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The Completeness Problem for Modal Logic

Antonis Achilleos(®9

School of Computer Science, Reykjavik University, Reykjavik, Iceland
antonios@ru.is

Abstract. We introduce the completeness problem for Modal Logic and
examine its complexity. For a definition of completeness for formulas,
given a formula of a modal logic, the completeness problem asks whether
the formula is complete for that logic. We discover that completeness and
validity have the same complexity — with certain exceptions for which
there are, in general, no complete formulas. To prove upper bounds, we
present a non-deterministic polynomial-time procedure with an oracle
from PSPACE that combines tableaux and a test for bisimulation, and
determines whether a formula is complete.

Keywords: Modal logic - Completeness - Computational complexity
Bisimulation

1 Introduction

For a modal logic [, we call a modal formula ¢ complete when for every modal
formula 1) on the same propositional variables as ¢, we can derive from ¢ in [
either the formula 7 or its negation. For different modal logics [, we examine the
following problem: given a modal formula ¢, is it complete for [7 We call this
the completeness problem for [ and we examine its complexity. Our main results
show that the completeness problem has the same complexity as provability, at
least for the logics we consider.

Given Modal Logic’s wide area of applications and the importance of logical
completeness in general, we find it surprising that, to the best of our knowledge,
the completeness problem for Modal Logic has not been studied as a computa-
tional problem so far. On the other hand, the complexity of satisfiability (and
thus validity) for Modal Logic has been studied extensively — for example, see
'1-3]. We examine the completeness problem for several well-known modal log-
ics, namely the extensions of K by the axioms Factivity, Consistency, Positive
Introspection, and Negative Introspection (also known as T', D, 4, and 5, respec-
tively) — i.e. the ones between K and S5. We discover that the complexity of
provability and completeness tend to be the same: the completeness problem

T'his research was partly supported by the project “I'heoFoMon: Theoretical Foun-
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Fund.
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2 A. Achilleos

is PSPACE-complete if the logic does not have Negative Introspection and it is
coNP-complete otherwise. There are exceptions: for certain logics (D and T),
the completeness problem as we define it is trivial, as these logics have no finite
complete theories.

Our motivation partly comes from [4] (see also [5]), where Artemov raises the
following issue. It is the usual practice in Game Theory (and Epistemic Game
Theory) to reason about a game based on a model of the game description. On
the other hand, it is often the case in an epistemic setting that the game spec-
ification is not complete, thus any conclusions reached by examining any single
model are precarious. He thus argues for the need to verify the completeness of
game descriptions, and proposes a syntactic, proof-centered approach, which is
more robust and general, and which is based on a syntactic formal description of
the game. Artemov’s approach is more sound, in that it allows one to draw only
conclusions that can be safely derived from the game specification; on the other
hand, the model-based approach has been largely successful in Game Theory for
a long time. He explain that if we can determine that the syntactic specification
of a game is complete, then the syntactic and semantic approaches are equiv-
alent and we can describe the game efficiently, using one model. Furthermore,
he presents a complete and an incomplete formulation of the Muddy Children
puzzle.

For a formula—specification ¢ (for example, a syntactic description of a game),
if we are interested in the formulas we can derive from ¢ (the conclusions we can
draw from the game description), knowing that ¢ is complete can give a signifi-
cant computational advantage. If ¢ is complete and consistent, for a model M for
w, 1 can be derived from ¢ exactly when 1) is satisfied in M at the same state
as . Thus, knowing that ¢ is complete allows us to reduce a derivability problem
to a model checking problem, which is easier to solve (see, for example, [3]). This
approach may be useful when we need to examine multiple conclusions, especially
if the model for ¢ happens to be small. On the other hand, if we discover that ¢ is
incomplete, then, as a specification it may need to be refined.

Notions similar to complete formulas have been studied betore. Characteristic
formulas allow one to characterize a state’s equivalence class for a certain equiv-
alence relation. In our case, the equivalence relation is bisimulation on states of
(finite) Kripke models and the notions of characteristic and complete formulas
collapse, by the Hennessy-Milner Theorem [6], in that a formula is complete for
one ol the logics we consider if and only if it is characteristic for a state in a
model for that logic. A construction of characteristic formulas for variants of
CCS processes |7]| was introduced in [8]. This construction allows one to ver-
ify that two CCS processes are equivalent by reducing this problem to model
checking. Similar constructions were studied later in [9-11] for instance.

Normal forms for Modal Logic were introduced by Fine [12] and they can
be used to prove soundness, completeness, and the finite frame property for
several modal logics with respect to their classes of frames. Normal forms are
modal formulas that completely describe the behavior of a Kripke model up to a
certain distance from a state, with respect to a certain number of propositional
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variables. Therefore, every complete formula is equivalent to a normal form, but
not all normal forms are complete, as they may be agnostic with respect to states
located further away. We may define that a formula is complete up to depth d
for logic | when it is equivalent to a normal form of modal depth (the nesting
depth of a formula’s modalities) at most d. We briefly discuss these topics in
Sect. 6.

We focus on a definition of completeness that emphasizes on the formula’s
ability to either atlirm or reject every possible conclusion. We can also consider
a version of the problem that asks to determine if a formula is complete up to its
modal depth — that is, whether it is equivalent to a normal form. If we are inter-
ested in completely describing a setting, the definition we use for completeness
1s more appropriate. However, it 1s not hard to 1magine situations where this
variation of completeness is the notion that fits better, either as an approxima-
tion on the epistemic depth agents reason with, or, perhaps, as a description of
process behavior for a limited amount of time. We briefly examine this variation
in Sect. 6.

Overview. Section 2 provides background on Modal Logic, bisimulation, and rel-
evant complexity results. In Sect. 3, we draw our first conclusions about the com-
pleteness problem in relation to bisimulation and give our first complexity result
for logics with Negative Introspection. In Sect. 4, we examine different logics and
in which cases for each of these logics the completeness problem is non-trivial.
In Sect. 5, we examine the complexity of the completeness problem. We first
present a general lower bound. For logics with Negative Introspection we prove
coNP-completeness. For the remaining logics — the ones without Negative Intro-
spection for which the problem is not trivial — we present a non-deterministic
polynomial-time procedure with an oracle from PSPACE that accepts incomplete
formulas, as the section’s main theorem, Theorem 6 demonstrates. This proves
that the completeness problem for these cases is PSPACE-complete. These com-
plexity results are summarized in Table 1. In Sect. 6, we consider variations of
the problem and draw further conclusions. Full proofs for our results can be
found in the extended version, [13].

2 Background

We present needed background on Modal Logic, 1ts complexity, and bisimulation,
and we introduce the completeness problem. For an overview of Modal Logic and
its complexity, we refer the reader to |3,14,15].

2.1 Modal Logic

We assume a countably infinite set of propositional variables py, ps,. ... Literals
are all p and —p, where p is a propositional variable. Modal formulas are con-
structed from literals, the constants L, T, the usual operators for conjunction
and disjunction A,V, and the dual modal operators, [ and ¢:

pr=L|T|pl-pleAeleVe|Up|Op
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The negation —¢ of a modal formula, implication ¢ — v, and ¢ < ) are
constructed as usual. The language described by the grammar above is called L.

For a finite set of propositional variables P, L(FP) C L is the set of formulas
that use only variables from P. For a formula ¢, P(¢p) is the set of propositional
variables that appear in ¢, so ¢ € L(P(y)). If ¢ € L, then sub(p) is the set of
subformulas of ¢ and sub(¢) = sub(¢) U {—) | 1 € sub(y)}. For & a nonempty
finite subset of L, A@® is a conjunction of all elements of ® and A0 = T;
we define \/ @ similarly. The modal depth md(yp) of ¢ is the largest nesting
depth of its modal operators; the size of ¢ is |p| = |sub(¢)|. For every d > 0,
subq(p) = {1 € suby(p) | md(y) < d}.

Normal modal logics use all propositional tautologies and axiom K, Modus
Ponens, and the Necessitation Rule:

p poYP @
- 1

0 P

K :Op ANO(p — ) — [h;

The logic that has ezxactly these axioms and rules is the smallest normal modal
logic, K. We can extend K with more axioms:

D:OT: T : Lo — ¢ 4: Ly — (D 5 : Qu — LOw.

We consider modal logics that are formed from a combination of these axioms.
Of course, not all combinations make sense: axiom D (also called the Consistency
axiom) is a special case of T (the Factivity axiom). Axiom 4 is called Positive
Introspection and 5 is called Negative Introspection. GGiven a logic [ and axiom a,
[+a is the logic that has as axioms all the axioms of [ and a. Logic D is K+ D, T
sK+7T . K4=K+4, D4 =K+D+4=D+4, 54 =K+1T+4 =T+4 = K4+7T,
KD45 = D4 + 5, and S5 = S4 + 5. From now on, unless we explicitly say
otherwise, by a logic or a modal logic, we mean one of the logics we defined
above. We use ; ¢ to mean that ¢ can be derived from the axioms and rules of
[; when [ is clear from the context, we may drop the subscript and just write I-.

A Kripke model is a triple M = (W, R, V), where W is a nonempty set of
states (or worlds), R C W x W is an accessibility relation and V is a function
that assigns to each state in W a set of propositional variables. It P is a set
of propositional variables, then for every a € W, Vp(a) = V(a) N P. To ease
notation, when (s,t) € R we usually write sRt.

Truth in a Kripke model is defined through relation = in the following way:

M,a =piff pe V(a), and

M,alt 1 and M,a = T;

Mal=piff pe V(a) and M,a = —piff p ¢ V(a);

M,a = oAy iff both M,a = ¢ and M, a = ¥

M,aEpVyiff M,a =@ or M,a =

M. a = Qp iff there is some b € W such that a Rb and M. b = ¢; and
M. a = Uy iff for all b € W such that aRb it is the case that M, b = .
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If M,a = ¢, we say that ¢ is true/satisfied in a of M. (W, R) is called a frame.
We call a Kripke model (W, R, V) (resp. frame (W, R)) finite if W is finite.! If
M is a model (for logic ) and a is a state of M, then (M. a) is a pointed model
(resp. for [).

