FOREWORD

Though the goal was to create “not a textbook,” this book could certainly be used
as such in a university lecture as introductions to quantum computing shift from phys-
ics departments to schools of computer science. There is immense growing interest in
quantum computing, and the majority of it is not coming from physics—software
developers, operations managers, and financial executives all want to know what
quantum computing is about and how to get their hands on it. Gone are the days of
quantum computing as a purely academic pursuit. This book serves the needs of the
growing quantum community.

Though I've alluded to the decreasing proportion of physicists in the field of quan-
tum computing, I don’t want to discount them. Just as I was once a software develop-
ment Luddite, this book is really for anyone—especially those already in the field who
want to learn about the software side of quantum computing in a familiar setting.

Fire up vour favorite code editor and get ready to print (“Hello quantum world!”).

CHRIS FERRIE, PhD
Associate Professor, Centre for Quantum Software and Information
Sydney, NSW, Australia



preface

Quantum computing has been our jam for more than 20 years combined, and we are
passionate about taking that experience and using it to help more folks get involved
in quantum technologies. We completed our doctoral degrees together, and while
doing so, we struggled through research questions, pun competitions, and board
games, helping to push the boundaries of what was possible with qubits. For the most
part, this meant developing new software and tools to help us and our teams do better
research, which was a great bridge between the “quantum” and “computing” parts of
the subject. However, while developing various software projects, we needed to teach
our developer colleagues what we were working on. We kept wondering, “Why isn’t
there a good book for quantum computing that’s technical but not a textbook?” What
you are currently looking at is the result. &

We’ve written the book to be accessible to developers, rather than writing it in the
textbook style that is so typical in other quantum computing books. When we were
learning quantum computing ourselves, it was very exciting but also a bit scary and
intimidating. It doesn’t have to be that way, as a lot of what makes quantum comput-
ing topics confusing is the way they are presented, not the content.

Unfortunately, quantum computing is often described as “weird,” “spooky,” or
beyond our understanding, when the truth is that quantum computing has become
quite well understood during its 35-year history. Using a combination of software
development and math, you can build up the basic concepts you need to make sense
of quantum computing and explore this amazing new field.

xvii
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PREFACE

Our goal with this book is to help you learn the basics about the technology and
equip you with tools you can use to build the quantum solutions of tomorrow. We
focus on hands-on experience with developing code for quantum computing. In part 1,
you’ll build your own quantum device simulator in Python; in part 2, you’ll learn how
to apply your new skills to writing quantum applications with Q# and the Quantum
Development Kit; and in part 3, you'll learn to implement an algorithm that factors
integers exponentially faster than the best-known conventional algorithm—and through-
out, you are the one doing it, and this is your quantum journey.

We have included as many practical applications as we can, but the truth is, that’s
where you come in! Quantum computing is at a cusp where to go forward, we need a
bridge between the immense amount that's known about what quantum computers
can and can’t do and the problems that people need to solve. Building that bridge
takes us from quantum algorithms that make for great research to quantum algo-
rithms that can impact all of society. You can help build that bridge. Welcome to your
quantum journey; we're here to help make it fun!
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ABOUT THIS BOOK

Who should read this book

This book is intended for people who are interested in quantum computing and
have little to no experience with quantum mechanics but do have some program-
ming background. As you learn to write quantum simulators in Python and quan-
tum programs in Q#, Microsoft’s specialized language for quantum computing, we
use traditional programming ideas and techniques to help you out. A general under-
standing of programming concepts like loops, functions, and variable assignments
will be helpful.

Similarly, we use some mathematical concepts from linear algebra, such as vectors
and matrices, to help us describe quantum concepts; if you’re familiar with computer
graphics or machine learning, many of the concepts are similar. We use Python to
review the most important mathematical concepts along the way, but familiarity with
linear algebra will be helpful.

How this book is organized: A roadmap

This text aims to enable you to start exploring and using practical tools for quantum
computing. The book is broken into three parts that build on each other:

= Part 1 gently introduces the concepts needed to describe qubits, the fundamen-
tal unit of a quantum computer. This part describes how to simulate qubits in
Python, making it easy to write simple quantum programs.

» Part 2 describes how to use the Quantum Development Kit and the Q# pro-
gramming language to compose qubits and run quantum algorithms that per-
form differently from any known classical algorithms.

= In part 3, we apply the tools and methods from the previous two parts to learn
how quantum computers can be applied to real-world problems such as simulat-
ing chemical properties.

There are also four appendixes. Appendix A has all the installation instructions for
setting up the tools we use in the book. Appendix B is a quick reference section with a
quantum glossary, notation reminders, and code snippets that may be helpful as you
progress through the book. Appendix C is a linear algebra refresher, and appendix D
is a deep dive into one of the algorithms you will be implementing.

About the code

All the code used in this book can be found at https://github.com/crazy4pi314/learn-
qc-with-python-and-gsharp. Full installation instructions are available at the repository
for this book and in appendix A.

The book’s samples can also be run online without installing anything, using the
mybinder.org service. To get started, go to https://bit.ly/qsharp-book-binder.
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liveBook discussion forum

Purchase of Learn Quantum Computing with Python and (Q# includes free access to a pri-
vate web forum run by Manning Publications where you can make comments about
the book, ask technical questions, and receive help from the authors and from other
users. To access the forum, go to https://livebook.manning.com/#!/book/learn-
quantum-computing-with-python-and-q-sharp/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
#! /discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid).We suggest
you try asking them some challenging questions lest their interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

Other online resources

As you start your quantum computing journey by reading this book and working
through the provided sample code, you may find the following online resources helpful:

n  Quantum Development Kit documentation (https://docs.microsoft.com/azure/
quantum/ )—Conceptual documentation and a full reference to everything about
Q#, including changes and additions since this book was printed

n  Quantum Development Kit samples (https://github.com/microsoft/quantum)—
Complete samples for using Q#, both on its own and with host programs in
Python and .NET, covering a wide range of different applications

»  QuTiP.org (http://qutip.org)—Full user’s guide for the QuTiP package we used
to help with the math in this book

