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“The words love and math aren’t usually uttered in the same breath. But
mathematician Edward Frenkel is on a mission to change that... [in his]
book, ‘Love and Math’ [in which] the tenured professor at the University of
California at Berkeley argues that the boring way that math is traditionally
taught in schools has led to a widespread ignorance that may have even
been responsible for the recession... [the] book tells his personal story and
goes on to describe his research in the Langlands program, as well as recent
mathematical discoveries that aren’t regularly taught in classrooms.”

—The Wall Street Journal

“The story of [Frenkel’s] professional triumph against heavy odds is
deeply satisfying... But his true answer to the bigotry he encountered in his
youth lies in his passion for mathematics - the ‘love’ of the book’s title...
Believing that mathematics is a common human possession, he explains
each concept in nontechnical terms, relying heavily on analogies from daily
life... lay readers... will gain an understanding of what modern mathematics
is about - its ambition, its beauty and its power to enthrall.”

—The New York Times

“Two fascinating narratives are interwoven in Love and Math, one
mathematical, the other personal... Frenkel deftly takes the reader... to the
far reaches of our current understanding. He seeks to lay bare the beauty of
mathematics for everyone. As he writes, ‘There is nothing in this world that
is so deep and exquisite and yet so readily available to all.””

—Nature

“Frenkel has done an extraordinary job of making his case for love and
mathematics. I think a lot of nonmathematicians will gain appreciation for
the field, in the way that Stephen Hawking’s A Brief History of Time delivered
cutting-edge cosmology to the masses. It’s not just the clarity of the thought
or the skillful writing; in both cases, one of the best practitioners in the
world has opened himself up personally to communicate deep ideas.”

—Wilmott

“Part ode, part autobiography, Love and Math is an admirable attempt to



Copyright © 2013 by Edward Frenkel

Hardcover first published in 2013 by Basic Books, A Member of the Perseus Books Group
Paperback first published in 2014 by Basic Books
All rights reserved. No part of this book may be reproduced in any manner whatsoever without

written permission except in the case of brief quotations embodied in critical articles and reviews.
For information, address Basic Books, 250 West 57th Street, 15th Floor, New York, NY 10107-1307.

Books published by Basic Books are available at special discounts for bulk purchases in the United
States by corporations, institutions, and other organizations. For more information, please contact
the Special Markets Department at the Perseus Books Group, 2300 Chestnut Street, Suite 200,
Philadelphia, PA 19103, or «call (800) 810-4145, ext. 5000, or e-mail
special.markets@perseusbooks.com.

The Library of Congress has cataloged the hardcover edition as follows:

Frenkel, Edward, 1968- author.
Love and math : the heart of hidden reality / Edward Frenkel.
pages cm

Includes bibliographical references and index.

ISBN 978-0-465-06995-8 (e-book) 1. Frenkel, Edward, 1968- 2. Mathematicians-United States-

Biography. 3. Mathematics—Miscellanea. I. Title.
QAZ29.F725F74 2013
510.92-dc23
(B]

2013017372

10987654321

E2-20190513-PDJ-PC-DPU



Contents

Preface
A Guide for the Reader

1 A Mysterious Beast

2 The Essence of Symmetry

3 The Fifth Problem
4 Kerosinka
5 Threads of the Solution

6 Apprentice Mathematician

7 The Grand Unified Theory

8 Magic Numbers

9 Rosetta Stone

10 Being in the Loop

11 Conquering the Summit

12 Tree of Knowledge

13 Harvard Calling

14 Tying the Sheaves of Wisdom




15 A Delicate Dance

16 Quantum Duality

17 Uncovering Hidden Connections

18 Searching for the Formula of Love

Epilogue

Acknowledgments
Discover More
Notes

Glossary of Terms

Index



Preface

There’s a secret world out there. A hidden parallel universe of beauty and
elegance, intricately intertwined with ours. It’s the world of mathematics.
And it’s invisible to most of us. This book is an invitation to discover this
world.

Consider this paradox: On the one hand, mathematics is woven in the
very fabric of our daily lives. Every time we make an online purchase, send a
text message, do a search on the Internet, or use a GPS device, mathematical
formulas and algorithms are at play. On the other hand, most people are
daunted by math. It has become, in the words of poet Hans Magnus
Enzensberger, “a blind spot in our culture - alien territory, in which only
the elite, the initiated few have managed to entrench themselves.” It’s rare,
he says, that we “encounter a person who asserts vehemently that the mere
thought of reading a novel, or looking at a picture, or seeing a movie causes
him insufferable torment,” but “sensible, educated people” often say “with
a remarkable blend of defiance and pride” that math is “pure torture” or a
“nightmare” that “turns them off.”

How is this anomaly possible? I see two main reasons. First, mathematics
is more abstract than other subjects, hence not as accessible. Second, what
we study in school is only a tiny part of math, much of it established more
than a millennium ago. Mathematics has advanced tremendously since
then, but the treasures of modern math have been kept hidden from most of
us.

What if at school you had to take an “art class” in which you were only
taught how to paint a fence? What if you were never shown the paintings of
Leonardo da Vinci and Picasso? Would that make you appreciate art? Would
you want to learn more about it? 1 doubt it. You would probably say



something like this: “Learning art at school was a waste of my time. If I ever
need to have my fence painted, I'll just hire people to do this for me.” Of
course, this sounds ridiculous, but this is how math is taught, and so in the
eyes of most of us it becomes the equivalent of watching paint dry. While
the paintings of the great masters are readily available, the math of the
great masters is locked away.

However, it’s not just the aesthetic beauty of math that’s captivating. As
Galileo famously said, “The laws of Nature are written in the language of
mathematics.” Math is a way to describe reality and figure out how the
world works, a universal language that has become the gold standard of
truth. In our world, increasingly driven by science and technology,
mathematics is becoming, ever more, the source of power, wealth, and
progress. Hence those who are fluent in this new language will be on the
cutting edge of progress.

One of the common misconceptions about mathematics is that it can
only be used as a “toolkit”: a biologist, say, would do some field work,
collect data, and then try to build a mathematical model fitting these data
(perhaps, with some help from a mathematician). While this is an important
mode of operation, math offers us a lot more: it enables us to make
groundbreaking, paradigm-shifting leaps that we couldn’t make otherwise.
For example, Albert Einstein was not trying to fit any data into equations
when he understood that gravity causes our space to curve. In fact, there
was no such data. No one could even imagine at the time that our space is
curved; everyone “knew” that our world was flat! But Einstein understood
that this was the only way to generalize his special relativity theory to non-
inertial systems, coupled with his insight that gravity and acceleration have
the same effect. This was a high-level intellectual exercise within the realm
of math, one in which Einstein relied on the work of a mathematician,
Bernhard Riemann, completed fifty years earlier. The human brain is wired
in such a way that we simply cannot imagine curved spaces of dimension
greater than two; we can only access them through mathematics. And guess
what, Einstein was right - our universe is curved, and furthermore, it’s
expanding. That's the power of mathematics I am talking about!

Many examples like this may be found, and not only in physics, but in
other areas of science (we will discuss some of them below). History shows
that science and technology are transformed by mathematical ideas at an
accelerated pace; even mathematical theories that are initially viewed as



abstract and esoteric later become indispensable for applications. Charles
Darwin, whose work at first did not rely on math, later wrote in his
autobiography: “I have deeply regretted that I did not proceed far enough at
least to understand something of the great leading principles of
mathematics, for men thus endowed seem to have an extra sense.” I take it
as prescient advice to the next generations to capitalize on mathematics’
immense potential.

