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Preface

Philosophical conundrums pervade mathematics, from fundamental questions of
mathematical ontology—What is a number? What is infinity?—to questions about the
relations among truth, proof, and meaning. What is the role of figures in geometric
argument? Do mathematical objects exist that we cannot construct? Can every mathematical
question be solved in principle by computation? Is every truth of mathematics true for a
reason? Can every mathematical truth be proved?

This book is an introduction to the philosophy of mathematics, in which we shall consider
all these questions and more. I come to the subject from mathematics, and I have strived in
this book for what I hope will be a fresh approach to the philosophy of mathematics—one
grounded in mathematics, motivated by mathematical inquiry or mathematical practice. I
have strived to treat philosophical issues as they arise organically in mathematics. Therefore,
I have organized the book by mathematical themes, such as number, infinity, geometry, and
computability, and I have included some mathematical arguments and elementary proofs
when they bring philosophical issues to light.

The philosophical positions of platonism, realism, logicism, structuralism, formalism,
intuitionism, type theorism, and others arise naturally in various mathematical contexts. The
mathematical progression from ancient Pythagorean incommensurability and the
irrationality of 4/, for example, through to Liouville’s construction of transcendental
numbers, paralleling the discovery of nonconstructible numbers in geometry, is an
opportunity to contrast platonism with structuralism and other accounts of what numbers
and mathematical objects are. Structuralism finds its origin in Dedekind’s arithmetic
categoricity theorem, gaining strength with categorical accounts of the real numbers and our
other familiar mathematical structures. The rise of rigor in the calculus is a natural setting to
discuss whether the indispensability of mathematics in science offers grounds for
mathematical truth. Zeno’s paradoxes of motion and Galileo’s paradoxes of infinity lead to the
Cantor-Hume principle, and then to both Frege’s number concept and Cantor’s work on the
transfinite. Thus, mathematical themes traverse millennia, giving rise again and again to
philosophical considerations.

I therefore aim to present a mathematics-oriented philosophy of mathematics. Years ago,
Penelope Maddy (1991) criticized parts of the philosophy of mathematics at that time as
amounting to

an intramural squabble between metaphysicians, and a squabble in which it is not clear
what, if anything, is really at stake. (p. 158)

She sought to refocus the philosophy of mathematics on philosophical issues closer to
mathematics:



What I'm recommending is a hands-on sort of philosophy of mathematics, a sort relevant to
actual practice, a sort sensitive to the problems, procedures, and concerns of
mathematicians themselves. (p. 159)

I find that inspiring, and part of what I have aimed to do in this book is follow that advice—to
present an introduction to the philosophy of mathematics that both mathematicians and
philosophers might find relevant. Whether or not you agree with Maddy’s harsh criticism,
there are many truly compelling issues in the philosophy of mathematics, which I hope to
share with you in this book. I hope that you will enjoy them.

Another aim I have with the book is to try to help develop a little the mathematical
sophistication of the reader on mathematical topics important in the philosophy of
mathematics, such as the foundations of number theory, non-Euclidean geometry,
nonstandard analysis, Godel’s incompleteness theorems, and uncountability. Readers surely
come to this subject from diverse mathematical backgrounds, ranging from novice to expert,
and so I have tried to provide something useful for everyone, always beginning gently but still
reaching deep waters. The allegory of Hilbert’s Grand Hotel, for example, is an accessible
entryway to the discussion of Cantor’s results on countable and uncountable infinities, and
ultimately to the topic of large cardinals. I have aimed high on several mathematical topics,
but I have also strived to treat them with a light touch, without getting bogged down in
difficult details.

This book served as the basis for the lecture series I gave on the philosophy of mathematics
at the University of Oxford for Michaelmas terms in 2018, and again in 2019 and 2020. [ am
grateful to the Oxford philosophy of mathematics community for wide-ranging discussions
that have helped me to improve this book. Special thanks to Daniel Isaacson, Alex Paseau,
Beau Mount, Timothy Williamson, Volker Halbach, and especially Robin Solberg, who gave me
extensive comments on earlier drafts. Thanks also to Justin Clarke-Doane of Columbia
University in New York for comments. And thanks to Theresa Carcaldi for extensive help with
editing.