There are also some great communities for quantum computing experts and novices
alike. Joining a quantum development community like the following can help resolve
questions you have along the way and will also let you assist others with their journeys:

n  gsharp.community (https://qsharp.community)—A community of Q# users and
developers, complete with chat room, blog, and project repositories

n  Quantum Computing Stack Exchange (https://quantumcomputing.stackexchange
.com/)—A great place to ask for answers to quantum computing questions,
including any Q# questions you may have

s Women in Quantum Computing and Applications (https://wiqca.dev)—An inclu-
sive community for people of all genders to celebrate quantum computing and
the people who make it possible

»  Quantum Open Source Foundation (https://qosf.org/)—A community supporting
the development and standardization of open tools for quantum computing
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n  Unitary Fund (https://unitary.fund/)—A nonprofit working to create a quan-
tum technology ecosystem that benefits the most people

Going further

Quantum computing is a fascinating new field that offers new ways of thinking about
computation and new tools for solving difficult problems. This book can help you get
a start in quantum computing so that you can continue to explore and learn. That
said, this book isn’t a textbook and isn’t intended to prepare you for quantum com-
puting research all on its own. As with classical algorithms, developing new quantum
algorithms is a mathematical art as much as anything else; while we touch on math in
this book and use it to explain algorithms, a variety of textbooks are available that can
help you build on the ideas we cover.

Once you've read this book and gotten started with quantum computing, if you
want to continue your journey into physics or mathematics, we suggest one of the fol-
lowing resources:

s The Complexity Zoo (https://complexityzoo.net/Complexity_Zoo)

s The Quantum Algorithm Zoo (http://quantumalgorithmzoo.org)

n  Complexity Theory: A Modern Approach by Sanjeev Arora and Boaz Barak (Cam-
bridge University Press, 2009)

»  Quantum Computing: A Gentle Introduction by Eleanor G. Rieffel and Wolfgang H.
Polak (MIT Press, 2011)

»  Quantum Computing since Democritus by Scott Aaronson (Cambridge University
Press, 2013)

n  Quantum Computation and Quantum Information by Michael A. Nielsen and Isaac
L. Chuang (Cambridge University Press, 2000)

w  Quantum Processes Systems, and Information by Benjamin Schumacher and Michael
Westmoreland (Cambridge University Press, 2010)
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Introducing
quantum computing

This chapter covers

Why people are excited about quantum computing
What a quantum computer is
What a quantum computer can and cannot do

How quantum computers relate to classical
programming

Quantum computing has been an increasingly popular research field and source of
hype over the last few years. By using quantum physics to perform computation in
new and wonderful ways, quantum computers can impact society, making it an excit-
ing time to get involved and learn how to program quantum computers and apply
quantum resources to solve problems that matter.

In all the buzz about the advantages quantum computing offers, however, it is
easy to lose sight of the real scope of those benefits. We have some interesting his-
torical precedent for what can happen when promises about a technology outpace
reality. In the 1970s, machine learning and artificial intelligence suffered from dra-
matically reduced funding, as the hype and excitement around Al outstripped its
results; this would later be called the “Al winter.” Similarly, internet companies
faced the same danger when trying to overcome the dot-com bust.
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CHAPTER 1 Introducing quantum computing

One way forward is to critically understand the promise offered by quantum com-
puting, how quantum computers work, and what is and is not in scope for quantum
computing. In this chapter, we help you develop that understanding so that you can
get hands-on and write your own quantum programs in the rest of the book.

All that aside, though, it’s just really cool to learn about an entirely new computing
model! As you read this book, you'll learn how quantum computers work by program-
ming simulations that you can run on your laptop today. These simulations will show
many essential elements of what we expect real commercial quantum programming to
be like while useful commercial hardware is coming online. This book is intended for
folks who have some basic programming and linear algebra experience but no prior
knowledge about quantum physics or computing. If you have some quantum familiar-
ity, you can jump into parts 2 and 3, where we get into quantum programming and
algorithms.

Why does quantum computing matter?

Computing technology is advancing at a truly stunning pace. Three decades ago, the
80486 processor allowed users to execute 50 MIPS (million instructions per second).
Today, small computers like the Raspberry Pi can reach 5,000 MIPS, while desktop
processors can easily reach 50,000 to 300,000 MIPS. If we have an exceptionally diffi-
cult computational problem we’d like to solve, a very reasonable strategy is to simply
wait for the next generation of processors to make our lives easier, our videos stream
faster, and our games more colorful.

For many problems that we care about, however, we're not so lucky. We might
hope that getting a CPU that’s twice as fast will let us solve problems that are twice as
big, but as with so much in life, “more is different.” Suppose we sort a list of 10 million
numbers and find that it takes about 1 second. Later, if we want to sort a list of 1 bil-
lion numbers in 1 second, we’ll need a CPU that’s 130 times faster, not just 100 times.
When solving some kinds of problems, this gets even worse: for some graphics prob-
lems, going from 10 million to 1 billion points would take 13,000 times longer.

Problems as widely varied as routing traffic in a city and predicting chemical reac-
tions become more difficult much more quickly. If quantum computing was about
making a computer that runs 1,000 times as fast, we would barely make a dent in the
daunting challenges that we want to solve. Fortunately, quantum computers are much
more interesting. We expect that quantum computers will be much slower than classi-
cal computers but that the resources required to solve many problems will scale differ-
ently, such that if we look at the right kinds of problems, we can break through “more
is different.” At the same time, quantum computers aren’t a magic bullet—some prob-
lems will remain hard. For example, while it is likely that quantum computers can
help us immensely with predicting chemical reactions, they may not be much help
with other difficult problems.

Investigating exactly which problems we can obtain such an advantage in and
developing quantum algorithms to do so has been a large focus of quantum computing
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research. Up until this point, it has been very difficult to assess quantum approaches
this way, as doing so required extensive mathematical skill to write out quantum algo-
rithms and understand all the subtleties of quantum mechanics.