When 1 was growing up, I wasn’t aware of the hidden world of
mathematics. Like most people, I thought math was a stale, boring subject.
But I was lucky: in my last year of high school I met a professional
mathematician who opened the magical world of math to me. I learned that
mathematics is full of infinite possibilities as well as elegance and beauty,
just like poetry, art, and music. I fell in love with math.

Dear reader, with this book 1 want to do for you what my teachers and
mentors did for me: unlock the power and beauty of mathematics, and
enable you to enter this magical world the way I did, even if you are the sort
of person who has never used the words “math” and “love” in the same
sentence, Mathematics will get under your skin just like it did under mine,
and your worldview will never be the same.

Mathematical knowledge is unlike any other knowledge. While our
perception of the physical world can always be distorted, our perception of
mathematical truths can’t be. They are objective, persistent, necessary
truths. A mathematical formula or theorem means the same thing to
anyone anywhere - no matter what gender, religion, or skin color; it will
mean the same thing to anyone a thousand years from now. And what’s also
amazing is that we own all of them. No one can patent a mathematical
formula, it’s ours to share. There is nothing in this world that is so deep and
exquisite and yet so readily available to all. That such a reservoir of
knowledge really exists is nearly unbelievable. It’s too precious to be given
away to the “initiated few.” It belongs to all of us.

One of the key functions of mathematics is the ordering of information.
This is what distinguishes the brush strokes of Van Gogh from a mere blob
of paint. With the advent of 3D printing, the reality we are used to is
undergoing a radical transformation: everything is migrating from the



sphere of physical objects to the sphere of information and data. We will
soon be able to convert information into matter on demand by using 3D
printers just as easily as we now convert a PDF file into a book or an MP3
file into a piece of music. In this brave new world, the role of mathematics
will become even more central: as the way to organize and order
information, and as the means to facilitate the conversion of information
into physical reality.

In this book, 1 will describe one of the biggest ideas to come out of
mathematics in the last fifty years: the Langlands Program, considered by
many as the Grand Unified Theory of mathematics. It’s a fascinating theory
that weaves a web of tantalizing connections between mathematical fields
that at first glance seem to be light years apart: algebra, geometry, number
theory, analysis, and quantum physics. If we think of those fields as
continents in the hidden world of mathematics, then the Langlands
Program is the ultimate teleportation device, capable of getting us instantly
from one of them to another, and back.

Launched in the late 1960s by Robert Langlands, the mathematician who
currently occupies Albert Einstein’s office at the Institute for Advanced
Study in Princeton, the Langlands Program had its roots in a
groundbreaking mathematical theory of symmetry. Its foundations were
laid two centuries ago by a French prodigy, just before he was killed in a
duel, at age twenty. It was subsequently enriched by another stunning
discovery, which not only led to the proof of Fermat’s Last Theorem, but
revolutionized the way we think about numbers and equations. Yet another
penetrating insight was that mathematics has its own Rosetta stone and is
full of mysterious analogies and metaphors. Following these analogies as
creeks in the enchanted land of math, the ideas of the Langlands Program
spilled into the realms of geometry and quantum physics, creating order
and harmony out of seeming chaos.

I want to tell you about all this to expose the sides of mathematics we
rarely get to see: inspiration, profound ideas, startling revelations.
Mathematics is a way to break the barriers of the conventional, an
expression of unbounded imagination in the search for truth. Georg Cantor,
creator of the theory of infinity, wrote: “The essence of mathematics lies in
its freedom.” Mathematics teaches us to rigorously analyze reality, study
the facts, follow them wherever they lead. It liberates us from dogmas and
prejudice, nurtures the capacity for innovation. It thus provides tools that



transcend the subject itself.

These tools can be used for good and for ill, forcing us to reckon with
math’s real-world effects. For example, the global economic crisis was
caused to a large extent by the widespread use of inadequate mathematical
models in the financial markets. Many of the decision makers didn’t fully
understand these models due to their mathematical illiteracy, but were
arrogantly using them anyway - driven by greed - until this practice almost
wrecked the entire system. They were taking unfair advantage of the
asymmetric access to information and hoping that no one would call their
bluff because others weren’t inclined to ask how these mathematical models
worked either. Perhaps, if more people understood how these models
functioned, how the system really worked, we wouldn’t have been fooled for
so long.

As another example, consider this: in 1996, a commission appointed by
the U.S. government gathered in secret and altered a formula for the
Consumer Price Index, the measure of inflation that determines the tax
brackets, Social Security, Medicare, and other indexed payments. Tens of
millions of Americans were affected, but there was little public discussion of
the new formula and its consequences. And recently there was another

attempt to exploit this arcane formula as a backdoor on the U.S. economy.!

Far fewer of these sorts of backroom deals could be made in a
mathematically literate society. Mathematics equals rigor plus intellectual
integrity times reliance on facts. We should all have access to the
mathematical knowledge and tools needed to protect us from arbitrary
decisions made by the powerful few in an increasingly math-driven world.
Where there is no mathematics, there is no freedom.

Mathematics is as much part of our cultural heritage as art, literature, and
music. As humans, we have a hunger to discover something new, reach new
meaning, understand better the universe and our place in it. Alas, we can’t
discover a new continent like Columbus or be the first to set foot on the
Moon. But what if I told you that you don’t have to sail across an ocean or
fly into space to discover the wonders of the world? They are right here,
intertwined with our present reality. In a sense, within us. Mathematics
directs the flow of the universe, lurks behind its shapes and curves, holds



the reins of everything from tiny atoms to the biggest stars.

This book is an invitation to this rich and dazzling world. I wrote it for
readers without any background in mathematics. If you think that math is
hard, that you won't get it, if you are terrified by math, but at the same time
curious whether there is something there worth knowing - then this book is
for you.

There is a common fallacy that one has to study mathematics for years
to appreciate it. Some even think that most people have an innate learning
disability when it comes to math. I disagree: most of us have heard of and
have at least a rudimentary understanding of such concepts as the solar
system, atoms and elementary particles, the double helix of DNA, and much
more, without taking courses in physics and biology. And nobody is
surprised that these sophisticated ideas are part of our culture, our
collective consciousness. Likewise, everybody can grasp key mathematical
concepts and ideas, if they are explained in the right way. To do this, it is
not necessary to study math for years; in many cases, we can cut right to
the point and jump over tedious steps.

The problem is: while the world at large is always talking about planets,
atoms, and DNA, chances are no one has ever talked to you about the
fascinating ideas of modern math, such as symmetry groups, novel
numerical systems in which 2 and 2 isn’t always 4, and beautiful geometric
shapes like Riemann surfaces. It’s like they keep showing you a little cat and
telling you that this is what a tiger looks like. But actually the tiger is an
entirely different animal. I'll show it to you in all of its splendor, and you’ll
be able to appreciate its “fearful symmetry,” as William Blake eloquently
said.

Don’t get me wrong: reading this book won’t by itself make you a
mathematician. Nor am [ advocating that everyone should become a
mathematician. Think about it this way: learning a small number of chords
will enable you to play quite a few songs on a guitar. It won't make you the
world’s best guitar player, but it will enrich your life. In this book I will
show you the chords of modern math, which have been hidden from you.
And I promise that this will enrich your life.

One of my teachers, the great Israel Gelfand, used to say: “People think
they don’t understand math, but it’s all about how you explain it to them. If
you ask a drunkard what number is larger, 2/3 or 3/5, he won’t be able to



tell you. But if you rephrase the question: what is better, 2 bottles of vodka
for 3 people or 3 bottles of vodka for 5 people, he will tell you right away: 2
bottles for 3 people, of course.”