This book was typeset using IZTjzX. Except for the image on page 89, which is in the public
domain, I created all the other images in this book using TikZ in IATEX, specifically for this
book, and in several instances also for my book Proof and the Art of Mathematics (2020),
available from MIT Press.
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Numbers

Abstract.  Numbers are perhaps the essential mathematical idea, but what are numbers? There
are many kinds of numbers—natural numbers, integers, rational numbers, real numbers, complex
numbers, hyperreal numbers, surreal numbers, ordinal numbers, and more—and these number
systems provide a fruitful background for classical arguments on incommensurability and
transcendentality, while setting the stage for discussions of platonism, logicism, the nature of
abstraction, the significance of categoricity, and structuralism.

1.1 Numbers versus numerals

What is a number? Consider the number 57. What is it? We distinguish between the number
and the numerals used to represent it. The notation 57—I mean literally the symbol 5 followed
by the symbol 7—is a description of how to build the number: take five tens and add seven.
The number 57 is represented in binary as 111001, which is a different recipe: start with a
fresh thirty-two, fold in sixteen and eight, and garnish with one on top, chill and serve. The
Romans would have written LVII, which is the following recipe: start with fifty, add five, and
then two more.

In the delightful children’s novel, The Phantom Tollbooth, Juster and Feiffer (1961), numbers
come from the number mine in Digitopolis, and they found there the largest number! 1t
was...ahem...a gigantic number 3—over 4 meters tall—made of stone. Broken numbers from
the mine were used for fractions, like 5/3, when the number 5 has broken into three pieces.
But of course, this confuses the number with the numeral, the object with its description. We
would not confuse Hypatia, the person, with Hypatia, the string of seven letters forming her
name; or the pecan pie (delicious!) with the written instructions (chewy, like cardboard) for
how to prepare it.

There are many diverse kinds of natural numbers. The square numbers, for example, are
those that can be arranged in the form of a square:
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The triangular numbers, in contrast, are those that can be arranged in the form of a triangle:
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One proceeds to the hexagonal numbers, and so forth. The number zero is a degenerate
instance in each case.

The palindromic numbers are the numbers, such as 121 or 523323325, whose digits read the
same forward and backward, like the palindromic phrase, “I prefer pi.” Whereas squareness
and triangularity are properties of numbers, however, the question of whether a number is
palindromic depends on the base in which it is presented (and for this reason,
mathematicians sometimes find the notion unnatural or amateurish). For example, 27 is not a
palindrome, but in binary, it is represented as 11011, which is a palindrome. Every number is
a palindrome in any sufficiently large base, for it thereby becomes a single digit, a
palindrome. Thus, palindromicity is not a property of numbers, but of number descriptions.

1.2 Number systems

Let us lay our various number systems on the table.

Natural numbers

The natural numbers are commonly taken to be the numbers:

01 2 3 4

The set of natural numbers is often denoted by N. The introduction of zero, historically, was a
difficult conceptual step. The idea that one might need a number to represent nothing or an
absence is deeper than one might expect, given our current familiarity with this concept.
Zero as a number was first fully explicit in the fifth century in India, although it was used
earlier as a placeholder, but not with Roman numerals, which have no place values. Even
today, some mathematicians prefer to start the natural numbers with 1; some computer
programming languages start their indices with 0, and others with 1. And consider the
cultural difference between Europe and the US in the manner of counting floors in a building,
or the Chinese method of counting a person’s age, where a baby is “one” at birth and during
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be even as well. So both p and g are even, which contradicts our assumption that the fraction
p/q was in lowest terms. So 4/2 cannot be represented as a fraction and therefore is irrational.

O

An alternative geometric argument

Here is another argument—one with a more geometric flavor, due to the logician Stanley
Tennenbaum from New York City.

Proof. 1f \/E = p/qis rational, then let us represent the resulting equation p? = ¢* + ¢*
geometrically, with a large, blue integer square having the same area as two medium, red
integer squares:

Let us consider the smallest possible integer instance of this relationship. Place the two red
squares overlapping inside the blue square, as shown here. The two blue corners are
uncovered, peeking through, while the red square of overlap in the center is covered twice.
Since the original blue square had the same area as the two red squares, it follows that the
area of the double-counted central square is exactly balanced by the two small, uncovered
blue squares in the corners. Let us pull these smaller squares out of the figure and consider
them separately. We have said that the red, central square has the same area as the two small
blue squares in the corners.

