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Preface

Machine learning is eating the world. From communication and finance to transpor-
tation, manufacturing, and even agriculture,' nearly every technology field has been
transformed by machine learning and artificial intelligence, or will soon be.

Computer security is also eating the world. As we become dependent on computers
for an ever-greater proportion of our work, entertainment, and social lives, the value
of breaching these systems increases proportionally, drawing in an increasing pool of
attackers hoping to make money or simply wreak mischief. Furthermore, as systems
become increasingly complex and interconnected, it becomes harder and harder to
ensure that there are no bugs or backdoors that will give attackers a way in. Indeed, as
this book went to press we learned that pretty much every microprocessor currently
in use is insecure.”

With machine learning offering (potential) solutions to everything under the sun, it is
only natural that it be applied to computer security, a field which intrinsically pro-
vides the robust data sets on which machine learning thrives. Indeed, for all the secu-
rity threats that appear in the news, we hear just as many claims about how A.l. can
“revolutionize” the way we deal with security. Because of the promise that it holds for
nullifying some of the most complex advances in attacker competency, machine
learning has been touted as the technique that will finally put an end to the cat-and-
mouse game between attackers and defenders. Walking the expo floors of major secu-
rity conferences, the trend is apparent: more and more companies are embracing the
use of machine learning to solve security problems.

Mirroring the growing interest in the marriage of these two fields, there is a corre-
sponding air of cynicism that dismisses it as hype. So how do we strike a balance?

| Monsanto, “How Machine Learning is Changing Modern Agriculture,” Modern Agriculture, September 13,
2017, https://modernag.org/innovation/machine-learning-changing-modern-agriculture/.

2 “Meltdown and Spectre,” Graz University of Technology, accessed January 23, 2018, https://spectreattack.com/.
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What is the true potential of A.L applied to security? How can you distinguish the
marketing fluff from promising technologies? What should I actually use to solve my
security problems? The best way we can think of to answer these questions is to dive
deep into the science, understand the core concepts, do lots of testing and experimen-
tation, and let the results speak for themselves. However, doing this requires a work-
ing knowledge of both data science and computer security. In the course of our work
building security systems, leading anti-abuse teams, and speaking at conferences, we
have met a few people who have this knowledge, and many more who understand
one side and want to learn about the other.

This book is the result.

What's In This Book?

We wrote this book to provide a framework for discussing the inevitable marriage of
two ubiquitous concepts: machine learning and security. While there is some litera-
ture on the intersection of these subjects (and multiple conference workshops: CCS’s
AlSec, AAATs AICS, and NIPS’s Machine Deception), most of the existing work is
academic or theoretical. In particular, we did not find a guide that provides concrete,
worked examples with code that can educate security practitioners about data science
and help machine learning practitioners think about modern security problems
effectively.

In examining a broad range of topics in the security space, we provide examples of
how machine learning can be applied to augment or replace rule-based or heuristic
solutions to problems like intrusion detection, malware classification, or network
analysis. In addition to exploring the core machine learning algorithms and techni-
ques, we focus on the challenges of building maintainable, reliable, and scalable data
mining systems in the security space. Through worked examples and guided discus-
sions, we show you how to think about data in an adversarial environment and how
to identify the important signals that can get drowned out by noise.

Who Is This Book For?

If you are working in the security field and want to use machine learning to improve
your systems, this book is for you. If you have worked with machine learning and
now want to use it to solve security problems, this book is also for you.

We assume you have some basic knowledge of statistics; most of the more complex
math can be skipped upon your first reading without losing the concepts. We also
assume familiarity with a programming language. Our examples are in Python and
we provide references to the Python packages required to implement the concepts we
discuss, but you can implement the same concepts using open source libraries in Java,
Scala, C++, Ruby, and many other languages.
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Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords. Also used for commands and command-

line output.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also
used for emphasis in command-line output.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreilly-mlsec/book-resources.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O'Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
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cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Machine Learning and Security by
Clarence Chio and David Freeman (O'Reilly). Copyright 2018 Clarence Chio and
David Freeman, 978-1-491-97990-7.

[f you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
‘ D training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

O’Reilly Media has a web page for this book, where they list errata, examples, and any
additional information. You can access this page at http://bit.ly/machinelearningAnd
Security. The authors have created a website for the book at https://mlisec.net.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

xiv. | Preface



For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1
Why Machine Learning and Security?

In the beginning, there was spam.

As soon as academics and scientists had hooked enough computers together via the
internet to create a communications network that provided value, other people real-
ized that this medium of free transmission and broad distribution was a perfect way
to advertise sketchy products, steal account credentials, and spread computer viruses.

In the intervening 40 years, the field of computer and network security has come to
encompass an enormous range of threats and domains: intrusion detection, web
application security, malware analysis, social network security, advanced persistent
threats, and applied cryptography, just to name a few. But even today spam remains a
major focus for those in the email or messaging space, and for the general public
spam is probably the aspect of computer security that most directly touches their own
lives.

Machine learning was not invented by spam fighters, but it was quickly adopted by
statistically inclined technologists who saw its potential in dealing with a constantly
evolving source of abuse. Email providers and internet service providers (ISPs) have
access to a wealth of email content, metadata, and user behavior. Using email data,
content-based models can be built to create a generalizable approach to recognize
spam. Metadata and entity reputations can be extracted from emails to predict the
likelihood that an email is spam without even looking at its content. By instantiating a
user behavior feedback loop, the system can build a collective intelligence and
improve over time with the help of its users.

Email filters have thus gradually evolved to deal with the growing diversity of circum-
vention methods that spammers have thrown at them. Even though 85% of all emails
sent today are spam (according to one research group), the best modern spam filters
block more than 99.9% of all spam, and it is a rarity for users of major email services



to see unfiltered and undetected spam in their inboxes. These results demonstrate an
enormous advance over the simplistic spam filtering techniques developed in the
early days of the internet, which made use of simple word filtering and email meta-
data reputation to achieve modest results.