My goal is to explain this stuff to you in terms that you will understand.

I will also talk about my experience of growing up in the former Soviet
Union, where mathematics became an outpost of freedom in the face of an
oppressive regime. 1 was denied entrance to Moscow State University
because of the discriminatory policies of the Soviet Union. The doors were
slammed shut in front of me. I was an outcast. But I didn’t give up. I would
sneak into the University to attend lectures and seminars. I would read
math books on my own, sometimes late at night. And in the end, I was able
to hack the system. They didn’t let me in through the front door; I flew in
through a window. When you are in love, who can stop you?

Two brilliant mathematicians took me under their wings and became my
mentors. With their guidance, I started doing mathematical research. I was
still a college student, but 1 was already pushing the boundaries of the
unknown. This was the most exciting time of my life, and I did it even
though I was sure that the discriminatory policies would never allow me to
have a job as a mathematician in the Soviet Union.

But there was a surprise in store: my first mathematical papers were
smuggled abroad and became known, and I got invited to Harvard
University as a Visiting Professor at age twenty-one. Miraculously, at
exactly the same time perestroika in the Soviet Union lifted the iron curtain,
and citizens were allowed to travel abroad. So there 1 was, a Harvard
professor without a Ph.D., hacking the system once again. I continued on my
academic path, which led me to research on the frontiers of the Langlands
Program and enabled me to participate in some of the major advances in
this area during the last twenty years. In what follows, I will describe
spectacular results obtained by brilliant scientists as well as what happened
behind the scenes.

This book is also about love. Once, 1 had a vision of a mathematician
discovering the “formula of love,” and this became the premise of a film
Rites of Love and Math, which 1 will talk about later in the book. Whenever 1
show the film, someone always asks: “Does a formula of love really exist?”

My response: “Every formula we discover is a formula of love.”



Mathematics is the source of timeless profound knowledge, which goes to
the heart of all matter and unites us across cultures, continents, and
centuries. My dream is that all of us will be able to see, appreciate, and
marvel at the magic beauty and exquisite harmony of these ideas, formulas,
and equations, for this will give so much more meaning to our love for this
world and for each other.



A Guide for the Reader

I have made every effort to present mathematical concepts in this book in
the most elementary and intuitive way. However, I realize that some parts
of the book are somewhat heavier on math (particularly, some parts of
Chapters 8, 14, 15, and 17). It is perfectly fine to skip those parts that look
confusing or tedious at the first reading (this is what I often do myself).
Coming back to those parts later, equipped with newly gained knowledge,
you might find the material easier to follow. But that is usually not
necessary in order to be able to follow what comes next.

Perhaps, a bigger point is that it is perfectly OK if something is unclear.
That’s how I feel 90 percent of the time when I do mathematics, so welcome
to my world! The feeling of confusion (even frustration, sometimes) is an
essential part of being a mathematician. But look at the bright side: how
boring would life be if everything in it could be understood with little effort!
What makes doing mathematics so exciting is our desire to overcome this
confusion; to understand; to lift the veil on the unknown. And the feeling of
personal triumph when we do understand something makes it all
worthwhile.

My focus in this book is on the big picture and the logical connections
between different concepts and different branches of math, not technical
details. A more in-depth discussion is often relegated to the endnotes,
which also contain references and suggestions for further reading.
However, although endnotes may enhance your understanding, they may be
safely skipped (at least, at the first reading).

I have tried to minimize the use of formulas - opting, whenever possible,
for verbal explanations. Feel free to skip the few formulas that do appear.

A word of warning on mathematical terminology: while writing this
book, I discovered, to my surprise, that certain terms that mathematicians
use in a specific way actually mean something entirely different to non-
mathematicians. Terms like correspondence, representation, composition,
loop, manifold, and theory. Whenever I detected this issue, I included an
explanation. Also, whenever possible, T changed obscure mathematical
terms to terms with more transparent meaning (for example, I would write



“Langlands relation” instead of “Langlands correspondence”). You might
find it useful to consult the Glossary and the Index whenever there is a word
that seems unclear.

Please check out my website http://edwardfrenkel.com for updates and
supporting materials, and send me an e-mail to share your thoughts about
the book (my e-mail address can be found on the website). Your feedback
will be much appreciated.



Chapter 1

A Mysterious Beast

How does one become a mathematician? There are many ways that this can
happen. Let me tell you how it happened to me.

It might surprise you, but I hated math when I was at school. Well,
“hated” is perhaps too strong a word. Let’s just say [ didn’t like it. I thought
it was boring. I could do my work, sure, but I didn’t understand why I was
doing it. The material we discussed in class seemed pointless, irrelevant.
What really excited me was physics - especially quantum physics. I
devoured every popular book on the subject that I could get my hands on. I
grew up in Russia, where such books were easy to find.

I was fascinated with the quantum world. Ever since ancient times,
scientists and philosophers had dreamed about describing the fundamental
nature of the universe - some even hypothesized that all matter consists of
tiny pieces called atoms. Atoms were proved to exist at the beginning of the
twentieth century, but at around the same time, scientists discovered that
each atom could be divided further. Each atom, it turned out, consists of a
nucleus in the middle and electrons orbiting it. The nucleus, in turn,

consists of protons and neutrons, as shown on the diagram below.!
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And what about protons and neutrons? The popular books that I was
reading told me that they are built of the elementary particles called
“quarks.”

I liked the name quarks, and 1 especially liked how this name came
about. The physicist who invented these particles, Murray Gell-Mann,
borrowed this name from James Joyce’s book Finnegans Wake, where there is
a mock poem that goes like this:

Three quarks for Muster Mark!
Sure he hasn’t got much of a bark

And sure any he has it’s all beside the mark.

I thought it was really cool that a physicist would name a particle after a
novel. Especially such a complex and non-trivial one as Finnegans Wake. 1
must have been around thirteen, but I already knew by then that scientists
were supposed to be these reclusive and unworldly creatures who were so
deeply involved in their work that they had no interest whatsoever in other
aspects of life such as Art and Humanities. I wasn't like this. I had many
friends, liked to read, and was interested in many things besides science. I
liked to play soccer and spent endless hours chasing the ball with my
friends. 1 discovered Impressionist paintings around the same time (it
started with a big volume about Impressionism, which I found in my
parents’ library). Van Gogh was my favorite. Enchanted by his works, I even
tried to paint myself. All of these interests had actually made me doubt
whether I was really cut out to be a scientist. So when I read that Gell-Mann,
a great physicist, Nobel Prize-winner, had such diverse interests (not only
literature, but also linguistics, archaeology, and more), I was very happy.

According to Gell-Mann, there are two different types of quarks, “up”



and “down,” and different mixtures of them give neutrons and protons

their characteristics. A neutron is made of two down and one up quarks, and

a proton is made of two up and one down quarks, as shown on the pictures.?

Neutron Proton

That was clear enough. But how physicists guessed that protons and
neutrons were not indivisible particles but rather were built from smaller
blocks was murky.

The story goes that by the late 1950s, a large number of apparently
elementary particles, called hadrons, was discovered. Neutrons and protons
are both hadrons, and of course they play major roles in everyday life as the
building blocks of matter. As for the rest of hadrons — well, no one had any
idea what they existed for (or “who ordered them,” as one researcher put
it). There were so many of them that the influential physicist Wolfgang
Pauli joked that physics was turning into botany. Physicists desperately
needed to rein in the hadrons, to find the underlying principles that govern
their behavior and would explain their maddening proliferation.