Each modal logic [ is associated with a class of frames F'(I), that includes
all frames (W, R) for which R meets certain conditions, depending on the logic’s
axioms. If [ has axiom:

D, then R must be serial (for every state a € W there must be some b € W
such that aRb);

T'y, then R must be reflexive (for all a € W, aRa);

4, then R must be transitive (if aRbRc, then aRc);

5, then R must be euclidean (if aRb and aRc, then bRc).

A model (W, R, V) is a model for a logic [ if and only if (W, R) € F(l). We
call a formula satisfiable for logic [, if it is satisfied in a state of a model for .
We call a formula valid for logic [, if it is satisfied in all states of all models for .

Theorem 1 (Completeness, Finite Frame Property). A formula ¢ is valid
for | if and only if it 1s provable wn [; ¢ is satisfiable for | if and only if it is
satisfied in a finite model for [.

For the remainder of this paper we only consider finite Kripke models and

frames. For a finite model M = (W, R, V), we define |M| = |W| + |R]|.

Definition 1. A formula ¢ is called complete for logic I when for every v &
L(P(p)), F1 o — 1 or by ¢ — —); otherwise, it is incomplete for [.

By Theorem 1, ¢ is complete for [ exactly when for every ¢ € L(P(y)), either
Y or its negation is true at every (finite) pointed model for [ that satisfies ¢.

2.2 Bisimulation

An important notion in Modal Logic (and other areas) is that of bisimulation. Let
P be a (finite) set of propositional variables. For Kripke models M = (W, R, V)
and M' = (W', R", V'), a non-empty relation R C W x W' is a bisimulation
(respectively, bisimulation modulo P) from M to M’ when the following condi-
tions are satisfied for all (s,s’) € R:

— V(s) = V'(s') (resp. Vp(s) = Vi(s")).
— For all t € W such that sRt, there exists t' € W' s.t. (t,t') € R and s'R't’.
— For all ¢/ € W' such that s’ R't’, there exists t € W s.t. (f,t') € R and sRt.

' According to our definition, for a finite model M = (W, R,V) and a € W, V(a)
can be infinite. However, we are mainly interested in (W, R, Vp) for finite sets of
propositions P, which justifies calling M finite.
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We call pointed models (M, a), (M’ a") bisimilar (resp. bisimilar modulo P)
and write (M,a) ~ (M',d") (resp. (M,a) ~p (M’,;a")) if there is a bisim-
ulation (resp. bisimulation modulo P) R from M to M’, such that aRa’.
If (M,a) is a pointed model, and P a set of propositional variables, then
Thp(M,a) = {p € L(P) | M,a = ¢}. We say that two pointed models are
equivalent and write (M, a) =p (M’,a’) when Thp(M,a) = Thp(M’,a"). The
following simplification of the Hennessy-Milner Theorem [6] gives a useful char-
acterization of pointed model equivalence; Proposition 1 is its direct consequence.

Theorem 2 (Hennessy-Milner Theorem). If (M, a), (M’ a’) are finite
pointed models, then

(M,a) =p (M',d") if and only if (M,a) ~p (M, a").

Proposition 1. A formula ¢ s complete for a logic | if and only if for every
two pointed models (M, a) and (M',d’") forl, if M.a = ¢ and M',d’ = ¢, then
(M,a) ~p (M, a").

Paige and Tarjan in [16] give an efficient algorithm for checking whether two
pointed models are bisimilar. Theorem 3 is a variation on their result to account
for receiving the set PP of propositional variables as part of the algorithm’s input.

Theorem 3. There is an algorithm which, given two pointed models (M, a)
and (M',a") and a finite set of propositional variables P, determines whether

(M, a) ~p (M, a") in time O(|P| - (IM]| + |[M']) - log(|M]| + |M])).

2.3 The Complexity of Satisfiability

For logic [, the satisfiability problem for [, or [-satisfiability asks, given a formula
v, if ¢ is satisfiable. The provability problem for [ asks if I-; .

The classical complexity results for Modal Logic are due to Ladner [1]|, who
established PSPACE-completeness for the satisfiability of K, T, D, K4, D4,
and S4 and NP-completeness for the satisfiability of S5. Halpern and Reégo
later characterized the NP-PSPACE gap by the presence or absence of Negative
Introspection [2], resulting in Theorem 4.

Theorem 4. If | € {K, T, D, K4, D4, 84}, then l-provability is PSPACE-
complete and [ 4+ 5-provability is coNP-complete.

3 The Completeness Problem and Axiom 5

The completeness problem for | asks, given a formula ¢, if ¢ is complete for [.
In this section, we explain how to adjust Halpern and Rego’s techniques from
2] to prove similar complexity bounds for the completeness problem for logics
with Negative Introspection. In the course of proving the coNP upper bound for
logics with Negative Introspection, Halpern and Régo give in (2] a construction
that provides a small model for a satisfiable formula. We can adjust parts of
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their construction and conclude with Corollary 2 and from that, Lemma 1 and
Corollary 1. The remaining results in this section are consequence of these.
For a logic [ + 5, we call a pointed model (M, s) for [ + 5 flat when

- M= ({s}UW,R.V);
— R = Ry U Ry, where Ry C {s} x W and R, is an equivalence relation on W:
and

— if l € {T,S4}, then s € W.

Lemma 1 informs us that flat models are a normal form for models of logics with
axiom 5. Negative Introspection. and it is part of the construction from [2].

Lemma 1. FEvery pointed |+ 5-model (M, s) is bisimilar to a flat pointed | + 5-
model.

Proof. Let W’ be the set of states of M reachable from s and R the restriction of
the accessibility relation of M on W'. It is easy to see that the identity relation is
a bisimulation from M to M’ so (M,s) ~ (M',s);let W = {w € W' | 3w’ Rw}.
Therefore W' = W U {s} and if [ € {T,S4}, then s € W. Since M is an [ + 5-
model, R i1s euclidean. Therefore, the restriction of R on W is reflexive. This in
turn means that R is symmetric in W: if a,b € W and aRbD, since aRa, we also
have bRa. Finally, R is transitive in W: if a RbRc and a,b,c € W, then bRa, so
aRc. Therefore R is an equivalence relation when restricted on W. []

The construction from |[1,2]| continues to filter the states of the flat model,
resulting in a small model for a formula . Using this construction, Halpern
and Régo prove Corollary 1 [2|; the NP upper bound for [ + 5-satisfiability of
Theorem 4 i1s a direct consequence.

Corollary 1. Formula ¢ is | + 5-satisfiable if and only if it is satisfied in a flat
| + 5-model of O(|p|) states.

Since we are asking whether a formula is complete, instead of whether it is
satisfiable, we want to be able to find two small non-bisimilar models for ¢ when
o 1s incomplete. For this, we need a characterization of bisimilarity between flat
models.

Lemma 2. Flat pointed models (M,a) = ({a}UW, R, V) and (M’,a") = ({a'}U
W', R", V") are bisimilar modulo P if and only if Vp(a) = Vp(a') and:

— for every b € W, there is some b' € W' such that Vp(b) = V5 (b');

— for every b € W', there is some b € W' such that Vp(b) = Vi (b');

— for every b € W, if aRb, then there is a b € W' such that o' Rb" and Vp(b) =
VL(b'); and

— for every b € W', if ' RV, then there is a b € W' such that aRb and Vp(b) =
VLY.
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Proof. If these conditions are met, we can define bisimulation R such that aRa’
and for b € W and b/ € W', bRV iff Vp(b) = V,(V'); on the other hand, if there
is a bisimulation, then it is not hard to see by the definition of bisimulation that
these conditions hold — for both claims, notice that the conditions above, given
the form of the models, correspond exactly to the conditions from the definition
of bisimulation. ]

This gives us Corollary 2, which is a useful characterization of incomplete
formulas.

Corollary 2. Formula ¢ is incomplete for | + 5 if and only if it has two non-
bisimilar flat pointed models for I +5 of at most O(|y|) states.

Proof. If ¢ has two non-bisimilar pointed models for [ 4+ 5, then by Theorem 2,
it is incomplete. On the other hand, it ¢ is incomplete, again by Theorem 2 and
Lemma 1, ¢ has two non-bisimilar flat pointed models, (M, a) = ({a}UW, R, V)
and (M’,a’) = ({d'} UW', R, V'). By Lemma?2 and without loss of generality,
we can distinguish three cases:

— there is some p € Vp(a) \ Vp(a'): in this case let ) = p;

— there is some b € W, such that for all ¥ € W', Vp(b) # VA (b'): in this case
let = QO(AVp(b) A= V(P \ Vp(b)));

— there is some b € W, such that aRb and for all ¥ € W' such that o’ RV,
Vp(b) # V5 (b'): in this case let ¥ = QG(A\ Vp(b) A=V (P \ Vp(b))).

In all these cases, both ¢ A ¢ and ¢ A =) are satisfiable and of size O(|p|), so
by Corollary 1, each is satisfied in a non-bisimilar flat pointed model for [ + 5 of
at most O(|p]|) states. [

Our first complexity result is a consequence of Corollary 2 and Theorem 3:
Proposition 2. The completeness problem for logic [ + 5 1s in coNP.
Proof. By Corollary 2 and Theorem 3. O

[n the following, when P is evident, we will often omit any reference to it and
instead of bisimulation modulo P, we will call the relation simply bisimulation.

4 The Completeness Problem and Triviality

The first question we must answer concerning the completeness problem for [ is
whether there are any satisfiable and complete formulas for [. If not, then the
problem is trivial. We examine this question with parameters the logic [ and
whether P. the set of propositional variables we use, is empty or not. If for a
logic [ the problem is nontrivial, then we give a complete formula ¢'> that uses
exactly the propositional variables in P. We see that for P = (), completeness
can be trivial for another reason: for some logics, when P = (), all formulas are
complete. On the other hand, when P # (), A P is incomplete for every logic.
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4.1 Completeness and K

Whether P = () or not, completeness is nontrivial for K and K4: let ipfpc —
o84 = A P AL for every finite P. Formula T is incomplete for K and K4.

Lemma 3. Formula \ P AL is complete and satisfiable for K and for K4.

