LOGICAL
FOUNDATIONS
of ARTIFICIAL
INTELLIGENCE

EEEEEEEEEEEEEEEEEEE

Logical Foundations
of
Artificial Intelligence

Michael R. Genesereth and Nils J. Nilsson
Stanford University

Morgan Kaufmann Publishers, Inc.

Editor and President Michael B. Morgan
Production Manager Jennifer M. Ballentine
Cover Designer Irene Imfeld

Composition Arthur Ogawa and Laura Friedsam
Book Design Beverly Kennon-Kelley

Copy Editor Lyn Dupré

Graduate Assistant Jamison Gray

Production Assistant Todd R. Armstrong

Library of Congress Cataloging-in-Publication Data

Genesereth, Michael, 1948-
Logical foundations of artificial intelligence.

Bibliography: p.
Includes index.

1. Artificial intelligence. I. Nilsson, Nils,
1933- . II. Title.
Q335.G37 1986 006.3 87-5461

ISBN 0-934613-31-1

Reprinted with corrections May, 1988

Morgan Kaufmann Publishers, Inc.

P.O. Box 50490, Palo Alto, CA 94303

© 1987 by Morgan Kaufmann Publishers Inc.
All rights reserved.

Printed in the United States of America

ISBN: 0-934613-31-1

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means—electronic, mechanical, pho-
tocopying, recording, or otherwise—without the prior written permission
of the publisher.

908988 5432

Contents

Typographical Conventions xvii
1 Introduction 1
1.1 Bibliographical and Historical Remarks 5
Exercises i v i i it e e e e e e 8
2 Declarative Knowledge 9
2.1 Conceptualization 9
2.2 PredicateCalculus 13
23 Semanticso o 21
2.4 Blocks World Example 28
25 Circuits Example 29
2.6 Algebraic Examples 32
27 ListExamples 33
2.8 Natural-Language Examples 35
2.9 Specialized Languages 36
2.10 Bibliographical and Historical Remarks 40
EXercises . . . v v v v it i e e e e e e 42
3 Inference 45
3.1 Derivability 45
3.2 Inference Procedures 49

xi

3.3 Logical Implication
34 Provability oo,
3.5 ProvingProvability
3.6 Bibliographical and Historical Remarks
EXEICISES . . o v v i e i e e e e e e e e e e e e

4 Resolution

41 Clausal Form
42 Unification. oo
4.3 Resolution Principle
44 Resolution,
45 Unsatisfiability,
4.6 True-or-False Questions
4.7 Fill-in-the-Blank Questions
48 Circuits Example
49 Mathematics Example
4.10 Soundness and Completeness
4.11 Resolution and Equality
4.12 Bibliographical and Historical Remarks
EXErciSes . . v v v v v e i i e i e e e e e e e e e

5 Resolution Strategies

5.1 Deletion Strategies
5.2 Unit Resolution
5.3 Input Resolution
54 Linear Resolution
5.5 Set of Support Resolution
56 Ordered Resolution
5.7 Directed Resolution
5.8 Sequential Constraint Satisfaction.
5.9 Bibliographical and Historical Remarks
EXErcises v v i i e e e e e e e e e e e e e e

6 Nonmonotonic Reasoning

6.1 The Closed-World Assumption
6.2 Predicate Completion.
6.3 Taxonomic Hierarchies and Default Reasoning
6.4 Circumscription oL
6.5 More General Forms of Circumscription
6.6 Default Theories« ...
6.7 Bibliographical and Historical Remarks
EXEICiSes . . . v v v v v it ot e e e e e e e e

7 Induction
7.1

Induction @ @ i i i i e e e e e

xii

63
63
66
69
71
75
75
76
78
84
85
89
92
92

95
95
98
99
99
100
102
102
108
112
113

115
117
122
128
132
147
152
155
157

161

7.2 Concept Formation
7.3 Experiment Generation.
7.4 Bibliographical and Historical Remarks
Exercises i i

8 Reasoning with Uncertain Beliefs

8.1 Probabilities of Sentences
8.2 Using Bayes’ Rule in Uncertain Reasoning
8.3 Uncertain Reasoning in Expert Systems
8.4 Probabilistic Logic
8.5 Probabilistic Entailment
8.6 Computations Appropriate for Small Matrices
8.7 Dealing with Large Matrices
8.8 Probabilities Conditioned on Specific Information . . .
8.9 Bibliographical and Historical Remarks
Exercises 0 i i e e e e e e e e e
9 Knowledge and Belief
9.1 Preliminaries
9.2 Sentential Logics of Belief
93 Proof Methods
94 NestedBeliefs
9.5 Quantifying-In
9.6 Proof Methods for Quantified Beliefs
9.7 Knowing What SomethingIs
9.8 PossibleeWorlds Logics
9.9 Properties of Knowledge
9.10 Propertiesof Belief
911 GroupKnowledge

9.12 Equality, Quantification, and Knowledge
9.13 Bibliographical and Historical Remarks

EXEICISES . o v v v v e e e e e e e e e e e e e
10 Metaknowledge and Metareasoning
10.1 Metalanguage
10.2 Clausal Form
10.3 Resolution Principle
10.4 Inference Procedures
10.5 Derivability and Belief
10.6 Metalevel Reasoning
10.7 Bilevel Reasoning
10.8 Reflection®. e
10.9 Bibliographical and Historical Remarks
EXEICISES . « v v v v e e e e e e e e e e e e e e e e

177
178
180
186
189
193
197
201
203
204
205

207
208
209
212
214
216
218
221
222
225
229
230
232
234
236

11 State and Change

11,1 States e
11.2 Actions. e
11.3 The Frame Problem
11.4 ActionOrdering
11.5 Conditionality
11.6 Bibliographical and Historical Remarks
EXErciSes v v v i e e e e e e e e e e e e
12 Planning
12.1 Initial State o
122 Goals. o e e
123 Actions. e e
124 Plans o 0 o e e e
125 Green'sMethod
126 ActionBlocks
12.7 Conditional Plans
12.8 Planning Direction
12.9 Unachievability Pruning
12.10 State Alignmento
12.11 Frame-Axiom Suppression
12.12 Goal Regression
12.13 State Differences
12.14 Bibliographical and Historical Remarks
EXercises v v v v i i e e e e e e
13 Intelligent-Agent Architecture
13.1 Tropistic Agents.
13.2 Hysteretic Agents
13.3 Knowledge-Level Agents
13.4 Stepped Knowledge-Level Agents
135 Fideliby® . . . v v o e e e
13.6 Deliberate Agents*,
13.7 Bibliographical and Historical Remarks
EXEICISES . « v v v v v v e et e e e e e e e e e e
Answers to Exercises
Al Introduction
A.2 Declarative Knowledge
A3 Inference« . e
A4 Resolution
A.5 Resolution Strategies
A.6 Nonmonotonic Reasoning
A7 Induction
A.8 Reasoning with Uncertain Beliefs

xiv

263
263
267
271
272
274
280
282

285
285
286
287
289
290
290
293
294
296
297
298
299
301
304
305

A9

A.10
A1l
A2
A.13

References

Index

Knowledge and Belief 351

Metaknowledge and Metareasoning 353
Stateand Changeo 355
Planning« v v it i 359
Intelligent-Agent Architecture 361
363
401

Xv

This page intentionally left blank

Typographical Conventions

(1) Elements of a conceptualization—objects, functions, and relations—
are written in italics, as in the following example:

The extension of the on relation is the set {{a,b), (b, ¢}, (d,e)}.

(2) Expressions and subexpressions in predicate calculus are written in
boldface, “typewriter” font, as in:

(vx Apple(x)) Vv (3x Pear(x))

(3) We use lowercase Greek letters as metavariables ranging over
predicate-calculus expressions and subexpressions. The use of
these variables is sometimes mixed with actual predicate-calculus
expressions, as in the following:

(¢(a) v P(A) = o)

Sometimes, for mnemonic clarity, we use Roman characters, in
mathematical font, as metavariables for relation constants and
object constants, as in the following sample text:

Suppose we have a relation constant P and an object constant
A such that P(A) = P A Q(B).

xvil

(4)

(5)

(6)

(8)

(9)

(10)
(11)

(12)

We use uppercase Greek letters to denote sets of predicate calculus
formulas, as in:

If there exists a proof of a sentence ¢ from a set A of premises
and the logical axioms using Modus Ponens, then ¢ is said to
be provable from A (written as A F ¢).

Since clauses are sets of literals, we also use uppercase Greek letters
as variables ranging over clauses, as in:

Suppose that ® and ¥ are two clauses that have been standard-
ized apart.

We use ordinary mathematical (not typewriter) font for writing
metalogical formulas ebout predicate-calculus statements, as in:

If o is an object constant, then a”¢|I| .

Sometimes, metalogical formulas might contain predicate-calculus

expressions:
Al =a

We use an uppercase script 7 to denote a predicate-calculus
“theory.”

Algorithms and programs are stated in typewriter font:

Procedure Resclution (Gamma)
Repeat Termination(Gamma) ==> Return(Success),
Phi <- Choose(Gamma), Psi <- Choose(Gamma),
Chi <- Choose(Resolvents(Phi,Psi)),
Gamma <- Concatenate(Gamma,[Chi])
End

We use the notation {x/A} to denote the substitution in which the
object constant A is substituted for the variable x. We use lowercase
Greek letters for variables ranging over substitutions, as in:

Consider the combination of substitutions ap .
Lowercase ps and gs are used to denote probabilities:
p(P A Q)
Sets of possible worlds are denoted by uppercase script letters, such
as W.

Vectors and matrices are denoted by boldface capital letters, such
as V and P.

We also use boldface capital letters (and sequences of capital letters)
to denote modal operators, such as B and K.

CHAPTER 1

Introduction

ARTIFICIAL INTELLIGENCE (Al) is the study of intelligent behavior. Its
ultimate goal is a theory of intelligence that accounts for the behavior
of naturally occurring intelligent entities and that guides the creation of
artificial entities capable of intelligent behavior. Thus, Al is both a branch
of science and a branch of engineering.

As engineering, Al is concerned with the concepts, theory, and practice
of building intelligent machines. Examples of machines already within
the reach of Al include ezxpert systems that give advice about specialized
subjects (such as medicine, mineral exploration, and finance), question-
answering systems for answering queries posed in restricted but large
subsets of English and other natural languages, and theorem-proving
systems for verifying that computer programs and digital hardware
meet stated specifications. Ahead lie more flexible and capable robots,
computers that can converse naturally with people, and machines capable
of performing much of the world’s “knowledge work.”

As science, Al is developing concepts and vocabulary to help us to
understand intelligent behavior in people and in other animals. Although
there are necessary and important contributions to this same scientific
goal by psychologists and by neuroscientists, we agree with the statement
made by the sixteenth-century Italian philosopher Vico: Certum guod
factum (one is certain of only what one builds). Aerodynamics, for

2 Introduction

Entity World

Y

Figure 1.1 Entity and environment.

example, matured as it did because of its concern for flying machines;
then it also helped us to explain and understand flight in animals. Thus,
notwithstanding its engineering orientation, an ultimate goal of Al is a
comprehensive theory of intelligence as it occurs in animals as well as in
machines.

Note that in talking about the behavior of an intelligent entity in its
environment, we have implicitly divided the world into two parts. We have
placed an envelope around the entity, separating it from its environment,
and we have chosen to focus on the transactions across that envelope. (See
Figure 1.1.) Of course, a theory of intelligence must not only describe
these transactions but must also give a clear picture of the structure of
the entity responsible for those transactions. An important concept in
this regard is that of knowledge. Intelligent entities seem to anticipate
their environments and the consequences of their actions. They act as if
they know, in some sense, what the results would be. We can account for
this anticipatory behavior by assuming that intelligent entities themselves
possess knowledge of their environments.

What more can we say about such knowledge? What forms can it take?
What are its limits? How do entities use knowledge? How is knowledge
acquired? Unfortunately, we cannot say much to answer these questions
insofar as they pertain to natural, biological organisms. Even though we are
beginning to learn how neurons process simple signals, our understanding of
how animal brains—which are composed of neurons—represent and process
knowledge about the world is regretfully deficient.

The situation is rather different when we turn our attention to artifacts,
such as computer systems, capable of rudimentary intelligent behavior.
Although we have not yet built machines approaching human levels of
intelligence, nevertheless we can talk about how such machines can be said
to possess knowledge. Because we design and build these machines, we
ought to be able to decide what it means for them to know about their
environments.

There are two major ways we can think about a machine having
knowledge about its world. Although our ideas about the distinction

Introduction 3

between these two points of view are still being clarified, it seems that,
in some of our machines, the knowledge is implicit; in other machines, it is
represented explicitly.

We would be inclined to say, for example, that the mathematical
knowledge built into a computer program for inverting matrices is implicit
knowledge, “stored,” as it is, in the sequence of operations performed
by the program. Knowledge represented in this way is manifest in the
actual running or execution of the matrix-inverting program. It would be
difficult to extract it from the text of the computer code itself for other
uses. Computer scientists have come to call knowledge represented in this
way procedural knowledge, because it is inextricably contained in the very
procedures that use it.

On the other hand, consider a tabular database of salary data. In this
case, we would be inclined to say that the knowledge is explicit. Programs
designed to represent their knowledge explicitly have turned out to be
more versatile in performing the complex tasks that we usually think
of as requiring intelligence. Particularly useful explicit representations
of knowledge are those that can be interpreted as making declarative
statements. We call knowledge represented in this way declarative
knowledge because it is contained in declarations about the world. Such
statements typically are stored in symbol structures that are accessed by
the procedures that use this knowledge.

There are several reasons to prefer declaratively represented knowledge
when designing intelligent machines. One advantage is that such knowledge
can be changed more easily. To make a small change to a machine’s
declarative knowledge, usually we need to change just a few statements.
Even small adjustments to procedural knowledge, on the other hand,
may require extensive changes to the program. Knowledge represented
declaratively can be used for several different purposes, even purposes
not explicitly anticipated at the time the knowledge is assembled. The
knowledge base itself does not have to be repeated for each application, nor
does it have to be specifically designed for each application. Declarative
knowledge often can be extended, beyond that explicitly represented, by
reasoning processes that derive additional knowledge. Finally, declarative
knowledge can be accessed by introspective programs, so that a machine
can answer questions (for itself or for others) about what it knows. A price
is paid for these advantages, however. Using declarative knowledge usually
is more costly and slower than is directly applying procedural knowledge.
We give up efficiency to gain flexibility.