As industry has started developing platforms to help connect developers to quantum
computing, however, this situation has begun to change. By using Microsoft’s entire
Quantum Development Kit, we can abstract away most of the mathematical complexi-
ties of quantum computing and begin actually understanding and using quantum com-
puters. The tools and techniques taught in this book allow developers to explore and
understand what writing programs for this new hardware platform will be like.

Put differently, quantum computing is not going away, so understanding what prob-
lems we can solve with it matters quite a lot indeed! Independent of whether a quantum
“revolution” happens, quantum computing has factored—and will continue to factor—
heavily into decisions about how to develop computing resources over the next several
decades. Decisions like these are strongly impacted by quantum computing:

= What assumptions are reasonable in information security?
= What skills are useful in degree programs?
= How can we evaluate the market for computing solutions?

For those of us working in tech or related fields, we increasingly must make such deci-
sions or provide input for them. We have a responsibility to understand what quantum
computing is and, perhaps more important, what it is not. That way, we will be best
prepared to step up and contribute to these new efforts and decisions.

All that aside, another reason quantum computing is such a fascinating topic is
that it is both similar to and very different from classical computing. Understanding
both the similarities and differences between classical and quantum computing helps
us understand what is fundamental about computing in general. Both classical and
quantum computation arise from different descriptions of physical laws such that
understanding computation can help us understand the universe in a new way.

What'’s absolutely critical, though, is that there is no one right or even best reason
to be interested in quantum computing. Whatever brings you to quantum computing
research or applications, you’ll learn something interesting along the way.

What is a quantum computer?

Let’s talk a bit about what actually makes up a quantum computer. To facilitate this
discussion, let’s briefly talk about what the term computer means.

DEFINITION A computer is a device that takes data as input and does some sort
of operations on that data.

There are many examples of what we have called a computer; see figure 1.1 for some
examples.

All of these have in common that we can model them with classical physics—that
is, in terms of Newton’s laws of motion, Newtonian gravity, and electromagnetism.
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Figure 1.1 Several examples of different kinds of computers, including the UNIVAC mainframe
operated by Rear Admiral Hopper, a room of “human computers” working to solve flight calculations,
a mechanical calculator, and a LEGO-based Turing machine. Each computer can be described by the
same mathematical model as computers like cell phones, laptops, and servers. Sources: Photo of
“human computers” by NASA. Photo of LEGO Turning machine by Projet Rubens, used under CC BY 3.0
(https://creativecommons.org/licenses/by,/3.0/).

This will help us tell apart the kinds of computers we’re used to (e.g., laptops, phones,
bread machines, houses, cars, and pacemakers) and the computers we're learning
about in this book. To tell the two apart, we’ll call computers that can be described
using classical physics classical computers. What'’s nice about this is that if we replace the
term classical physics with quantum physics, we have a great definition for what a quan-
tum computer is!

DEFINITION A gquantum compuler is a device that takes data as input and does
some sort of operations on that data with a process that can only be described
using quantum physics.

Put differently, the distinction between classical and quantum computers is precisely
that between classical and quantum physics. We will get into this more later in the
book. But the primary difference is one of scale: our everyday experience is largely
with objects that are large enough and hot enough that even though quantum effects
still exist, they don’t do much on average. While quantum mechanics works even at
the scale of everyday objects like coffee mugs, bags of flour, and baseball bats, it turns
out that we can do a very good job of describing how these objects interact using clas-
sical physics alone.
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Deep dive: What happened to relativity?

Quantum physics applies to objects that are very small and very cold or well isolated.
Similarly, another branch of physics called relativity describes objects that are large
enough for gravity to play an important role or that are moving very fast—near the
speed of light. Many computers rely on relativistic effects; indeed, global positioning
satellites depend critically on relativity. So far, we have primarily been comparing
classical and quantum physics, so what about relativity?

As it turns out, all computation that is implemented using relativistic effects can also
be described using purely classical models of computing such as Turing machines.
By contrast, quantum computation cannot be described as faster classical computa-
tion but requires a different mathematical model. There has not yet been a proposal
for a “gravitic computer” that uses relativity in the same way, so we're safe to set
relativity aside in this book.

If we focus on a much smaller scale where quantum mechanics is needed to describe
our systems, then quantum computing is the art of using small, well-isolated devices to
usefully transform data in ways that cannot be described in terms of classical physics
alone. One way to build quantum devices is to use small classical computers such as
digital signal processors (DSPs) to control the properties of exotic materials.

Quantum devices may differ in the details of how they are controlled, but ultimately
all quantum devices are controlled from and read out by classical computers and con-
trol electronics of some kind. After all, we are interested in classical data, so there
must eventually be an interface with the classical world.

NOTE Most quantum devices must be kept very cold and well isolated, since
they can be extremely susceptible to noise.

By applying quantum operations using embedded classical hardware, we can manipu-
late and transform quantum data. The power of quantum computing then comes
from carefully choosing which operations to apply in order to implement a useful
transformation that solves a problem of interest.
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Massive GPU clusters

= Reprogrammable hardware (e.g., Catapult/Brainwave)

= Tensor processing unit (TPU) clusters

= High-permanence, high-latency archival storage (e.g., Amazon Glacier)

Going forward, cloud services like Azure Quantum (https://azure.com/quantum) will
make the power of quantum computing available in much the same way.

Just as high-speed, high-availability internet connections have made cloud comput-
ing accessible for large numbers of users, we will be able to use quantum computers
from the comfort of our favorite WiFi-blanketed beach or coffee shop or even from a
train as we view majestic mountain ranges in the distance.

What can quantum computers do?

As quantum programmers, if we have a particular problem, how do we know il makes
sense Lo solve it with a quantum compuler?

We are still learning about the exact extent of what quantum computers are capa-
ble of, and thus we don’t have any concrete rules to answer this question yet. So far, we
have found some examples of problems where quantum computers offer significant
advantages over the best-known classical approaches. In each case, the quantum algo-
rithms that have been found to solve these problems exploit quantum effects to
achieve the advantages, sometimes referred to as a quantum advantage. The following
are two useful quantum algorithms:

= Grover’s algorithm (discussed in chapter 11) searches a list of Nitems in JN
steps.