Furthermore, these smaller squares also each have integer sides, since they arise as
differences from the previous squares. Thus, we have found a strictly smaller integer square
as the sum of two copies of another integer square. This contradicts our assumption that we
had begun with the smallest instance. So there can be no such instance at all, and therefore
\/E is irrational. O



1.4 Platonism

Truly, what is a number? Let us begin to survey some possible answers. According to the
philosophical position known as platonism, numbers and other mathematical objects exist as
abstract objects. Plato held them to exist in a realm of ideal forms. A particular line or circle
that you might draw on paper is flawed and imperfect; in the platonic realm, there are perfect
lines and circles—and numbers. From this view, for a mathematician to say, “There is a
natural number with such-and-such property,” means that in the platonic realm, there are
such numbers to be found. Contemporary approaches to platonism assert that abstract
objects exist—this is the core issue—but are less connected with Plato’s idea of an ideal form
or the platonic realm, a place where they are all gathered together.

What does it mean to say, “There is a function f that is continuous but not differentiable,”
“There is a solution to this differential equation,” or “There is a topological space that is
sequentially compact, but not compact™? This is not physical existence; we cannot hold these
“objects” in our hands, as we might briefly hold a hot potato. What kind of existence is this?

According to platonism, mathematical objects are abstract but enjoy a real existence. For
the platonist, ordinary talk in mathematics about the existence of mathematical objects can
be taken literally—the objects do exist, but abstractly rather than physically. According to
this perspective, the nature of mathematical existence is similar to the nature of existence for
other abstractions, such as beauty or happiness. Does beauty exist? I believe so. Do parallel
lines exist? According to platonism, the answers are similar. But what are abstract objects?
What is the nature of this existence?

Consider a piece of writing: Henrik Ibsen’s play A Doll’s House. This exists, surely, but what
is it specifically that exists here? 1 could offer you a printed manuscript, saying, “This is A
Doll’s House.” But that would not be fully true, for if that particular manuscript were damaged,
we would not say that the play itself was damaged; we would not say that the play had been
taken in my back pocket on a motorcycle ride. I could see a performance of the play on
Broadway, but no particular performance would seem to be the play itself. We do not say that
Ibsen’s play existed only in 1879 at its premiere, or that the play comes into and out of
existence with each performance. The play is an abstraction, an idealization of its various
imperfect instantiations in manuscripts and performances.

Like the play, the number 57 similarly exists in various imperfect instantiations: 57 apples
in the bushel and 57 cards in the cheater’s deck. The existence of abstract objects is mediated
somehow through the existence of their various instantiations. Is the existence of the number
57 similar to the existence of a play, a novel, or a song? The play, as with other pieces of art,
was created: Ibsen wrote A Doll’s House. And while some mathematicians describe their work
as an act of creation, doubtless no mathematician would claim to have created the number 57
in that sense. Is mathematics discovered or created? Part of the contemporary platonist view
is that numbers and other mathematical objects have an independent existence; like the
proverbial tree falling in the forest, the next number would exist anyway, even if nobody ever
happened to count that high.

Plenitudinous platonism

The position known as plenitudinous platonism, defended by Mark Balaguer (1998), is a
generous form of platonism, generous in its metaphysical commitments; it overflows with
them. According to plenitudinous platonism, every coherent mathematical theory is realized
in a corresponding mathematical structure in the platonic realm. The theory is true in an
ideal mathematical structure, instantiating the subject matter that the theory is about.



According to plenitudinous platonism, every conceivable coherent mathematical theory is
true in an actual mathematical structure, and so this form of platonism offers us a rich
mathematical ontology.

1.5 Logicism

Pursuing the philosophical program known as logicism, Gottlob Frege, and later Bertrand
Russell and others at the dawn of the twentieth century, aimed to reduce all mathematics,
including the concept of number, to logic. Frege begins by analyzing what it means to say that
there are a certain number of things of a certain kind. There are exactly two things with
property P, for example, when there is a thing x with that property and there is another
distinct thing y with that property, and furthermore, anything with the property is either x or
y. In logical notation, therefore, “There are exactly two Ps” can be expressed like this:

A,y (PXAPYAXEYAVZAPz> 2=xVZ=Y))

The quantifier symbol 3 is read as “There exists” and V as “For all,” while A and V mean
“and” and “or,” and — means “implies.” In this way, Frege has expressed the concept of the
number 2 in purely logical terms. You can have two sheep or two apples or two hands, and the
thing that is common between these situations is what the number 2 is.