Gell-Mann, and independently Yuval Ne’eman, proposed a novel
classification scheme. They both showed that hadrons can be naturally split
into small families, each consisting of eight or ten particles. They called
them octets and decuplets. Particles within each of the families had similar
properties.

In the popular books I was reading at the time, I would find octet
diagrams like this:



Here the proton is marked as p, the neutron is marked as n, and there
are six other particles with strange names expressed by Greek letters.

But why 8 and 10, and not 7 and 11, say? I couldn’t find a coherent
explanation in the books I was reading. They would mention a mysterious
idea of Gell-Mann called the “eightfold way” (referencing the “Noble
Eightfold Path” of Buddha). But they never attempted to explain what this
was all about.

This lack of explanation left me deeply unsatisfied. The key parts of the
story remained hidden. I wanted to unravel this mystery but did not know
how.

As luck would have it, I got help from a family friend. I grew up in a
small industrial town called Kolomna, population 150,000, which was about
seventy miles away from Moscow, or just over two hours by train. My
parents worked as engineers at a large company making heavy machinery.
Kolomna is an old town on the intersection of two rivers that was founded
in 1177 (only thirty years after the founding of Moscow). There are still a
few pretty churches and the city wall to attest to Kolomna’s storied past.
But it’s not exactly an educational or intellectual center. There was only one
small college there, which prepared schoolteachers. One of the professors
there, a mathematician named Evgeny Evgenievich Petrov, however, was an
old friend of my parents. And one day my mother met him on the street
after a long time, and they started talking. My mom liked to tell her friends
about me, so I came up in conversation. Hearing that I was interested in
science, Evgeny Evgenievich said, “I must meet him. I will try to convert
him to math.”

“Oh no,” my mom said, “he doesn’t like math. He thinks it’s boring. He
wants to do quantum physics.”

“No worries,” replied Evgeny Evgenievich, “I think I know how to
change his mind.”

A meeting was arranged. I wasn’t particularly enthusiastic about it, but I
went to see Evgeny Evgenievich at his office anyway.

I was just about to turn fifteen, and I was finishing the ninth grade, the
penultimate year of high school. (I was a year younger than my classmates
because I had skipped the sixth grade.) Then in his early forties, Evgeny
Evgenievich was friendly and unassuming. Bespectacled, with a beard
stubble, he was just what I imagined a mathematician would look like, and



yet there was something captivating in the probing gaze of his big eyes.
They exuded unbounded curiosity about everything.

It turned out that Evgeny Evgenievich indeed had a clever plan how to
convert me to math. As soon as I came to his office, he asked me, “So, I hear
you like quantum physics. Have you heard about Gell-Mann's eightfold way
and the quark model?”

“Yes, I've read about this in several popular books.”

“But do you know what was the basis for this model? How did he come
up with these ideas?”

“well...”
“Have you heard about the group SU(3)?”
“SU what?”

“How can you possibly understand the quark model if you don’t know
what the group SU(3) is?”

He pulled out a couple of books from his bookshelf, opened them, and
showed me pages of formulas. I could see the familiar octet diagrams, such
as the one shown above, but these diagrams weren’t just pretty pictures;
they were part of what looked like a coherent and detailed explanation.

Though I could make neither head nor tail of these formulas, it became
clear to me right away that they contained the answers I had been searching
for. This was a moment of epiphany. I was mesmerized by what I was seeing
and hearing; touched by something I had never experienced before; unable
to express it in words but feeling the energy, the excitement one feels from
hearing a piece of music or seeing a painting that makes an unforgettable
impression. All 1 could think was “Wow!”

“You probably thought that mathematics is what they teach you in
school,” Evgeny Evgenievich said. He shook his head, “No, this” - he pointed
at the formulas in the book - “is what mathematics is about. And if you
really want to understand quantum physics, this is where you need to start.
Gell-Mann predicted quarks using a beautiful mathematical theory. It was in
fact a mathematical discovery.”

“But how do I even begin to understand this stuff?”
It looked kind of scary.

“No worries. The first thing you need to learn is the concept of a



symmetry group. That’s the main idea. A large part of mathematics, as well
as theoretical physics, is based on it. Here are some books I want to give
you. Start reading them and mark the sentences that you don’t understand.
We can meet here every week and talk about this.”

He gave me a book about symmetry groups and also a couple of others
on different topics: about the so-called p-adic numbers (a number system
radically different from the numbers we are used to) and about topology
(the study of the most fundamental properties of geometric shapes). Evgeny
Evgenievich had impeccable taste: he found a perfect combination of topics
that would allow me to see this mysterious beast - Mathematics - from
different sides and get excited about it.

At school we studied things like quadratic equations, a bit of calculus,
some basic Euclidean geometry, and trigonometry. I had assumed that all
mathematics somehow revolved around these subjects, that perhaps
problems became more complicated but stayed within the same general
framework I was familiar with. But the books Evgeny Evgenievich gave me
contained glimpses of an entirely different world, whose existence I
couldn’t even imagine.

I was instantly converted.



Chapter 2

The Essence of Symmetry

In the minds of most people, mathematics is all about numbers. They
imagine mathematicians as people who spend their days crunching
numbers: big numbers, and even bigger numbers, all having exotic names. I
had thought so too - at least, until Evgeny Evgenievich introduced me to the
concepts and ideas of modern math. One of them turned out to be the key to
the discovery of quarks: the concept of symmetry.

What is symmetry? All of us have an intuitive understanding of it - we
know it when we see it. When I ask people to give me an example of a
symmetric object, they point to butterflies, snowflakes, or the human body.

Photo by K.G. Libbrecht
But if I ask them what we mean when we say that an object is symmetrical,
they hesitate.

Here is how Evgeny Evgenievich explained it to me. “Let’s look at this
round table and this square table,” he pointed at the two tables in his office.



“Which one is more symmetrical?”

“Of course, the round table, isn’t it obvious?”

’

“But why? Being a mathematician means that you don’t take ‘obvious
things for granted but try to reason. Very often you’ll be surprised that the
most obvious answer is actually wrong.”

Noticing confusion on my face, Evgeny Evgenievich gave me a hint:
“What is the property of the round table that makes it more symmetrical?”

I thought about this for a while, and then it hit me: “I guess the
symmetry of an object has to do with it keeping its shape and position
unchanged even when we apply changes to it.”

Evgeny Evgenievich nodded.

“Indeed. Let’s look at all possible transformations of the two tables
which preserve their shape and position,” he said. “In the case of the round
table...”

I interrupted him: “Any rotation around the center point will do. We will
get back the same table positioned in the same way. But if we apply an
arbitrary rotation to a square table, we will typically get a table positioned
differently. Only rotations by 90 degrees and its multiples will preserve it.”

“Exactly! If you leave my office for a minute, and I turn the round table
by any angle, you won’t notice the difference. But if 1 do the same to the
square table, you will, unless I turn it by 90, 180, or 270 degrees.”

Rotation of a round table by any
angle does not change its position,
but rotation of a square table by an

angle that is not a multiple of 90

degrees does change its position
(both are viewed here from above)

He continued: “Such transformations are called symmetries. So you see
that the square table has only four symmetries, whereas the round table has



many more of them - it actually has infinitely many symmetries. That’s why
we say that the round table is more symmetrical.”

This made a lot of sense.

“This is a fairly straightforward observation,” continued Evgeny
Evgenievich. “You don’t have to be a mathematician to see this. But if you
are a mathematician, you ask the next question: what are all possible
symmetries of a given object?”