= Shor’s algorithm (chapter 12) quickly factors large integers, such as those used
by cryptography to protect private data.

We'll see several more in this book, but Grover’s and Shor’s are good examples of how
quantum algorithms work: each uses quantum eftects to separate correct answers to
computational problems from invalid solutions. One way to realize a quantum advan-
tage is to find ways of using quantum effects to separate correct and incorrect solu-
tions to classical problems.
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Quantum computers also offer significant benefits for simulating properties of quan-
tum systems, opening up applications to quantum chemistry and materials science.
For instance, quantum computers could make it much easier to learn about the
ground-state energies of chemical systems. These ground-state energies then provide
insight into reaction rates, electronic configurations, thermodynamic properties, and
other properties of immense interest in chemistry.

Along the way to developing these applications, we have also seen significant
advantages in spin-off technologies such as quantum key distribution and quantum
metrology, some of which we will see in the next few chapters. In learning to control
and understand quantum devices for the purpose of computing, we have also learned
valuable techniques for imaging, parameter estimation, security, and more. While
these are not applications for quantum computing in a strict sense, they go a long way
toward showing the values of thinking in terms of quantum computation.

Of course, new applications of quantum computers are much easier to discover
when we have a concrete understanding of how quantum algorithms work and how to
build new algorithms from basic principles. From that perspective, quantum program-
ming is a great resource to learn how to discover entirely new applications.

What can’t quantum computers do?

Like other forms of specialized computing hardware, quantum computers won’t be
good at everything. For some problems, classical computers will simply be better
suited to the task. In developing applications for quantum devices, it’s helpful to note
what tasks or problems are out of scope for quantum computing.

The short version is that we don’t have any hard-and-fast rules to quickly decide
which tasks are best run on classical computers and which tasks can take advantage of
quantum computers. For example, the storage and bandwidth requirements for Big
Data—style applications are very difficult to map onto quantum devices, where we may
only have a relatively small quantum system. Current quantum computers can only
record inputs of no more than a few dozen bits, and this limitation will become more
relevant as quantum devices are used for more demanding tasks. Although we expect
to eventually build much larger quantum systems than we can now, classical comput-
ers will likely always be preferable for problems that require large amounts of
input/output to solve.

Similarly, machine learning applications that depend heavily on random access to
large sets of classical inputs are conceptually difficult to solve with quantum comput-
ing. That said, there may be other machine learning applications that map much more
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naturally onto quantum computation. Research efforts to find the best ways to apply
quantum resources to solve machine learning tasks are still ongoing. In general, prob-
lems that have small input and output data sizes but require large amounts of computa-
tion to get from input to output are good candidates for quantum computers.

In light of these challenges, it might be tempting to conclude that quantum com-
puters always excel at tasks that have small inputs and outputs but very intense com-
putation between the two. Notions like quantum parallelism are popular in media,
and quantum computers are sometimes even described as using parallel universes
to compute.

NOTE The concept of “parallel universes” is a great example of an analogy
that can help make quantum concepts understandable but can lead to non-
sense when taken to its extreme. It can sometimes be helpful to think of the
different parts of a quantum computation as being in different universes that
can’t affect each other, but this description makes it harder to think about
some of the effects we will learn in this book, such as interference. When
taken too far, the parallel-universes analogy also lends itself to thinking of
quantum computing in ways that are closer to a particularly pulpy and fun
episode of a sci-fi show like Star Trek than to reality.

What this fails to communicate, however, is that it isn’t always obvious how to use
quantum effects to extract useful answers from a quantum device, even if the state of
the quantum device appears to contain the desired output. For instance, one way to
factor an integer N using a classical computer is to list each potential factor and check
whether it’s actually a factor or not:

1 Leti=2.
2 Check if the remainder of N / iis zero.
— If so, return that i factors N.

— Ifnot, increment i and loop.

We can speed up this classical algorithm by using a large number of different classical
computers, one for each potential factor that we want to try. That is, this problem can
be easily parallelized. A quantum computer can try each potential factor within the
same device, but as it turns out, this isn’t yet enough to factor integers faster than the
classical approach. If we use this approach on a quantum computer, the output will be
one of the potential factors chosen at random. The actual correct factors will occur
with probability about 1 / ﬁ which is no better than the classical algorithm.

As we'll see in chapter 12, though, we can use other quantum effects to factor inte-
gers with a quantum computer faster than the best-known classical factoring algo-
rithms. Much of the heavy lifting done by Shor’s algorithm is to make sure that the
probability of measuring a correct factor at the end is much larger than the probabil-
ity of measuring an incorrect factor. Canceling out incorrect answers this way is where
much of the art of quantum programming comes in; it’s not easy or even possible to
do for all problems we might want to solve.
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To understand more concretely what quantum computers can and can’t do and
how to do cool things with quantum computers despite these challenges, it’s helpful
to take a more concrete approach. Thus, let’s consider what a quantum program even
is, so that we can start writing our own.

What is a program?

Throughout this book, we will often find it useful to explain a quantum concept by
first reexamining the analogous classical concept. In particular, let’s take a step back
and examine what a classical program is.

DEFINITION A program is a sequence of instructions that can be interpreted by
a classical computer to perform a desired task. Tax forms, driving directions,
recipes, and Python scripts are all examples of programs.

We can write classical programs to break down a wide variety of different tasks for inter-
pretation by all sorts of different computers. See figure 1.4 for some example programs.

Sugar cookies
arving size: 24 cookies

wtter, softened
1 confectioners sugar

anilla

almond extract

is all purpose flour
iaking soda

ream of tartar
{ershey’s Kisses

ter, sugar, egg, vanilla, and
| extract. Blend in flour,
ind cream of tartar.

chill 2-3 hours.

sen to 375°. Roll dough

Is and roll in sugar.

1 minimuffin pan. Bake 7-8
5. Place kiss in cookie
yoked.