Proof. A model that satisfies % is M = ({a},0,V), where V(a) = P. If there
is another model M’ d' = gpf;{, then M',a’ = OL, so there are no accessible
worlds from a’ in M’; therefore, R = {(a,a’)} is a bisimulation. O]

Notice that if ¢ is complete for [, then it is complete for every extension of /.
Thus, 5 is complete for all other logics. However, we are looking for satisfiable
and complete formulas for each logic, so finding one complete formula for K is
not enough. On the other hand, if I’ is an extension of [ (by a set of axioms) and a
formula ¢ is complete for [ and satisfiable for I, then we know that ¢ is satisfiable
and complete for all logics between (and including) [ and !". Unfortunately, the
following lemma demonstrates that we cannot use this convenient observation
to reuse a,plg — except perhaps for K5 and K45, but these can be handled just
as easily together with the remaining logics with Negative Introspection.

4.2 Completeness and Consistency

When [ has axiom 7" or D, but not 4 or 5, PP determines if a formula is complete:

Lemma 4. Letl be either D or T. A satisfiable formula o € L is complete with
respect to | if and only if P(p) = 0.

Proof. When P = (), all models are bisimilar through the total bisimulation;
therefore, all formulas ¢, where P(p) = () are trivially complete. We now consider
the case for P # (); notice that we can assume that [ = D, as D is contained in
T. Let the modal depth of ¢ be d and let M, a = ¢, where M = (W, R,V); let

z ¢ W*, ap = a, and

Iy ={ay---ar €e W" | k<dand for all 0 <i < k, a;Ra;;1}.
Then, we define M| = (W', R",V{) and M, = (W', R", Vy), where

W' = I, U {z):
R ={(a,ab) e W?|be W} U {(apay---aq,x) € W?} U {(x,2)}
V/(ab) = V(b), fori=1,2, 0 < |a| < d;
Vi(z) =0; and Vj(z) = P.

To prove that M7,a |= ¢ and M5, a = ¢, we prove that for b € sub(yp),
for every ¢ = 1,2 and w = ag---ay € Iy, where k < d — md(¢)), M,,w = ¢ if

and only it M, ap = 1. We use induction on . If v is a literal or a constant,
the claim is immediate and so are the cases of the A,V connectives. If ¢ = )’

then md(y') = md(y) — 1; Ml w = ¢ iff for every wR'w', M}, w" |= 4" iff for
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every apR'b, M,b = 1’ (by the Inductive Hypothesis) iff M., a; = 1; the case
of 1 = Q1) is symmetric.

If (M},a) ~ (M5, a) through bisimulation R from M/ to M), then notice
that in both models any sufliciently long path from a will end up at x; therefore,
by the conditions of bisimulation, Rz, which is a contradiction, since V/(z) #
Vo (x). So, g is satisfied in two non-bisimilar models for D. (1

4.3 Completeness, Consistency, and Positive Introspection

For every finite P, let ©BR* = 32 = AP AOA P. As the following lemma
demonstrates, tp?dﬂ is a complete formula for D4 and S4.

Lemma 5. For every finite P, oB% is complete for D4 and S4; all formulas in
L(0) are complete for D4 and S4.

Proof. Let M,a = pBR* and M’ d’ = pB%; let R be the relation that connects
all states of M that are reachable from a (including a) to all states of M’ that are
reachable from a’ (including a’); it is not hard to verify that R is a bisimulation.
Notice that if P = (), then ©P? is a tautology, thus all formulas are complete. O

It is straightforward to see that pp? is satisfiable for every logic I: consider a

model based on any frame for [, where A P holds at every state. Therefore:

Corollary 3. ©P% is satisfiable and complete for every extension of D4.?

4.4 Consistency and Negative Introspection

For logic I = 1" + 5, let o> = AP AQONA P.
Lemma 6. For any logicl =1" +5, ¢ is a satisfiable complete formula for 1.

Proof. By Lemma 1, ', is complete. It is satisfied in ({a},{(a,a)}, V), where
V(a) = P. (]

When P = (), we can distinguish two cases. If I’ € {ID,D4,T,S4}, then t,o% 1S a
tautology, therefore all formulas in L(P) are complete for [.” If I € {K, K4},
then there are exactly two non-bisimilar modulo () models for I; Therefore, if
P = () the completeness problem for K5 and K45 is not trivial, but it is easy to
solve: a formula with no propositional variables is complete for [ € {K5, K45}
it it is satisfied in at most one of these two models.

Corollary 4. If P =), the completeness problem for K5 and K45 is in P.

* Although for the purposes of this paper we only consider a specific set of modal
logics, 1t 1s Interesting to note that the corollary can be extended to a much larger
class of logics.

> This is also a corollary of Lemmad4, as these are extensions of D and T.
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4.5 Completeness and Modal Logics

A logic | has a nontrivial completeness problem if for P # (), there are com-
plete formulas for [. From the logics we examined, only D and T have trivial
completeness problems. Table1 summarizes the results of this section and of
Sect. 5 regarding the completeness problem. As the table demonstrates, we can
distinguish the following cases. For K, the completeness problem is non-trivial
and PSPACE-complete; this does not change when we add axiom 4. Once we
add axiom D to K, but not 4 or 5, the completeness problem becomes trivial;
adding the stronger axiom 7" does not change the situation. Adding both 4 and
D or T to K makes completeness PSPACE-complete again, except when P = ().
Regardless of other axioms, if the logic has Negative Introspection, completeness
is coNP-complete — unless P = (), when the situation depends on whether the
logic has D (or the stronger T') or not.

Table 1. The complexity of the completeness problem for different modal logics. Trivial
(all) indicates that all formulas in this case are complete for the logic; trivial (none)
indicates that there is no satisfiable, complete formula for the logic.

Modal logic P =1 P #0

K., K4 PSPACE-complete | PSPACE-complete
D, T Trivial (all) Trivial (none)
D4, S4 Trivial (all) PSPACE-complete
K5, K45 In P coNP-complete

[ +5,1# K, K4 | Trivial (all) coNP-complete

5 The Complexity of Completeness

Our main result is that for a modal logic [, the completeness problem has the
same complexity as provability for [, as long as we allow for propositional vari-
ables in a formula and [-completeness is nontrivial (see Table 1). For the lower
bounds, we consider hardness under polynomial-time reductions. As the hard-
ness results are relative to complexity classes that include coNP, these reductions
suffice.

5.1 A Lower Bound

We present a lower bound for the complexity of the completeness problem: that
the completeness problem is at least as hard as provability for a logic, as long as
1t 1s nontrivial.

Theorem 5. Let |l be a logic that has a nontrivial completeness problem and let
C' be a complexity class. If [-provability 1s C-hard, then the completeness problem

for 1 1s C-hard.
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Proof. To prove the theorem we present a reduction from [-provability to the
completeness problem for [. From a formula ¢, the reduction constructs in poly-
nomial time a formula ., such that ¢ is provable if and only is ¢. is complete.
For each logic [ with nontrivial completeness and finite set of propositional vari-
ables P, in Sect.4 we provided a complete formula wﬂ}. This formula is satisfied
in a model of at most two states, which can be generated in time O(|P|). Let
(M;, a;) be such a pointed model for ¢',.

Any pointed model that satisfies ¢, is bisimilar to (M;, a;). Given a formula
@ € L(P), we can determine in linear time if M;, a; = . There are two cases:

— My, a; = ¢, in which case ¢ is not provable and we set ¢, = A\ P.
— My, a; = ¢, so —p A ¢ is not satisfiable, in which case we set ¢, = ¢ — ¢b.
We demonstrate that ¢ is provable if and only if ¢ — ¢!, is complete.

— If © is provable, then ¢ — % is equivalent to ', which is complete.

— On the other hand, if ¢ — ¢’ is complete and (M, a) is any pointed
model, we show that M,a |= ¢, implying that if ¢ — ¢’ is complete,
then ¢ is provable. If (M,a) ~p (M;,a;), then from our assumptions
M, a £~ —p, thus M,a = ¢. On the other hand, if (M,a) «4p (M;,a;),
since (Mj,a;) = ¢ — ¢ and ¢ — ¢', is complete, M, a [~ ¢ — b,
theretore M, a = . O

Theorem 5 applies to more than the modal logics that we have defined in
Sect. 2. For Propositional Logic, completeness amounts to the problem of deter-
mining whether a formula does not have two distinct satisfying assignments,
therefore it is coNP-complete. By similar reasoning, completeness for First-order
Logic is undecidable, as satisfiability is undecidable.

5.2 Upper Bounds

The case of logics with axiom 5 is now straighttforward; from Theorem5 and
Proposition 2:

Proposition 3. The completeness problem for logic | + 5 is coNP-complete.

For the logics without axiom 5, by Theorem 4, satisfiability and provability
are both PSPACE-complete. So, completeness is PSPACE-hard, if it is nontrivial.
It remains to show that it is also in PSPACE. To this end we present a procedure
that decides completeness for a modal formula. We call it the CC Procedure.
Parts of this procedure are similar to the tableaux by Fitting [17] and Massacci
18] for Modal Logic, in that the procedure explores local views of a tableau.
For more on tableaux the reader can see [19]. The CC Procedure is a non-
deterministic polynomial time algorithm that uses an oracle from PSPACE. It
accepts exactly the incomplete formulas, thus establishing that the completeness
problems for these logics is in PSPACE. We have treated the case for logics with
axiom 5, and the completeness problem for D and T is trivial. Therefore, form
now on, we fix a logic [ that can either be K, or have axiom 4 and be one of

K4. D4, and S4.
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The CC Procedure for Modal Logic [ on . Intuitively, the procedure tries
to demonstrate that there are two models for ¢ that are not bisimilar. We first
ogive a tew definitions that we need to describe the procedure.

For our procedure, states are sets of formulas from sub(y). The procedure
generates structures that we call views. A view S is a pair (p(S),C(S)) of a
(possibly empty) set C'(S) of states, that are called the children-states of S and
a distinguished state p(.S) called the parent-state of S. Each view is allowed to
have up to |¢| children-states.

Definition 2. We call a set s of formulas [-closed if the following conditions

hold:

— 1f w1 Ao € s, then 1,2 € s;

— if o1 V o € s, then o1 € s or Yy € 8
—af Ly € s and | has axiom T, then ¢ € s;
— for every p € P, either p € s or —p € s.