Let’s look at the square table. Its symmetries' are these four rotations
around the center of the table: by 90 degrees, 180 degrees, 270 degrees, and

360 degrees, counterclockwise.? A mathematician would say that the set of
symmetries of the square table consists of four elements, corresponding to
the angles 90, 180, 270, and 360 degrees. Each rotation takes a fixed corner
(marked with a balloon on the picture below) to one of the four corners.

90°

180° 360° = 0°

270°

One of these rotations is special; namely, rotation by 360 degrees is the
same as rotation by 0 degrees, that is, no rotation at all. This is a special
symmetry because it actually does nothing to our object: each point of the
table ends up in exactly the same position as it was before. We call it the
identical symmetry, or just the identity.

Note that rotation by any angle greater than 360 degrees is equivalent to



rotation by an angle between 0 and 360 degrees. For example, rotation by
450 degrees is the same as rotation by 90 degrees, because 450 = 360 + 90.
That’s why we will only consider rotations by angles between 0 and 360
degrees.

Here comes the crucial observation: if we apply two rotations from the
list {90°, 180°, 270°, 360°} one after another, we obtain another rotation
from the same list. We call this new symmetry the composition of the two.

Of course, this is obvious: each of the two symmetries preserves the
table. Hence the composition of the two symmetries also preserves it.
Therefore this composition has to be a symmetry as well. For example, if we
rotate the table by 90 degrees and then again by 180 degrees, the net result
is the rotation by 270 degrees.

Let’s see what happens with the table under these symmetries. Under
the counterclockwise rotation by 90 degrees, the right corner of the table
(the one marked with a balloon on the previous picture) will go to the upper
corner. Next, we apply the rotation by 180 degrees, so the upper corner will
go to the down corner. The net result will be that the right corner will go to
the down corner. This is the result of the counterclockwise rotation by 270
degrees.

Here is one more example:

90° +270° =0°,

By rotating by 90 degrees and then by 270 degrees, we get the rotation by
360 degrees. But the effect of the rotation by 360 degrees is the same as that
of the rotation by 0 degrees, as we have discussed above - this is the
“identity symmetry.”

In other words, the second rotation by 270 degrees undoes the initial
rotation by 90 degrees. This is in fact an important property: any symmetry
can be undone; that is, for any symmetry S there exists another symmetry
$" such that their composition is the identity symmetry. This §" is called
the inverse of symmetry S. So we see that rotation by 270 degrees is the
inverse of the rotation by 90 degrees. Likewise, the inverse of the rotation
by 180 degrees is the same rotation by 180 degrees.

We now see that what looks like a very simple collection of symmetries
of the square table - the four rotations {90°, 180°, 270°, 0°} - actually has a



lot of inner structure, or rules for how the members of the set can interact.

First of all, we can compose any two symmetries (that is, apply them one
after another).

Second, there is a special symmetry, the identity. In our example, this is
the rotation by 0 degrees. If we compose it with any other symmetry, we get
back the same symmetry. For example,

90° +0° =90°, 180° +0° = 180°, etc

Third, for any symmetry S, there is the inverse symmetry S° such that
the composition of Sand §”  is the identity.

And now we come to the main point: the set of rotations along with
these three structures comprise an example of what mathematicians call a
group.

The symmetries of any other object also constitute a group, which in

general has more elements - possibly, infinitely many.*

Let’s see how this works in the case of a round table. Now that we have
gained some experience, we can see right away that the set of all
symmetries of the round table is just the set of all possible rotations (not
just by multiples of 90 degrees), and we can visualize it as the set of all
points of a circle.

Each point on this circle corresponds to an angle between 0 and 360
degrees, representing the rotation of the round table by this angle in the
counterclockwise direction. In particular, there is a special point
corresponding to rotation by 0 degrees. It is marked on the picture below,
together with another point corresponding to rotation by 30 degrees.

We should not think of the points of this circle as points of the round
table, though. Rather, each point of the circle represents a particular
rotation of the round table. Note that the round table does not have a



preferred point, but our circle does; namely, the one corresponding to
rotation by 0 degrees.’

Now let’s see if the above three structures can be applied to the set of
points of the circle.

First, the composition of two rotations, by ; and , degrees, is the
rotation by |+ 5 degrees.If |+  is greater than 360, we simply
subtract 360 from it. In mathematics, this is called addition modulo 360. For
example, if ;=195and 5 = 250, then the sum of the two angles is 445,

and the rotation by 445 degrees is the same as the rotation by 85 degrees.
So, in the group of rotations of the round table we have

195° +250° = 85°.

Second, there is a special point on the circle corresponding to the
rotation by 0 degrees. This is the identity element of our group.

Third, the inverse of the counterclockwise rotation by  degrees is the

counterclockwise rotation by (360- ) degrees, or equivalently, clockwise

rotationby  degrees (see the drawing).

s rotation by
unterdockwise

s rotation by
es clackwise

Thus, we have described the group of rotations of the round table. We
will call it the circle group. Unlike the group of symmetries of the square
table, which has four elements, this group has infinitely many elements
because there are infinitely many angles between 0 and 360 degrees.

We have now put our intuitive understanding of symmetry on firm
theoretical ground - indeed, we’ve turned it into a mathematical concept.
First, we postulated that a symmetry of a given object is a transformation
that preserves it and its properties. Then we made a decisive step: we
focused on the set of all symmetries of a given object. In the case of a square
table, this set consists of four elements (rotations by multiples of 90
degrees); in the case of a round table, it is an infinite set (of all points on the
circle). Finally, we described the neat structures that this set of symmetries



always possesses: any two symmetries can be composed to produce another
symmetry, there exists the identical symmetry, and for each symmetry
there exists its inverse. (The composition of symmetries also satisfies the
associativity property described in endnote 4.) Thus, we came to the
mathematical concept of a group.

A group of symmetries is an abstract object that is quite different from
the concrete object we started with. We cannot touch or hold the set of
symmetries of a table (unlike the table itself), but we can imagine it, draw
its elements, study it, talk about it. Each element of this abstract set has a
concrete meaning, though: it represents a particular transformation of a
concrete object, its symmetry.

Mathematics is about the study of such abstract objects and concepts.

Experience shows that symmetry is an essential guiding principle for the
laws of nature. For example, a snowflake forms a perfect hexagonal shape
because that turns out to be the lowest energy state into which crystallized
water molecules are forced. The symmetries of the snowflake are rotations
by multiples of 60 degrees; that is, 60, 120, 180, 240, 300, and 360 (which is
the same as 0 degrees). In addition, we can “flip” the snowflake along each
of the six axes corresponding to those angles. All of these rotations and flips
preserve the shape and position of the snowflake, and hence they are its
symmetries.*

In the case of a butterfly, flipping it turns it upside down. Since it has
legs on one side, the flip is not, strictly speaking, a symmetry of the
butterfly. When we say that a butterfly is symmetrical, we are talking about
an idealized version of it, where its front and back are exactly the same
(unlike those of an actual butterfly). Then the flip exchanging the left and
the right wings becomes a symmetry. (Alternatively, we can imagine
exchanging the wings without turning the butterfly upside down.)

This brings up an important point: there are many objects in nature
whose symmetries are approximate. A real-life table is not perfectly round
or perfectly square, a live butterfly has an asymmetry between its front and
back, and a human body is not fully symmetrical. However, even in this case
it turns out to be useful to consider their abstract, idealized versions, or
models - a perfectly round table or an image of the butterfly in which we
don’t distinguish between the front and the back. We then explore the



symmetries of these idealized objects and adjust whatever inferences we
can make from this analysis to account for the difference between a real-life
object and its model.