Figure 1.4 Examples of classical programs. Tax forms, map directions, and recipes are all examples
in which a sequence of instructions is interpreted by a classical computer such as a person. These may
look very different, but each uses a list of steps to communicate a procedure.
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Let’s take a look at what a simple “hello, world” program might look like in Python:

>>> def hellol():
print ("Hello, world!")

>>> hello()
Hello, world!

At its most basic, this program can be thought of as a sequence of instructions given to
the Python inferpreter, which then executes each instruction in turn to accomplish
some effect—in this case, printing a message to the screen. That is, the program is a
description of a task that is then interpreted by Python and, in turn, by our CPU to accom-
plish our goal. This interplay between description and interpretation motivates calling
Python, C, and other such programming tools languages, emphasizing that program-
ming is how we communicate with our computers.

In the example of using Python to print “Hello, world!” we are effectively commu-
nicating with Guido van Rossum, the founding designer of the Python language.
Guido then effectively communicates on our behalf with the designers of the operat-
ing system we are using. These designers in turn communicate on our behalf with
Intel, AMD, ARM, or whatever company designed the CPU we are using, and so forth.

What is a quantum program?

Like classical programs, quantum programs consist of sequences of instructions that
are interpreted by classical computers to perform a particular task. The difference,
however, is that in a quantum program, the task we wish to accomplish involves con-
trolling a quantum system to perform a computation.

As a result, the instructions used in classical and quantum programs differ as well.
A classical program may describe a task such as loading some cat pictures from the
internet in terms of instructions to a networking stack and eventually in terms of
assembly instructions such as mov (move). By contrast, quantum languages like Q#
allow programmers to express quantum tasks in terms of instructions like M (mea-
sure). When run using quantum hardware, these programs may instruct a digital sig-
nal processor to send microwaves, radio waves, or lasers into a quantum device and
amplify signals coming out of the device.

Throughout the rest of this book, we will see many examples of the kinds of tasks a
quantum program is faced with solving, or at least addressing, and what kinds of classi-
cal tools we can use to make quantum programming easier. For example, figure 1.5
shows an example of writing a quantum program in Visual Studio Code, a classical
integrated development environment (IDE).



This chapter covers

= Why random numbers are an important resource

= What is a qubit?

= What basic operations can we perform on a
qubit?

= Programming a quantum random number
generator in Python

In this chapter, we’ll start to get our feet wet with some quantum programming
concepts. The main concept we will explore is the qubit, the quantum analogue of
a classical bit. We’ll use qubits as an abstraction or model to describe the new
kinds of computing that are possible with quantum physics. Figure 2.1 shows a
model of using a quantum computer as well as the simulator setup that we use in
this book. Real or simulated qubits will live on the target machine and interact
with the quantum programs that we will be writing! Those quantum programs
can be sent by various host programs that then wait to receive the results from the
quantum program.

17
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Quantum computer
mental model
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A host program such as Jupyter Notebook

or a custom program in Python can send a
quantum program to a target machine, such
as a device offered through cloud services like

Azure Quantum.

Classical computer

Target machine

At the end of the quantum program,
the output of the program is sent

back to the classical computer, where

it can be displayed or processed further.

Measurement

resu\ts( )Ins‘(ructions

Quantum
program

Hardware
or simulator

! The quantum program
then sends instructions
to a quantum device
and gets measurement
! results back.

Implementation
on a simulator

When working on a simulator, as we’'ll
be doing in this book, the simulator can
run on the same computer as our host

program, but our quantum program still
sends instructions to the simulator and

Classical computer

gets results back.

Run
Host

program

Quantum
program

Output

Measurement Instructions
results

Simulator

Figure 2.1 A mental model for how we can use a quantum computer. The top half of the figure is the general
model for a quantum computer. We will be using local simulators for this book, and the bottom half represents

what we will be building and using.

To help learn about what qubits are and how we interact with them, we will use an
example of how they are used today: random number generation. While we can build

up much more interesting devices from qubits, the simple example of a quantum ran-

dom number generator (QRNG) is a good way to get familiar with the qubit.
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Why do we need random numbers?

Humans like certainty. We like it when pressing a key on our keyboard does the same
thing every time. However, there are some contexts in which we want randomness:

= Playing games
= Simulating complex systems (such as the stock market)
= Picking secure secrets (for example, passwords and cryptographic keys)

In all of these situations where we want randomness, we can describe the chances of
each outcome. For random events, describing the chances is all we can say about the
situation until the die is cast (or the coin is flipped or the password is reused). When
we describe the chances of each example, we say things like this:

= [fIroll this die, then 1 will get a six with probability 1 out of 6.
= JfIflip this coin, then I will get heads with probability 1 out of 2.

We can also describe cases where the probabilities aren’t the same for every outcome.
On Wheel of Fortune, (figure 2.2), the probability that if we spin the wheel, then we will
get a $1,000,000 prize is much smaller than the probability that if we spin the wheel,
then we will go bankrupt.

Bankr
P{ban

Figure 2.2 Probabilities of $1,000,000 and

Bankrupt on Wheel of Fortune. Before spinning

the wheel, we don’t know exactly where it will

land, but we do know by looking at the wheel that

the probability of getting Bankrupt is much larger
S ey P than the probability of winning big.

As on game shows, there are many contexts in computer science where randomness is
critical, especially when security is required. If we want to keep some information pri-
vate, cryptography lets us do so by combining our data with random numbers in differ-
ent ways. If our random number generator isn’t very good—that is to say, if an attacker
can predict what numbers we use to protect our private data—then cryptography doesn’t
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help us much. We can also imagine using a poor random number generator to run a
raffle or a lottery; an attacker who figures out how our random numbers are gener-
ated can take us straight to the bank.

As it turns out, quantum mechanics lets us build some really unique sources of ran-
domness. If we build them right, the randomness of our results is guaranteed by phys-
ics, not an assumption about how long it would take for a computer to solve a difficult
problem. This means a hacker or adversary would have to break the laws of physics to
break the security! This does not mean we should use quantum random numbers for
everything; humans are still the weakest link in security infrastructure .