The fundamental lesson that both researchers and practitioners have taken away from
this battle is the importance of using data to defeat malicious adversaries and improve
the quality of our interactions with technology. Indeed, the story of spam fighting
serves as a representative example for the use of data and machine learning in any
field of computer security. Today, almost all organizations have a critical reliance on
technology, and almost every piece of technology has security vulnerabilities. Driven
by the same core motivations as the spammers from the 1980s (unregulated, cost-free
access to an audience with disposable income and private information to offer), mali-
cious actors can pose security risks to almost all aspects of modern life. Indeed, the
fundamental nature of the battle between attacker and defender is the same in all
fields of computer security as it is in spam fighting: a motivated adversary is con-
stantly trying to misuse a computer system, and each side races to fix or exploit the
flaws in design or technique before the other uncovers it. The problem statement has
not changed one bit.

Computer systems and web services have become increasingly centralized, and many
applications have evolved to serve millions or even billions of users. Entities that
become arbiters of information are bigger targets for exploitation, but are also in the
perfect position to make use of the data and their user bases to achieve better security.
Coupled with the advent of powerful data crunching hardware and the development
of more powerful data analysis and machine learning algorithms, there has never
been a better time for exploiting the potential of machine learning in security.

In this book, we demonstrate applications of machine learning and data analysis tech-
niques to various problem domains in security and abuse. We explore methods for
evaluating the suitability of different machine learning techniques in different scenar-
ios, and focus on guiding principles that will help you use data to achieve better secu-
rity. Our goal is not to leave you with the answer to every security problem you might
face, but rather to give you a framework for thinking about data and security as well
as a toolkit from which you can pick the right method for the problem at hand.

The remainder of this chapter sets up context for the rest of the book: we discuss
what threats modern computer and network systems face, what machine learning is,
and how machine learning applies to the aforementioned threats. We conclude with a
detailed examination of approaches to spam fighting, which provides a concrete
example of applying machine learning to security that can be generalized to nearly
any domain.
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Cyber Threat Landscape

The landscape of adversaries and miscreants in computer security has evolved over
time, but the general categories of threats have remained the same. Security research
exists to stymie the goals of attackers, and it is always important to have a good
understanding of the different types of attacks that exist in the wild. As you can see
from the Cyber Threat Taxonomy tree in Figure 1-1,' the relationships between threat
entities and categories can be complex in some cases.

We begin by defining the principal threats that we will explore in the chapters that
follow:

Malware (or virus)
Short for “malicious software,” any software designed to cause harm or gain
unauthorized access to computer systems.

Worm
Standalone malware that replicates itself in order to spread to other computer
systems.

Trojan
Malware disguised as legitimate software to avoid detection.

Spyware
Malware installed on a computer system without permission and/or knowledge

by the operator, for the purposes of espionage and information collection. Key-
loggers fall into this category.

Adware
Malware that injects unsolicited advertising material (e.g., pop ups, banners, vid-
eos) into a user interface, often when a user is browsing the web.

Ransomware
Malware designed to restrict availability of computer systems until a sum of
money (ransom) is paid.

Rootkit
A collection of (often) low-level software designed to enable access to or gain
control of a computer system. ("Root” denotes the most powerful level of access
to a system.)

1 Adapted from the European CSIRT Network project’s Security Incidents Taxonomy.

Cyber Threat Landscape | 3



Backdoor
An intentional hole placed in the system perimeter to allow for future accesses
that can bypass perimeter protections.

Bot
A variant of malware that allows attackers to remotely take over and control
computer systems, making them zombies.

Botnet
A large network of bots.

Exploit
A piece of code or software that exploits specific vulnerabilities in other software
applications or frameworks.

Scanning
Attacks that send a variety of requests to computer systems, often in a brute-force
manner, with the goal of finding weak points and vulnerabilities as well as infor-
mation gathering.

Sniffing
Silently observing and recording network and in-server traffic and processes
without the knowledge of network operators.

Keylogger
A piece of hardware or software that (often covertly) records the keys pressed on
a keyboard or similar computer input device.

Spam
Unsolicited bulk messaging, usually for the purposes of advertising. Typically
email, but could be SMS or through a messaging provider (e.g., WhatsApp).

Login attack
Multiple, usually automated, attempts at guessing credentials for authentication
systems, either in a brute-force manner or with stolen/purchased credentials.

Account takeover (ATO)
Gaining access to an account that is not your own, usually for the purposes of
downstream selling, identity theft, monetary theft, and so on. Typically the goal
of a login attack, but also can be small scale and highly targeted (e.g., spyware,
social engineering).

Phishing (aka masquerading)
Communications with a human who pretends to be a reputable entity or person
in order to induce the revelation of personal information or to obtain private
assets.

4 | Chapter 1: Why Machine Learning and Security?



Spear phishing
Phishing that is targeted at a particular user, making use of information about
that user gleaned from outside sources.

Social engineering
Information exfiltration (extraction) from a human being using nontechnical
methods such as lying, trickery, bribery, blackmail, and so on.

Incendiary speech
Discriminatory, discrediting, or otherwise harmful speech targeted at an individ-

ual or group.

Denial of service (DoS) and distributed denial of service (DDoS)
Attacks on the availability of systems through high-volume bombardment and/or
malformed requests, often also breaking down system integrity and reliability.

Advanced persistent threats (APTs)
Highly targeted networks or host attack in which a stealthy intruder remains

intentionally undetected for long periods of time in order to steal and exfiltrate
data.

Zero-day vulnerability
A weakness or bug in computer software or systems that is unknown to the ven-

dor, allowing for potential exploitation (called a zero-day attack) before the ven-
dor has a chance to patch/fix the problem.