This is not to say that we do not appreciate asymmetry; we do, and we
often find beauty in it. But the main point of the mathematical theory of
symmetry is not aesthetic. It is to formulate the concept of symmetry in the
most general, and hence inevitably most abstract, terms so that it could be
applied in a unified fashion in different domains, such as geometry, number
theory, physics, chemistry, biology, and so on. Once we develop such a
theory, we can also talk about the mechanisms of symmetry breaking -
viewing asymmetry as emergent, if you will. For example, elementary
particles acquire masses because the so-called gauge symmetry they obey
(which will be discussed in Chapter 16) gets broken. This is facilitated by the
Higgs boson, an elusive particle recently discovered at the Large Hadron

Collider under the city of Geneva.® The study of such mechanisms of
symmetry breaking yields invaluable insights into the behavior of the
fundamental blocks of nature.

I'd like to point out some of the basic qualities of the abstract theory of
symmetry because this is a good illustration of why mathematics is
important.

The first is universality. The circle group is not only the group of
symmetries of a round table, but also of all other round objects, like a glass,
a bottle, a column, and so forth. In fact, to say that a given object is round is
the same as to say that its group of symmetries is the circle group. This is a
powerful statement: we realize that we can describe an important attribute
of an object (“being round”) by describing its symmetry group (the circle).
Likewise, “being square” means that the group of symmetries is the group
of four elements described above. In other words, the same abstract
mathematical object (such as the circle group) serves many different
concrete objects, and it points to universal properties that they all have in

common (such as roundness).”

The second is objectivity. The concept of a group, for example, is
independent of our interpretation. It means the same thing to anyone who
learns it. Of course, in order to understand it, one has to know the language
in which it is expressed, that is, mathematical language. But anyone can



learn this language. Likewise, if you want to understand the meaning of
René Descartes’ sentence “Je pense, donc je suis,” you need to know French (at
least, those words that are used in this sentence) - but anyone can learn it.
However, in the case of the latter sentence, once we understand it, different
interpretations of it are possible. Also, different people may agree or
disagree on whether a particular interpretation of this sentence is true or
false. In contrast, the meaning of a logically consistent mathematical

statement is not subject to interpretation.8 Furthermore, its truth is also
objective. (In general, the truth of a particular statement may depend on
the system of axioms within which it is considered. However, even then,
this dependence on the axioms is also objective.) For example, the
statement “the group of symmetries of a round table is a circle” is true to
anyone, anywhere, at any time. In other words, mathematical truths are the
necessary truths. We will talk more about this in Chapter 18.

The third, closely related, quality is endurance. There is little doubt that
the Pythagorean theorem meant the same thing to the ancient Greeks as it
does to us today, and there is every reason to expect that it will mean the
same thing to anyone in the future. Likewise, all true mathematical
statements we talk about in this book will remain true forever.

The fact that such objective and enduring knowledge exists (and
moreover, belongs to all of us) is nothing short of a miracle. It suggests that
mathematical concepts exist in a world separate from the physical and
mental worlds - which is sometimes referred to as the Platonic world of
mathematics (we will talk more about that in the closing chapter). We still
don’t fully understand what it is and what drives mathematical discovery.
But it’s clear that this hidden reality is bound to play a larger and larger
role in our lives, especially with the advent of new computer technologies
and 3D printing.

The fourth quality is relevance of mathematics to the physical world. For
example, a lot of progress has been made in quantum physics in the past
fifty years because of the application of the concept of symmetry to
elementary particles and interactions between them. From this point of
view, a particle, such as an electron or a quark, is like a round table or a
snowflake, and its behavior is very much determined by its symmetries.
(Some of these symmetries are exact, and some are approximate.)

The discovery of quarks is a perfect example of how this works. Reading the



books Evgeny Evgenievich gave me, I learned that at the root of the Gell-
Mann and Ne’eman classification of hadrons that we talked about in the
previous chapter is a symmetry group. This group had been previously
studied by mathematicians - who did not anticipate any connections to
subatomic particles whatsoever. The mathematical name for it is SU(3). Here
S and U stand for “special unitary.” This group is very similar in its
properties to the group of symmetries of the sphere, which we will talk
about in detail in Chapter 10.

Mathematicians had previously described the representations of the
group SU(3), that is, different ways that the group SU(3) can be realized as a
symmetry group. Gell-Mann and Ne’eman noticed the similarity between
the structure of these representations and the patterns of hadrons that they
had found. They used this information to classify hadrons.

The word “representation” is used in mathematics in a particular way,
which is different from its more common usage. So let me pause and explain
what this word means in the present context. Perhaps, it would help if I first
give an example. Recall the group of rotations of a round table discussed
above, the circle group. Now imagine extending the tabletop infinitely far in
all directions. This way we obtain an abstract mathematical object: a plane.
Each rotation of the tabletop, around its center, gives rise to a rotation of
this plane around the same point. Thus, we obtain a rule that assigns a
symmetry of this plane (a rotation) to every element of the circle group. In
other words, each element of the circle group may be represented by a
symmetry of the plane. For this reason mathematicians refer to this process
as a representation of the circle group.

Now, the plane is two-dimensional because it has two coordinate axes
and hence each point has two coordinates:

Therefore, we say that we have constructed a “two-dimensional
representation” of the group of rotations. It simply means that each



element of the group of rotations is realized as a symmetry of a plane.’

There are also spaces of dimension greater than two. For example, the
space around us is three-dimensional. That is to say, it has three coordinate
axes, and so in order to specify a position of a point, we need to specify its
three coordinates (x, y, z) as shown on this picture:

We cannot imagine a four-dimensional space, but mathematics gives us
a universal language that allows us to talk about spaces of any dimension.
Namely, we represent points of the four-dimensional space by quadruples of
numbers (x, y, z, t), just like points of the three-dimensional space are
represented by triples of numbers (x, y, z). In the same way, we represent
points of an n-dimensional space, for any natural number n, by n-tuples of
numbers. If you have used a spreadsheet program, then you have
encountered such n-tuples: they appear as rows in a spreadsheet, each of
the n numbers corresponding to a particular attribute of the stored data.
Thus, every row in a spreadsheet refers to a point in an n-dimensional
space. (We will talk more about spaces of various dimensions in Chapter 10.)

If each element of a group can be realized, in a consistent manner,'® as a

symmetry of an n-dimensional space, then we say that the group has an “n-
dimensional representation.”

It turns out that a given group can have representations of different
dimensions. The reason elementary particles can be assembled in families of
8 and 10 particles is that the group SU(3) is known to have an 8-dimensional
and a 10-dimensional representation. The 8 particles of each octet
constructed by Gell-Mann and Ne’eman (like the one shown on the diagram
in the previous chapter) are in one-to-one correspondence with the 8
coordinate axes of an 8-dimensional space which is a representation of
SU(3). The same goes for the decuplet of particles. (But particles cannot be
assembled in families of, say, 7 or 11 particles because mathematicians have
proved that the group SU(3) has no 7- or 11-dimensional representations.)



At first, this was just a convenient way to combine the particles with
similar properties. But then Gell-Mann went further. He postulated that
there was a deep reason behind this classification scheme. He basically said
that this scheme works so well because hadrons consist of smaller particles
- sometimes two and sometimes three of them - the quarks. A similar
proposal was made independently by physicist George Zweig (who called
the particles “aces”).

This was a stunning proposal. Not only did it go against the popular
belief at the time that protons and neutrons as well as other hadrons were
indivisible elementary particles, these new particles were supposed to have
electric charges that were fractions of the charge of the electron. This was a
startling prediction because no one had seen such particles before. Yet,
quarks were soon found experimentally, and as predicted, they had
fractional electric charges!