It is tempting to speculate about the roles of these two kinds of
knowledge in biological organisms. Many insects and other not-very-brainy
creatures seem so well attuned to their environments that it is difficult to
avoid saying that they have a great deal of knowledge about their worlds.
A spider, for example, must use quite a bit of knowledge about materials
and structures in spinning a web. Once we understand such creatures

4 Introduction

better, it seems likely that we will conclude that the knowledge they have
evolved about their special niches is procedural. On the other hand, when
a human mechanical engineer is consciously thinking about a new bridge
design, it seems likely that he refers to declaratively represented knowledge
about materials and structures. Admittedly, humans often (perhaps
even usually) use procedural knowledge also. The tennis knowledge
used by a champion player seems procedural, whereas that taught by
an excellent teacher seems declarative. Perhaps when the distinctions
between declarative and procedural knowledge are more clearly understood
by computer scientists, they will indeed help biologists and psychologists
characterize the knowledge of animals.

In any case, intelligent machines will need both procedural and declara-
tive knowledge. Thus, it is difficult to see how we can study them properly
without involving all of computer science. The most flexible kinds of intel-
ligence, however, seem to depend strongly on declarative knowledge, and
Al has concerned itself more and more with that subject. Our emphasis
on declarative knowledge in this book should not be taken to imply that
we think procedural knowledge unimportant. For example, when declara-
tive knowledge is used over and over again for the same specific purpose, it
would be advisable to compile it into a procedure tailored for that purpose.
Nevertheless, the study of representing and using declarative knowledge is
such a large and important subject in itself that it deserves book-length
treatment.

The book is divided roughly into four parts. In the first five chapters,
we present the main features of what is commonly called the logicist
approach to Al. We begin by describing conceptualizations of the subject
matter about which we want our intelligent systems to have knowledge.
Then we present the syntax and semantics of the first-order predicate
calculus, a declarative language in which we can write sentences about these
conceptualizations. We then formalize the process of inference. Finally, we
discuss a simple but powerful inference procedure called resolution, and we
show how it can be used in reasoning systems.

In the next three chapters, we broaden the logical approach in various
ways to deal with several inadequacies of strict logical deduction. First,
we describe methods that allow nonmonotonic reasoping; i.e., reasoning in
which tentative conclusions can be derived. Next, we discuss extensions
that permit systems to learn new facts. Then, we show how to represent
and reason with knowledge that is not certain.

In the next two chapters, we expand our language and its semantics
by introducing new constructs, called modal operators, that facilitate
representing and reasoning about knowledge about what other agents know
or believe. Then, we show how the whole process of writing predicate-
calculus sentences to capture conceptualizations can be turned in on itself
at the metalevel to permit sentences about sentences and about reasoning
processes.

1.1 Bibliographical and Historical Remarks 5

In the final three chapters, we concern ourselves with agents that can
perceive and act in the world. We first discuss the representation of
knowledge about states and actions. Then, we show how this knowledge can
be used to derive plans to achieve goals. Finally, we present a framework
that allows us to relate sensory knowledge and inferred knowledge and that
allows us to say how this knowledge affects an intelligent agent’s choice of
actions.

1.1 Bibliographical and Historical Remarks

The quest to build machines that think like people has a long tradition.
Gardner [Gardner 1982] attributed to Leibniz the dream of “a universal
algebra by which all knowledge, including moral and metaphysical truths,
can some day be brought within a single deductive system.” Frege, one
of the founders of modern symbolic logic, proposed a notational system
for mechanical reasoning [Frege 1879]. When digital computers were
first being developed in the 1940s and 1950s, several researchers wrote
programs that could perform elementary reasoning tasks, such as proving
mathematical theorems, answering simple questions, and playing board
games such as chess and checkers. In 1956, several of these researchers
attended a workshop on Al at Dartmouth College, organized by McCarthy
(who, incidentally, suggested the name Artificial Intelligence for the field)
[McCorduck 1979]. (McCorduck’s book is an interesting, nontechnical
history of early AI work and workers.) Many of the important first
papers about Al are contained in the collection Computers and Thought
[Feigenbaum 1963].

From AI's very beginnings, people have pursued many approaches to
the discipline. One, based on building parallel machines that could learn
to recognize patterns, occupied many Al researchers during the 1960s and
continues as one strand of what has come to be called connectionism. See
[Nilsson 1965] for an example of some of the early work using this approach,
and [Rumelhart 1986] for a collection of connectionist papers.

The computational manipulation of arbitrary symbolic structures (as
opposed to operations on numbers) is at the heart of much work in Al
The idea that symbol manipulation is a sufficient process for explaining
intelligence was forcefully stated in the physical symbol system hypothesis
of Newell and Simon [Newell 1976]. The need for manipulating symbols
led to the development of special computer languages. LISP, invented by
McCarthy in the late 1950s [McCarthy 1960], continues to be the most
popular of these languages. PROLOG [Colmerauer 1973, Warren 1977],
stemming from ideas proposed by Green [Green 1969a], Hayes [Hayes
1973b], and Kowalski [Kowalski 1974, Kowalski 1979a} is rapidly gaining
adherents. Much of the work in Al still is characterized mainly by the use
of sophisticated symbol manipulation to perform complex reasoning tasks.

6 Introduction

One articulation of the symbol-manipulating approach uses production
systems, a term that has been used rather loosely in Al. Production
systems derive from a computational formalism proposed by Post [Post
1943] based on string-replacement rules. The closely related idea of a
Markov algorithm [Markov 1954, Galler 1970] involves imposing an order on
the replacement rules and using this order to decide which applicable rule
to apply next. Newell and Simon [Newell 1972, Newell 1973] used string-
modifying production rules, with a simple control strategy, to model certain
types of human problem-solving behavior. An earlier textbook by Nilsson
[Nilsson 1980] used production systems as an organizing theme. More
recently, the ops family of symbol-manipulating computer-programming
languages has been based on production rules [Forgy 1981, Brownston
1985]. Work on SOAR by Laird, Newell, and Rosenbloom [Laird 1987] and
on blackboard systems by a variety of researchers [Erman 1982, Hayes-Roth
1985] can be regarded as following the production system approach.

Another important aspect of Al is heuristic search. Search methods
are described as a control strategy for production systems in [Nilsson
1980]. Pearl's book [Pearl 1984] gave a thorough mathematical treatment
of heuristic search, and his review article summarized the subject [Pearl
1987]. Lenat’s work [Lenat 1982, Lenat 1983a, Lenat 1983b] on the nature
of heuristics resulted in systems that exploit general heuristic properties in
specific problems.

The view taken toward Al in this book follows the theme hinted at
by Leibniz and Frege and then substantially elaborated and developed
into specific proposals by McCarthy [McCarthy 1958 (the advice taker
paper), McCarthy 1963]. It is based on two related ideas. First, the
knowledge needed by intelligent programs can be expressed as declarative
sentences in a form that is more or less independent of the uses to which
that knowledge might later be put. Second, the reasoning performed by
intelligent programs involves logical operations on these sentences. Good
accounts of the importance of logic in Al, for representation and for
reasoning, have been written by Hayes [Hayes 1977], Israel [Israel 1983],
Moore [Moore 1982, Moore 1986], and Levesque [Levesque 1986].

Several people, however, have argued that logic has severe limitations as
a foundation for AI. McDermott’s article contained several cogent criticisms
of logic [McDermott 1987a], whereas Simon emphasized the role of search
in AI [Simon 1983]. Many Al researchers have stressed the importance
of specialized procedures and of procedural (as opposed to declarative)
representations of knowledge (see, for example, [Winograd 1975, Winograd
1980]). Minsky has claimed that intelligence in humans is the result of
the interaction of a very large and complex assembly of loosely connected
subunits operating much like a society but within a single individual
[Minsky 1986].

Notwithstanding the various criticisms of logic, there does seem to be an
emerging consensus among researchers that logical tools are important, at

1.1 Bibliographical and Historical Remarks 7

the very least, for helping us to analyze and understand Al systems. Newell
[Newell 1982] made that point in his article about the knowledge level. The
work of Rosenschein and Kaelbling on situated automata is a good example
of an approach to Al that acknowledges the analytic utility of logic while
pursuing an alternative implementational strategy [Rosenschein 1986]). The
assertion that predicate calculus and logical operations can also usefully
serve directly in the implementation of Al systems as a representation
language and as reasoning processes, respectively, is a much stronger claim.

Several thinkers have claimed that none of the techniques currently be-
ing explored will ever achieve true, human-level intelligence. Prominent
among these are the Dreyfuses, who argued that symbol manipulation op-
erations are not the foundation of intelligence [Dreyfus 1972, Dreyfus 1981,
Dreyfus 1986] (although their suggestions about what might be needed
seem compatible with the claims of the connectionists). Winograd and
Flores argued, mainly, that whatever mechanistic processes are involved in
thinking, they are probably too complicated to be fully expressed in ar-
tificial machines designed and built by human engineers [Winograd 1986).
Searle attempted to distinguish between real thought and mere simula-
tions of thought by rule-like computations [Searle 1980]. He also seemed
to claim that computer-like machines built of silicon, for example, will not
do, although machines built according to different principles out of protein
might. Taking a somewhat different tack, Weizenbaum argued that, even
if we could build intelligent machines to perform many human functions,
it might be unethical to do so [Weizenbaum 1976).

There are several other good Al textbooks. Most of them differ from this
one in that they do not emphasize logic as much as we do, and they describe
applications of Al such as natural-language processing, expert systems, and
vision. The books by Charniak and McDermott, Winston, and Rich are
three such texts [Charniak 1984, Winston 1977, Rich 1983]. The book by
Boden [Boden 1977] treats some of the philosophical issues related to Al
In addition to these books, the reader might also refer to encyclopedic
collections of short articles about key ideas in AI [Shapiro 1987, Barr 1982,
Cohen 1982].

Many important articles describing Al research appear in the journal
Artificial Intelligence. In addition, there are several other relevant journals,
including the Journal of Automated Reasoning, Machine Learning, and
Cognitive Science. Several articles are reprinted in special collections.
The American Association for Artificial Intelligence and other national
organizations hold annual conferences with published proceedings [AAAI
1980]. The International Joint Council on Artificial Intelligence holds
biannual conferences with published proceedings [IJCAI 1969]. Technical
notes and memoranda published by the several university and industrial
laboratories performing research in Al are available in microfilm from
Scientific DataLink (a division of Comtex Scientific Corporation) in New
York.

8 Introduction

For an interesting summary of the opinions of several Al reseachers about
the status of the field during the mid-1980s see [Bobrow 1985]. Trappl's
book contains articles about the social implications of Al [Trappl 1986].

Exercises

1. Structure and behavior. It is common in discussing the design of
artifacts to distinguish between the structure of a device (i.e., its parts
and their interconnections) and its behavior (i.e., its external effects).

a. Give a brief description of a thermostat. Describe both its external
behavior and its internal structure. Explain how its structure
achieves its behavior.

b. Is it possible to determine the purpose of an artifact unambiguously,
given its behavior? Provide examples to justify your answer.

c. In his paper “Ascribing Mental Qualities to Machines,” John
McCarthy[McCarthy 1979b] suggests that it is convenient to talk
about artifacts (such as thermostats and computers) as having
mental qualities (such as beliefs and desires). For example, according
to McCarthy, a thermostat believes it is too hot, too cold, or just
right, and desires that it be just right. Try to adopt McCarthy’s
viewpoint and indicate the beliefs and desires you think an alarm
clock possesses.

2. Missionaries and cannibals. Three missionaries and three cannibals
seek to cross a river. A boat is available that can hold two people
and can be navigated by any combination of missionaries and cannibals
involving one or two people. If at any time the missionaries on either
bank of the river or en route on the river are outnumbered by cannibals,
the cannibals will indulge their anthropophagic tendencies and do away
with the missionaries.

a. Find the simplest schedule of crossings that will permit all the
missionaries and cannibals to cross the river safely.

b. State at least three facts about the world you used in solving the
problem. For example, you had to know that a person can be in
only one place at a time.

c. Describe the sieps that you took to solve the problem. For each
step, record the facts or assumptions you used and the conclusions
you drew. The purpose of this part of the problem is to get you to
think about the process of solving a problem, not just to arrive at
the final solution. Do just enough to get a feel for this distinction.

CHAPTER 2

Declarative Knowledge

AS WE HAVE ALREADY ARGUED, intelligent behavior depends on the
knowledge an entity has about its environment. Much of this knowledge
is descriptive and can be expressed in declarative form. The goal of this
chapter is to elucidate the issues involved in formally expressing declarative
knowledge.

Our approach to formalizing knowledge is much the same as that of
scientists who describe the physical world; in fact, our language is similar
to that used to state results in mathematics and the natural sciences.
The difference is that in this book we are concerned with the issues of
formalizing knowledge, rather than with discovering the knowledge to be
formalized.

2.1 Conceptualization

The formalization of knowledge in declarative form begins with a concep-
tualization. This includes the objects presumed or hypothesized to exist in
the world and their interrelationships.

The notion of an object used here is quite broad. Objects can be concrete
(e.g., this book, Confucius, the sun) or abstract (e.g., the number 2, the
set of all integers, the concept of justice). Objects can be primitive or
composite (e.g., a circuit that consists of many subcircuits). Objects can
even be fictional (e.g., a unicorn, Sherlock Holmes, Miss Right). In short,
an object can be anything about which we want to say something.

10 Declarative Knowledge

a
b d
c e

Figure 2.1 A scene from the Blocks World.

Not all knowledge-representation tasks require that we consider all the
objects in the world; in some cases, only those objects in a particular set
are relevant. For example, number theorists usually are concerned with the
properties of numbers and usually are not concerned with physical objects
such as resistors and transistors. Electrical engineers usually are concerned
with resistors and transistors and usually are not concerned with buildings
and bridges. The set of objects about which knowledge is being expressed
is often called a universe of discourse.