We call a view S l-complete (or complete if | is fized) if the following con-
ditions hold:

— the parent-state and every child-state of that view are l-closed;
— for every O € p(S), ¢ € |JC(S);

— for every Uy € p(S), v € (C(S);

— if I has axiom 4, then for every [ € p(S), iy € (C(S);
—if | has axziom D, then C(S) # 0.

For state a, th(a) = N\ a. A state a C sub(yp) is maximal if it is a mazimally
consistent subset of sub(y). A child-state ¢ of a view S is K-mazimal when it is a
mazimally consistent subset of subg(y), where d = max{md(c') | ¢ € C(S)}. A
view S is consistent when every state of S is a consistent set of formulas. A view
S’ completes view S when: S” is l-complete; p(S) C p(S"); for every a € C(S)
there is an a’ € C(S”) such that a C a'; and: if | = K, then every a’ € C(S') is
K-mazimal; if I has axiom 4, then every a’ € C(S”) is mazimal.

A view gives a local view of a model, as long as it is consistent. The proce-
dure generates views and ensures that they are complete — so that all relevant
information is present in each view — and consistent — so that the view indeed
represents parts of a model. If the parent-state can represent two non-bisimilar
states of two models (say, s and t), then the procedure should be able to provide
a child, representing a state accessible from s or ¢ that is not bisimilar to any
state accessible from s or ¢, respectively. Since the states are (K-)maximal, two
states that are not identical can only be satisfied in non-bisimilar models. The
procedure is given in Table 2.

This section’s main theorem is Theorem 6 and informs us our procedure can
determine the completeness of formula ¢ in at most |p| + 2 steps. We conclude
that the completeness problem for logics without axiom 5 is in PSPACE.

Theorem 6. The CC Procedure accepts ¢ if and only if ¢ s incomplete.
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Table 2. The CC Procedure on ¢ for logic | € {K, K4, D4, S4}.

Initial conditions: | Non-deterministically generate maximal states a and b that
include ; if there are none, then return “reject”.

If a # b, then return “accept.”
Initialize N to |¢| + 2.

Construction: Non-deterministically generate a consistent view S that
completes (a, ), having up to |¢| children-states.
Condition: If C'(S) =0, then return “reject.”

[f there is a child-state ¢ € C(S), such that t/; th(a) — Oth(c),
then return “accept.”

Next step: Otherwise, non-deterministically pick a child ¢ € C'(S) and set
a:=ec.

If N >0, then set N := N — 1 and continue {rom
“Construction.”

If N =0, then return “reject”.

Proof (Part of Proof). We give the proof of the theorem, but we omit certain
details. The interested reader can see [13] for a full proof. We prove that the CC
Procedure has a way to accept ¢ if and only if ¢ is satisfied in two non-bisimilar
models. By Theorem 2, the theorem follows.

We assume that there are two non-bisimilar pointed models (A, w) and (B,w"),
such that A,w = ¢ and B,w" = . We prove that the CC Process accepts ¢
in || + 2 steps. We call these models the underlying models; the states of the
underlying models are called model states to distinguish them from states that
the process uses. Let A = (WA, RA, VA)and B = (W5, RB,VB): we can assume
that WANWE =0. Let f: WA xWPB - WAUW?P be a partial function that
maps every pair (s,t) of non-bisimilar pairs to a model state ¢ accessible from s
or t that is non-bisimilar to every state accessible from ¢ or s, respectively. We
call f a choice-function. We can see that the procedure can maintain that the
maximal state it generates each time is satisfied in two non-bisimilar states s, t,
one from A and the other from B, respectively: at the beginning these are w
and w’. At every step, the procedure can pick a child ¢ that is satisfied in f(s,t).
If t/y th(a) — Oth(c), then the procedure terminates and accepts the input.
Otherwise, c¢ is satisfied in f(s,f) and in another state that is non-bisimilar to
f(s,t). Let that other state be called a counterpart of f(s,t).

It | = K, then at every step, the procedure can reduce the modal depth of a,
and therefore, after at most |¢| steps, the procedure can simply choose P = P(¢)
as a state. Since ¢ /\ P is not derivable from any consistent set of modal depth 0,
the procedure can terminate and accept the input. We now assume that [ # K.

We demonstrate that if ¢ is incomplete, then the CC Procedure will accept
¢ after a finite number of steps. As we have seen above, the procedure, given
non-bisimilar pointed models (A, a) and (B, 0) of ¢, always has a child to play
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according to f. For convenience, we can assume that models A and B have no
cycles, so the choice-function never repeats a choice during a process run. If for
every choice of f, the process does not terminate, then we show that (A, w) ~
(B,w"), reaching a contradiction. Let R =~ UZ, where ~ is the bisimilarity
relation between the states of A and the states of B, and zZy when for some
choice-function, there is an infinite execution of the procedure, in which ¥y is
a counterpart of x, or z a counterpart of y. If 2Ry, either (A,z) ~ (B,y), so
Vil (z) = VP (y), or xZy, so, again, V4 (x) = VF(y), since x and y satisfy he
same maximal state. If 2Ry and zR42’, then if (A,z) ~ (B,vy), immediately
there is some yR”y’ so that (A,z') ~ (B,y'); if z is a counterpart of y or y is a
counterpart of x during a non-terminating run, then for every 2’ accessible from
z (the case is symmetric for a y’ accessible from y), either 2" is bisimilar to some
y" accessible from y, or we can alter the choice-function f that the procedure uses
so that " = f(x,y). Since for that altered f, the procedure does not terminate, x’
has a counterpart as well. Therefore, the bisimulation conditions are satisfied and
R is a bisimulation. If for every choice-function, the procedure never terminates,
then (A, w) ~ (B,w’), and we have reached a contradiction. Therefore, there is
a choice-function f that ensures the procedure terminates after a finite number
of steps. We call that number of steps the length of choice-function f. For every
state a, let D(a) = {09 € a} and B(a) = {LJyY € a}. Then, 0 < |D(a)| < ky
and 0 < |B(a)| < ko, where 0 < ky + ko < || — 1. Notice that according to the
definition of f above, as the process runs, D(a) decreases and B(a) increases —
though, not necessarily strictly.

Lemma 7. Letl € {K4., D4. S4} and let a,b, c be mazximal states. If B(a) =
B(b), D(a) = D(b), - th(a) —; Oth(c), and t/; th(b) — Oth(c), then ¢ = a # b
and | = S4.

Proof. See [13]. O

We can safely assume that the procedure never repeats the same choice of
child-state — otherwise, it could continue from the second repetition and shorten
its run. If during an execution, the CC Procedure picks states a, and in a follow-
ing step, a state b, so that B(a) = B(b) and D(a) = D(b), and immediately after
b the procedure picks child-state ¢, we claim that either the procedure could
pick ¢ right atter a without affecting its run, or a and b are consecutive picked
states and after picking ¢, the procedure terminates. Since ¢ can be a child-state
for a view that has b as parent-state, it satisfies all necessary closure conditions
for [-complete views, so it can appear as a child-state for a view that has a as
parent-state. If t/; th(a) — Oth(c), then the procedure can pick ¢ right after a
and terminate immediately; if ; th(a) — Oth(c), but t/; th(b) — Oth(c), then
the procedure terminates at ¢ and, by Lemma7, [ = S4 and a = ¢. If a and b
are not consecutive states, then there is a maximal state a’ picked after a and
before b, so that B(a’") = B(b) and D(a") = D(b). Similarly to the above, o’ = ¢,
and therefore, a = a’ — so, the procedure repeated the same child-state choice.
Therefore, a minimal-length choice function can ensure that the CC Procedure
terminates after || 4 2 steps.
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On the other hand, we prove that if © 1s complete, then the CC Procedure can
never accept . For this, we use the following lemmata:

Lemma 8. If a view S 1is consistent and complete and C(S) # (), then

— if [ does not have axiom 4 (Il = K), then the following formula is consistent:

th(p(S)) A /\ Oth(e) A \/ th(c);

cceC'(S) ceC(S5)

—if l has aziom 4 (I € { K4, D4, 84}), then the following formula is consistent:
th(p(S)) A\ Oth(c).
ceC'(S)
Proof. See [13]. O

Lemma 9. Let s be a consistent, and complete state, and for | # K, also a
maximal state; d a mazrimal state; and 1V a formula. If

—- by th(s) — Oth(d),
— th(d) is not equivalent to th(s), and
- dU{)} is consistent,

then th(s) A L(—th(d) vV [Y) is consistent.

Proof. See [13]. (1

Lemma 10. For a consistent view S that completes itself, for every child ¢ €
C(S), if th(p(S)) is complete, then so is th(c).

Proof. See [13]. O

By Lemma 10, all parent-states that appear during a run are complete. If at
some point, the process picks a child-state ¢ and a is the parent-state, then by
Lemma8, th(a) A Qth(c) is consistent; since a is complete, -, th(a) — Qth(c).
Therefore, there is no way for the procedure to accept if the input formula is
complete. ]

Corollary 5. The completeness problem for K, K4, D4, and S4 is PSPACE-

complete.

Proof. PSPACE-hardness is a consequence of Theorem 5. The CC Procedure is a
non-deterministic polynomial-time algorithm with an oracle from PSPACE. Each
condition that it needs to check is either a closure condition or a condition for
the consistency or provability of formulas of polynomial size with respect to |¢|;
therefore, they can be verified either directly or with an oracle from PSPACE.
Thus, the completeness problem for these logics is in coNPP>PACE — PSPACE. [
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6 Variations and Other Considerations

There are several variations one may consider for the completeness problem.
One may define the completeness of a formula in a different way, consider a
different logic, depending on the intended application, or wonder whether we
could attempt a solution to the completeness problem by using Fine’s normal
forms [12].

6.1 Satisfiable and Complete Formulas

It may be more appropriate, depending on the case, to check whether a for-
mula is satisfiable and complete. In this case, if the modal logic does not have
axiom 5, we can simply alter the CC Procedure so that it accepts right away
if the formula is not satisfiable. Therefore, the problem remains in PSPACE; for
PSPACE-completeness, notice that the reduction for Theorem 5 constructs sat-
isfiable formulas. For logics with axiom 5 (and plain Propositional Logic), the
language of satisfiable and complete formulas is US-complete, where a language
U is in US when there is a nondeterministic Turing machine 7°, so that for every
instance x of U, x € U if and only if T" has exactly one accepting computation
path for 2% [20]: UniqueSAT is a complete problem for US and a special case of
this variation of the completeness problem.