Cyber Threat Landscape | 5
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The Cyber Attacker’s Economy

What drives attackers to do what they do? Internet-based criminality has become
increasingly commercialized since the early days of the technology’s conception. The
transformation of cyber attacks from a reputation economy (“street cred,” glory, mis-
chief) to a cash economy (direct monetary gains, advertising, sale of private informa-
tion) has been a fascinating process, especially from the point of view of the
adversary. The motivation of cyber attackers today is largely monetary. Attacks on
financial institutions or conduits (online payment platforms, stored value/gift card
accounts, Bitcoin wallets, etc.) can obviously bring attackers direct financial gains.
But because of the higher stakes at play, these institutions often have more advanced
defense mechanisms in place, making the lives of attackers tougher. Because of the
allure of a more direct path to financial yield, the marketplace for vulnerabilities tar-
geting such institutions is also comparatively crowded and noisy. This leads miscre-
ants to target entities with more relaxed security measures in place, abusing systems
that are open by design and resorting to more indirect techniques that will eventually
still allow them to monetize.

A Marketplace for Hacking Skills

The fact that darknet marketplaces and illegal hacking forums exist is no secret.
Before the existence of organized underground communities for illegal exchanges,
only the most competent of computer hackers could partake in the launching of
cyber attacks and the compromising of accounts and computer systems. However,
with the commoditization of hacking and the ubiquitization of computer use, lower-
skilled “hackers” can participate in the ecosystem of cyber attacks by purchasing vul-
nerabilities and user-friendly hacking scripts, software, and tools to engage in their
own cyber attacks.

The zero-day vulnerability marketplace has variants that exist both legally and ille-
gally. Trading vulnerabilities and exploits can become a viable source of income for
both security researchers and computer hackers.” Increasingly, the most elite com-
puter hackers are not the ones unleashing zero-days and launching attack campaigns.
The risks are just too high, and the process of monetization is just too long and
uncertain. Creating software that empowers the common script-kiddy to carry out the
actual hacking, selling vulnerabilities on marketplaces, and in some cases even pro-
viding boutique hacking consulting services promises a more direct and certain path
to financial gain. Just as in the California Gold Rush of the late 1840s, merchants

2 Charlie Miller, “The Legitimate Vulnerability Market: Inside the Secretive World of 0-day Exploit Sales,” Pro-
ceedings of the 6th Workshop on the Economics of Information Security (2007).
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providing amenities to a growing population of wealth-seekers are more frequently
the receivers of windfalls than the seekers themselves.

Indirect Monetization

The process of monetization for miscreants involved in different types of computer
attacks is highly varied, and worthy of detailed study. We will not dive too deep into
this investigation, but we will look at a couple of examples of how indirect monetiza-
tion can work.

Malware distribution has been commoditized in a way similar to the evolution of
cloud computing and Infrastructure-as-a-Service (IaaS) providers. The pay-per-install
(PPI) marketplace for malware propagation is a complex and mature ecosystem, pro-
viding wide distribution channels available to malware authors and purchasers.’ Bot-
net rentals operate on the same principle as on-demand cloud infrastructure, with
per-hour resource offerings at competitive prices. Deploying malware on remote
servers can also be financially rewarding in its own different ways. Targeted attacks
on entities are sometimes associated with a bounty, and ransomware distributions can
be an efficient way to extort money from a wide audience of victims.

Spyware can assist in the stealing of private information, which can then be sold in
bulk on the same online marketplaces where the spyware is sold. Adware and spam
can be used as a cheap way to advertise dodgy pharmaceuticals and financial instru-
ments. Online accounts are frequently taken over for the purposes of retrieving some
form of stored value, such as gift cards, loyalty points, store credit, or cash rewards.
Stolen credit card numbers, Social Security numbers, email accounts, phone num-
bers, addresses, and other private information can be sold online to criminals intent
on identity theft, fake account creation, fraud, and so on. But the path to monetiza-
tion, in particular when you have a victim’s credit card number, can be a long and
complex one. Because of how easily this information is stolen, credit card companies,
as well as companies that operate accounts with stored value, often engineer clever
ways to stop attackers from monetizing. For instance, accounts suspected of having
been compromised can be invalidated, or cashing out gift cards can require addi-
tional authentication steps.

The Upshot

The motivations of cyber attackers are complex and the paths to monetization are
convoluted. However, the financial gains from internet attacks can be a powerful
motivator for technically skilled people, especially those in less-wealthy nations and

3 Juan Caballero et al., “Measuring Pay-per-Install: The Commoditization of Malware Distribution,” Proceedings
of the 20th USENIX Conference on Security (2011).
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communities. As long as computer attacks can continue to generate a non-negligible
yield for the perpetrators, they will keep coming.

What Is Machine Learning?

Since the dawn of the technological age, researchers have dreamed of teaching com-
puters to reason and make “intelligent” decisions in the way that humans do, by
drawing generalizations and distilling concepts from complex information sets
without explicit instructions.

Machine learning refers to one aspect of this goal—specifically, to algorithms and
processes that “learn” in the sense of being able to generalize past data and experien-
ces in order to predict future outcomes. At its core, machine learning is a set of math-
ematical techniques, implemented on computer systems, that enables a process of
information mining, pattern discovery, and drawing inferences from data.

At the most general level, supervised machine learning methods adopt a Bayesian
approach to knowledge discovery, using probabilities of previously observed events
to infer the probabilities of new events. Unsupervised methods draw abstractions
from unlabeled datasets and apply these to new data. Both families of methods can be
applied to problems of classification (assigning observations to categories) or regres-
sion (predicting numerical properties of an observation).