As an example, consider the Blocks World scene in Figure 2.1. Most
people looking at this figure interpret it as a configuration of toy blocks.
Some people conceptualize the table on which the blocks are resting as an
object as well; but, for simplicity, we ignore it here.

The universe of discourse corresponding to this conceptualization is the
set consisting of the five blocks in the scene.

{a,b,¢,d,e}

Although in this example there are finitely many elements in our universe
of discourse, this need not always be the case. It is common in mathematics,
for example, to consider the set of all integers, or the set of all real numbers,
or the set of all n-tuples of real numbers, as universes with infinitely many
elements.

A function is one kind of interrelationship among the objects in a
universe of discourse. Although we can define many functions for a given set
of objects, in conceptualizing a portion of the world we usually emphasize
some functions and ignore others. The set of functions emphasized in a
conceptualization is called the functional basis set.

For example, in thinking about the Blocks World, it would make sense
to conceptualize the partial function hat that maps a block into the block

2.1 Conceptualization 11

on top of it, if any such block exists. The tuples corresponding to this
partial function are as follows:

{(b,a),{c,b), (e, d)}

When concentrating on spatial relationships, we would probably ignore
functions that do not have any spatial significance, such as the rotate
function that maps blocks into blocks according to the alphabetic order
of their labels.

{(a,b), (b,c),(c,d), (d,¢), (e, a)}

A relation is the second kind of interrelationship among objects in a
universe of discourse. As we do with functions, in conceptualizing a portion
of the world, we emphasize some relations and ignore others. The set of
relations in a conceptualization is called the relational basis set.

In a spatial conceptualization of the Blocks World, there are numerous
meaningful relations. For example, it makes sense to think about the on
relation that holds between two blocks if and only if one is immediately
above the other. For the scene in Figure 2.1, on is defined by the following
set of tuples.

{(a, b)v (b! c), (d’ E)}

We might also think about the above relation that holds between two
blocks if and only if one is anywhere above the other.

{(ai b)? (b’ c)) (GQC>1 (d1 e}}

The clear relation holds of a block if and only if there is no block on top
of it. For the scene in Figure 2.1, this relation has the following elements.

{a,d}

The table relation holds of a block if and only if that block is resting on
the table.

{c,e}

The generality of relations can be determined by comparing their
elements. Thus, the on relation is less general than the above relation
since, when viewed as a set of tuples, it is a subset of the above relation. Of
course, some relations are empty (e.g., the unsupported relation), whereas
others consist of all n-tuples over the universe of discourse (e.g., the dlock
relation).

It is worthwhile to note that, for a finite universe of discourse, there is
an upper bound on the number of possible n-ary relations. In particular,
for a universe of discourse of size b, there are " distinct n-tuples. Every
n-ary relation is a subset of these b™ tuples. Therefore, an n-ary relation
must be one of at most 2(.") possible sets.

12 Declarative Knowledge

Formally, a conceptualization is a triple consisting of a universe of dis-
course, a functional basis set for that universe of discourse, and a relational
basis set. For example, the following triple is one conceptualization of the
world in Figure 2.1.

({a, b,c,d, e}, {hat}, {on, above, clear, table})

Note that, although we have have written the names of objects, functions,
and relations here, the conceptualization consists of the objects, functions,
and relations themselves.

No matter how we choose to conceptualize the world, it is important
to realize that there are other conceptualizations as well. Furthermore,
there need not be any correspondence between the objects, functions, and
relations in one conceptualization and the objects, functions, and relations
in another.

In some cases, changing one’s conceptualization of the world can make
it impossible to express certain kinds of knowledge. A famous example
of this is the controversy in the field of physics between the view of
light as a wave phenomenon and the view of light in terms of particles.
Each conceptualization allowed physicists to explain different aspects of
the behavior of light, but neither alone sufficed. Not until the two views
were merged in modern quantum physics were the discrepancies resolved.

In other cases, changing one's conceptualization can make it more
difficult to express knowledge, without necessarily making it impossible.
A good example of this, once again in the field of physics, is changing
one’s frame of reference. Given Aristotle’s geocentric view of the universe,
astronomers had great difficulty explaining the motions of the moon and
other planets. The data were explained (with epicycles, etc.) in the
Aristotelian conceptualization, although the explanation was extremely
cumbersome. The switch to a heliocentric view quickly led to a more
perspicuous theory.

This raises the question of what makes one conceptualization more
appropriate than another for knowledge formalization. Currently, there
is no comprehensive answer to this question. However, there are a few
issues that are especially noteworthy.

One such issue is the grain size of the objects associated with a
conceptualization. Choosing too small a grain can make knowledge
formalization prohibitively tedious. Choosing too large a grain can
make it impossible. As an example of the former problem, consider a
conceptualization of the scene in Figure 2.1 in which the objects in the
universe of discourse are the atoms composing the blocks in the picture.
Each block is composed of enormously many atoms, so the universe of
discourse is extremely large. Although it is in principle possible to describe
the scene at this level of detail, it is senseless if we are interested in only the
vertical relationship of the blocks made up of those atoms. Of course, for
a chemist interested in the composition of blocks, the atomic view of the

2.2 Predicate Calculus 13

scene might be more appropriate. For this purpose, our conceptualization
in terms of blocks has too large a grain.

Finally, there is the issue of reification of functions and relations as
objects in the universe of discourse. The advantage of this is that it
allows us to consider properties of properties. As an example, consider a
Blocks World conceptualization in which there are five blocks, no functions,
and three unary relations, each corresponding to a different color. This
conceptualization allows us to consider the colors of blocks but not the
properties of those colors.

({a,b,c,d,e},{}, {red, white, blue})

We can remedy this deficiency by reifying various color relations as
objects in their own right and by adding a partial function—such as color—
to relate blocks to colors. Because the colors are objects in the universe of
discourse, we can then add relations that characterize them; e.g., nice.

({a,b,c,d, e, red, white, blue}, {color}, {nice})

Note that, in this discussion, no attention has been paid to the question
of whether the objects in one’s conceptualization of the world really exist.
We have adopted neither the standpoint of realism, which posits that the
objects in one’s conceptualization really exist, nor that of nominalism,
which holds that one’s concepts have no necessary external existence.
Conceptualizations are our inventions, and their justification is based solely
on their utility. This lack of commitment indicates the essential ontological
promiscuity of AI: Any conceptualization of the world is accommodated,
and we seek those that are useful for our purposes.

2.2 Predicate Calculus

Given a conceptualization of the world, we can begin to formalize knowledge
as sentences in a language appropriate to that conceptualization. In this
section, we define a formal language called predicate calculus.

All the sentences in predicate calculus are strings of characters arranged
according to precise rules of grammar. For example, we can express the fact
that block a is above block b by taking a relation symbol such as Above and
object symbols A and B and combining them with appropriate parentheses
and commas, as follows.

Above(A,B)

One source of expressiveness in predicate calculus is the availability of
logical operators that allow us to form complex sentences from simple ones
without specifying the truth or falsity of the constituent sentences. For
example, the following sentence using the operator v states that either

14 Declarative Knowledge

block a is above block b or block b is above block a, but it makes no
commitment as to which is the case.

Above(A,B) v Above(B,A)

The flexibility also stems from the availability of quantifiers and
variables. The quantifier ¥ allows us to state facts about all the objects in
our universe of discourse without enumerating them. For example, the first
sentence in the following set states that every block that is on another block
is above the other block. The quantifier 3 allows us to assert the existence
of an object with certain properties without identifying the object. For
example, the second sentence states that there is a block that is both clear
and on the table.

VxVy On(x,y) = Above(x,y)
3x Clear(x) A Table(x)

To use a language such as predicate calculus, we need to know both its
syntax and its semantics. In this section, we describe the syntax of the
language in detail; as we present each construct, we informally suggest the
semantics. In the next section, we define the semantics of the language
formally. :

The alphabet of our version of predicate calculus consists of the following
characters. Spaces and carriage returns have no significance and are used
solely for formatting.

ABCDEFGHIJKLMNOPQRSTUVWIXY?Z
abcdefghijklmnopgqrstuvwxyz
1234567890 ., () {}[)1+-=%x/1

EUN=<><2Cl2C2aAVYI=> <«

There are two types of symbols in predicate calculus: variables and
constants. Constants are further subdivided into object constants, function
constants, and relation constants.

A wariable is any sequence of lowercase alphabetic and numeric charac-
ters in which the first character is lowercase alphabetic. As we mentioned,
variables are used to express properties of objects in the universe of dis-
course without explicitly naming them.

An object constant is used to name a specific element of a universe of
discourse. Every object constant is a sequence of alphabetic characters or

2.2 Predicate Calculus 15

digits in which the first character is either uppercase alphabetic or numeric.
The following are simple examples with obvious intended interpretations.

Confucius Elephants 32456
Stanford Justice MCMXII
California Resistori4 Twelve

A function constant is used to designate a function on members of
the universe of discourse. Every function constant is either a functional
operator (+, -, *, /, T, n, U) or a sequence of alphabetic characters or digits
in which the first character is uppercase alphabetic. The following symbols
are examples.

Age Sin Cardinality
Weight Cos President

Color Tan Salary

Every function constant has an associated arity, which indicates the
number of arguments it is expected to take. For example, Sin normally
takes a single argument, and t takes two arguments. Symbols that stand
for associative functions, such as +, take any number of arguments.

A relation constant is used to name a relation on the universe of
discourse. Every relation constant is either a mathematical operator
(= «, >, & 2, € C, 2, C, 2) or a sequence of alphabetic characters or
digits in which the first character is uppercase alphabetic; the following
symbols are examples.

0dd Parent Above
Even Relative Between

Prime Neighbor Nearby

Like function constants, every relation constant has an associated arity.
In addition, every n-ary function constant can also be used as an (n+1)-ary
relation constant, as we will discuss. However, the converse is not
necessarily true.

Note that the type and arity of an alphanumeric constant can be
determined only by the way it is used in sentences; these properties cannot
be determined on the basis of the symbol’s constituent characters. Different
people may use the same symbol in different ways.

In predicate calculus, a ferm is used as a name for an object in the
universe of discourse. There are three types of terms: variables, object

16 Declarative Knowledge

constants, and functional expressions. We have already discussed variables
and object constants.

A functional ezpression consists of an n-ary function constant = and n
terms 7,..., Ty, arranged with parentheses and commas as follows.

T(TLseeesTn)

For example, assuming that Age and Cardinality are both unary
function constants and that Log is a binary function constant, the following
expressions are all legal terms.

Age(Confucius)
Cardinality(Elephants)
Log(32456,2)

Although this syntax is quite general, it is somewhat cumbersome for
writing expressions involving common mathematical functions. For this
reason, the class of functional expressions also is defined to include terms
in any of the following infiz forms. In each case, the operator is the function
constant and the surrounding terms designate its arguments.

(1y+7139) (rtre)
(ry-72) (ninmy)
(11%73) (rurs)
(r1/7m2) (r1.72)

The use of braces designates an unordered set of elements denoted by
the enclosed terms. The use of square brackets denotes a sequence.

{01:021 s saﬂ.}

[o1,02,...,04]

From the definitions, it should be clear that functional expressions can
be composed in combination with one another, as in the following examples.

Log(Cardinality(Elephants),2)
(2%(A13))
(Log(A)+Log(B))

2.2 Predicate Calculus 17

In predicate calculus, facts are stated in the form of expressions called
sentences, or sometimes well-formed formulas or wffs. There are three types
of sentences: atomic sentences, logical sentences, and quantified sentences.

An atomic sentence, or atom, is formed from an n-ary relation constant p
and n terms 71,...,7,, by combining them as follows.

P(TI’ e sTn}

Writing atomic sentences involving mathematical relations in this form
can be cumbersome. For this reason, the class of atomic sentences also is
defined to include expressions in any of the following infix forms.

(r1=72) (11€73)
(m1<72) (riC72)
(11>79) (11219)
(n1273) (11€732)
(11279) (m1272)

Atomic sentences involving these relations are sometimes given special
names. For example, the sentence (73=72) is called an equation.

Function constants can also be used as relation constants, provided an
expression designating the value of the function is included as the final
argument. For example, the following two expressions are legal, and the
facts they express are identical.

(Age(Confucius)=100)
Age(Confucius,100)

We also want to be able to express facts that cannot conveniently be
expressed by atomic sentences. One often needs to express negations,
disjunctions, contingencies, and so on. In predicate calculus, atomic
sentences such as these can be combined with logical operators to form
logical sentences.

A negation is formed using the - operator. A sentence of the following
form is true if and only if the embedded sentence is not true (regardless of
the interpretation of the embedded sentence).

(~¢)

18 Declarative Knowledge

A conjunction is a set of sentences connected by the A operator. Each
of the component sentences is called a conjunct. A conjunction is true if
and only if each of the conjuncts is true.

(¢1 A. . .A ¢n)

A disjunction is a set of sentences connected by the v operator. Each of
the component sentences is called a disjunct. A disjunction is true if and
only if at least one of the disjuncts is true. Note that more than one of the
disjuncts may be true.

(P V...Vop)

An implication is formed using the => operator. The sentence to the left
of the operator is called the antfecedent, and the sentence to the right is
called the consequent. An implication is a statement that the consequent
is true whenever the antecedent is true. By convention, whenever the
antecedent is false, the implication is assumed to be true, whether or not
the consequent is true.

(¢ =)

A reverse implication, formed using the < operator, is just an
implication with its arguments reversed. The antecedent is to the right,
and the consequent is to the left.

() <= ¢)

A bidirectional implication or equivalence, formed using the 4 operator,
is a statement that the component sentences are either both true or both
false.

(g &)

The following are all logical sentences. The intended meaning of the first
is that the age of Confucius is not 100. The second states that elephants
are either herbivores or carnivores. The third states that George is sick if
he is at home.