6.2 Completeness with Respect to a Model

A natural variation of the completeness problem would be to consider com-
pleteness of a formula over a satisfying model. That is, the problem would ask:
given a formula ¢ and pointed model (M, s), such that M, s = ¢, is formula ¢
complete? For this variation, we are given one of ¢’s pointed models, so it is a
reasonable expectation that the problem became easier. Note that in many cases,
this problem may be more natural than the original one, as we are now testing
whether the formula completely describes the pointed model (that is, whether
the formula is characteristic for the model). Unfortunately, this variation has
the same complexity as the original completeness problem. We can easily reduce
completeness with respect to a model to plain completeness by dropping the
model from the input. On the other hand, the reduction from provability to
completeness of Sect. b still works in this case, as it can easily be adjusted to
additionally provide the satisfying model of the complete formula ¢’.

* We note that US is different from UP; for UP, if 7" has an accepting path for z, then
it is guaranteed that it has a unique accepting path for z.
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6.3 Completeness and Normal Forms for Modal Logic

In [12], Fine introduced normal forms for Modal Logic. The sets F'é are defined
recursively on the depth d, which is a nonnegative integer, and depend on the set
of propositional variables P (we use a variation on the presentation from [21]):

f
[P = ¢ /\ph/\—-p|S§P . and
kPES p& S
4

Fitt=Spon N\ 0o AO\/ ¢ |5 CFE, @€ Fp

pEeS weS

\

For example, formula @5 from Sect. 4 is a normal form in Fp.

Theorem 7 (from [12]). For every modal formula ¢ of modal depth at most d,
if @ 1s consistent for K, then there is some S C Fﬁ: so that b — \/ S.

Furthermore, as Fine [12] demonstrated, normal forms are mutually exclusive:
no two distinct normal forms from F& can be true at the same state of a model.
Normal forms are not necessarily complete by our definition (for example, con-
sider p A Op AUp for P = {p}), but, at least for K, it is not hard to distinguish
the complete ones; by induction on d, ¢ € F& is complete for K if and only if
md(p) < d. Therefore, for K, the satisfiable and complete formulas are exactly
the ones that are equivalent to such a complete normal form. However, we cannot
use this observation to test formulas for completeness by guessing a complete
normal form and verifying that it is equivalent to our input formula, as normal

. 3 . ;) e ] .
forms can be of very large size: |F%| = 2171 \Fﬁ“\ = |P|-2/FPl; and if v € FY,

can be up to |P| + 2|F5"|. We would be guaranteed a normal form of rea-
sonable (that is, polynomial w.r.to |p|) size to compare to ¢ only if ¢ uses a
small (logarithmic with respect to |@|) number of variables and its modal depth
is very small compared to || (that is, md(¢) = O(log™(|¢])))-

’U

6.4 Completeness up to Depth

Fine’s normal forms [12] can inspire us to consider a relaxation of the definition of
completeness. We call a formula ¢ complete up to its depth for a logic [ exactly
when for every formula v € L(P(¢)) of modal depth at most md(y), either
F1 o — 1 or ;o — ). Immediately from Theorem 7:

Lemma 11. All normal forms are complete up to their depths.

Lemma 12. Formula @ s satisfiable and complete up to its depth for logic | if

and only if it is equivalent in [ to a normal form from ng(w.

Proof. From Theorem 7, if ¢ is satisfiable, then it is equivalent to some \/ S,

1 ¢ T . . ‘
where S C F,° ) but if it is also complete up to its depth, then it can derive a
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the normal form 1) € S; so, F; ¢ — 9, but also ; ¥ — \/ S and \/ S is equivalent
to ¢. For the other direction, notice that every normal form in F;ld{w 1s either
complete or has the same modal depth as ¢, so by Lemma 11, if ¢ is equivalent
to a normal form, in the first case it is complete and in the second case it is

complete up to its depth.

Therefore, all modal logics have formulas that are complete up to their depth.
In fact, for any finite set of propositional variables 7 and d > 0, we can define
0% = /\f:ﬂ * \ P, which is equivalent in T and D to a normal form (by induc-
tion on d). Then, we can use a reduction similar to the one from the proof of
Theorem 5 to prove that for every modal logic, completeness up to depth is as
hard as provability:.

Proposition 4. For any complezity class C and logic 1, if l-provability is
C'-hard, then completeness up to depth is C'-hard.

Proof. The proof is similar to that of Theorem 5 and can be found in [13]. O

We demonstrate that this variation of the completeness problem is in PSPACE
when the logic i1s K; it seems plausible that one can follow similar approaches
that use normal forms for the remaining modal logics.

Proposition 5. A formula ¢ is complete up to its depth for K if and only if
o AN OMALI+L | s complete for K.

Proof. Let ¢ € F2 be a normal form. Then, ¢ A (19" | is equivalent in K to
Yyt e F gH: which is 7 after we replace all ¢7)' in ¢ by ¢(¢" A L), where
) € Fp. Notice that 1,1y € Fg are distinct normal forms if and only if

ﬁ)f L ;; ! are distinct normal forms in Fp for every r > d. So, ¢ is complete
up to its depth for K if and only if ¢ A md(e)+1 | is complete for K. ]

6.5 More Logics

There is more to Modal Logic— and more modal logics,— so. perhaps, there is
also more to discover about the completeness problem. We based the decision
procedure for the completeness problem for each logic on a decision procedure for
satisfiability. We distinguished two cases, depending on the logic’s satisfiability-
testing procedures.

— If the logic has axiom 5, then to test satisfiability we guess a small model and
we use model checking to verify that the model satisfies the tformula. This
procedure uses the small model property of these logics (Corollary1). To
test for completeness, we guess two small models; we verify that they satisty
the formula and that they are non-bisimilar. We could try to use a similar
approach for another logic based on a decision procedure for satisfiability
based on a small model property (for, perhaps, another meaning for “small”).
To do so successtully, a small model property may not suflice. We need to first
demonstrate that for this logic, a formula that is satishiable and incomplete
has two small non-bisimilar models.
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— For the other logics, we can use a tableau to test for satishability. We were able

to combine the tableaux for these logics with bisimulation games to provide
an optimal — when the completeness problem is not trivial — procedure
for testing for completeness. For logics where a tableau gives an optimal
procedure for testing for satisfiability, this is, perhaps, a promising approach
to also test for completeness.

Another direction of interest would be to consider axiom schemes as part of

the input — as we have seen, axiom 5 together with @85 1s complete for T, when
no modal formula is.

Acknowledgments. The author is grateful to Luca Aceto for valuable comments that
helped improve the quality of this paper.
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Justification Awareness Models
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Abstract. Justification Awareness Models, JAMs, incorporate two
principal ideas: (i) justifications are prime objects of the model: knowl-
edge and belief are defined evidence-based concepts; (ii) awareness
restrictions are applied to justifications rather than to propositions,
which allows for the maintaining of desirable closure properties. JAMs
naturally include major justification models, Kripke models and, in addi-
tion, represent situations with multiple possibly fallible justifications. As
an example, we build a JAM for Russell’s well-known Prime Minister
scenario which, in full generality, was previously off the scope of rigorous
epistemic modeling.

Keywords: Modal logic - Justification logic - Epistemology
Knowledge - Belief

1 Context and Motivations

Proof systems of justification logic and general purpose classes of models for these
systems have been studied in [1-3,9,10,16, 18,20] and many other sources. How-
ever, for formalizing epistemic scenarios, one needs specific domain-dependent
models with additional features that are not necessary for standard soundness
and completeness analysis of proof systems.

Awareness is an important concept in epistemic modeling, but, when applied
to propositions directly, it may seriously diverge from the intuition due to
lack of natural closure properties |7,8,17]. We suggest applying awareness to
justifications

agent is aware/unaware of a justification t for a proposition F

rather then to propositions “agent is aware/unaware of a proposition F7; this
approach allows for the maintaining of natural closure properties.

We introduce justification awareness models, JAMs, in which justifications
are primary objects and a distinction is made between accepted and knowledge-
producing justifications. In JAMSs, belief and knowledge are derived notions
which depend on the status of supporting justifications. We argue that JAMs can
work in situations in which standard non-hyperintensional tools (Kripke, topo-
logical, algebraic) fail to fairly represent the corresponding epistemic structure.

(©) Springer International Publishing AG 2018
S. Artemov and A. Nerode (Eds.): LFCS 2018, LNCS 10703, pp. 22-36, 2018.
https://doi.org/10.1007/978-3-319-72056-2_2
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2 Preliminaries

Standard modal epistemic models have “propositional” precision, i.e., they do
not distinguish sentences with the same truth values at each possible world. The
expressive power of such models for analysis of justification, belief, and knowl-
edge is rather limited, and so we have to “go hyperintensional.”! Specifically, if,
at all possible worlds, ¢ is a justification for F

Ft:F,
and & has the same truth value as F'

FF oG,

v

we still cannot conclude that ¢ is a justification for G
 t:G.

A natural example from mathematics: both statements 0 = 0 and Fermat’s Last
Theorem, FLT, are true (proven) mathematical facts and hence are true at all
possible worlds. However, we cannot claim that a proof of 0 = 0 is a proof of
FLT as well.

A sample justification logic analysis of some standard epistemic situations
(Gettier examples, Red Barn example) is presented in [2] using justification
Fitting models [9] though, due to the relative simplicity of those examples, this
analysis could be replicated in a bi-modal language (cf. [21]).

However, we cannot go much farther without adopting a justification frame-
work: the situation changes when we have to represent several conflicting pieces
of evidence for a stated fact, cf. the following Russell example of 1912 ([19]):

If a man believes that the late Prime Minister’s last name began with a
‘B.” he believes what is true, since the late Prime Minister was Sir Henry
Campbell Bannerman?®. But if he believes that Mr. Balfour was the late
Prime Minaster, he will still believe that the late Prime Minister’s last
name began with a ‘B,” yet this belief, though true, would not be thought
to constitute knowledge.