Suppose that we want to classify a group of animals into mammals and reptiles. With
a supervised method, we will have a set of animals for which we are definitively told
their category (e.g., we are told that the dog and elephant are mammals and the alli-
gator and iguana are reptiles). We then try to extract some features from each of these
labeled data points and find similarities in their properties, allowing us to differenti-
ate animals of different classes. For instance, we see that the dog and the elephant
both give birth to live offspring, unlike the alligator and the iguana. The binary prop-
erty “gives birth to live offspring” is what we call a feature, a useful abstraction for
observed properties that allows us to perform comparisons between different obser-
vations. After extracting a set of features that might help differentiate mammals and
reptiles in the labeled data, we then can run a learning algorithm on the labeled data
and apply what the algorithm learned to new, unseen animals. When the algorithm is
presented with a meerkat, it now must classify it as either a mammal or a reptile.
Extracting the set of features from this new animal, the algorithm knows that the
meerkat does not lay eggs, has no scales, and is warm-blooded. Driven by prior obser-
vations, it makes a category prediction that the meerkat is a mammal, and it is exactly
right.

In the unsupervised case, the premise is similar, but the algorithm is not presented
with the initial set of labeled animals. Instead, the algorithm must group the different
sets of data points in a way that will result in a binary classification. Seeing that most
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animals that dont have scales do give birth to live offspring and are also warm-
blooded, and most animals that have scales lay eggs and are cold-blooded, the algo-
rithm can then derive the two categories from the provided set and make future
predictions in the same way as in the supervised case.

Machine learning algorithms are driven by mathematics and statistics, and the algo-
rithms that discover patterns, correlations, and anomalies in the data vary widely in
complexity. In the coming chapters, we go deeper into the mechanics of some of the
most common machine learning algorithms used in this book. This book will not
give you a complete understanding of machine learning, nor will it cover much of the
mathematics and theory in the subject. What it will give you is critical intuition in
machine learning and practical skills for designing and implementing intelligent,
adaptive systems in the context of security.

What Machine Learning Is Not

Artificial intelligence (Al) is a popular but loosely defined term that indicates algorith-
mic solutions to complex problems typically solved by humans. As illustrated in
Figure 1-2, machine learning is a core building block for AI. For example, self-driving
cars must classify observed images as people, cars, trees, and so on; they must predict
the position and speed of other cars; they must determine how far to rotate the
wheels in order to make a turn. These classification and prediction problems are
solved using machine learning, and the self-driving system is a form of Al. There are
other parts of the self-driving AI decision engine that are hardcoded into rule
engines, and that would not be considered machine learning. Machine learning helps
us create Al, but is not the only way to achieve it.

Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 1-2. Artificial intelligence as it relates to machine learning and deep learning
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Deep learning is another popular term that is commonly conflated with machine
learning. Deep learning is a strict subset of machine learning referring to a specific
class of multilayered models that use layers of simpler statistical components to learn
representations of data. “Neural network” is a more general term for this type of lay-
ered statistical learning architecture that might or might not be “deep” (i.e., have
many layers). For an excellent discussion of this topic, see Deep Learning by lan
Goodfellow, Yoshua Bengio, and Aaron Courville (MIT Press).

Statistical analysis is a core part of machine learning: outputs of machine learning
algorithms are often presented in terms of probabilities and confidence intervals. We
will touch on some statistical techniques in our discussion of anomaly detection, but
we will leave aside questions regarding experimentation and statistical hypothesis
testing. For an excellent discussion of this topic, see Probability ¢» Statistics for Engi-
neers ¢ Scientists by Ronald Walpole et al. (Prentice Hall).

What Is Al?

The definition of AI is a slightly more contentious topic than the definition of
machine learning. Machine learning refers to statistical learning algorithms that are
able to create generalizable abstractions (models) by seeing and dissecting a dataset.
Al systems have been loosely detfined to be machine-driven decision engines that can
achieve near-human-level intelligence. How near does this intelligence have to be to
human intelligence before we consider it to be AI? As you might imagine, differing
expectations and definitions of the term make it quite difficult to draw universally
agreeable boundaries around this.

Adversaries Using Machine Learning

Note that nothing prevents adversaries from taking advantage of machine learning to
avoid detection and evade defenses. As much as the defenders can learn from the
attacks and adjust their countermeasures accordingly, attackers can also learn the
nature of defenses to their own benefit. Spammers have been known to apply poly-
morphism (i.e., changing the appearance of content without changing its meaning) to
their payloads to circumvent detection, or to probe spam filters by performing A/B
tests on email content and learning what causes their click-through rates to rise and
fall. Both good guys and bad guys use machine learning in fuzzing campaigns to
speed up the process of finding vulnerabilities in software. Adversaries can even use
machine learning to learn about your personality and interests through social media
in order to craft the perfect phishing message for you.

Finally, the use of dynamic and adaptive methods in the area of security always con-
tains a certain degree of risk. Especially when explainability of machine learning pre-
dictions is often lacking, attackers have been known to cause various algorithms to
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make erroneous predictions or learn the wrong thing.* In this growing field of study
called adversarial machine learning, attackers with varying degrees of access to a
machine learning system can execute a range of attacks to achieve their ends. Chap-
ter 8 is dedicated to this topic, and paints a more complete picture of the problems
and solutions in this space.

Machine learning algorithms are often not designed with security in mind, and are
often vulnerable in the face of attempts made by a motivated adversary. Hence, it is
important to maintain an awareness of such threat models when designing and build-
ing machine learning systems for security purposes.

Real-World Uses of Machine Learning in Security

In this book, we explore a range of different computer security applications for which
machine learning has shown promising results. Applying machine learning and data
science to solve problems is not a straightforward task. Although convenient pro-
gramming libraries remove some complexity from the equation, developers still need
to make many decisions along the way.

By going through different examples in each chapter, we will explore the most com-
mon issues faced by practitioners when designing machine learning systems, whether
in security or otherwise. The applications described in this book are not new, and you
also can find the data science techniques we discuss at the core of many computer
systems that you might interact with on a daily basis.