(-~Age(Confucius, 100))
((Elephants C Carnivores) V (Elephants C Herbivores))

(Location(George,Home) = Sick(George))

2.2 Predicate Calculus 19

With the syntax given so far, we can designate objects only by name
(using an object symbol) or by description (using a functional expression).
Quantified sentences provide a more flexible way of talking about all objects
in our universe of discourse or asserting a property of an individual object
without identifying that object.

A universally guantified sentence is formed by combining the universal
quantifier ¥, a variable v, and any simpler sentence ¢. The intended
meaning is that the sentence ¢ is true, no matter what object the variable v
represents.

(Vv ¢)

The following two sentences are examples. The first states that all apples
are red. The second states that every object in the universe of discourse is
a red apple.

(vx (Apple(x) = Red(x)))
(vx (Apple(x) A Red(x)))

An ezistentially quantified sentence is formed by combining the eristen-
tial guantifier 3, a variable v, and any simpler sentence ¢. The intended
meaning is that the sentence ¢ is true, for at least one object in the universe
of discourse.

Gv @)

Of the two sentences that follow, the first states that there is a red apple
in the universe of discourse; the second states that there is an object that
is either an apple or a pear.

(3x (Apple(x) A Red(x)))
(3x (Apple(x) v Pear(x)))

A qguantified sentence is either a universally quantified sentence or an
existentially quantified sentence. The scope of the quantifier in a quantified
sentence is the sentence embedded within the quantified sentence.

Like atomic and logical sentences, quantified sentences can be combined
to form more complex sentences, as in the following examples.

((vx Apple(x)) v (3x Pear(x)))
(vx(vy Loves(x,y)))

20 Declarative Knowledge

When a quantified sentence of one type is nested within a quantified
sentence of the other type, the order of nesting is extremely important.

(vx(3y Loves(x,y)))
(3y(vx Loves(x,y)))

The first sentence states that every person has some person he loves and
makes no statement about whether the object of one person’s love is the
same as the object of another person’s love. The second sentence states
that there is one single person whom everybody loves, a quite different
statement.

A variable can also occur as a term in a sentence without an enclosing
quantifier. When used in this way, a variable is said to be free, whereas
a variable that occurs in a sentence and in an enclosing quantifier is said
to be bound. For example, in the following sentences, the variable x is free
in the first, bound in the second, and occurs both free and bound in the
third:

(Apple(x) = Red(x))
(vx (Apple(x) = Red(x)))
(Apple(x) v (3x Pear(x)))

If a sentence has no free variables, it is called a closed sentence. If it has
neither free nor bound variables, it is called a ground sentence.

Note that the variables in quantified sentences refer to objects of a
universe of discourse, not to functions or relations. Consequently, they
cannot be used in functional or relational positions. We say that a language
with this property is first order. A second-order language is one with
function and relation variables as well. We have chosen to restrict our
attention here to a first-order language both because this language allows
us to prove some strong results that simply do not hold of second-order
languages and because it is adequate for most purposes in Al.

Note that the parentheses around expressions involving functional,
relational, and logical operators are essential to prevent ambiguities. If
they were dropped indiscriminately, some terms could be interpreted in
more than one way. For example, A*xB+C could be the sum of a product
and a constant or the product of a constant and a sum. Fortunately, such
ambiguities often can be eliminated by imposing a precedence ordering on
operators.

A table of precedences is given in Table 2.1. The symbol t has higher
precedence than * and /. The symbols * and / have higher precedence
than + and -. Whenever an expression is flanked by operators of different
precedence, it is associated with the operator of higher precedence; e.g., the

2.3 Semantics 21

Table 2.1 Precedence relations ordered from high to low

I + * =
Al N
v C© 2
A

v

m

co

Un]
J

<,‘<>J
)
$

expression A*B+C is the sum of a product and a constant. Whenever an
expression is flanked by operators of equal precedence, it is associated with
the operator on the left; e.g., the expression A*B/C is a quotient of a product
and a constant. These rules of precedence are assumed throughout this
book, and parentheses usually are dropped when there is no chance of
ambiguity.

In addition to dropping parentheses, it is common in mathematical
notation to drop the parentheses following a 0-ary function constant
or relation constant. So, in the interests of simplicity, we permit this
abbreviation in our language. Thus, the term F() can be written as F,
and the atomic sentence R() can be written as R.

Another concession to standard notation is the abbreviation of negated
atomic sentences involving mathematical operators. Rather than writing
the negation operator in prefix position as indicated, the fact that the
atomic sentence is negated is denoted by drawing a bar through the
operator. Thus, we usually write the sentence ¢ £ in place of = (@<1).

The preceding sections completely characterize the syntax of predicate
calculus. Any sentence allowed by these rules and conventions is syntac-
tically correct, and any sentence not specifically allowed is syntactically
illegal. In later chapters, we modify the syntax slightly to allow additional
types of sentences.

2.3 Semantics

In the previous section, we provided a precise definition for the syntax
of predicate calculus. The treatment of semantics, however, was quite
informal. In this section, we provide a precise definition of meaning called
declarative semantics.

22 Declarative Knowledge

Database

Figure 2.2 Declarative semantics.

In making our definition, we assume the perspective of the observer
in Figure 2.2. We have a set of sentences and a conceptualization of the
world, and we associate the symbols used in the sentences with the objects,
functions, and relations of our conceptualization. We evaluate the truth of
the sentences in accordance with this association, saying that a sentence
is true if and only if it accurately describes the world according to our
conceptualization.

Note that, in this definition of semantics, there is no dependence on
the way in which the sentences of the language are expected to be used.
In this respect, the approach differs radically from that taken in much of
computer science, where abstract data structures are defined in terms of
the operations we can perform on them.

An interpretation I is a mapping between elements of the language and
elements of a conceptualization. We represent the mapping by the function
I(o), where o is an element of the language. We usually abbreviate (o)
to o, and we represent the universe of discourse by |I|. For I to be an
interpretation, it must satisfy the following properties.

(1) If o is an object constant, then o'¢|7].

(2) If 7 is an n-ary function constant, then # : [I|® — |I|.

(3) If p is an n-ary relation constant, then p! C |I|".

Note that, in describing the semantics of predicate calculus, we use
symbols, such as I and o, that are not part of the language we are
describing. I, o, and other symbols we introduce later are part of our
metalanguage for talking about predicate calculus. Practice keeping firmly

in mind which symbols and expressions are part of the predicate-calculus
language and which are part of the metalanguage.

2.3 Semantics 23

As an example of an interpretation, once again consider the Blocks World
scene in Figure 2.1. Assume the predicate-calculus language has the five
object constants A, B, C, D, and E, the function constant Hat, and the
relation constants On, Above, Table, and Clear. The following mapping
corresponds to our usual interpretation for these symbols.

AM=a
B/ =
¢l =
D/ =d
El=e

Hat! = {(b,a), (c,b), (e,d)}

0n! = {(a,b), (b, c), (d,€)}

Above! = {(a,b), (b,c), (a,c), (d,)}
Table! = {c,e}

Clear! = {a,d}

This is the intended interpretation, the one suggested by the names of
the constants. However, these constants can equally well be interpreted in
other ways, as in the interpretation J that follows. J agrees with I on the
object constants and the function constant but disagrees on the relation
constants. Under this interpretation, On means under, Above means below,
Table means clear, and Clear means table.

A =a
B =b
¢/=c
D/ =d
El=e

Hat’ = {(b,a), (¢,]}, (e, d)}

on’ = {{b,a),{c,b), (e,d)}

Above’ = {(b,a), (c,b), (c,a), (e,d)}
Table’ = {a,d}

Clear’ = {c,e}

24 Declarative Knowledge

For reasons that will become clear, it is useful to interpret variables
in sentences separately from other symbols. A wvariable assignment U is
a function from the variables of a language to objects in the universe of
discourse.

The following partial assignment is an example. (We use the abbrevi-
ation oV for U(g).) The variable x is assigned block a; variable y also is
assigned block a; and variable z is assigned block b.

IU=ﬂ
y'=a
zV=b

An interpretation I and a variable assignment U can be combined into
a joint assignment Ty that applies to terms in general. In particular, the
assignment of each nonvariable symbol corresponds to the interpretation I;
the assignment of each variable corresponds to the variable assignment U;
and the assignment of an expression is the result of applying the function
corresponding to the function constant to the objects designated by the
terms.

Given an interpretation I and a variable assignment U, the term
assignment Tjy corresponding to I and U is a mapping from terms to
objects, defined as follows.

(1) If 7 is an object constant, then Try(7) = I(7).
(2) If T is a variable, then Ty () = U(1).

(3) If 7 is a term of the form =(7y,...,7) and I(7) = g and Tyy () =
z;, then TIU(T) = Q(Il, ren)zn)'

As an example, consider the term assignment corresponding to the
interpretation I and the variable assignment U defined previously. Under
this assignment, the term Hat(C) designates the block b. I maps C
to block ¢ and the tuple (c,b) is a member of the function designated
by Hat. The term Hat (z) designates block a, since U maps z to b, and the
tuple (b, a) is in the set of tuples designated by Hat.

The notions of interpretation and variable assignment are important
because they allow us to define a relative notion of truth called satisfaction.
The definition differs from one type of sentence to another and is presented
case by case in the following paragraphs. By convention, the fact that a
sentence ¢ is satisfied by an interpretation I and a variable assignment U
is written =y ¢[U]. In this case, we say that the sentence ¢ is true relative
to the interpretation I and the assignment U.

An interpretation and variable assignment satisfy an equation if and only
if the corresponding term assignment maps the equated terms into the same
object. When this is the case, the two terms are said to be coreferential.

2.8 Semantics 25

(1) =y (e=7)[U] if and only if Tyy (o) = Ty (7).

An interpretation I and a variable assignment U satisfy an atomic
sentence other than an equation if and only if the tuple formed from the
objects designated by the terms in the sentence is an element of the the
relation designated by the relation constant.

(2) 1 p(11,...,m) (U] if and only if (Try (1), ..., Tiv(m))el(p).

For example, consider interpretation I as defined in the previous section.
Since the object constant A designates block a and B designates b, and the
tuple (a,b) is a member of the set designated by the relation constant On,
it is the case that =; On(A,B)[U]. Thus, we can say that On(A,B) is true
under this interpretation.

If the mapping of the relation symbol On were changed to the value
in interpretation J (where On designates the under relation), then the
sentence On(A,B) would not be satisfied. Tuple {a,b) is not a member of
that relation, and thus On(A,B) would be false under that interpretation.

These examples illustrate the dependence of satisfiability on interpre-
tation. Under some interpretations, a sentence can be true; under other
interpretations, it can be false.

The satisfiability of logical sentences depends on the logical operator
involved. The negation of a sentence is satisfied if and only if the sentence
itself is not satisfied. A conjunction is satisfied if and only if all the
conjuncts are satisfied. A disjunction is satisfied if and only if at least
one of the disjuncts is satisfied. Note the inclusive sense of disjunction
being assumed here. A unidirectional implication is satisfied if and only if
the antecedent is false or the consequent is true. A bidirectional implication
is satisfied if and only if the two component implications are satisfied.

(3) [=r (+¢)[U] if and only if &1 $[U].

(4) Er (@1 A...A @) U] if and only if r ¢;[U] for all i = 1,...,n.
(5) Fr (@1 V...V ¢y (U] if and only if = ¢;[U] for some ¢, 1 <i < n.
(6) =1 (¢=>4)[U] if and only if &1 $[U] or = Y[U).

(7) 1 (¢<=¢)[U] if and only if =1 ¢[U] or f& (U]

(8) k=1 (¢#y)[U] if and only if |=; (¢=4) (U] and =1 (p<=)(U].

A universally quantified sentence is satisfied if and only if the enclosed
sentence is satisfied for all assignments of the quantified variable. An
existentially quantified sentence is satisfied if and only if the enclosed
sentence is satisfied for some assignment of the quantified variable.

(9) 1 (Yvg) (U] if and only if for all d € |1 it is the case that =7 @[V]
where V(v) =d and V() = U(u) for p # v.

(10) |rr (Qvg)[u) if and only if for some d € |I| it is the case that
1 #[v) where V(v) = d and V(u) = U(p) for p # v.

26 Declarative Knowledge

If an interpretation I satisfies a sentence ¢ for all variable assignments,
then I is said to be a model of ¢, written |=r ¢. For example,
interpretation I from our Blocks World example is a model of the sentence
On(x,y) = Above(x,y). Consider the variable assignment U that maps x
into block e and y into block b. Under this variable assignment and
interpretation I, the sentence On(x,y) and the sentence Above(x,y) are
both satisfied. Therefore, by the definition of satisfaction, they satisfy the
implication as well. As an alternative, consider the variable assignment V'
that maps both x and y into block a. Under this variable assignment,
Above(x,y) is not satisfied—but neither is On(x,y). Therefore, once again
the implication is satisfied.

Obviously, a variable assignment has no effect on the satisfaction of a
sentence that contains no free variables (e.g., a ground sentence or a closed
sentence). Consequently, any interpretation that satisfies a ground sentence
for one variable assignment is a model of that sentence.

A sentence is said to be satisfiable if and only if there is some
interpretation and variable assignment that satisfy it. Otherwise, it is
unsatisfiable. A sentence is wvalid if and only if it is satisfied by every
interpretation and variable assignment. Valid sentences are those that are
true by virtue of their logical form and thus provide no information about
the domain being described. The sentence P(A) v =P (4) is valid, because
any interpretation satisfies either P(A) or -P(4).

We can easily extend the definitions in this section to sets of sentences
as well as individual sentences. A set I' of sentences is satisfied by an
interpretation I and a variable assignment U (written =y I'[U]) if and only
if every member of I is satisfied by I and U. An interpretation I is a model
of a set I" of sentences (written |=; I') if and only if it is a model of every
member of the set. A set of sentences is satisfiable if and only if there
is an interpretation and variable assignment that satisfies every element.
Otherwise, it is unsatisfiable or inconsistent. A set of sentences is valid if
and only if every element is valid.

Unfortunately, our definition of satisfaction is somewhat disturbing in
that it relativizes the notion of truth to one’s interpretation. As a result,
different individuals with different interpretations may disagree on the
truth of a sentence.