Equinumerosity

Frege's approach to cardinal numbers via logic has the effect that classes placed in a one-to-
one correspondence with each other will fulfill exactly the same Fregean number assertions,
because the details of the truth assertion transfer through the correspondence from one class
to the other. Frege's approach, therefore, is deeply connected with the equinumerosity
relation, a concept aiming to express the idea that two sets or classes have the same cardinal
size. Equinumerosity also lies at the core of Georg Cantor’s analysis of cardinality, particularly
the infinite cardinalities discussed in chapter 3. Specifically, two classes of objects (or as Frege
would say: two concepts) are equinumerous—they have the same cardinal size—when they can
be placed into a one-to-one correspondence. Each object in the first class is associated with a
unique object in the second class and conversely, like the shepherd counting his sheep off on
his fingers.

So let us consider the equinumerosity relation on the collection of all sets. Amongst the
sets pictured here, for example, equinumerosity is indicated by color: all the green sets are
equinumerous, with two elements, and all the red sets are equinumerous, and the orange sets,
and so on,
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In this way, equinumerosity enables us systematically to compare any two sets and determine
whether they have the same cardinal size.

The Cantor-Hume principle

At the center of Frege's treatment of cardinal numbers, therefore, is the following criterion
for number identity:

Cantor-Hume principle.  Two concepts have the same number if and only if those concepts can
be placed in a one-to-one correspondence.

In other words, the number of objects with property P is the same as the number of objects
with property Q exactly when there is a one-to-one correspondence between the class { x | P(x)
} and the class { x| Q(x) }. Expressed in symbols, the principle asserts

#P =#(Q if and only if (x| Ax)} = ({x|0()}

where #P and #Q denote the number of objects with property P or Q, respectively, and the
symbol =~ denotes the equinumerosity relation.

The Cantor-Hume principle is also widely known simply as Hume’s principle, in light of
Hume’s brief statement of it in A Treatise of Human Nature (1739, LIILI), which Frege mentions
(the relevant Hume quotation appears in section 4.5 of this book). Much earlier, Galileo
mounted an extended discussion of equinumerosity in his Dialogues Concerning Two New
Sciences (1638), considering it as a criterion of size identity, particularly in the confounding
case of infinite collections, including the paradoxical observation that line segments of
different lengths and circles of different radii are nevertheless equinumerous as collections of
points. Meanwhile, to my way of thinking, the principle is chiefly to be associated with
Cantor, who takes it as the core motivation underlying his foundational development of
cardinality, perhaps the most successful and influential, and the first finally to be clear on the
nature of countable and uncountable cardinalities (see chapter 3). Cantor treats
equinumerosity in his seminal set-theoretic article, Cantor (1874), and states a version of the
Cantor-Hume principle in the opening sentence of Cantor (1878). In an 1877 letter to Richard
Dedekind, he proved the equinumerosity of the unit interval with the square, the cube, and
indeed the unit hypercube in any finite dimension, saying of the discovery, “I see it, but I
don’t believe it!” (Dauben, 2004, p. 941) We shall return to this example in section 3.8, page
106.



The Cantor-Hume principle provides a criterion of number identity, a criterion for
determining when two concepts have the same number. Yet it expresses on its face merely a
necessary feature of the number concept, rather than identifying fully what numbers are.
Namely, the principle tells us that numbers are classification invariants of the
equinumerosity relation. A classification invariant of an equivalence relation is a labeling of
the objects in the domain of the relation, such that equivalent objects get the same label and
inequivalent objects get different labels. For example, if we affix labels to all the apples we
have picked, with a different color for each day of picking, then the color of the label will be
an invariant for the picked-on-the-same-day-as relation on these apples. But there are many
other invariants; we could have written the date on the labels, encoded it in a bar code, or we
could simply have placed each day’s apples into a different bushel.

0~—()
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The Cantor-Hume principle tells us that numbers—whatever they are—are assigned to every
class in such a way that equinumerous classes get the same number and nonequinumerous
classes get different numbers. And this is precisely what it means for numbers to be a
classification invariant of the equinumerosity relation. But ultimately, what are these
“number” objects that get assigned to the sets? The Cantor-Hume principle does not say.

2

The Julius Caesar problem

Frege had sought in his logicist program an eliminative definition of number, for which
numbers would be defined in terms of other specific concepts. Since the Cantor-Hume
principle does not tell us what numbers are, he ultimately found it unsatisfactory to base a
number concept solely upon it. Putting the issue boldly, he proclaimed

we can never—to take a crude example—decide by means of our definitions whether any
concept has the number Julius Caesar belonging to it, or whether that same familiar
congueror of Gaul is a number or not. (Frege, 1968 [1884], §57)

The objection is that although the Cantor-Hume principle provides a number identity
criterion for identities of the form #P = #Q, comparing the numbers of two classes, it does not