We can classify machine learnings use cases in security into two broad categories:
pattern recognition and anomaly detection. The line differentiating pattern recognition
and anomaly detection is sometimes blurry, but each task has a clearly distinguished
goal. In pattern recognition, we try to discover explicit or latent characteristics hid-
den in the data. These characteristics, when distilled into feature sets, can be used to
teach an algorithm to recognize other forms of the data that exhibit the same set of
characteristics. Anomaly detection approaches knowledge discovery from the other
side of the same coin. Instead of learning specific patterns that exist within certain
subsets of the data, the goal is to establish a notion of normality that describes most
(say, more than 95%) of a given dataset. Thereafter, deviations from this normality of
any sort will be detected as anomalies.

It is common to erroneously think of anomaly detection as the process of recognizing
a set of normal patterns and differentiating it from a set of abnormal patterns. Pat-
terns extracted through pattern recognition must be strictly derived from the
observed data used to train the algorithm. On the other hand, in anomaly detection

4 Ling Huang et al., "Adversarial Machine Learning,” Proceedings of the 4th ACM Workshop on Artificial Intelli-
gence and Security (2011): 43-58.
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there can be an infinite number of anomalous patterns that fit the bill of an outlier,
even those derived from hypothetical data that do not exist in the training or testing
datasets.

Spam detection is perhaps the classic example of pattern recognition because spam
typically has a largely predictable set of characteristics, and an algorithm can be
trained to recognize those characteristics as a pattern by which to classify emails. Yet
it is also possible to think of spam detection as an anomaly detection problem. If it is
possible to derive a set of features that describes normal traffic well enough to treat
significant deviations from this normality as spam, we have succeeded. In actuality,
however, spam detection might not be suitable for the anomaly detection paradigm,
because it is not difficult to convince yourself that it is in most contexts easier to find
similarities between spam messages than within the broad set of normal traffic.

Malware detection and botnet detection are other applications that fall clearly in the
category of pattern recognition, where machine learning becomes especially useful
when the attackers employ polymorphism to avoid detection. Fuzzing is the process
of throwing arbitrary inputs at a piece of software to force the application into an
unintended state, most commonly to force a program to crash or be put into a vul-
nerable mode for further exploitation. Naive fuzzing campaigns often run into the
problem of having to iterate over an intractably large application state space. The
most widely used fuzzing software has optimizations that make fuzzing much more
efficient than blind iteration. Machine learning has also been used in such optimiza-
tions, by learning patterns of previously found vulnerabilities in similar programs
and guiding the fuzzer to similarly vulnerable code paths or idioms for potentially
quicker results.

For user authentication and behavior analysis, the delineation between pattern recog-
nition and anomaly detection becomes less clear. For cases in which the threat model
is clearly known, it might be more suitable to approach the problem through the lens
of pattern recognition. In other cases, anomaly detection can be the answer. In many
cases, a system might make use of both approaches to achieve better coverage. Net-
work outlier detection is a classic example of anomaly detection because most net-
work traffic follows strict protocols and normal behavior matches a set of patterns in
form or sequence. Any malicious network activity that does not manage to masquer-
ade well by mimicking normal traffic will be caught by outlier detection algorithms.
Other network-related detection problems, such as malicious URL detection, can also
be approached from the angle of anomaly detection.

Access control refers to any set of policies governing the ability of system users to
access certain pieces of information. Frequently used to protect sensitive information
from unnecessary exposure, access control policies are often the first line of defense
against breaches and information theft. Machine learning has gradually found its way
into access control solutions because of the pains experienced by system users at the
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mercy of rigid and unforgiving access control policies.” Through a combination of
unsupervised learning and anomaly detection, such systems can infer information
access patterns for certain users or roles in an organization and engage in retaliatory
action when an unconventional pattern is detected.

Imagine, for example, a hospitals patient record storage system, where nurses and
medical technicians frequently need to access individual patient data but don’t neces-
sarily need to do cross-patient correlations. Doctors, on the other hand, frequently
query and aggregate the medical records of multiple patients to look for case similari-
ties and diagnostic histories. We don't necessarily want to prevent nurses and medical
technicians from querying multiple patient records because there might be rare cases
that warrant such actions. A strict rule-based access control system would not be able
to provide the flexibility and adaptability that machine learning systems can provide.

In the rest of this book, we dive deeper into a selection of these real-world applica-
tions. We then will be able to discuss the nuances around applying machine learning
for pattern recognition and anomaly detection in security. In the remainder of this
chapter, we focus on the example of spam fighting as one that illustrates the core
principles used in any application of machine learning to security.

Spam Fighting: An Iterative Approach

As discussed earlier, the example of spam fighting is both one of the oldest problems
in computer security and one that has been successfully attacked with machine learn-
ing. In this section, we dive deep into this topic and show how to gradually build up a
sophisticated spam classification system using machine learning. The approach we
take here will generalize to many other types of security problems, including but not
limited to those discussed in later chapters of this book.

Consider a scenario in which you are asked to solve the problem of rampant email
spam affecting employees in an organization. For whatever reason, you are instructed
to develop a custom solution instead of using commercial options. Provided with
administrator access to the private email servers, you are able to extract a body of
emails for analysis. All the emails are properly tagged by recipients as either “spam”
or “ham” (non-spam), so you don't need to spend too much time cleaning the data.®

Human beings do a good job at recognizing spam, so you begin by implementing a
simple solution that approximates a persons thought process while executing this
task. Your theory is that the presence or absence of some prominent keywords in an

5 Evan Martin and Tao Xie, “Inferring Access-Control Policy Properties via Machine Learning,” Proceedings of
the 7th IEEE International Workshop on Policies for Distributed Systems and Networks (2006): 235-238.

6 In real life, you will spend a large proportion of your time cleaning the data in order to make it available to
and useful for your algorithms.
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email is a strong binary indicator of whether the email is spam or ham. For instance,
you notice that the word “lottery” appears in the spam data a lot, but seldom appears
in regular emails. Perhaps you could come up with a list of similar words and per-
form the classification by checking whether a piece of email contains any words that
belong to this blacklist.