It is generally true that, as one writes more sentences, the number of
possible models decreases. This raises the question of whether it is possible
for an individual to define his symbols so thoroughly that no interpretation
is possible except the one he intended. As it turns out, there is no way in
general of ensuring a unique interpretation, no matter how many sentences
we write down.

The concept of elementary equivalence is important in this regard.
It means that two interpretations cannot be distinguished by sentences
in predicate calculus. More precisely, two interpretations I and J are

2.3 Semantics 27

elementarily equivalent (I = J) if and only if |=; ¢ implies and is implied
by = ¢ for any sentence ¢.

Consider the two interpretations I and J defined as follows. I's universe
of discourse consists of the real numbers, and I maps the relation symbol R
into the greater than relation on reals. J’s universe of discourse consists
of the rational numbers, and J maps R into the greater than relation on
rationals. As it turns out, I and J are elementarily equivalent. Despite the
fact that the two universes are of different cardinality, there is no sentence
that is satisfied by one interpretation that is not also satisfied by the other.

Along with the problem of ambiguity in the definition of symbols, there
is the parallel issue of the definability of the elements in a conceptualization
(i.e., the objects, functions, and relations). An element z of a conceptual-
ization is definable in terms of elements z,...,z, if and only if there is a
first-order sentence ¢ with nonlogical symbols ¢,,...,0, and o for which
every model over the conceptualization that maps o; into z; also maps o
into z.

For example, it is possible to define the clear relation in terms of the
on relation. Given an interpretation I that maps the symbol On into
the on relation, we can define the clear relation using the single sentence
-3x On(x,y). An object is clear if and only if no object is on top of it.

Unfortunately, not every relation on a universe of discourse is definable
with every interpretation. For any interpretation with an infinite universe
of discourse, there are uncountably many relations, but the language of
predicate calculus has only a countable number of finite sentences. As a
result, some relations must necessarily be left out.

For example, the relation on cannot be defined in terms of clear. With
a fixed interpretation for Clear, the sentence ~3x On(x,y) constrains the
set of possible interpretations for On but does not make it unique.

Before we examine specific examples, it is worth pausing briefly to
consider the relevance of these ideas to representing knowledge in machines.
As we already mentioned, the first step in encoding declarative knowledge
is conceptualizing the application area. We then select a vocabulary
of object constants, function constants, and relation constants. We
associate these constants with the objects, functions, and relations in our
conceptualization. We can then begin to write sentences that constitute
the machine’s declarative knowledge.

Of course, in designing a useful machine, we try to write sentences we
believe to be true; i.e., ones that are satisfied by our intended interpretation.
The intended interpretation is then a model of the sentences we write.
Notice that, if our beliefs are incorrect, the sentences we write may not be
true in reality.

Note also that, in describing an application area, we seldom start with a
complete conceptualization. For example, we rarely have lists of tuples
for every function and relation. Rather, we start with an idea of a

28 Declarative Knowledge

conceptualization and attempt to make it precise by writing more and
more sentences.

2.4 Blocks World Example

As an example of expressing knowledge in predicate calculus, once again
consider the Blocks World scene in Figure 2.1. We assume a conceptual-
ization of the scene as five objects and the relations on, clear, table, and
above. For our predicate-calculus vocabulary, we use the five object con-
stants A, B, C, D, and E and the relation constants On, Clear, Table, and
Above. In using these symbols to encode facts about our conceptualization,
we assume the standard interpretation, I.

The sentences that follow encode the essential information about this
scene. Block a is on block b; block b is on block ¢; and block d is on
block e. Block a is above b and c; b is above ¢; and d is above e. Finally,
block a is clear, and so is block d. Block c is on the table, and so is block e.

On(4,B) Above(A,B) Clear(A)
On(B,C) Above (B,C) Clear(D)
On(D,E) Above(A,C) Table(C)

Above(D,E) Table(E)

Note that all these sentences are true under the intended interpretation.
Since A designates block a and B designates block b, and block a is on
block b, the first sentence in the first column is true. Since D designates
block d and E designates block e, and the pair (d,e) is a member of the
relation designated by the symbol Above, the last sentence in the second
column is true. For similar reasons, the other sentences are true as well.

In addition to encoding simple sentences, we can encode more general
facts. In the Blocks World, if one block is on another, then that block is
above the other. Furthermore, the above relation is transitive; if one block
is above a second and the second is above a third, then the first also is
above the third.

vxvy (On(x,y) = Above(x,y))
VxVyvz (Above(x,y) A Above(y,z) = Above(x,z))

One advantage to writing such general sentences is economy. If we record
on information for every object and encode the relationship between the
on relation and the above relation, there is no need to record any above
information explicitly.

2.5 Circuits Example 29

Another advantage is that these general sentences apply to Blocks World
scenes other than the one pictured here. It is possible to create a Blocks
World scene in which none of the specific sentences we have listed is true,
but the general sentences are still correct.

Of course, there are other true sentences one can write about the Blocks
World. Many of these sentences are redundant in that they are entailed by
the preceding sentences. This notion of logical entailment is defined more
precisely in the next chapter.

2.5 Circuits Example

Figure 2.3 is a schematic diagram for a digital circuit called a full adder. Let
us consider how we might conceptualize a circuit of this sort and describe
its structure as a set of sentences in predicate calculus.

We can think of the circuit f; as a composite component, consisting of
subcomponents called “gates.” There are two zor gates z, and x5, two and
gates a; and az, and an or gate 0;. Each device has a number of ports
through which data flow. The input ports are on the left side of the box
designating the device; the output ports are on the right side. Thus, the
universe of discourse consists of 26 objects: 6 components and 20 ports.

We can use functions to associate ports with components. The binary
function input maps an integer and a component into the corresponding
input port. The binary function output maps an integer and a component
into the corresponding output port. Thus, we can think about the first
input of the adder, or about its second output, and so forth.

The solid lines connecting ports to other ports depict wires, which
transmit data between components. We could conceptualize these wires as
objects like gates, with inputs and outputs of their own; but this would not
answer the question of how to encode the relationship between the inputs

fi

z

T2

az

01

a1

Figure 2.3 A full adder.

30 Declarative Knowledge

and outputs of those wires and the ports to which they are connected.
Instead, let us ignore the presence of wires and think about the connectivity
of a circuit using a single binary relation that associates ports with the ports
to which they are connected. For example, the third input of f; is connected
to the first input of a;. We assume that connectivity is unidirectional, from
left to right.

To describe the structure of f; in predicate calculus, we need to
choose symbols that designate the elements of our conceptualization. The
following vocabulary suffices.

e F1, X1, X2, A1, A2, 01 designate the six components.
o Adder(x) means that x is an adder.

¢ Xorg(x) means that x is an zor gate.

e Andg(x) means that x is an and gate.

e Org(x) means that x is an or gate.

e I(i,x) designates the ith input port of device x.

e 0(i,x) designates the ith output port of device x.

e Conn(x,y) means that port x is connected to port y.

Given this vocabulary, we can describe our conceptualization of the
circuit with the following predicate-calculus sentences. The first six
sentences indicate the types of the components. The remaining sentences
capture their connectivity.

Adder(F1)
Xorg(X1)
Xorg(X2)
Andg(A1)
Andg(A2)
Org(a3)

Conn(I(1,F1),I(1,X1))
Conn(I(2,F1),I(2,X1))
Conn(I(1,F1),I(1,A1))
Conn(I(2,F1),I(2,A1))
Conn(I(3,F1),I(2,X2))
Conn(I(3,F1),I(1,A2))

2.5 Circuits Example 31

Conn(0(1,X1),I(1,X2))
Conn(0(1,X1),I(2,A2))
Conn(0(1,A2),1(1,01))
Conn(0(1,A1),1(2,01))
Conn(0(1,X2),0(1,F1))
Conn(0(1,01),0(2,F1))

We can describe the state of a circuit such as f; by enlarging our

conceptualization to include high and low values (i.e., bits) and a relation

that associates a port with the value on that port. These additional
conceptual elements suggest the following vocabulary.

e V(x,z) means that the value on port x is z.
e 1 and 0 designate high and low signals, respectively.

Using this vocabulary, we can assert specific values for the ports in the
circuit. For example, the following sentences assert that the inputs to the
circuit are high, low, and high, respectively, and that the outputs are low
and high.

V(I(1,F1),1)

V(I(2,F1),0)
V(I(3,F1),1)

v(0(1,F1),0)
vV(0(1,F1),1)

We also can use this vocabulary to describe the general behavior of the
components in the circuit. The first two sentences that follow capture the
behavior of an and gate; the second pair of sentences describes the behavior
of an or gate; and the third pair describes an ror gate. The final sentence
describes the behavior of an ideal connection.

vx (Andg(x) A V(I(1,x),1) A V(I(2,x),1) = V(0(1,x),1))

vxvn (Andg(x) A V(I(n,x),0) = V(0(1,x),0))

vxvn (Org(x) A V(I(n,x),1) = V(0(1,x),1))
vx (Org(x) A V(I(1,x),0) A V(I(2,x),0) = Vv(0(1,x),0))

vxvz (Xorg(x) A V(I(1,x),z) A V(I(2,x),2z) = V(0(1,x),0))

32 Declarative Knowledge

VxVyvz (Xorg(x) A V(I(1,x),y) A V(I(2,x),z) A y#z
= V(0(1,x),1))

vxvyvz (Conn(x,y) A V(x,z) = V(y,z))

Notice that these sentences completely characterize the digital structure
and behavior of f;. To describe additional properties, we would have to
expand or modify our conceptualization and vocabulary. For example,
we might want to express the fact that a;, is malfunctioning. To
do this, we would have to add an additional relation and phrase an
appropriate sentence. Asserting that a connection is malfunctioning is a
little more complicated, because connections are not objects. To express
such information, we would need to reify connections. For the circuit
in Figure 2.3, this would lead to 12 new objects; to relate these new
connection objects to the ports they connect, we would have to extend
the binary connectivity relation into a ternary relation that associates a
port, the port to which it is connected, and the corresponding connection.
In formalizing knowledge, it is always important to recognize the need for
a new conceptualization and a new vocabulary when appropriate.

2.6 Algebraic Examples

Using predicate calculus, we can express the definitions and properties
of common mathematical functions and relations, as illustrated by the
examples in this section.

The following sentences express the associativity, commutativity, and
identity properties of the + function. The first sentence states that the
number obtained by adding x to the result of adding y to z is the same
as the number obtained by adding to z the result of adding x and y. The
second sentence states that the order of addition is unimportant. The third
sentence states that 0 is an identity for +.

VxVyvz x+(y+z)=(x+y)+z
VXVy x+y=y+x

vx x+0=x

In its usual interpretation, the < symbol is used to denote a partial order;
i.e., one that is reflexive, antisymmetric, and transitive. The first sentence
that follows asserts that the relation holds of any object and itself. The
second sentence asserts that, if the relation holds between object x and
object y and between y and x, then x and y must be equal. The third

2.7 List Examples 33

sentence states that the relation holds between object x and object z if it
holds between object x and object y and also between object y and object z.

Vx x<x
VxVy x<y A y<x = x=y

VxVyVz x<y A y<z = x<z

We can characterize functions and relations on sets in a similar
manner. For example, given the membership relation €, we can define the
intersection function n, as follows. An object is a member of the intersection
of two sets if and only if it is a member of both sets.

VaVtvx (x€s A xX€t) < x€snt

The following sentences express the associativity, commutativity, and
idempotence of the intersection function. All three properties can be proved
from the preceding definition.

vrvsvt rn(snt)=(rns)nt
VsVt snt=tns

Vs sns=s

If the sentences in this section look familiar, that is as it should be.
Predicate calculus was originally developed to express mathematical facts,
and it is in common use today.

2.7 List Examples

If 7q,...,7n are legal terms in our language, then a list is a term of the
following form, where n is any integer greater than or equal to zero.

[r1,. --s'rn]

The primary use of lists is the representation of sequences of objects.
For example, if we use numerals to designate numbers, we can use the
following list to designate the sequence consisting of the first three integers
in ascending order.

[1,2,3]

34 Declarative Knowledge

Because lists are themselves terms, we can nest lists within lists. For
example, the following term is a list of all permutations of the first three
positive integers.

(f:,2,31,01,8,2],(2,1,3],(2,3,1],(3,1,2],(3,2,1]]

To talk about lists of arbitrary length, we use the binary functional
operator “.” in infix form. In particular, a term of the form 7 . 75 designates
a sequence in which 7; is the first element and 73 is the rest of the list. With
this operator, we can rewrite the list [1,2,3] as follows.

1.2.6.Ih»

The advantage of this representation is that it allows us to describe
functions and relations on lists without regard to length.

As an example, consider the definition of the binary relation Member,
which holds of an object and a list if the object is a top-level member of
the sequence denoted by the list. Using the “.” operator, we can describe
the Member relation as follows. Obviously, an object is a member of a
sequence if it is the first element; however, it is also a member if it is
member of the rest of the list.

vVl Member(x,x.1)
VxVvyvl Member(x,1) = Member(x,y.l)

We also can define functions to manipulate lists in different ways. For
example, the following axioms define a function called Append. The value
of Append is a sequence consisting of the elements in the sequence supplied
as its first argument followed by the elements in the sequence supplied as its
second argument. Thus, Append([1,2], [3,4]) denotes the same sequence
as the list [1,2,3,4].

vm Append([],m)=m
VxVlvm Append(x.l,m)=(x.Append(1l,m))

Of course, we can also define relations that depend on the structure of
the elements of a sequence. For example, the Among relation is true of an
object and a sequence if the object is a member of the sequence, if it is a
member of a sequence that is itself a member of the sequence, and so on.

vx Among(x,x)
VxVyvz (Among(x,y) V Among(x,z)) => Among(x,y.z)

2.8 Natural-Language Examples 35

Lists are an extremely versatile representational device, and the reader is
encouraged to become as familiar as possible with the techniques of writing
definitions for functions and relations on lists. As is true of many tasks,
practice is the best approach to gaining skill.