To keep it simple, we consider proposition )
the late Prime Minister’s last name began with a ‘B,’

with two justifications for @): the right one r and the wrong one w; the agent
chooses w as a reason to believe that () holds.

To avoid a misleading reduction of failures of justifications to “false
consider another Russell example from [19].

LY

. . :',
premises,

' From 6]: “Hyperintensional contexts are simply contexts which do not respect logical

equivalence”.
> Which was true in 1912.
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If I know that all Greeks are men and that Socrates was a man, and [ infer
that Socrates was a Greek, I cannot be said to-know-that Socrates was a
Greek, because, although my premisses and my conclusion are true, the
conclusion does not follow from the premisses.

This Russell’s example illustrates that “false premises” in the Prime Minis-
ter story is an instance of a more general phenomenon: an erroneous justifica-
tion which, in principle, can fail for many different reasons: unreliable premises,
hidden assumptions, deduction errors, an erroneous identification of the goal
sentence, etc.”

There i1s a mathematical version of the story with a true proposition and its
two justifications; one is correct, the other is not.

Consider the picture®:

19 1
2 _2 (1)
7 |
The true proposition is “16/64 = 1/4,” the right justification is dividing
both the numerator and the denominator by 16, and the wrong (but shorter
and more attractive) justification is simplifying as in (1).

(GGiven these considerations, we prefer speaking about erroneous justifications
in a general setting without reducing them to propositional entities such as “false
premises.” To be specific, we’ll continue with Russell’s Prime Minister example.

To formalize Russell’s scenario in modal logic (cf. [21]), we introduce two
modalities: K for knowledge and J for justified belief. In the real world,

— () holds;
— J@ holds, since the agent has a justification w for @);
— K@ does not hold;

thus yielding the set of assumptions

However, I" doesn’t do justice to Russell’s scenario: the right justification r
1s not represented and /' rather corresponds to the same scenario but lacking r.
The epistemic structure of the example is not respected.

Within the JAM framework, we provide a model for Russell’s Prime Min-
ister example which, we wish to think, fairly represents its intrinsic epistemic
structure.

3 Moreover, one can easily imagine knowledge-producing reasoning from a source with
false beliefs (both an atheist and a religious scientist can produce reliable knowledge
products though one of them has false beliefs), so “false premises” are neither nec-
essary nor sufficient for a justification to fail.

* Which the author saw on the door of the Mathematics Support Center at Cornell
in 2017.
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3. For any propositional letter P, and term ¢,
# P—tP.

Again, this holds since P —t:P is not a propositional tautology. For example,

put t* = () and P* = 1. In this model, t is not a justification for P (i.e.,

£, :P) and P—t:P is false.

4. A somewhat less trivial example illustrating hyperintensionality: for a justi-
fication variable  and formula F

7 o F —x:(F A F).

A high-level argument is the same: formulas z:F and x:(FAF'), evaluated from
a Boolean point of view, can be regarded as distinct propositional variables.
Hence x:F'— x:(F'A F') is not a tautology. For a countermodel, take * = { F'}.
Then =, x:F, but &, x:(F' A F'). This demonstrates hyperintensionality of a
justification logic base, since F' and F' A F' are provably equivalent, but not
v:F and x:(F N F).

4 Basic Justification Logic J—

Within the Justification Logic framework, there are two sorts of logical objects:
justification terms T'm and formulas F'm. Let us become more specific about

both.

— For T'm, reserve a set of justification constants a,b,c,... with indices, and
variables x, vy, z, ... with indices. Justification terms are built from constants
and variables by a binary operation - (application).

— Formulas are built from propositional letters p,q,r,... (with indices) and

Boolean constant L (falsum) by the standard Boolean connectives A, V,—, —
with a new formation rule: whenever t is a justification term and F is a
formula, t: F is a formula (with the informal reading “t is a justification
for 7). For better readability, we will interchangeably use brackets 0,0 and
parentheses (, ). Our preferred notation is [s - t]:(F'— (') which is the same as

(s-t):(F—G).
The logical system J  consists of two groups of postulates.

— Background logic: axioms of classical propositional logic, rule Modus
Ponens.

— Application: s:(F —G)— (t:F —[s-1]:G).

Basic models corresponding to J— are those in which the application axiom holds.
They can be specified by a natural combinatorial condition.

Definition 4. For sets of formulas S and T, we define

ST ={F|G—-FecSand GeT for some G}.

Informally, ST is the result of applying Modus Ponens once to all members of
S and of T' (in a given order).
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Theorem 2. BM (J7) is the class of basic models with the following closure

condition
s*o>t” C s t]". (2)

Proof. Let us assume the closure condition (2) and check the validity of the
application axiom. Indeed, =, s:(F' — G) and =, t:F yield (F— G) € s* and
F € t*. By the closure condition, G € [s-t]*, i.e., =, |s-t|:G.

Now assume the application axiom and derive the closure condition (2). Let
(F—G) € s and F € t*. By definition, this yields =, s:(F — G) and =, t:F.
By the application axiom, . [s-t|:G, hence G € [s-t]*.

Example 2. None of the formulas from Example 1: t:F, t:P — P, P — t: P,
x:F — x:(F N F) is derivable in J7. Indeed, every specific evaluation from
Example 1.1-3 satisfies the closure condition (2), hence their countermodels are
J7-models. Consider the latter formula 4. Put z* = {F'} and t* = Fm for all

other terms ¢. The closure condition (2) holds vacuously, hence * is a J™-model.
Obviously, =, x:F and %, x:(F N F).

Constants in justification logic are used to denote justifications of assump-
tions, in particular, axioms. Indeed, as we have already seen in Example 2, no
formula ¢:F' is derivable in J™. In particular, no logical axiom is assumed justified
in J= which is not realistic.

Definition 5. A set X of formulas is reflexive if for each sit:F € X, t:F 1is also
in X . By constant specification CS we understand a reflexive set of formulas of
the type

CrniCn—1Cn_9: ... C1:A

where A 1s a J7-axiom and ¢; are justification constants. The major classes of
constant specifications are empty, total— (each constant is a justification for
each axiom), azriomatically appropriate (each aziom has a justification at any

depth,).

Let CS be a constant specification. Then by J7(CS), we understand J— with
additional axioms CS. A CS-model is a model in which all formulas from CS

hold.

Corollary 1. Basic models for J=(CS) are the basic CS-models for J=. J7(CS)

1s sound and complete with respect to the class of its basic models.

4.1 Other Justification Logics

There is a whole family of justification logics and they all extend J™; the reader
is referred to [2,11] for details. Here we list just the main systems of justification
logic for purposes of general orientation.

Logic J is obtained from J— by adding a new operation on justifications ‘+’

and the principle
ssFV tF — s+ t:F.
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Logics JD, JT, J4, J5, etc., are obtained by adding the corresponding combination
of principles
D = —t: L,

T'=tF—F,
4 = t:F — lt:t:F,
= —t:F— 7t:—t:F.

The family of justification logics has now grown to be infinite, cf. [11].

4.2 Sharp Models

In closure condition (2) from Theorem 2, one cannot, generally speaking, replace
the inclusion “C” by the equality “=" without violating completeness Theorem 1.
Indeed, fix a justification constant 0 and consider logic

L=J +{-0F|Fe€Fm}

Informally, justification 0 receives empty evaluation in any basic model, 0* = ().
We claim that formula G = —[0-0]: P is not derivable in £, but is true in any
basic model of £ with the closure condition s*>t* = [s-t]*. To show that Lt/ G,
it suffices to find a basic model for £ in which G is false. Consider a basic model
1 such that 0 = () and t* = F'm for any other justification term ¢. Obviously,
the closure condition from Theorem 2, together with 0% = (), is met. Therefore,
1 is a basic model of £. It is immediate that G is false in 4, since [0-0]F = Fm.
On the other hand, G holds in any basic model of £ with the closure condition

[0-0]* = 0* > 0*. Indeed, in such a model, [0-0]* = () since 0* =0 and > = (.

Definition 6. Sharp basic models are those wn which the application closure
condition has the form

[st]" = s "> t". (3)

Note that a sharp model is completely defined by evaluations of atomic propo-
sitions and atomic justifications.

5 Justification Awareness

We need more expressive power to capture epistemic differences between jus-
tifications and their use by the knower. Some justifications are knowledge-
producing, some are not. The agent makes choices on which justifications to base
an agent’s beliefs/knowledge and which justifications to ignore in this respect.
These actions are present in epistemic scenarios, from which we will primarily
focus on Russell’s Prime Minister example, which has them all:

— there are justifications w (Balfour was the late prime minister) and r
(Bannerman was the late prime minister) for Q);

— 1 is knowledge-producing whereas w is not;

— the agent opts to base his belief on w and ignores r:

— the resulting belief is evidence-based, but is not knowledge.
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5.1 Justification Awareness Models
Fix J7(CS) for some axiomatically appropriate constant specification CS.

Definition 7. A set X of justification terms is properly closed if X contains all
constants and is closed under applications. If X is a set of justification terms,
then by X we mean the proper closure of X, i.e., the minimal properly closed
superset of X.

Definition 8. A (basic) Justification Awareness Model is (x,.A, &) where

— % 45 a basic J7(C'S)-model;
-~ A C T'm is a properly closed set A of accepted justifications;
— £ C Tm 1s a properly closed set £ of knowledge-producing justifications.

Unless stated otherwise, we also assume consistency of accepted justifications:
—, —t: L for any t € A, and factivity of knowledge-producing justifications,
—. tF— F for each F' and each t € £. In models concerning beliefs rather then
knowledge, the component £ can be dropped.

Both sets A and &£ contain all constants. This definition presumes that con-
stants in a model are knowledge-producing and accepted.

Definition 9. In a JAM (x, A, &), a sentence F' is believed if there ist € A
such that =, t:F'. Sentence F' 1s known if there ist € ANE such that =, t:F.

By ground term we understand a term containing no (justification) variables.
In other words, a term is ground iff it is built from justification constants only:.

Sets of accepted and knowledge-producing justifications overlap on ground
terms but otherwise can be in a general position®. There may be accepted,
but not knowledge-producing, justifications and vice versa. So, JAMs do not
analyze why certain justifications are knowledge-producing or accepted, but
rather provide a formal framework that accommodates these notions.