What motivated Gell-Mann and Zweig to predict the existence of
quarks? Mathematical theory of representations of the group SU(3).
Specifically, the fact that the group SU(3) has two different 3-dimensional
representations. (Actually, that’s the reason there is a “3” in this group’s
name.) Gell-Mann and Zweig suggested that these two representations
should describe two families of fundamental particles: 3 quarks and 3 anti-
quarks. It turns out that the 8- and 10-dimensional representations of SU(3)
can be built from the 3-dimensional ones. And this gives us a precise
blueprint for how to construct hadrons from quarks - just like in Lego.

Gell-Mann named the 3 quarks “up,” “down,” and “strange.”!! A proton
consists of two up quarks and one down quark, whereas a neutron consists
of two down quarks and one up quark, as we saw on the pictures in the
previous chapter. Both of these particles belong to the octet shown on the
diagram in the previous chapter. Other particles from this octet involve the
strange quark as well as the up and down quarks. There are also octets that
consist of particles that are composites of one quark and one anti-quark.

The discovery of quarks is a good example of the paramount role played
by mathematics in science that we discussed in the Preface. These particles
were predicted not on the basis of empirical data, but on the basis of
mathematical symmetry patterns. This was a purely theoretical prediction,
made within the framework of a sophisticated mathematical theory of
representations of the group SU(3). It took physicists years to master this



theory (and in fact there was some resistance to it at first), but it is now the
bread and butter of elementary particle physics. Not only did it provide a
classification of hadrons, it also led to the discovery of quarks, which
forever changed our understanding of physical reality.

Imagine: a seemingly esoteric mathematical theory empowered us to get to
the heart of the building blocks of nature. How can we not be enthralled by
the magic harmony of these tiny blobs of matter, not marvel at the capacity
of mathematics to reveal the inner workings of the universe?

As the story goes, Albert Einstein’s wife Elsa remarked, upon hearing
that a telescope at the Mount Wilson Observatory was needed to determine
the shape of space-time: “Oh, my husband does this on the back of an old
envelope.”

Physicists do need expensive and sophisticated machines such as the
Large Hadron Collider in Geneva, but the amazing fact is that scientists like
Einstein and Gell-Mann have used what looks like the purest and most
abstract mathematical knowledge to unlock the deepest secrets of the world
around us.

Regardless of who we are and what we believe in, we all share this
knowledge. It brings us closer together and gives a new meaning to our love
for the universe.

*Note that flipping a table is not a symmetry: this would turn it upside down - let’s not forget
that a table has legs. If we were to consider a square or a circle (no legs attached), then flips would
be bona fide symmetries. We would have to include them in the corresponding symmetry groups.



Chapter 3

The Fifth Problem

Evgeny Evgenievich’s plan worked perfectly: I was “converted” to math. I
was learning quickly, and the deeper I delved into math, the more my
fascination grew, the more 1 wanted to know. This is what happens when
you fall in love.

I started meeting with Evgeny Evgenievich on a regular basis. He would
give me books to read, and I would meet him once a week at the pedagogical
college where he taught to discuss what 1 had read. Evgeny Evgenievich
played soccer, ice hockey, and volleyball on a regular basis, but like many
men in the Soviet Union in those days, he was a chain smoker. For a long
time afterward, the smell of cigarettes was associated in my mind with
doing mathematics.

Sometimes our conversations would last well into the night. Once, the
auditorium we were in was locked by the custodian who couldn’t fathom
that there would be someone inside at such a late hour. And we must have
been so deep into our conversation that we didn’t hear the turning of the
key. Fortunately, the auditorium was on the ground floor, and we managed
to escape through a window.

The year was 1984, my senior year at high school. I had to decide which
university to apply to. Moscow had many schools, but there was only one
place to study pure math: Moscow State University, known by its Russian
abbreviation MGU, for Moskovskiy Gosudarstvenny Universitet. Its famous
Mekh-Mat, the Department of Mechanics and Mathematics, was the flagship
mathematics program of the USSR.

Entrance exams to colleges in Russia are not like the SAT that American
students take. At Mekh-Mat there were four: written math, oral math,



literature essay composition, and oral physics. Those who, like me,
graduated from high school with highest honors (in the Soviet Union we
were then given a gold medal) would be automatically accepted after
getting a 5, the highest grade, at the first exam.

I had by then progressed far beyond high school math, and so it looked
like T would sail through the exams at MGU.

But I was too optimistic. The first warning shot came in the form of a
letter I received from a correspondence school with which I had studied.
This school had been organized some years earlier by, among others, Israel
Gelfand, the famous Soviet mathematician (we will talk much more about
him later). The school intended to help those students who, like me, lived
outside of major cities and did not have access to special mathematical
schools. Every month, participating students would receive a brochure
elucidating the material that was studied in school and going a little
beyond. It also contained some problems, more difficult than those
discussed at school, which a student was supposed to solve and mail back.
Graders (usually undergrads of Moscow University) read those solutions and
returned them, marked, to the students. I was enrolled in this school for
three years, as well as in another school, which was more physics-oriented.
It was a helpful resource for me, though the material was pretty close to
what was studied at school (unlike the stuff I was studying privately with
Evgeny Evgenievich).

The letter I received from this correspondence school was short: “If you
would like to apply to Moscow University, stop by our office, and we will be
happy to give you advice,” and it gave the address on the campus of MGU
and the visiting hours. Shortly after receiving the letter, I took the two-hour
train ride to Moscow. The school’s office was a big room with a bunch of
desks and a number of people working, typing, and correcting papers. I
introduced myself, produced my little letter, and was immediately led to a
diminutive young woman, in her early thirties.

“What's your name?” she said by way of greeting.

“Eduard Frenkel.” (I used the Russian version of Edward in those days.)
“And you want to apply to MGU?”

“Yes.”

“Which department?”



“Mekh-Mat.”

“I see.” She lowered her eyes and asked:

“And what’s your nationality?”

I said, “Russian.”

“Really? And what are your parents’ nationalities?”
“Well... My mother is Russian.”

“And your father?”

“My father is Jewish.”

She nodded.

This dialogue might sound surreal to you, and as I am writing it now, it
sounds surreal to me too. But in the Soviet Union circa 1984 - remember
Orwell?* - it was not considered bizarre to ask someone what his or her
“nationality” was. In the interior passport that all Soviet citizens had to
carry with them, there was in fact a special line for “nationality.” It came
after (1) first name, (2) patronymic name, (3) last name, and (4) the date of
birth. For this reason, it was called pyataya grafa, “the fifth line.” Nationality
was also recorded in one’s birth certificate, as were the nationalities of the
parents. If their nationalities were different, as in my case, then the parents
had a choice of which nationality to give to their child.

For all intents and purposes, the fifth line was a code for asking whether
one was Jewish or not. (People of other nationalities, such as Tatars and
Armenians, against whom there were prejudices and persecution - though
not nearly at the same scale as against the Jews — were also picked up this
way.) My fifth line said that T was Russian, but my last name - which was my
father’s last name, and clearly sounded Jewish - gave me away.

It is important to note that my family was not religious at all. My father
was not brought up in a religious tradition, and neither was I. Religion in
the Soviet Union was in fact all but non-existent in those days. Most
Christian Orthodox churches were destroyed or closed. In the few existing
churches, one could typically only find a few old babushkas (grandmothers),
such as my maternal grandmother. She occasionally attended service at the
only active church in my hometown. There were even fewer synagogues.
There were none in my hometown; in Moscow, whose population was close

to 10 million, officially there was only one synagogue.! Going to a service in
a church or a synagogue was dangerous: one could be spotted by special



plain-clothed agents and would then get in a lot of trouble. So when
someone was referred to as being Jewish, it was meant not in the sense of
religion but rather in the sense of ethnicity, of “blood.”