2.8 Natural-Language Examples

As a final example of using predicate calculus, consider the task of
formalizing the information in the following English sentences. We assume
that the conceptualization underlying all the sentences is the same. The
universe of discourse is the set of all plants. There is a unary relation
for being a mushroom, another for being purple, and a third for being
poisonous. We designate these relations with the unary relation symbols
Mushroom, Purple, and Poisonous. Each English sentence is followed by
one or more translations into predicate calculus. Where more than one
translation is given, the alternatives are logically equivalent.

All purple mushrooms are poisonous.
vx Purple(x) A Mushroom(x) = Poisonous(x)
vx Purple(x) = (Mushroom(x) = Poisonous(x))

vx Mushroom(x) = (Purple(x) = Poisonous(x))

The use of the word all in this sentence is a clear indication that it is
universally quantified. The equivalence of the three sentences should be
obvious. The first states that, if an object is a mushroom and purple, then
it is poisonous. The second states that, if an object is purple, then, if it
is also a mushroom, it is poisonous. The third sentence states that, if an
object is a mushroom, then, if it is also purple, it is poisonous. All three
statements assert the poisonous quality of any purple mushroom.

A mushroom is poisonous only if it is purple.
vx Mushroom(x) A Poisonous(x) = Purple(x)

vx Mushroom(x) = (Poisonous(x) = Purple(x))

Here we have the converse of the relationship in the preceding sentence.
The argument for equivalence is the same as for the preceding sentence.

36 Declarative Knowledge

(Caution: A conceptualization of the world in which this is a true sentence
may be hazardous to your health!)

No purple mushroom is poisonous.
Vx ~(Purple(x) A Mushroom(x) A Poisonous(x))

~(3x Purple(x) A Mushroom(x) A Poisonous(x))

The use of the word no here indicates that something is not true. The
fact that, for all objects, something is not true (as suggested by the first
rendition) is equivalent to the lack of existence of an object for which it is
true (as suggested by the second).

There is eractly one mushroom.

3x Mushroom(x) A (Vz z#x = -Mushroom(z))

The easiest way to encode information about the number of objects having
a property is to state the cardinality of the set of all objects having that
property. Although the specified conceptualization includes neither this set
nor the cardinality function, it is possible to express that there is only one
mushroom using the equality relation. Note that the fact can be stated
even though the identity of the individual mushroom is unknown.

2.9 Specialized Languages

One of the disadvantages of predicate calculus as a knowledge-representa-
tion language is that, like English, it is sometimes cumbersome. For this
reason, Al researchers often prefer specialized languages, many of them
graphical. In this section, we present a few examples and address their
strengths and weaknesses for encoding declarative knowledge.

A binary table, is an example of a sentence in a graphical language.
As our alphabet, we take the set of all uppercase and lowercase letters,
the digits, and both horizontal and vertical lines. The symbols are the

T T ... Tn
oy | a1 ... Oi1n
Om | ®m1 ... Omnp

Figure 2.4 The form of a binary table.

2.9 Specialized Languages 37

same as those in predicate calculus, except that we divide all symbols into
object constants and binary function constants only. A legal sentence in the
table language is a two-dimensional configuration of symbols in the form
shown in Figure 2.4, where 7 is a binary function constant and the symbols
O1y...,0m, and 11,...,7, and ayy,...,0m, are all object constants.

An interpretation I satisfies a sentence in the table language if and only
if each entry in the table designates the value of the function designated
by the function constant in the upper-left corner applied to the objects
designated by the corresponding row and column labels.

ﬂl(a.‘_f, Tj!) = afj

Figure 2.5 presents a legal binary table, assuming that the symbol Score
is a binary function constant and the other symbols in the table are all
object constants.

Suppose that I is an interpretation that maps the symbols Gauss,
Herbrand, and Laurent into the students with those names. It maps
the symbols Quizi, Quiz2, Quiz3, and Final into four tests taken by
those students. It maps sequences of digits into the corresponding base-10
integers. It maps the function constant Score into a function that maps a
student and a test into the student’s score on that test. Then I satisfies
this table if and only if under this mapping the indicated scores are correct;
e.g., Gauss got a 94 on the second quiz.

The language of binary tables is excellent for expressing information
about binary functions; it does not work at all for other types of
information. Of course, there are many other types of tables, some with
multiple labels on rows, some with multiple labels on columns, some with
more complex entries.

Another specialized language, explored in the early days of Al is the
semantic net. A semantic net is a directed graph with labeled nodes and
arcs. The alphabet consists of all uppercase and lowercase letters, the
digits, nodes, and directed arcs of arbitrary length and direction. The
symbols of the language are the same as in predicate calculus, and they
are divided into object constants and binary relation constants. A two-
dimensional configuration of elements from this alphabet is a legal labeled
directed graph if and only if each node has an associated object constant

Score | Quizl Quiz2 Quiz3 Final
Gauss 92 94 89 100
Herbrand 86 79 92 85
Laurent 52 70 45 68

Figure 2.5 Knowledge encoded in a binary table.

38 Declarative Knowledge

City Country Dialect
{] 4
} j 1
Isa Isa Isa
Part Language
Paris F;ance F_;ench

Figure 2.6 A semantic net.

written near it, each arc has an associated binary relation constant written
near it, and each arc begins at a node and ends at a node. Figure 2.6 is
an example of a semantic net, provided that the symbols Isa, Part, and
Language are all binary relation constants and that the other symbols are
all object constants.

An interpretation satisfies a semantic net if and only if the relation
designated by the label on each arc holds of the objects designated by
the labels on the nodes the arc connects. This particular semantic net
is satisfied by the standard interpretation, since Paris is a city in France,
France is a country, and the language in France is the French dialect.

A semantic net is particularly good for representing binary relations
and, consequently, unary functions. Nonbinary relations can be handled
by using arcs with more than two endpoints.

The language of frames is another language that has received consider-
able attention in the Al community, as much for its semantic richness (dis-
cussed later) as for its syntax. There are numerous frame languages and
considerable variation in detail from one language to another. However,
the following definition is consistent with the majority of these languages.

The alphabet of our frames language consists of uppercase and lowercase
letters, digits, the colon character, and both horizontal and vertical lines.
The symbols of the frames language are the same as those in predicate
calculus and are divided into object constants, unary function constants,
and binary relation constants. Each sentence is a structured object in
the form of a frame (see Figure 2.7), where the symbol in the upper-left
corner is an object constant, the symbols before the colons are function or
relation constants, and the symbols after the colons are object constants.
The sentences in the language are called frames; the symbol in the upper-
left corner is the frame’s name; the symbols before the colons are commonly
termed slots; and the symbols after the colons are called values.

2.9 Specialized Languages 39

>
p: B
Pn: Bn

Figure 2.7 The general form of a frame.

An interpretation satisfies a sentence in the frames language if and only
if the object designated by the value of each slot is the same as the object
obtained by applying the function designated by the slot to the object
designated by the frame name.

(!, 8]) € p}

Figure 2.8 shows two examples of knowledge encoded in frames. Jones
is a freshman advised by Tversky and is in the psychology department.
Tversky is a faculty member in the psychology department and advises
Jones and Thorndyke.

One problem common to specialized languages such as tables, semantic
nets, and frames is an inability to handle partial information. For example,
there is no way in the table language to state the fact that either Herbrand
or Laurent got a 90 on the first quiz without saying which of them did.
There is no way in a semantic net to say that Paris is in some country
without saying which one. There is no way in the frame language to say
that Tversky is not Jones’s advisor without saying who is.

In fairness to the language of semantic nets, it should be pointed out
that various extensions have been proposed that allow one to express
logical combinations of facts or quantified facts. However, these extensions
compromise the simplicity of the language to a large extent.

In fairness to the frames language, it should be pointed out that the
original idea of frames included provision for the association of procedural

Jones Tversky

Isa: Freshman Isa: Faculty

Dept: Psychology Dept: Psychology
Advisor: Tversky Advisees: {Jones,Thorndyke}

Figure 2.8 Knowledge encoded in frames.

40 Declarative Knowledge

knowledge with the declarative knowledge stored as slot values. This allows
us to express knowledge beyond that we discussed. Unfortunately, it does
not allow us to express this knowledge in declarative form.

In fairness to all these specialized languages, it should be noted that
partial information always can be captured by defining new relations. For
example, we can change the score function illustrated in Figure 2.5 to be a
binary function from students and quizzes to sets of scores, with the idea
that the actual score is a member of the set so designated. This would
allow one to state that Herbrand got either an 80 or a 90 by recording the
set {80,90} as his score. Representing other partial information is more
difficult but still is possible. This approach has the disadvantage that
the new conceptualizations are quite cumbersome; and, as a result, the
specialized languages lose much of their perspicuity.

The language of predicate calculus addresses the problem of partial
information head on by providing logical operators and quantifiers that
allow us to express partial information. As a result, there is no need (in
principle) either to encode declarative knowledge in procedural form or to
change one’s conceptualization of the world.

The primary disadvantage of predicate calculus is that it is less succinct
than are specialized languages for many kinds of knowledge. On the other
hand, no single specialized language is ideal for expressing all facts. For
some kinds of information, tables are best. For other information, semantic
nets or frames are best. For yet other information, bar graphs or pie charts
or color or animation may be best.

Of course, we can easily define specialized languages such as tables,
semantic nets, and frames in terms of predicate calculus. Having done so,
we can use those languages where they are appropriate; where they fail, we
can fall back on the expressive power of the full predicate calculus.

For these reasons, we have chosen to use predicate calculus in this text.
The approach also has the pedagogical benefit of allowing us to compare
and analyze different languages within a single common framework. Also,
it is possible to describe inference procedures for just one language and
have them apply automatically to these other languages as well.

2.10 Bibliographical and Historical Remarks

Although we stress in this book languages and reasoning methods for
declarative representations of knowledge, the difficult problem for Al is
the conceptualization of a domain. Every Al application begins with a
particular conceptualization, and the reader should become familiar with
several examples of these in order to gain an appreciation for this aspect
of AL

Conceptualizations used by expert systems usually are sharply limited
to a small set of objects, functions, and relations. Typical examples are

2.10 Bibliographical and Historical Remarks 41

those used by MYCIN [Shortliffe 1976], PROSPECTOR [Duda 1984], and DART
[Genesereth 1984]. Inventing conceptualizations for broader domains that
include common, everyday phenomena has proved quite difficult. Among
the attempts to formalize commonsense knowledge are those of Hayes
[Hayes 1985a] and those reported in [Hobbs 1985a, Hobbs 1985b]. The
problem of grain size in conceptualizations has been studied by Hobbs
[Hobbs 1985¢c]. Probably the most ambitious attempt to capture a large
body of general knowledge in a representation that is independent of its
many possible later uses is the cYcC project of Lenat and colleagues [Lenat
1986).

Our treatment of the predicate calculus in this book is based on that
of Enderton [Enderton 1972]. Other good textbooks on logic are those
of Smullyan [Smullyan 1968] and Mendelson [Mendelson 1964]. A book
by Pospesel [Pospesel 1976] is a good elementary introduction with many
examples of English sentences represented as predicate-calculus sentences.

Semantic networks have a long tradition in AI and in cognitive
psychology. In psychology, they have been used as models of memory
organization [Quillian 1968, Anderson 1973). In Al, they have been used
more or less as a predicate-calculus-like declarative language [Simmons
1973, Hendrix 1979, Schubert 1976, Findler 1979, Duda 1978].

Closely related to semantic networks are languages that use frames.
Following a key paper on frames by Minsky [Minsky 1975], several frame-
based languages were developed, including KRL [Bobrow 1977, 1979,
Lehnert 1979], FRL [Goldstein 1979], the UNITS [Stefik 1979], and KL-ONE
[Brachman 1985¢].

Comparisons between frames and semantic networks on the one hand
and ordinary predicate calculus on the other have been discussed by
Woods [Woods 1975, Brachman [Brachman 1979, 1983¢|, Hayes [Hayes
1979a], and Nilsson [Nilsson 1980, Chapter 9]. Although many versions
of semantic networks do not have the full expressive power of first-order
predicate calculus, they do carry extra indexing information that makes
many types of inferences more efficient. (However, see [Stickel 1982, 1986,
Walther 1985] for examples of how similar indexing can be achieved in
implementations of systems that perform inferences on predicate-calculus
expressions.) There also are relations between semantic network rep-
resentations and so-called object-oriented programming methods [Stefik
1986]. Some representation systems have used semantic-network-style
representations to express taxonomic information, and ordinary pred-
icate calculus to express other information [Brachman 1983a, 1983b,
1985al.

For the same reasons that logical languages are important for represent-
ing information in Al programs, they also are attractive target languages
into which to attempt translations of natural-language sentences in systems
that perform natural-language processing. A volume edited by Grosz et al.
contains several important papers on this topic [Grosz 1986].

42

Declarative Knowledge

Exercises

1.

Grain size. Consider a conceptualization of the circuit in Figure 2.3
in which there are just six objects: the full adder and its five
subcomponents. Devise a relational basis set that allows you to define
the connectivity of the circuit.

. Reification. Devise a conceptualization of the circuit in Figure 2.3

that allows you to express properties of connections, such as broken
and intermittent.

. Syntaz. For each of the following examples, indicate whether or not

it is a syntactically legal sentence in predicate calculus.
. 32456 > 32654
. 32456 > France

(=

PVvVagqg
. Likes(Arthur,France A Switzerland)

& oo

-]

. Vx Neighbor(France,Switzerland) = Prime(x)

-

. Vcountry Neighbor(France,country)

. ¥x3x Neighbor(x,x)

. (vx P(x)) = (3x P(x))

. (vp p(A)) = (3p p(A))

j. (P(O) A (vx P(x) = P(x+1))) = (vx P(x))

=R]

—

Groups. Recall that a group is a set with a binary function and a
distinguished element such that (a) the set is closed under the function,
(b) the function is associative, (c) the distinguished element is an
identity for the function, and (d) each element has an inverse. Express
these properties as sentences in predicate calculus.

. Lists. Write the axioms defining the function Reverse, whose value

is the reverse of the list supplied as its argument.

. Translation. Use the following vocabulary to express the assertions in

the following sentences.
e Male(x) means that the object denoted by x is male.

Female(x) means that x is female.

e Vegetarian(x) means that x is a vegetarian.