Deep dive: Computational security and information theoretic security
Some ways of protecting private information rely on assumptions about what prob-
lems are easy or hard for an attacker to solve. For instance, the RSA algorithm is a
commonly used encryption algorithm and is based on the difficulty of finding prime
factors for large numbers. RSA is used on the web and in other contexts to protect user
data, under the assumption that adversaries can’t easily factor very large numbers. So
far, this has proven to be a good assumption, but it is entirely possible that a new fac-
toring algorithm may be discovered, undermining the security of RSA. New models of
computation like quantum computing also change how reasonable or unreasonable it
is to make computational assumptions like “factoring is hard.” As we’ll see in chapter
11, a quantum algorithm known as Shor’s algorithm allows for solving some kinds of
cryptographic problems much faster than classical computers can, challenging the
assumptions that are commonly used to promise computational security.

By contrast, if an adversary can only ever randomly guess at secrets, even with very
large amounts of computing power, then a security system provides much better
guarantees about its ability to protect private information. Such systems are said to
be informationally secure. Later in this chapter, we’'ll see that generating random num-
bers in a hard-to-predict fashion allows us to implement an informationally secure pro-
cedure called a one-time pad.

This gives us some confidence that we can use quantum random numbers for vital
tasks, such as to protect private data, run lotteries, and play Dungeons and Dragons. Sim-
ulating how quantum random number generators work lets us learn many of the basic
concepts underlying quantum mechanics, so let’s jump right in and get started!
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As mentioned earlier, one great way to get started is to look at an example of a
quantum program that generates random numbers: a quantum random number gen-
erator (QRNG). Don’t worry if the following algorithm (also shown in figure 2.3)
doesn’t make a lot of sense right now—we’ll explain the different pieces as we go
through the rest of the chapter:

1 Ask the quantum device to allocate a qubit.

2 Apply an instruction called the Hadamard instruction to the qubit; we learn about
this later in the chapter.

3 Measure the qubit, and return the result.

Step 1:
Prepare
starting
qubit
\_’ Step 2: Figure 2.3 Quantum random number generator algorithm.
Ha da‘?_f:r'g To sample random numbers with a quantum computer, our

program will prepare a fresh qubit and then use a Hadamard
Step 3: instruction to prepare the superposition we need. Finally,
Measure we can measure and return the random result that we get
qubit at the end.

In the rest of the chapter, we’ll develop a Python class called QuantumDevice to let us
write programs that implement algorithms like this one. Once we have a Quantum-
Device class, we'll be able to write QRNG as a Python program similar to classical pro-
grams that we’re used to.

NOTE Please see appendix A for instructions on how to set up Python on
your device to run quantum prograins.

Note that the following sample will not run until you have written the simulator in this
chapter @.

Quantum programs are written just like classical programs. In

this case, we're using Python, so our quantum program is a Quantum programs work by asking
Python function grng that implements a QRNG. quantum computing hardware for
def grng(device : QuantumDevice) -> bool: qubits: quantum analogues of bits

that we can use to perform

with device.using qubit() as g: computations.

Jas

q-20) < Once we have a qubit, we can issue

instructions to that qubit. Similar
to assembly languages, these
instructions are often denoted by
short abbreviations; we'll see what
h() stands for later in this chapter.

return g.measure () <

this case, half of the time, our measurement will return
True, and the other half of the time, we’ll get back False.
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into 1 bits and vice versa. In classical storage devices like hard drives, a NOT gate flips
the magnetic field that stores our bit value. As shown in figure 2.5, we can think of NOT
as implementing a 180° rotation between the 0 and 1 points we drew in figure 2.4.

0 : 0
This bitis —@® O
inthe 0 !
setting.
1 [y
P2
O @< pfter the
1 | 1 NOT gate, Figure 2.5 The classical NOT operation flips
; the bit is a classical bit between 0 and 1. For instance,
: nowinthe1  ifa bit starts in the O state, NOT flips it to the
setting. 1 state.

Visualizing classical bits this way also lets us extend the notion of bits slightly to
include a way to describe randem bits (which will be helpful later). If we have a fair coin
(that is, a coin that lands heads half the time and tails the other half), then it wouldn’t
be correct to call that coin a 0 or a 1. We only know what bit value our coin bit has if
we set it with a particular side face up on a surface; we can also flip it to get a random
bit value. Every time we flip a coin, we know that eventually, it will land, and we will get
heads or tails. Whether it lands heads or tails is governed by a probability called the
bias of the coin. We have to pick a side of the coin to describe the bias, which is easy to
phrase as a question like “What is the probability that the coin will land heads?” Thus
a fair coin has a bias of 50% because it lands with the value heads half of the time,
which is mapped to the bit value 0 in figure 2.6.

Using this visualization, we can take our previous two dots indicating the bit values
0 and 1 and connect them with a line on which we can plot our coin’s bias. It becomes

W d be 0 Heads
‘e can descri O

randomness as

peints on the line
between bits. This

point is halfway

between heads and o
tails, so it represents —-"’. Fair coin
flipping a fair coin.

We expect to get Figure 2.6 We can use the same picture as before to
heads 50% of the extend our concept of a bit to describe a coin. Unlike a
time and tails 50% bit, a coin has a probability of being either 0 or 1 each
of the time. O time it is tossed. We graphically represent that

1 Tails probability as a point between 0 and 1.
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easier to see that a NOT operation (which still works on our new probabilistic bit)
doesn’t do anything to a fair coin. If 0 and 1 occur with the same probability, then it
doesn’t matter if we rotate a0 to a 1 ora 1 to a 0: we’ll still wind up with 0 and 1 having
the same probability.

What if our bias is not in the middle? If we know that someone is trying to cheat by
using a weighted or modified coin that almost always lands on heads, we can say the
bias of the coin is 90% and plot it on our line by drawing a point much closer to 0
than to 1.

DEFINITION The point on a line where we would draw each classical bit is the
state of that bit.

Let’s consider a scenario. Say I want to send you a bunch of bits stored using padlocks.
What is the cheapest way I can do so?