5.2 Single-Conclusion Justifications

The notions of accepted and knowledge-producing justifications should be utilized
with some caution. Imagine a justification ¢ for F' (i.e., t:F" holds) and for G (£:G)
such that, intuitively, ¢ is a knowledge-producing justification for F' but not for
. Is such a ¢t knowledge-producing, trustworthy, acceptable for a reasonable
agent? The answers to these questions seem to depend on F' and G, and if we
prefer to handle justifications as objects rather than as justification assertions, it
is technically convenient to assume that justifications are single-conclusion (or,
equivalently, pointed):

there 1s at most one formula F such that t:F holds.

° In principle, one could consider smaller sets A, which would correspond to the high
level of skepticism of an agent who does not necessarily accept logical truths (axioms)
as justified. We leave this possibility for further studies.
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Conceptually, by turning to pointed justifications, one does not lose generality:
if p is a proof of F' and of something else, then the same p with a designated
statement F', symbolically, a pair (p, '), can be regarded as a single-conclusion
(or pointed) proof of F'.

In model R for the Russell Prime Minister example, Sect. 6, all justifications
are pointed.

Note that J™ is not complete with respect to the class of basic models which
are both sharp and pointed (as model R for the Russell Example). Indeed,
consider formula F',

F==(x:(P—-Q)Ny:PA|z-y]:R)

where P, (), R are distinct propositional letters and x,y justification variables.
Obviously, F' holds in any basic model * which is sharp and pointed. Imagine a
sharp pointed * in which z:(P— @) and y:P hold. In such *, [z-y]* = {Q}, hence
both —|z-y|:R, and F' hold. On the other hand, F' is not derivable in J, e.g.,
F' fails in the basic model x with z* = {P — Q}, y* = {P}, and t* = F'm for
any other ¢ (check closure condition (2)!). So, “sharp and pointed” justification
tautologies constitute a proper extension SP of J~. The problem of finding com-
plete axiomatization of SP was first stated in [5]. This question was answered
in [15] along the lines of studying single-conclusion logic of proofs [13,14].

6 Russell Scenario as a JAM

Consider the version of J~ in a language with two justification variables w and r,
one propositional letter (), and pointed constant specification CS:

cn:A e CS it A s an axiom and n s the Godel number of A.

Define a model * such that

—QF =1, e, =, Q;
— ¢ = {A} if A is an axiom and n is the Gédel number |A| of A, and ¢ = ()
otherwise:

- w* =1r* ={Q}, e.g., =« mQ and =, rF for any F other than @ (the same
for w):
— application is sharp: [s-t]* = s* > ¢*.

A JAM R (for Russell’s scenario) is (*,.A, &) with

|
)
|

w}, i.e., the set of accepted justifications is {w}, properly closed;
— & = {r}, i.e., the set of knowledge-producing justifications is {r}, properly

Though the idea behind R is quite intuitive, we need to fill in some techni-
cal details: extending truth evaluations to all terms and formulas and checking
closure conditions.
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of K yields that at state w, the agent knows/believes F' because the agent
knows the model £ and knows that /' holds at all possible worlds. So,
the knowledge /belief-producing evidence for F'is delivered by K itself, assuming
the agent is aware of K.

Syntactically, we consider a very basic justification language in which the
set of justification terms consists of just one term m, called master justification.
Think of m as representing a complete description of model K = (W, R,IH).
Specifically, we extend the truth evaluation in K to justification assertions by
stipulating at each u € W

K,ulbm:X  iff K,vIFX for any v € R(u) iff KK, ul-0X.

This reading provides a meaningful justification semantics of epistemic assertions
in K via the master justification m representing the whole . Since a Kripkean
agent is logically omniscient, along with K, the agent knows all its logical con-
sequences. Technically, we can assume that the description K is closed under
logical consequence and hence m is idempotent w.r.t. application, m - m = m.
This condition manifests itself in a special form of the application principle

m:(A— B)— (m:A—m:B).

On the technical side, a switch from [JX to m:X is a mere transliteration
which does not change the epistemic structure of a model. Finally, for each
u € W, we define a basic model — maximal consistent set I, in the propositional
language with Tm = {m}:

Iw={X | ulFX}.

So, from a justification perspective, a Kripke model is a collection of basic models
with master justification that represents (common) knowledge of the model.

8 Discussion

Comparisons of justification awareness models with other justification epistemic
structures such as Fitting, Mkrtychev, and modular models, can be found in [5].
Technically, basic models and Mkrtychev models may be regarded as special
cases of Fitting models. On the other hand, Fitting models can be identified
as modular models with additional assumptions, cf. [3]. This provides a natura
hierarchy of the aforementioned classes of models:

basic and MErtychev models C Fitting models C modular models C JAMs.

Even the smallest class, basic models, is already suflicient for mathematical
completeness of justification logics. So, the main idea of progressing to Fitting
models, modular models, or JAMs is not a pursuit of completeness but rather
a desire to offer natural models for a variety of epistemic situations involving
evidence, belief, and knowledge.
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JAMs do not offer a complete self-contained analysis of knowledge but rather
reduce knowledge to knowledge-producing justifications accepted by the agent.
This, however, constitutes a meaningful progress; it decomposes knowledge in
a way that moves justification objects to the forefront of epistemic modeling.
Note that Gettier and Russell examples, clearly indicate which justifications are
knowledge-producing or accepted. So JAMs fairly model situations in which the
corresponding properties of justifications (knowledge-producing, accepted) are
glven.

There are many natural open questions that indicate possible research direc-
tions. Are justification assertions checkable, decidable for an agent? Is the prop-
erty of a justification to be knowledge-producing checkable by the agent”? In
multi-agent cases, how much do agents know about each other and about the
model? Do agents know each other’s accepted and knowledge-producing justifi-
cations?” What is the complexity of these new justification logics and what are
their feasible fragments which make sense for epistemic modeling?

Acknowledgements. The author is grateful to Melvin Fitting, Vladimir Krupski,
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Kletter for editing and proofreading this text.
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Abstract. In [3] a general logical framework for formalizing set theo-
ries of different strength was suggested. We here employ that framework,
focusing on the exploration of computational theories. That is, theories
whose set of closed terms suffices for denoting every concrete set (includ-
ing infinite ones) that might be needed in applications, as well as for
computations with sets. We demonstrate that already the minimal com-
putational level of the framework, in which only a minimal computational
theory and a minimal computational universe are employed, suflices for
developing large portions of scientifically applicable mathematics.

Keywords: Formalized mathematics - Computational theories
Computational universes -+ Rudimentary set theory

1 Introduction

Formalized mathematics and mathematical knowledge management (MKM) are
extremely fruitful and quickly expanding fields of research at the intersection of
mathematics and computer science (see, e.g., [2,8,23]). The declared goal of these
fields is to develop computerized systems that eflectively represent all impor-
tant mathematical knowledge and techniques, while conforming to the highest
standards of mathematical rigor. At present there is no general agreement what
should be the best framework for this task. However, since most mathematicians
view set theory as the basic foundation of mathematics, formalized set theories
seem to us as the most natural choice.'*?

" Already in [9] it was argued that “a main asset gained from Set theory is the ability
to base reasoning on just a handful of axiom schemes which, in addition to being
conceptually simple (even though surprisingly expressive), lend themselves to good
automated support”. More recently, H. Friedman wrote (in a message on FOM on
Sep 14, 2015): “I envision a large system and various important weaker subsystems.
Since so much math can be done in systems much weaker than ZFC, this should
be reflected in the choice of Gold Standards. There should be a few major Gold
Standards ranging from Finite Set Theory to full blown ZFC”.

> Notable set-based automated provers are Mizar [29], Metamath [25] and SETL [30].
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In [3,4] a logical framework for developing and mechanizing set theories was
introduced. Its key properties are that it is based on the usual (type-free) set
theoretic language and makes extensive use of statically defined abstract set
terms. Furthermore, it enables the use of different logics and set theories of
different strength. This modularity of the system has been exploited in [5], where
a hierarchy of set theories for formalizing different levels of mathematics within
this framework was presented.

The current paper concentrates on one very basic theory, RST}, f;? L from the
above-mentioned hierarchy, and on its minimal model. The latter is shown to be
the universe .Jy in Jensen’s hierarchy [22]. Both RST},9% and Jy are computa-
tizonal (in a precise sense defined below). With the help of the formal framework
of [3-5] they can therefore be used to make explicit the potential computational
content of set theories (first suggested and partially demonstrated in [9]). On
the other hand, they also suffice (as we show) for developing large portions of
scientifically applicable mathematics [17], especially analysis.? In [15-17] it was
forcefully argued by Feferman that scientifically applicable mathematics, i.e. the
mathematics that 1s actually indispensable to present-day natural science, can
be developed using only predicatively acceptable mathematics. We here sup-
port this claim, using a much simpler framework than the systems employed by
Feferman.

The restriction to a minimal, concrete framework has of course its price. Not
all standard mathematical structures are elements of J,. (The real line is a case
in point.) Hence we have to treat such objects in a different manner: as proper
classes. Accordingly, in this paper we introduce for the first time classes into the
formal framework of [3-5], and develop efficient ways for handling them.

The paper is organized as follows: In Sect. 2 we present the formal framework,
define the notions of computational theory and universe, and describe the compu-
tational theories which are minimal within the framework. Section 3 is dedicated
to the introduction of standard extensions by definitions of the framework, done
in a static way. We define the notions of sets and classes in our tramework, and
describe the way standard set theoretical notions are dealt with in the system.
In Sect.4 we turn to real analysis, and demonstrate how it can be developed
in our minimal computational framework, although the reals are a proper class
in it. This includes the introduction of the real line and real functions, as well
as formulating and proving classical results concerning these notions.* Section 5
concludes with directions for future continuation of the work.”

? The thesis that .J5 is sufficient for core mathematics was already put forward in [33)].

* A few of the claims in Sect.4 have counterparts in [5]. The main difference is that
in this paper the claims and their proofs have to be modified to handle classes.

> Due to page constraints, all proofs in the paper were omitted, and will appear in an
extended version of the current paper.
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assigns the obvious interpretations to the symbols €, =, the set of hereditary
finite sets to HF' (it HF € ('), and an element in W to every c € C.