Even if I hadn’t been using my father’s last name, my Jewish origin
would be picked up by the admissions committee anyway, because the
application form specifically asked for the full names of both parents. Those
full names included patronymic names; that is, the first names of the
grandparents of the applicant. My father’s patronymic name is Joseph,
which sounded unmistakably Jewish in the Soviet Union of that era, so this
was another way to find out (if his last name hadn’t given me away). The
system was set up in such a way that it would flag those who were at least
one-quarter Jewish.

Having established that by this definition 1 was a Jew, the woman said,
“Do you know that Jews are not accepted to Moscow University?”

“What do you mean?”

“What I mean is that you shouldn’t even bother to apply. Don’t waste
your time. They won’t let you in.”

I didn’t know what to say.
“Is that why you sent me this letter?”
“Yes. I'm just trying to help you.”

I looked around. It was clear that everyone in the office was aware of
what this conversation was about, even if they weren’t listening closely.
This must have already happened dozens of times, and everybody seemed
used to it. They all averted their eyes, as if I were a terminally ill patient. My
heart sank.

I had encountered anti-Semitism before, but at a personal, not institutional,
level. When I was in fifth grade, some of my classmates took to taunting me
with evrey, evrey (“Jew, Jew”). I don’t think they had any idea what this
meant (which was clear from the fact that some of them confused the word
evrey, which meant “Jew,” with evropeyets, which meant “European”) - they
must have heard anti-Semitic remarks from their parents or other adults.
(Unfortunately, anti-Semitism was deeply rooted in the Russian culture.) I
was strong enough and lucky enough to have a couple of true friends who
stood by me, so [ was never actually beaten up by these bullies, but this was
an unpleasant experience. I was too proud to tell the teachers or my



parents, but one day a teacher overheard and intervened. As a result, those
kids were immediately called to the principal, and the taunting stopped.

My parents had heard of the discrimination against Jews in entrance
exams to universities, but somehow they did not pay much attention to this.
In my hometown, there weren’t many Jews to begin with, and all the
purported discrimination cases my parents had heard of concerned
programs in physics. A typical argument went that Jews weren’t accepted
there because the studies in such a program were related to nuclear
research and hence to national defense and state secrets; the government
didn’t want Jews in those areas because Jews could emigrate to Israel or
somewhere else. By this logic, there shouldn’t have been a reason to care
about those who studied pure math. Well, apparently, someone did.

Everything about my conversation at MGU was strange. And I am not
just talking about the Kafkaesque aspect of it. It is possible to conclude that
the woman 1 talked to simply tried to help me and other students by
warning us of what’s going to happen. But could this really be the case?
Remember, we are talking about 1984, when the Communist Party and the
KGB still tightly controlled all aspects of life in the Soviet Union. The official
policy of the state was that all nationalities were equal, and publicly
suggesting otherwise would put one in danger. Yet, this woman calmly
talked about this to me, a stranger she had just met, and she didn’t seem to
be worried about being overheard by her colleagues.

Besides, the exams at MGU were always scheduled one month ahead of
all other schools. Therefore, students who were failed at MGU would still
have a chance to apply elsewhere. Why would someone try to convince
them not even to try? It sounded like some powerful forces were trying to
scare me and other Jewish students away.

But I would not be deterred. After talking about all this at great length,
my parents and [ felt that I had nothing to lose. We decided that I would
apply to MGU anyway and just hope for the best.

The first exam, at the beginning of July, was a written test in mathematics.
It always consisted of five problems. The fifth problem was considered
deadly and unsolvable. It was like the fifth element of the exam. But I was
able to solve all problems, including the fifth. Aware as I was of the strong
likelihood that whoever graded my exam could be biased against me and
would try to find gaps in my solutions, I wrote everything out in



excruciating detail. I then checked and double-checked all my arguments
and calculations to make sure that I hadn’t made any mistakes. Everything
looked perfect! T was in an upbeat mood on the train ride home. The next
day 1 told Evgeny Evgenievich my solutions, and he confirmed that
everything was correct. It seemed like I was off to a good start.

My next exam was oral math. It was scheduled for July 13, which
happened to be a Friday.

I remember very clearly many details about that day. The exam was
scheduled for the early afternoon, and I took the train from home with my
mother that morning. I entered the room at MGU a few minutes before the
exam. It was a regular classroom, and there were probably between fifteen
and twenty students there and four or five examiners. At the start of the
exam each of us had to draw a piece of paper from a big pile on the desk at
the front of the room. Each paper had two questions written on it, and it
was turned blank side up. It was like drawing a lottery ticket, so we called
this piece of paper bilet, ticket. There were perhaps one hundred questions
altogether, all known in advance. I didn’t really care which ticket I would
draw as I knew this material inside-out. After drawing the ticket, each
student had to sit down at one of the desks and prepare the answer, using

only the provided blank sheets of paper.

The questions on my ticket were: (1) a circle inscribed in a triangle and
the formula for the area of the triangle using its radius; and (2) derivative of
the ratio of two functions (the formula only). I was so ready for these
questions, I could have answered them in my sleep.

I sat down, wrote down a few formulas on a sheet of paper, and collected
my thoughts. This must have taken me about two minutes. There was no
need to prepare more; I was ready. I raised my hand. There were several
examiners present in the room, and they were all waiting for the students
to raise their hands, but, bizarrely, they ignored me, as if I did not exist.
They looked right through me. I was sitting with my hand raised for a while:
no response.

Then, after ten minutes or so, a couple of other kids raised their hands,
and as soon as they did, the examiners rushed to them. An examiner would
take a seat next to a student and listen to him or her answer the questions.
They were quite close to me, so I could hear them. The examiners were very
polite and were mostly nodding their heads, only occasionally asking



follow-up questions. Nothing out of the ordinary. When a student finished
answering the questions on the ticket (after ten minutes or so), the
examiner would give him or her one additional problem to solve. Those
problems seemed rather simple, and most students solved them right away.
And that was it!

The first couple of students were already happily gone, having obviously
earned a 5, the highest grade, and [ was still sitting there. Finally, I grabbed
one of the examiners passing by, a young fellow who seemed like he was a
fresh Ph.D., and asked him pointedly: “Why aren’t you talking to me?” He
looked away and said quietly: “Sorry, we are not allowed to talk to you.”

An hour or so into the exam, two middle-aged men entered the room.
They briskly walked up to the table at the front of the room and presented
themselves to the guy who was sitting there. He nodded and pointed at me.
It became clear that these were the people I'd been waiting for: my
inquisitors.

They came up to my desk and introduced themselves. One was lean and
quick, the other slightly overweight and with a big mustache.

“OK,” the lean man said - he did most of the talking - “what have we got
here? What'’s the first question?”

“The circle inscribed in a triangle and...”
He interrupted me: “What is the definition of a circle?”

He was quite aggressive, which was in sharp contrast to how other
examiners treated students. Besides, the other examiners never asked
anything before the student had a chance to fully present their answer to
the question on the ticket.

I said, “A circle is the set of points on the plane equidistant from a given
point.”

This was the standard definition.
“Wrong!” declared the man cheerfully.

How could this possibly be wrong? He waited for a few seconds and then
said, “It’s the set of all points on the plane equidistant from a given point.”

That sounded like excessive parsing of words - the first sign of trouble
ahead.

“OK,” the man said, “What is the definition of a triangle?”