The dataset that we will use to explore this problem is the 2007 TREC Public Spam
Corpus. This is a lightly cleaned raw email message corpus containing 75,419 mes-
sages collected from an email server over a three-month period in 2007. One-third of
the dataset is made up of spam examples, and the rest is ham. This dataset was cre-
ated by the Text REtrieval Conference (TREC) Spam Track in 2007, as part of an
effort to push the boundaries of state-of-the-art spam detection.

For evaluating how well different approaches work, we will go through a simple vali-
dation process.” We split the dataset into nonoverlapping training and test sets, in
which the training set consists of 70% of the data (an arbitrarily chosen proportion)
and the test set consists of the remaining 30%. This method is standard practice for
assessing how well an algorithm or model developed on the basis of the training set
will generalize to an independent dataset.

The first step is to use the Natural Language Toolkit (NLTK) to remove morphologi-
cal affixes from words for more flexible matching (a process called stemming). For
instance, this would reduce the words “congratulations” and “congrats” to the same
stem word, “congrat.” We also remove stopwords (e.g., “the,” “is,” and “are,’) before the
token extraction process, because they typically do not contain much meaning. We
define a set of functions® to help with loading and preprocessing the data and labels,

as demonstrated in the following code:’

import string
import email
import nltk

punctuations = list(string.punctuation)
stopwords = set(nltk.corpus.stopwords.words( ' 'english'))

This validation process, sometimes referred to as conventional validation, is not as rigorous a validation
method as cross-validation, which refers to a class of methods that repeatedly generate all (or many) different

|

possible splits of the dataset (into training and testing sets), performing validation of the machine learning
prediction algorithm separately on each of these. The result of cross-validation is the average prediction accu-
racy across these different splits. Cross-validation estimates model accuracy better than conventional valida-
tion because it avoids the pitfall of information loss from a single train/test split that might not adequately
capture the statistical properties of the data (this is typically not a concern if the training set is sufficiently
large). Here we chose to use conventional validation for simplicity.

8 These helper functions are defined in the file chapter1/email_read_util.py in our code repository.

9 To run this code, you need to install the Punkt Tokenizer Models and the stopwords corpus in NLTK using
the nltk.download() utility.
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stemmer = nltk.PorterStemmer()

# Combine the different parts of the email into a flat list of strings
def flatten_to string(parts):

ret = []
if type(parts) == str:
ret.append(parts)
elif type(parts) == list:
for part in parts:
ret += flatten_to_string(part)
elif parts.get_content_type == 'text/plain’:
ret += parts.get payload()
return ret

# Extract subject and body text from a single email file
def extract email text(path):

# lLload a single email from an input file
with open(path, errors='ignore') as f:
msg = email.message from file(f)
if not msqg:
return ""
# Read the email subject
subject = msg[ 'Subject']
if not subject:
subject = ""

# Read the email body
body = ' ".join(m for m in flatten_to_string(msg.get_payload())
if type(m) == str)
1f not body:
body = ""

return subject + + body

# Process a single email file into stemmed tokens
def load(path):

email_text = extract email text(path)
if not email text:
return []

# Tokenize the message
tokens = nltk.word_tokenize(email text)

# Remove punctuation from tokens
tokens = [i.strip("".joiln(punctuations)) for i1 in tokens
if 1 not in punctuations]

# Remove stopwords and stem tokens
1f len(tokens) > 2:

return [stemmer.stem(w) for w in tokens i1f w not in stopwords]
return []

16
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Next, we proceed with loading the emails and labels. This dataset provides each email
in its own individual file (inmail. 1, inmail.2, inmail.3, ...), along with a single label file
(full/index) in the following format:

spam ../data/inmail.1
ham ../data/inmail.?2
spam  ../data/inmail.3

Each line in the label file contains the “spam” or *ham” label for each email sample in
the dataset. Let’s read the dataset and build a blacklist of spam words now:'’

import os

DATA DIR = 'datasets/trecO7p/data/’
LABELS FILE = 'datasets/trec@7p/full/index’
TRAINING SET RATIO = 0.7

labels = {}

spam_words = set()
ham_words = set()

# Read the labels
with open(LABELS FILE) as f:
for Lline in f:
line = line.strip()
Label, key = line.split()
labels[key.split('/")[-1]] = 1 i1f label.lower() == 'ham' else 0

# Split corpus into training and test sets

filelist = os.listdir(DATA _DIR)

X train = filelist[:int(len(filelist)*TRAINING SET RATIO)]
X_test = filelist[int(len(filelist)*TRAINING_SET_RATIO):]

for filename in X_train:
path = os.path.join(DATA_DIR, filename)
if filename in labels:
label = labels[filename]
stems = load(path)
if not stems:
continue
if label == 1:
ham_words.update(stems)
elif label == 0:
spam_words.update(stems)
else:
continue

10 This example can be found in the Python Jupyter notebook chapteri/spam-fighting-blacklist.ipynb in our code
repository.
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blacklist = spam words - ham words

Upon inspection of the tokens in blacklist, you might feel that many of the words
are nonsensical (e.g., Unicode, URLs, filenames, symbols, foreign words). You can
remedy this problem with a more thorough data-cleaning process, but these simple
results should perform adequately for the purposes of this experiment:

greenback, gonorrhea, lecher, ...

Evaluating our methodology on the 22,626 emails in the testing set, we realize that
this simplistic algorithm does not do as well as we had hoped. We report the results in
a confusion matrix, a 2 x 2 matrix that gives the number of examples with given pre-
dicted and actual labels tor each of the four possible pairs:

Predicted HAM Predicted SPAM

Actual HAM 6,772 714
Actual SPAM 5,835 7,543

True positive: predicted spam + actual ham
True negative: predicted ham + actual ham
False positive: predicted spam + actual ham

False negative: predicted ham + actual spam

Converting this to percentages, we get the following:

Predicted HAM Predicted SPAM

Actual HAM  32.5% 3.4%
Actual SPAM  28.0% 36.2%

(lassification accuracy: 68.7%

Ignoring the fact that 5.8% of emails were not classified because of preprocessing
errors, we see that the performance of this naive algorithm is actually quite fair. Our
spam blacklist technique has a 68.7% classification accuracy (i.e., total proportion of
correct labels). However, the blacklist doesn’t include many words that spam emails
use, because they are also frequently found in legitimate emails. It also seems like an
impossible task to maintain a constantly updated set of words that can cleanly divide
spam and ham. Maybe it’s time to go back to the drawing board.