Butcher (x) means that x is a butcher.

10.

11.

2.10 Exercises 43

a. No man is both a butcher and a vegetarian.

b. All men except butchers like vegetarians.

c. The only vegetarian butchers are women.

d. No man likes a woman who is a vegetarian.

e. No woman likes a man who does not like all vegetarians.

Reverse translation. Translate the following predicate-calculus sen-
tences into colloquial English. You can assume that all constants have

their obvious meanings.

a. Vx Hesitates(x) = Lost(x)

b. -3x Business(x) A Like(x,Showbusiness)
c. 7Vx Glitters(x) = Gold(x)

d. 3xvt Person(x) A Time(t) A Canfool(x,t)

. Interpretation and satisfaction. For each of the following sentences,

give interpretations to the symbols such that the sentence makes sense
and represents the world accurately (i.e., you believe it to be true).

a. 2> 3
b. -P = -Q
c. Vxvyvz R(x,y,z) = R(y,z,x)

. Interpretation and satlisfaction. For each of the following three sen-

tences, give an interpretation that makes that sentence false but makes
the other two sentences true.

a. P(x,y) A P(y,z) = P(x,2)
b. P(x,y) A P(y,x) = x=y
c. P(A,y) = P(x,B)

Satisfiability. Say whether each of the following sentences is unsatis-
fiable, satisfiable, or valid.

a. P = P
b. P = -P
c. P = P
d. P & P
e.P = (Q =P

Definability. Define the above relation in terms of the on relation, and
define on in terms of above.

44

12.

13.

14.

Declarative Knowledge

Tables. The tables language described in this chapter is ideal for
expressing information about binary functions. Invent a table language
appropriate for expressing binary relations and use it to encode the
following information. Be sure that you can encode this information
without changing the underlying conceptualization.

a. The facts in Figure 2.6.
b. The facts in Figure 2.8.
Frames. Consider the frames language defined in the text.

a. Explain why you cannot express the facts in Figure 2.5 in this
language without changing the underlying conceptualization.

b. Express the facts in Figure 2.6 in the frames language.

Pie charts and layered bar graphs. The following illustrations are
examples of the same knowledge encoded in two different languages.
Both are good for expressing the relative proportions of a total quantity
in a set of subcategories.

1983 1984 1985

1983 1984 1985

a. What information expressed by the layered bar graph is not
captured in the pie chart?

b. Devise a graphical extension of the pie-chart language that allows
us to express this additional information.

CHAPTER 3

Inference

INFERENCE IS THE PROCESS of deriving conclusions from premises. For
example, from the premise that Art is either at home or at work and the
premise that Art is not at home, we can conclude that he must be at
work. The ability to perform inferences of this sort is an essential part of
intelligence.

We begin this chapter with a discussion of inference and inference
procedures in general. We then narrow our discussion by defining the
criteria of soundness and completeness. Finally, we present a procedure
that satisfies these criteria.

3.1 Derivability

Inference is typically a multistep process. In some cases, we can derive a
conclusion from a set of premises in a single step. In other cases, we first
need to derive intermediate conclusions.

Each step in this process must be sanctioned by an acceptable rule of
inference. A rule of inference consists of (1) a set of sentence patterns called
conditions, and (2) another set of sentence patterns called conclusions.
Whenever we have sentences that match the conditions of the rule, then it
is acceptable to infer sentences matching the conclusions.

Modus ponens (MP) is an example. The sentence patterns above the
line in the following display are the conditions, and the sentence pattern
below the line is the sole conclusion. The significance of this rule is that,

45

46 Inference

whenever sentences of the form ¢ = 1 and ¢ have been established, then
it is acceptable to infer the sentence ¥ as well.

o=
¢

Y

Suppose, for example, that we believe the sentence On(A,B) and we also
believe the sentence On(A,B) = Above(A,B). Then, modus ponens allows
us to infer the sentence Above(A,B) in a single step.

Modus tolens (MT) is the reverse of modus ponens. If we believe that ¢
implies ¢ and we believe that 1 is false, then we can infer that ¢ must be
false as well.

=9

Y
¢

And elimination (AE) states that, whenever we believe a conjunction of
sentences, then we can infer each of the conjuncts. In this case, note that
there are multiple conclusions.

PAY

¢
Y

And introduction (Al) states that, whenever we believe some sentences,
we can infer their conjunction.

¢
4

PAY

Universal instantiation (UI) allows us to reason from the general to the
particular. It states that, whenever we believe a universally quantified
sentence, we can infer an instance of that sentence in which the universally
quantified variable is replaced by any appropriate term.

Vv ¢

¢,/ where 7 is free for v in ¢

For example, consider the sentence Vy Hates(Jane,y). From this
premise, we can infer that Jane hates Jill; i.e., Hates(Jane,Jill). We
also can infer that Jane hates herself; i.e., Hates(Jane,Jane). We can
even infer than Jane hates her mother; i.e., Hates (Jane,Mom(Jane)).

In addition, we can use universal instantiation to create conclusions
with free variables. For example, from Yy Hates(Jane,y), we can infer

54 Inference

A set of sentences I' logically implies (synonymously, logically entails)
a sentence ¢ (written I' = ¢) if and only if every interpretation and
variable assignment that satisfies the sentences in I also satisfies ¢. That
is, I' | ¢ if and only if =7 T'[U] implies =1 ¢[U] for all I and U. A set of
closed sentences I' logically entails a closed sentence ¢ if and only if every
interpretation that satisfies the sentences in I" also satisfies ¢.

Consider the set of closed sentences that follows. These sentences
logically imply the sentence Above(A,B). Any interpretation that satisfies
these sentences also satisfies Above(A,B).

VxVy On(x,y) = Above(x,y)
On(A,B)

For example, under the intended interpretation for these symbols in our
standard Blocks World example (see Figure 2.1}, the sentences are clearly
satisfied. The first sentence is a general property of the on and above
relations. The second sentence is satisfied in this situation, because block a
is on block b. The interpretation satisfies Above(A,B), because block a is
also above block b.

We could try to construct a counterexample by finding an interpretation
that satisfies the premises but does not satisfy the conclusion. For example,
we might try an interpretation that maps On into the under relation
and that maps Above into the below relation. Under this interpretation,
Above(A,B) clearly is not satisfied, because a is not below b. The first
sentence in the set is satisfied, because under implies below. Unfortunately,
the second sentence in the set is not satisfied, because e is in not
immediately beneath b. Since this interpretation does not satisfy all the
sentences in the set, it is not a counterexample.

Given the notion of logical implication, we can define our criteria for
evaluating inference procedures. We say that an inference procedure is
sound if and only if any sentence that can be derived from a database
using that procedure is logically implied by that database. We say that
an inference procedure is complete if and only if any sentence logically
implied by a database can be derived using that procedure. Although the
procedures presented in the previous section are sound, none are complete.
In the next section, we sketch a procedure that is both sound and complete,
although somewhat impractical. In the next two chapters, we discuss a
more practical procedure that is also sound and complete.

A theory is a set of sentences closed under logical implication. Since
there are infinitely many conclusions from any set of sentences, a theory
is necessarily infinite in extent. A theory T is complete if and only if, for
every sentence ¢, either ¢ or its negation is a member of 7.

3.4 Provability 55

3.4 Provability

One apparent difficulty with the practical use of logical implication
as a criterion for inferential correctness is the infinity lurking in its
definition. The definition in the previous section states that a database of
sentences A logically implies a sentence ¢ if and only if every interpretation
that satisfies A also satisfies ¢. The problem is that the number of
interpretations of any set of sentences is infinite, so there is no way to
check them all in a finite amount of time.

Fortunately, the situation is not hopeless. An important theorem of
mathematical logic states that whenever A logically implies ¢, there is a
finite “proof” of ¢ from A. Therefore, the question of determining logical
implication is reduced to the problem of finding such a proof. As it turns
out, there is a procedure for enumerating legal proofs; thus, if A logically
implies ¢, we can verify it in a finite amount of time.

A proofof a sentence ¢ from a database A is a finite sequence of sentences
in which (1) ¢ is an element of the sequence (usually the last) and (2) every
element is a member of A, a logical axiom, or the result of applying modus
ponens to sentences earlier in the sequence. Note that we allow only one
rule of inference in our definition. Thus, a proof is like a derivation, except
that we include logical axioms and we use only one rule of inference. As
we shall see, if we include enough logical axioms, we can ignore all other
rules of inference.

A logical axiom is a sentence that is satisfied by all interpretations purely
because of its logical form. By adding some basic logical axioms to our set
of premises (which latter are called nonlogical azioms or proper azioms),
we: can derive conclusions that we cannot derive using modus ponens alone.

Although the number of basic logical axioms is infinite, it is possible to
describe the axioms with a finite number of aziom schemate. An axiom
schema is a sentence pattern with pattern variables (written here as Greek
letters) that range over all legal sentences. Each schema denotes the set of
all sentences that either match its pattern or are generalizations of its pat-
tern, where a generalization of a sentence ¢ is a sentence of the form vv ¢.

The implication introduction schema (II), together with modus ponens,
allows us to infer implications.

¢ = (P=¢)

The following sentences are all instances of this schema. In the first
sentence, ¢ is P(x) and v is Q(y). In the second sentence, ¢ is
the nonatomic sentence P(x) = R(x). The last three sentences are
generalizations of the second sentence.

P(x) = (Q(y) = P(x))
(P(x) = R(x)) = (Q(y) = (P(x) = R(x)))

8.1 Probabilities of Sentences 179

probability values for sentences. It is helpful to begin our discussion,
however, on more intuitive grounds.

Consider two ground atoms P and Q. If the probabilities of P and Q are
given, what can be said about the probability of P A Q7 It all depends on
the joint distribution of P and Q. It will turn out that what might be called
a probabilistic interpretation for a set of sentences will involve something
like an assignment of a joint probability distribution to the ground instances
of the atoms in those sentences. An interpretation for the set of sentences
{P, Q} consists of a joint probability distribution for P and Q. That is,
we must specify probabilities for the four combinations of each of P and @
being true and false.

For purposes of discussion, let the four joint probabilities in this example
be given by

p(PAQ)=p
p(P A-Q) = p2
p(-PAQ)=p3

p(AP A Q) = py

where p(¢) denotes the probability of the formula ¢ being true.
The probabilities of P and Q alone are called marginal probabilities and
are given as sums of the joint probabilities as follows:

p(P) =p1+p2
p(Q)=p1+p3

We see that merely specifying probabilities (generalized truth values) for
P and @ individually does not fully determine the four joint probabilities,
and therefore (unlike ordinary logic) it does not allow us to calculate
probabilities (generalized truth values) for composite formulas such as
PAQ.

In ordinary logic, modus ponens allows us to conclude @Q, given P and
P = @. In probabilistic logic, however, we cannot analogously calculate a
probability for @ given probabilities for P and P = (Q, because these
probabilities do not fully determine the four joint probabilities. This
lack of analogous inference rules makes reasoning with uncertain beliefs
more complex than reasoning with certain beliefs is. Joint probability
distributions over n atoms have 2™ component terms—an impractically
large number, even for small numbers of atoms. Nevertheless, there
are some reasoning procedures for uncertain beliefs that under restricted
circumstances produce intuitively satisfactory results, and we shall be
discussing some of these in this chapter.

180 Reasoning with Uncertain Beliefs

8.2 Using Bayes’ Rule in Uncertain Reasoning

In some situations involving uncertain beliefs, we can perform a reasoning
step somewhat similar to modus ponens while using probability information
that is available. Suppose we want to calculate the probability of QQ when
we know that P is true and we also know some information about the
relationship between P and (). The probability of @ given that P is
true, written p(Q|P) and called the conditional probability of Q given P,
is just that fraction of the cases in which P is true for which @ also is
true. In terms of the joint probabilities defined previously, this fraction is
p1/(p1 + p2). Or, p(Q|P) = p(P,Q)/p(P), where p(P,Q) stands for the
probability of both P and @Q being true (which is the same as p(P A @).)

Similarly, we could calculate p(P|Q) = p(P, @)/p(Q). Combining these
two expressions allows us to write

_ p(PIQp(Q)
pQlp) =B

which is known as Bayes’ rule. p(Q|P) is called the conditional or posterior
probability of Q given P, and (in this context) p(Q) and p(P) are called the
prior or marginal probabilities of Q and P, respectively. The importance
of Bayes’ rule for uncertain reasoning lies in the facts that (1) one often
has (or can reasonably assume) prior probabilities for P and @, and (2)
in situations in which some evidence P bears on a hypothesis @, one’s
knowledge of the relationship between P and @ often is available in terms
of p(P|Q). From these given quantities, the essential reasoning step involves
using Bayes’ rule to calculate p(Q|P).

An example will help to clarify the use of Bayes’ rule in uncertain
reasoning. Suppose P stands for the sentence, “The automobile’s wheels
make a squeaking noise,” and Q stands for the sentence, “The automobile’s
brakes need adjustment.” We would ordinarily think of P as a symptom
and of Q as a hypothesis about the cause of the symptom. The relationship
between cause and symptom usually can be expressed in terms of the
probability that the symptom occurs given the cause, or p(P|Q). Let us
suppose that poorly adjusted brakes often (but not always) produce wheel
squeaks, say p(P|Q) = 0.7. Suppose, to further specify our example, that
p(P) = 0.05 and p(Q) = 0.02. If we are in a situation in which we observe
squeaking wheels and want to determine the probability that the brakes
need adjustment, then we calculate p(Q|P) = 0.28 using Bayes’ rule. Many
instances of reasoning with uncertain information are analogous to this
example, in which we have information about “symptoms” and want to
infer “causes.”