One approach is to mail a box containing many padlocks that are either open or
closed and hope that they arrive in the same state in which I sent them. On the other
hand, we can agree that all padlocks start in the 0 (unlocked) state, and I can send you
instructions on which padlocks to close. This way, you can buy your own padlocks, and
I only need to send a description of how to prepare those padlocks using classical NOT
gates. Sending a piece of paper or an email is much cheaper than mailing a box of
padlocks!

This illustrates a principle we will rely on throughout the book: the state of a physical
system can also be described in terms of instructions for how to prepare that state. Thus, the
operations allowed on a physical system also define what states are possible.

Although it may sound completely trivial, there is one more thing we can do with
classical bits that will turn out to be critical for how we understand quantum comput-
ing: we can look at them. If I look at a padlock and conclude, “Aha! That padlock is
unlocked,” then I can now think of my brain as a particularly squishy kind of bit. The
0 message is stored in my brain by my thinking, “Aha! That padlock is unlocked,”
while a 1 message would be stored by my thinking, “Ah, well, that padlock is locked ©).”
In effect, by looking at a classical bit, I have copied it into my brain. We say that the act
of measuring the classical bit copies that bit.

More generally, modern life is built around the ease with which we copy classical
bits by looking at them. We copy classical bits with truly reckless abandon, measuring
many billions of classical bits every second that we copy data from our video game con-
soles to our TVs.

On the other hand, if a bit is stored as a coin, then the process of measuring
involves flipping it. Measuring doesn’t quite copy the coin, as I might get a different
measurement result the next time I flip, If I only have one measurement of a coin, I
can’t conclude the probability of getting heads or tails. We didn’t have this ambiguity
with padlock bits because we knew the state of the padlocks was either 0 or 1. If T mea-
sured a padlock and found it to be in the 0 state, [ would know that it would always be
in the 0 state unless I did something to the padlock.
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The situation isn’t precisely the same in quantum computing, as we'll see later in
the chapter. While measuring classical information is cheap enough that we complain
about precisely how many billions of bits a $5 cable lets us measure, we have to be
much more careful with how we approach quantum measurements.

Abstractions are our friend

Regardless of how we physically build a bit, we can (fortunately) represent them the
same way in both math and code. For instance, Python provides the bool type (short for
Boolean, in honor of the logician George Boole), which has two valid values: True and
False. We can represent transformations on bits such as NOT and OR as operations act-
ing on bool variables. Importantly, we can specify a classical operation by describing
how that operation transforms each possible input, often called a truth table.

DEFINITION A truth table is a table describing the output of a classical opera-
tion for every possible combination of inputs. For example, figure 2.7 shows
the truth table for the AND operation.

Truth tables are one way to show
what happens to classical bits in
functions or logical circuits.

Input Output
00 0
01 0 Figure 2.7 Truth table for the logical
10 0 operation AND. If we know the entire truth
11 1 1 table for a logical operation, then we

e ey e gy e

same output bits as the truth know what that operation does for any
table to the left. possible input.

We can find the truth table for the NAND (short for NOT-AND) operation in Python
by iterating over combinations of True and False.

Listing 2.2 Using Python to print out a truth table for NAND

>>> from itertools import product

>>> for inputs in product([False, True], repeat=2):
output = not (inputs[0] and inputs[1])

- print (£"{inputs[0] }\t{inputs[1] }\t->\t{output}")

False False -> True

False True -> True
True False -> True
True True -> False

NOTE Describing an operation as a truth table holds for more complicated
operations. In principle, even an operation like addition between two 64-bit
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integers can be written as a truth table. This isn’t very practical, though, as a
truth table for two 64-bit inputs would have 2% = x 10* entries and would
take 10" bits to write. By comparison, recent estimates put the size of the
entire internet at closer to 10?7 bits.

Much of the art of classical logic and hardware design is making circuits that can pro-
vide very compact representations of classical operations rather than relying on poten-
tially massive truth tables. In quantum computing, we use the name unitary operators
for similar truth tables for quantum bits, which we will expand on as we go along.

In summary:

= (Classical bits are physical systems that can be in one of two different states.

= (lassical bits can be manipulated through eperations to process information.

= The act of measuring a classical bit makes a copy of the information contained in
the state.

NOTE In the next section, we’ll use linear algebra to learn about qubits, the
basic unit of information in a quantum computer. If you need a refresher on
linear algebra, this would be a great time to take a detour to appendix C. We'll
refer to an analogy from this appendix throughout the book, where we’ll think
of vectors as directions on a map. We’ll be right here when you get back!

Qubits: States and operations

Just as classical bits are the most basic unit of information in a classical computer,
qubits are the basic unit of information in a quantum computer. They can be physically
implemented by systems that have two states, just like classical bits, but they behave
according to the laws of quantum mechanics, which allows for some behaviors that
classical bits are not capable of. Let’s treat qubits like we would any other fun new
computer part: plug it in and see what happens!
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2.3.1 State of the qubit

To implement our QRNG, we need to work out how to describe our qubit. We have
used locks, baseballs, and other classical systems to represent classical bit values of 0 or 1.
We can use many physical systems to act as our qubit, and states are the “values” our
qubit can have.

Similar to the 0 and 1 states of classical bits, we can write labels for quantum states,
The qubit states that are most similar to the classical 0 and 1 are |0) and |1), as shown
in figure 2.8. These are referred to as ket 0 and ket I, respectively.

@ Q

Figure 2.8 Using Dirac (bra-ket) notation for qubits,
we can graphically represent the |0) and |1) states for
qubits the same way as we represented the 0 and 1
states of classical bits. In particular, we'll draw the |0}
and |1) states as opposite points along an axis, as

O m . shown here.

One thing to be mindful of, though, is that a state is a convenient model used to pre-
dict how a qubit behaves, not an inherent property of the qubit. This distinction
becomes especially important when we consider measurement later in the chapter—
as we will see, we cannot directly measure the state of a qubit.
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If we rotate a qubit in the |0) state clockwise by 90° instead of 180°, we get a quantum
operation that we can think of as the square root of a NOT operation, as shown in fig-
ure 2.10.