Next, you remember reading that one of the popular ways that email providers fought
spam in the early days was to perform fuzzy hashing on spam messages and filter
emails that produced a similar hash. This is a type of collaborative filtering that relies
on the wisdom of other users on the platform to build up a collective intelligence that
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will hopefully generalize well and identify new incoming spam. The hypothesis is that
spammers use some automation in crafting spam, and hence produce spam messages
that are only slight variations of one another. A fuzzy hashing algorithm, or more
specifically, a locality-sensitive hash (LSH), can allow you to find approximate matches
of emails that have been marked as spam.

Upon doing some research, you come across datasketch, a comprehensive Python
package that has efficient implementations of the MinHash + LSH algorithm'' to per-
form string matching with sublinear query costs (with respect to the cardinality of the
spam set). MinHash converts string token sets to short signatures while preserving
qualities of the original input that enable similarity matching. LSH can then be
applied on MinHash signatures instead of raw tokens, greatly improving perfor-
mance. MinHash trades the performance gains for some loss in accuracy, so there will
be some false positives and false negatives in your result. However, performing naive
fuzzy string matching on every email message against the full set of n spam messages
in your training set incurs either O(n) query complexity (if you scan your corpus
each time) or O(n) memory (if you build a hash table of your corpus), and you decide
that you can deal with this trade-off:'>"

from datasketch import MinHash, MinHashLSH

# Extract only spam files for inserting into the LSH matcher
spam_files = [x for x in X_train if labels[x] == 0]

# Initialize MinHashLSH matcher with a Jaccard
# threshold of 0.5 and 128 MinHash permutation functions
lsh = MinHashLSH(threshold=0.5, num _perm=128)

# Populate the LSH matcher with training spam MinHashes
for idx, f in enumerate(spam_files):

minhash = MinHash(num perm=128)

stems = load(os.path.join(DATA_DIR, f))

1f len(stems) &lt; 2: continue

for s in stems:

11 See Chapter 3 in Mining of Massive Datasets, 2nd ed., by Jure Leskovec, Anand Rajaraman, and Jeffrey David
Ullman (Cambridge University Press).

12 This example can be found in the Python Jupyter notebook chapteri/spam-fighting-Ish.ipynb in our code
repository.

13 Note that we specified the MinHashLSH object’s threshold parameter as 0.5. This particular LSH implementa-
tion uses Jaccard similarities between the MinHashes in your collection and the query MinHash, returning
the list of objects that satisfy the threshold condition (i.e., Jaccard similarity score > 0.5). The MinHash algo-
rithm generates short and unique signatures for a string by passing random permutations of the string
through a hash function. Configuring the num_perm parameter to 128 means that 128 random permutations of
the string were computed and passed through the hash function. In general, the more random permutations
used in the algorithm, the higher the accuracy of the hash.
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minhash.update(s.encode( 'utf-8'))
lsh.insert(f, minhash)

Now it’s time to have the LSH matcher predict labels for the test set:

def 1sh predict label(stems):
Queries the LSH matcher and returns:
@ if predicted spam
1 if predicted ham
-1 if parsing error
minhash = MinHash(num perm=128)
1f len(stems) < 2:
return -1
for s in stems:
minhash.update(s.encode('utf-8"))
matches = lsh.query(minhash)
if matches:
return ©
else:
return 1

Inspecting the results, you see the following:

Predicted HAM Predicted SPAM

Actual HAM 7,350 136
Actual SPAM 2,241 11,038

Converting this to percentages, you get:

Predicted HAM Predicted SPAM
Actual HAM  35.4% 0.7%

Actual SPAM  10.8% 53.2%

(lassification accuracy: 88.6%

That’s approximately 20% better than the previous naive blacklisting approach, and
significantly better with respect to false positives (i.e., predicted spam + actual ham).
However, these results are still not quite in the same league as modern spam filters.
Digging into the data, you realize that it might not be an issue with the algorithm, but
with the nature of the data you have—the spam in your dataset just doesn’t seem all
that repetitive. Email providers are in a much better position to make use of collabo-
rative spam filtering because of the volume and diversity of messages that they see.
Unless a spammer were to target a large number of employees in your organization,
there would not be a significant amount of repetition in the spam corpus. You need to
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go beyond matching stem words and computing Jaccard similarities if you want a
breakthrough.

By this point, you are frustrated with experimentation and decide to do more
research before proceeding. You see that many others have obtained promising
results using a technique called Naive Bayes classification. After getting a decent
understanding of how the algorithm works, you begin to create a prototype solution.
Scikit-learn provides a surprisingly simple class, sklearn.naive_bayes.Multino

mialNB, that you can use to generate quick results for this experiment. You can reuse
a lot of the earlier code for parsing the email files and preprocessing the labels. How-
ever, you decide to try passing in the entire email subject and plain text body (separa-
ted by a new line) without doing any stopword removal or stemming with NLTK. You
define a small function to read all the email files into this text form:'*"

def read _email files():

X =[]

y =[]

for 1 in xrange(len(labels)):
filename = "inmail.' + str(i+1)
emall str = extract _email text(os.path.join(DATA DIR, filename))
X.append(email_str)
y.append(labels[filename])

return X, y

Then you use the utility function sklearn.model_selection.train_test_split()
to randomly split the dataset into training and testing subsets (the argument ran
dom_state=123 is passed in for the sake of result reproducibility):

from sklearn.model_selection import train_test split
X, v = read _email_files()

X train, X test, y train, y test, idx _train, idx_test =\
train_test split(X, y, range(len(y)),
train_size=TRAINING_SET_RATIO, random_state=2)
Now that you have prepared the raw data, you need to do some further processing of
the tokens to convert each email to a vector representation that MultinomialNB
accepts as input.