To use Bayes’ rule, we must have a value for p(P). In practice, prior
probabilities of “symptoms” are often much more difficult to estimate than
are prior probabilities of “causes,” so it is worth inquiring whether or
not Bayes’ rule can be expressed in terms of quantities that are easier

8.2 Using Bayes’ Rule in Uncertain Reasoning 181

to obtain. Fortunately, there is another version of Bayes’ rule in which
p(P) does not occur. To derive this version, we first observe that, although
p(~Q|P) = 1—p(Q|P), the expression also can be written using Bayes’ rule

as follows:
p(P-Q)p(-Q)
p(P)

Dividing the Bayes’ rule expression for p(Q|P) by that of p(~Q|P) yields
p(QIP) _ p(PlQ)p(Q)

p(-Q|P) p(P|~Q)p(-Q)

The probability of an event divided by the probability that the event does
not occur usually is called the odds of that event. If we denote the odds
of E by O(E), we have O(E)=qetp(E)/p(-E) = p(E)/(1 — p(E)). Using
this notation, we rewrite the quotient of the two Bayes’ rule expressions as

0(QIP) = I%%%O(Q)

The remaining fraction in this expression is an important statistical
quantity, usually called the likelihood ratio of P with respect to Q. We
will denote it here by A. Thus,

p(-Q|P) =

p(P|Q)

A =def 1 A

p(P|-Q)
The odds-likelihood formulation of Bayes’ rule is now written as

O(QIP) = 20(Q)

This formula has a satisfying intuitive explanation. It tells us how to
compute posterior odds on @ (given P) from the prior odds on @ (the
odds that applied before we observed that P was true). Upon learning
that P is true, to update the strength of our belief in @ (measured in
terms of its odds), we simply multiply the previous odds by A. The ratio A
can be thought of as information about how influential P is in helping to
convert indifferent odds on @ to high odds on @. When A is equal to one,
then knowing that P is true has absolutely no effect on the odds of Q. In
that case, Q is independent of P being true. Values of A less than one
depress the odds of @; values of A greater than one increase the odds of Q.
Note that, even though we have expressed Bayes’ rule in terms of odds, we
can easily recover the underlying probability by the formula:

p(Q) =0(Q)/(0(Q) +1)

Knowledge about how causes and symptoms are related often can
be expressed conveniently by estimating values for the appropriate As.
Even when people knowledgeable about these relations might not be

Index

A*, 304-305

ABSTRIPS, 305

acceptable relation, 166

accessibility relation, 223

action, 267

action block, 272

action designator, 268

action-retentive agent, 322

adjacency theorem, 111

admissible relation, 166

advice taker, 6

agent, 322
action-retentive, 322
database-retentive, 320
deliberate, 325
globally faithful, 324
knowledge-level, 314
locally faithful, 322
observation-retentive, 322
stepped knowledge-level, 318
tropistic, 308

Al 1l

almost universal formula, 146
with respect to predicate, 146

AM, 175

AMORD, 262

ancestry-filtered resolution, 99

and elimination, 46

and introduction, 46

answer literal, 77

antecedent, 18

arity, 15

atom, 17

401

atomic sentence, 17
attachment, 212
autoepistemic logic, 157
axiom schema, 55

background theory, 162
backward, 103

BACON, 175

bar graphs, 44

Barcan formula, 218

basis set, 164

Bayes’ rule, 180

belief, 248

belief atom, 210, 214
bidirectional implication, 18
bilevel database, 251
bilevel reasoning, 251
binary table, 36

binding, 66

binding list, 66
blackboard system, 6
blocking default rules, 152
bound variable, 20
boundary set, 168, 176
boundary set theorem, 169
Brouwer axiom, 226
bullet operator, 217

candidate elimination, 168
causal connection, 256
certainty factor, 205
characteristic relation, 166
cheapest first rule, 110

402 Index

chronological ignorance, 281 unit, 98
CIRC, 134 default reasoning, 128
circumscription, 134 default rule, 152
circumscription formula, 134 normal, 153

parallel, 147 default theory, 152
circumscription policy, 148 normal, 153
clausal form, 63, 92 definability, 27, 43
clause, 64 deletion strategy, 95, 113

unit, 98 deliberate agent, 325
closed sentence, 20 delimited predicate completion, 132
closed-world assumption, 118 demodulation, 91

with respect to predicate, 121 Dempster-Shafer, 205
CLS, 174 DENDRAL, 175
CLUSTER, 175 derivability, 48, 62
common knowledge, 231 derivation, 48
complete inference procedure, 54 directed clause, 102
complete program, 278 directed resolution, 102
complete theory, 54 discriminant relation, 166
completeness, 254 disjunct, 18

introspective, 254 disjunction, 18
completeness theorem, 89 distinct substitution, 67
completion formula, 123 distribution axiom, 225
completion of predicate in database, 124 Do, 270
composition of substitutions, 67 domain-closure assumption, 120
compulsive introspection, 254
compulsive reflection, 260 effectory function, 308
concept formation, 165, 176 elementary equivalence, 27
concept-formation problem, 165 empty clause, 70
conceptual bias, 164 entropy of a probability distribution, 199
conceptual clustering, 175 epistemic necessitation, 226
conceptualization, 9, 12 equality, 85, 89
conclusions, 45 equation, 17
condition, 45 equivalence, 18
conditional action, 274 evaluation function, 295
conditional expl'BBBiOll, 274 event group, 201
conditional probability, 180 local, 201
conflict resolution, 276 evidential reasoning, 205
conjunct, 18 excess literal, 87
conjunction, 18 existential conjunctive bias, 165
conjunctive bias, 164 existential instantiation, 47, 62
conjunctive normal form, 65 existential quantifier, 19
connection graph, 113 existentially quantified sentence, 19
connectionism, 5 expert system, 1
consequent, 18
constructive induction, 175 factor, 71
contradiction realization, 56 factor, 172
contraposition theorem, 59 version graph, 172
converse B.arcan formula, 218 version space, 172
coreferent_ml, 24 far parent, 100
credit assignment, 173 fidelity, 324
CWA, 118 global, 324
cYc, 41 introspective, 253

local, 322

DART, 41 fill-in-the-blank question, 76
database, 49 finite axiomatiozability, 58
database-retentive agent, 320 first-order language, 20
data-driven theory formation, 175 fluent, 266
DCA, 120 FOL, 262
decidability, 58 forbidden action, 322
declarative knowledge, 3, 9 forward clause, 103
declarative semantics, 21 frame, 38, 41
deduction, 99 frame axiom, 271

input, 99 frame name, 38

linear, 99 frame problem, 271

set of support, 101 frame slots, 38
deduction theorem, 59 frame values, 38

deduction, 98 frame-axiom suppression, 298

frames, 44

free variable, 20

FRL, 41

function, 10

function constant, 15
functional basis set, 10
functional expression, 16
fuzzy set, 188

general boundary set, 169
generalization, 55
generalization on constants, 62
generalization theorem, 60
global fidelity, 324

goal clause, 76

goal regression, 299

goal state, 287

GOLUX, 261

grain size, 12, 42

grand strategy, 327

grand tactic, 327

Green's method, 290

ground completeness theorem, 87
ground sentence, 20

halving strategy, 171
Herbrand base, 86
Herbrand interpretation, 86
Herbrand theorem, 87
Herbrand universe, 86
heuristic search, 6

history, 281

history record, 323

Horn clause, 64

hysteretic agent, 312

ICA, 173

ID3, 174

ignorance, 204

implication, 18

implication distribution, 56

implication introduction, 55
introspective, 254

implicit knowledge, 230

inconsistency, 26

incremental inference procedure, 51

incremental theory formation, 175

independent credit assignment, 173

independent version space, 172

INDUCE, 174

induction, 161
constructive, 175
summative, 163

inductive conclusion, 162

inference, 45

inference level, 256

inference net, 187

inference procedure, 50, 62
incremental, 51

infix notation, 16

inheritance cancellation rule, 129

initial state, 285

input deduction, 99

input refutation, 99

input resolvent, 99

intended interpretation, 23

Index

403

interestingness, 175
interference matching, 174
interpretation, 22, 43
introspective completeness, 254
introspective fidelity, 253
introspective implication, 264

KL-ONE, 41

knowledge, 2

knowledge axiom, 225
knowledge level, 7, 314, 327
knowledge-level agent, 314
Kripke structures, 234
KRL, 41

lifting lemma, 88
lifting theorem, 88
linear deduction, 99
linear refutation, 99
linear resolution, 99, 113
linear resolvent, 99
LISP, 5

list, 33

literal, 64

local event group, 201
local fidelity, 322

local program, 279

lock resolution, 112
logical axiom, 55
logical bias, 164

logical entailment, 54
logical implication, 54
logical omniscience, 227
logical sentence, 17
logicism, 4

marginal probability, 179
Markov inference procedure, 50
Markov procedure, 277

Markov program, 277

maximal relation, 168

maximal unifying generalization, 174
maximally specific relation, 168
Maze World, 308

merge, 100

META-DENDRAL, 175
metalanguage, 22, 240
metalevel reasoning, 249
metaproof, 61

metareasoning, 249

mgu, 67

minimal relation, 168
missionaries and cannibals, 8
model, 26

model maximization, 163
model-driven theory formation, 175
modus ponens, 45

modus tolens, 46

monolevel reasoning, 251

most general unifier, 67

MRS, 262

MYCIN, 41, 204, 261

near miss, 174
near parent, 100
necessity index, 182

404

negation, 17

negative instance, 165
negative literal, 64

negative occurrence, 137
negative update, 170
negative-introspection axiom, 226
nested attachment, 215
NOAH, 305

nominalism, 13

nonlinear plan, 305
nonlogical axiom, 55
nonmonotonic inference, 116
normal default rule, 153
normal default theory, 153
normal form, 123

object, 9

object constant, 14
object-oriented programming, 41
cbservation axiom, 227
observation-retentive agent, 322
occur check, 69

operator, 268

ordered formula, 148

ordered resolution, 102

ordinary formula, 209

parallel circumscription, 147
parallel predicate completion, 126
paramodulation, 91

partial program, 279

physical symbol system hypothesis, 5

pie charts, 44
plan, 289
plan-existence statement, 290
PLANNER, 304
P-minimality, 133
positive instance, 165
positive literal, 64
positive occurrence, 137
positive update, 170
positive-introspection axiom, 226
possible world, 189, 222
predicate calculus, 13
predicate completion, 122
delimited, 132
in database, 124
parallel, 126
prescribed action, 322
prime version graph, 172
probabilistic entailment, 193
probabilistic interpretation, 178
set of sentences, 179
probabilistic truth value, 192
probability, 179
marginal, 179
procedural attachment, 74
procedural knowledge, 3
product, 172
version graph, 172
version space, 172
production rule, 275
production system, 6, 275
program, 279
local, 279
PROLOG, 5, 262
proof, 55, 62

Index

proper axiom, 55, 118
property inheritance, 128
PROSPECTOR, 41, 204
provability, 57

pure literal, 96

pure literal elimination, 97

qualification problem, 117
quantified sentence, 19
quantifier, 19
existential, 19
universal, 19
quantifying-in, 216

realism, 13
reduction theorem, 112
referential opacity, 211
referential transparency, 211
reflection, 255
reflective inference procedure, 256
refutation completeness, 85

input, 99

linear, 99

set of support, 101
refutation theorem, 60
refutation, 98

unit, 98
reification, 13, 42
relation, 11
relation constant, 15
relational basis set, 11
regsolution, 63, 93
resolution deduction, 71
resolution graph, 72

linear, 99, 113
resolution principle, 71
resolution refutation, 75
resolution trace, 72
resolvent, 71

input, 99

linear, 99

set of support, 101

unit, 98
restricted derivability, 248
reverse implication, 18
rigid designator, 234
rule of inference, 45
Rule T, 59

S4, 228
S5, 228
SEAN, 262
satisfaction, 24, 43
satisfiability, 26, 43
Schubert steamroller problem, 113
scope, 19
second-order language, 20
self-reference, 404
semantic attachment, 92, 212
semantic net, 37, 41
semantic tree, 191
semidecidability, 58
sensory function, 308
sentence, 17
atomic, 17
bidirectional implication, 18

conjunction, 18

disjunction, 18

equation, 17

existentially quantified, 19

implication, 18

logical, 17

quantified, 19

reverse implication, 18

universally quantified, 19
sentential semantics, 211
separable formula, 140

sequential constraint satisfaction, 108

sequential procedure, 273
set of support, 101
set of support deduction, 101
set of support refutation, 101
set of support resolvent, 101
SHAKEY, 304
SIPE, 305
situated automata, 7
situation, 263
situation calculus, 281
Skolem constant, 65
Skolem function, 65
SL-resolution, 112
SOAR, 6, 262
solitary clause, 122
solitary formula, 137

in tuple of predicates, 148
sound inference procedure, 54
soundness, 54
soundness theorem, 85
specific boundary set, 169
SPROUTER, 174
standard name, 217
standardizing variables apart, 65
star, 174
state, 263
state alignment, 297
state constraints, 267
state descriptor, 266
state designator, 265
state difference function, 301
state ordering, 303
static bias, 52
stepped knowledge-level agent, 318
STRIPS, 304
subjective probabilities, 182
substitution, 62, 66
substitution instance, 66
subsumption, 97
subsumption elimination, 97
sufficiency index, 182
sufficient subset, 201
summative induction, 163
symbols, 14
system K, 228
system T, 228

T, 266

tables, 44

tautology, 97

tautology elimination, 97
term, 15

term assignment, 24
theorem, 57

theoretical bias, 163

Index

theory, 54

theory formation, 175
data-driven, 175
model-driven, 175

THOTH, 174

top clause, 99

tropism, 307

tropistic agent, 308

true-or-false question, 75

truth, 24

TWEAK, 305

UNA, 120

unachievability pruning, 296
uncertainty, 187

unifiability, 67

unification, 66, 93

unifier, 67

unique-names assumption, 120
unit clause, 98

unit deduction, 98

unit refutation, 98

unit resolvent, 98

UNITS, 41

universal distribution, 56
universal generalization, 56
universal instantiation, 46, 56
universal quantifier, 19
universal subgoaling, 256, 262
universally quantified sentence, 19
universe of discourse, 10
unsatisfiability, 26

validity, 26

variable, 14

variable assignment, 24

version graph, 166

version graph factor, 172
prime, 172

version graph product, 172

version space, 166

version space factor, 172

version space independence, 172
independent, 172

version space product, 172
well-structured, 169

well-formed formula, 17
well-structured version space, 169
wif, 17

wise-man puzzle, 215

405