0or |0) |0)
You can also do a
« partial rotation, as
«— The NOT operation we have here by 90°.
is a rotation by 180°.

NOT |0} = [1)
1or|1) [1)

Figure 2.10 We can also rotate a state by less than 180 degrees. Doing so, we get a state
that is neither |0) nor |1) but that lies halfway around the circle between them.

Just as we earlier defined the square root Jx of a number x as being a number y such
that y* = x, we can define the square root of a quantum operation. If we apply a 90°
rotation twice, we get back the NOT operation, so we can think of the 90° rotation as
the square root of NOT.

We now have a new state that is neither |0) nor |1), but an equal combination of them
both. In precisely the same sense that we can describe “northeast” by adding together
the directions “north” and “east,” we can write this new state as shown in figure 2.11.

The state of a qubit can be represented as a point on a circle that has two labeled
states on the poles: |0) and |1). More generally, we will picture rotations using arbitrary
angles 6 between qubit states, as shown in figure 2.12.
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Just as we can point ourselves northeast by looking
north and then rotating toward the east, we get a new
state that points between |0) and |1) by starting in | 0)
and rotating toward |1).

In the same way we might think of directions
like north and east, quantum states like

|0) and |1) are directions.
cos(90° / 2) |0) + sin(90°/ 2) |1) = (|0) + |1)) /2

We can rotate between states using the same math we use
to describe rotations of map directions; we just have to
watch out for factors of 2.

For example, if we want to rotate the |0) state by 90°,
we use the cosine and sine functions to find the new state.

Figure 2.11 We can write the state we get when we rotate by 90° by thinking of the
|0} and |1) states as directions. Doing so, and using some trigonometry, we get that
rotating the |0) state by 90° gives us a new state, (|0) + |1)) / ./2 . For more details
on how to write out the math for this kind of rotation, check out appendix B for a
refresher on linear algebra.

The state of the qubit can |0} The state of this qubit is written as a linear

be represented as a point O combination of |0) and |1). The factor of '

anywhere in or on the circle. in the sin and cos arguments is a product of
\ how the angle was originally defined.

|
\

cos(8/2) |0)+sin(8/2)[1)

O
1)

Figure 2.12 If we rotate the |0) state by an angle other than 90° or 180°, the resulting state
can be represented as a point on a circle that has |D) and |1} as its top and bottom poles. This
gives us a way to visualize the possible states that a single qubit can be in.
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Mathematically, we can write the state of any point on the circle that represents our
qubit as cos(0 / 2) |0} + sin(B / 2) |1), where |0) and |1} are different ways of writing
the vectors [[1], [0]] and [[0], [1]], respectively.

TIP  One way to think of ket notation is that it gives names to vectors that we
commonly use. When we write [0) = [[1], [0]], we're saying that [[1], [0]] is
important enough that we name it after 0. Similarly, when we write [+)=T[I11,
(111 / ﬁ , we give a name to the vector representation of a state that we will
use throughout the book.

Another way to say this is that a qubit is generally the linear combination of the vectors
of |0) and |1) with coefficients that describe the angle that |0) would have to be rotated
to get to the state. To be useful for programming, we can write how rotating a state
affects each of the |0) and |1) states, as shown in figure 2.13.

Let's look at rotating |0) by an Sometimes, using matrix notation
angle B again, and :ee howdwe, instead of Dirac notation (kets) is more
can write it even when we don't helpful. We can use that |0) = [[1], [0]]

know what 8 is. here, since both are ways of writing the
As before, we start by writing the same qubit state.

rotation using sines and cosines. IJ_l

—— , 0
[ ] + sin(9f2)[1]

cos(8/2)[0)+sin(8/2)|1)=cos(8/2) |

B {cos(e HZ)]

cos(8/2) Similarly, | 1) = [[0], [1])-
Once we’ve written each state
using matrix notation, we can

just add the corresponding
elements together.

For instance, we get cos(0 / 2)
for the first row, since cos(0 / 2)
+ 0 = cos(8/2).

Figure 2.13 Using linear algebra, we can describe the state of a single qubit as a
two-element vector. In this equation, we show how that way of thinking about qubit
states relates to our earlier use of Dirac (bra-ket) notation. In particular, we show
the final state after rotating the |0} state by an arbitrary angle 0 using both vector
and Dirac notations; both will be helpful at different points in our quantum journey.

TIP This is precisely the same as when we used a basis of vectors earlier to
represent a linear function as a matrix.

We’'ll learn about other quantum operations in this book, but these are the easiest to
visualize as rotations. Table 2.2 summarizes the states we have learned to create from
these rotations.
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Table 2.2 State labels, expansions in Dirac notation, and representations as vectors

State label Dirac notation Vector representation
0) 0) [[1], [0]]
1) 1) [[o1, [11]
+) (0} + 1)) / /2 1/ 42) 11/ /2]
= (10) - 1) / 42 1/ .2, -1/ 2]
Measuring qubits

When we want to retrieve the information stored in a qubit, we need to measure the
qubit. Ideally, we would like a measurement device that lets us directly read out all the
information about the state at once. As it turns out, this is not possible by the laws of
quantum mechanics, as we’ll see in chapters 3 and 4. That said, measurement can
allow us to learn information about the state relative to particular directions in the sys-
tem. For instance, if we have a qubit in the |0) state, and we look to see if it is in the |0)
state, we’ll always get that it is. On the other hand, if we have a qubit in the |+) state,
and we look to see if it is in the |0) state, we’ll get a 0 outcome with 50% probability. As
shown in figure 2.14, this is because the |+) state overlaps equally with the |0) and |1)
states, such that we’ll get both outcomes with the same probability.

TIP Measurement outcomes of qubits are always classical bit values! Put dif-
ferently, whether we measure a classical bit or a qubit, our result is always a
classical bit.

Most of the time, we will choose to measure whether we have a |0) or a |1); that is, we’ll
want to measure along the line between the |0) and |1). For convenience, we give this