Definition 4. Let v be an assignment in a C-universe W. For a term t
v ‘ W W
and formula ¢ of LGqr, a collection ||t||, and a truth value ||, €

{t,f} are standardly defined, with the additional clause: |[$x | (,[:J%H:’V —
W C
{{L cW ‘ H@Hi:[:{:::u] — t}]

From Corollary 6 below it follows that HtH? is an element of W, and Hapﬂf
denotes the truth value of the formula ¢ under W and wv.

Notation. In case exp is a closed expression, we denote by [lezp||"” the value of
exp in W, and at times we omit the superscript W and simply write [|expl||.
The following theorem is a slight generalization of a theorem in [4].

Theorem 5. Let C be a set of constants.

1. If F' 1is an n-ary C'-rudimentary function, then there exists a formula pr of
LG or s.t. Fv(pr) C{y,z1, ., xn}, pr = {y} and F (z1,...,2,) = {y | ¢r}.

2. If ¢ is a formula of LS¢p s.t. Fu(e) € {y1, .Yk, @1, Tn} and
w > {yi,...Yr}, then there exists a C-rudimentary function F, s.t.
Fi,t? (mlr ““}:ETE) — {<U1:| :nUfi} | {P}

3. If t s a term of E%ST s.t. Fv(t) C {x1,...,xn}, then there exists a
C'-rudimentary function Fy s.t. Fy (xq,...,x,) =1t for every z,...,x,.

Corollary 6. Let v be an assignment i1n a C-unwerse W.

1. For a term t of LS, HfHT cW.
2. For a formula ¢ of LSer s.t. {y1,....,yn} C Fv (p):

(@) If ¢ = {y1, sy} (0> 0), {{ar,yan) € W [|li|lf gy =t} € W
) If o= 0 and X € W, then {(ay,...,an) € X" | [l ] = t} cw.

If ¢ is a closed term s.t. ||¢]|"” = X, we say that ¢ defines X (X is definable by ).

Corollary 7. Any C-universe is a model of RSTECL.

Lemma 8. /5] The following notations are available in RSTY % (i.e. they can
be introduced as abbreviations in Lrsr and their basic properties are provable
in RSTYOL): 0, (t1,....tn) , dt1,....,tnd, dx € t | & (provided ¢ = () and = ¢
Fuv(t)), ¢t | © € sp (provided x ¢ Fuv(s)), s xt,sUt, sNt,s—t, Ut Nt,
1 (t), w2 (t), Dom (t), Im(t), tx.o (provided ¢ = {x}), Az € s.t (provided
x ¢ Fu(s)).

L8 ™ % %
? v [z := a] denotes the a-variant of v which assigns a to x.
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2.2 Computational Theories and Universes

Computations within a set of objects require concrete representations of these
objects. Accordingly, we call a theory computational it its set of closed terms
induces in a natural way a minimal model of the theory, and it enables the key
properties of these elements to be provable within it. Next we provide a more
formal definition for the case of set theories which are defined within our general
framework. Note that from a Platonist point of view, the set of closed terms of
such a theory 7 induces some subset S of the cumulative universe of sets V',
as well as some subset M4 of any transitive model M of 7.

Definition 9. 1. A theory 7 wn the above framework is called computational
of the set S it induces 1s a transitive model of T, and the identity of S
s absolute in the sense that Mg = S¢ for any transitive model M of T
(implying that Sy is actually a minimal transitive model of T ).

2. A set is called computational if it 1s S+ for some computational theory T .

The most basic computational theories are the two minimal theories in the
hierarchy of systems developed in [5]. This fact, as well as the corresponding
computational universes, are described in the following three results from [5].

Proposition 10. Let Jy,Js be the first two universes in Jensen’s hierarchy [22].

1. Jy is a model of RSTFOL.
2. Jo with the interpretation of HF as Jy is a model of RSTH 2" .

Theorem 11

— X € Jy iff there is a closed term t of Lrst s.t. HI?||”T]L — X.
— X € Jy iff there is a closed term t of L3 such that H?‘HJ‘g = X.

Corollary 12. RSTFOL and RSTHEZL are computational, and Jy and Ja are
their computational universes.

Now .Ji, the minimal computational universe, is the set of hereditary finite
sets. This universe captures the standard data structures used in computer sci-
ence, like strings and lists. However, in order to be able to capture computational
structures with infinite objects, we have to move to RST7, %%, whose computa-
tional universe, J5, seems to be the minimal universe that suffices for this purpose.
RS II{;?L still allows for a very concrete, computationally-oriented interpretation,
and it is appropriate for mechanical manipulations and interactive theorem prov-
ing. Moreover, as noted in the introduction, its corresponding universe .J5 is rich

enough for a systematic development of applicable mathematics.

3 Static Extensions by Definitions

When working in a minimal computational universe such as J; (as done in the
next section), many of the standard mathematical objects (such as the real line
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and real functions) are only available in our framework as proper classes. Thus,
in order to be able to formalize standard theorems regarding such objects we
must enrich our language to include them. Introducing classes into our frame-
work, however, is a part of the more general method of extensions by definitions
which is an essential part of every mathematical research and its presentation.
Now, there are two principles that govern this process in our framework. First,
the static nature of our framework demands that conservatively expanding the
language of a given theory should be reduced to the use of abbreviations. Sec-
ond, since the introduction of new predicates and function symbols creates new
atomic formulas and terms, one should be careful that the basic conditions con-
cerning the underlying safety relation > are preserved. Thus only formulas ¢ s.t.
@ > () can be used for defining new predicate symbols.

We start with the problem of introducing new unary predicate symbols to
the base langauge.'’ In standard practice such extensions are carried out by
introducing a new unary predicate symbol P and either treating P () as an
abbreviation for ¢ (t) for some formula ¢, or (what is more practical) adding
Vo (P (x) < ¢) as an axiom to the (current version of the base) theory, obtain-
ing by this a conservative theory in the extended language. However, in the
set theoretical framework it is possible and frequently more convenient to uni-
formly use class terms, rather than introduce a new predicate symbol each time.
Thus, instead of writing “P (#)” one uses an appropriate class term S and writes
“t € S”7. Whatever approach is chosen — in order to respect the definition of a
safety relation, class terms should be restricted so that “t € 5”7 is safe w.r.t.
(). Accordingly, we extend our language by incorporating class terms which are
objects of the form ¢x | p$, where ¢ = (). The use of these terms is done in the
standard way. In particular, t € érTg# (where t is free for z in ¢) is equivalent to
(and may be taken as an abbreviation for) ¢ [t/z]. It should be emphasized that
a class term is not a valid term in the language, only a delinable predicate. The
addition of the new notation does not enhance the expressive power of ﬁ% ST
but only increases the ease of using it.

A further conservative extension of the language that we shall use incorpo-
rates Iree class variables, X .Y . Z. and free function variables, F'. G, into E’EST
(as in free-variable second-order logic [31]). These variables stand for arbitrary
class or function terms (the latter is defined in Definition 20), and they may only
appear as free variables, never to be quantified. We allow occurrences of such
variables inside a formula in a class term or a function term. One may think of
a formula with such variables as a schema, where the variables play the role of
“place holders”, and whose substitution instances abbreviate official formulas of
the language (see Example 2). In effect, a formula v (X') with free class variable
X can be intuitively interpreted as “for any given class X, 1 (X) holds”. Thus,
a free-variable formulation has the flavor of a universal formula. Therefore, this
addition allows us to make statements about all potential classes as well as all
potential functions.

10 , -
The use of n-ary predicates can standardly be reduced, of course, to unary predicates.
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We define ¢z ]@pl| = {aeW ||
term defines the latter collection (which might not be an element of W).

Definition 13. Let X be a collection of elements in W.

W -
|ofzma)] = t}. We say that the class
v e

— X 18 a »-set of there 1s a closed term that defines . If X 18 a »-set, X

denotes some closed term that defines it.
— X 1s a >-class if there is a closed class term that defines it. If X is a »=-class,
X denotes some closed class term that defines .

Note that, by Corollary 6, if X is a --set then X € W.
Proposition 14. The following holds:

1. Fvery »-set 1s a >-class.
2. The intersection of a >=-class with a =-set is a >-set.
3. Fvery »=-class that 1s contained in a >-set is a >-set.

Remark 15. A semantic counterpart of our notion of a >-class was used in
33|, and is there called an (-class. It is defined as a definable subset of .J5
whose intersection with any element of .J5 is in .J5. The second condition in
this definition seems somewhat ad hoc. More importantly, it is unclear how it
can be checked in general, and what kind of set theory is needed to establish
that certain collections are (-classes. The definition of a >-class used here is, in
contrast, motivated by and based on purely syntactical considerations. It 1s also
a simplification of the notion of i-class as by Proposition 14(2) every »-class is
an ¢-class. !

Proposition 16. The following holds:

— LetY be a =-set. If o =0 and Fv (p) C{z}, then {x €Y | p} is a =-set.
— If o = {x1,...,xn}, then {(x1,....,xn) | @} s a =-set.

Proposition 17. For every n-ary C-rudimentary function f there is a term t

with Fu (t) C {xy,....,x,} s.t. for any (Aq,...,A,) € W™, f returns the »~-set
7%
”t”[351::A1,...,:EF1::AH]‘

Proposition 18. If X.Y are >=-classes, so are XUY, X NY, X xY, J, — X,
and Py, (X)={z¢€ Jy |z C X}.

For a class term s we denote by 2° the class term ¢z |z C s$. Note that for
. . LW w\ .
any assignment v in W and class term s, ||2°||" is equal to Py, (HHHH ), i.e.,
. . 1% . .
the intersection of the power set of ||s||,’ and W. This demonstrates the main
difference between set terms and class terms. The interpretation of set terms is

absolute, whereas the interpretation of class terms might not be (though mem-
bership in the interpretation of a class term is absolute).

' Two other ideas that appear in the sequel were adopted from 133]: treating the
collection of reals as a proper class, and the use of codes for handling certain classes.
It should nevertheless be emphasized that the framework in [33] is exclusively based
on semantical considerations, and it is unclear how it can be turned into a formal
theory like ZF or PA (and it is certainly not suitable for mechanization as is).