One of the simplest ways to convert a body of text into a feature vector is to use the
bag-of-words representation, which goes through the entire corpus of documents and
generates a vocabulary of tokens used throughout the corpus. Every word in the

14 This example can be found in the Python Jupyter notebook chapterl/spam-fighting-naivebayes.ipynb in our
code repository.

15 It is a loose convention in machine learning code to choose lowercase variable names for single columns of
values and uppercase variable names for multiple columns of values.
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vocabulary comprises a feature, and each feature value is the count of how many
times the word appears in the corpus. For example, consider a hypothetical scenario
in which you have only three messages in the entire corpus:

tokenized messages: {
'A': ['hello', 'mr', 'bear'],
'B': ['hello', 'hello', 'gunter'],
'C': ['goodbye', 'mr', 'gunter']

# Bag-of-words feature vector column labels:
# ['hello', 'mr', 'doggy', 'bear', 'gunter', 'goodbye']
vectorized messages: {
'A': [1,1,0,1,0,0],
'B': [2,0,0,0,1,0],
'c': [0,1,0,0,1,1]
}

Even though this process discards seemingly important information like the order of
words, content structure, and word similarities, it is very simple to implement using
the sklearn.feature extraction.CountVectorizer class:

from sklearn.feature extraction.text import CountVectorizer

vectorizer = CountVectorizer()
X_train_vector = vectorizer.fit_transform(X_train)
X test vector = vectorizer.transform(X test)

Il

You can also try using the term frequency/inverse document frequency (TF/IDF) vec-
torizer instead of raw counts. TF/IDF normalizes raw word counts and is in general a
better indicator of a word’s statistical importance in the text. It is provided as
sklearn.feature extraction.text.TfidfVectorizer.

Now you can train and test your multinomial Naive Bayes classifier:

from sklearn.naive bayes import MultinomialNB
from sklearn.metrics import accuracy_score

# Initialize the classifier and make label predictions
mnb = MultinomialNB()

mnb.fit(X_train_vector, y train)

y_pred = mnb.predict(X_test_vector)

# Print results
print('Accuracy {:.3f}'.format(accuracy_score(y_test, y_pred)))

> Accuracy: 0.956
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An accuracy of 95.6%—a whole 7% better than the LSH approach!'® That's not a bad
result for a few lines of code, and it’s in the ballpark of what modern spam filters can
do. Some state-of-the-art spam filters are in fact actually driven by some variant of
Naive Bayes classification. In machine learning, combining multiple independent
classifiers and algorithms into an ensemble (also known as stacked generalization or
stacking) is a common way of taking advantage of each method’s strengths. So, you
can imagine how a combination of word blacklists, fuzzy hash matching, and a Naive
Bayes model can help to improve this result.

Alas, spam detection in the real world is not as simple as we have made it out to be in
this example. There are many different types of spam, each with a different attack vec-
tor and method of avoiding detection. For instance, some spam messages rely heavily
on tempting the reader to click links. The email's content body thus might not con-
tain as much incriminating text as other kinds of spam. This kind of spam then might
try to circumvent link-spam detection classifiers using complex methods like cloak-
ing and redirection chains. Other kinds of spam might just rely on images and not
rely on text at all.

For now, you are happy with your progress and decide to deploy this solution. As is
always the case when dealing with human adversaries, the spammers will eventually
realize that their emails are no longer getting through and might act to avoid detec-
tion. This response is nothing out of the ordinary for problems in security. You must
constantly improve your detection algorithms and classifiers and stay one step ahead
of your adversaries.

In the following chapters, we explore how machine learning methods can help you
avoid having to be constantly engaged in this whack-a-mole game with attackers, and
how you can create a more adaptive solution to minimize constant manual tweaking.

Limitations of Machine Learning in Security

The notion that machine learning methods will always give good results across differ-
ent use cases is categorically false. In real-world scenarios there are usually factors to
optimize for other than precision, recall, or accuracy.

As an example, explainability of classification results can be more important in some
applications than others. It can be considerably more difficult to extract the reasons
for a decision made by a machine learning system compared to a simple rule. Some

16 In general, using only accuracy to measure model prediction performance is crude and incomprehensive.
Model evaluation is an important topic that we discuss further in Chapter 2. Here we opt for simplicity and

use accuracy as an approximate measure of performance. The sklearn.metrics.classification_report()

method provides the precision, recall, f;-score, and support for each class, which can be used in combination to
get a more accurate picture of how the model performs.
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machine learning systems might also be significantly more resource intensive than
other alternatives, which can be a dealbreaker for execution in constrained environ-
ments such as embedded systems.

There is no silver bullet machine learning algorithm that works well across all prob-
lem spaces. Different algorithms vary vastly in their suitability for different applica-
tions and different datasets. Although machine learning methods contribute to the
notion of artificial intelligence, their capabilities can still only be compared to human
intelligence along certain dimensions.

The human decision-making process is informed by a vast body of context drawn
from cultural and experiential knowledge. This process is very difficult for machine
learning systems to emulate. Take the initial blacklisted-words approach that we used
for spam filtering as an example. When a person evaluates the content of an email to
determine if it's ham or spam, the decision-making process is never as simple as look-
ing for the existence of certain words. The context in which a blacklisted word is
being used can result in it being a reasonable inclusion in non-spam email. Also,
spammers might use synonyms of blacklisted words in future emails to convey the
same meaning, but a simplistic blacklist would not adapt appropriately. The system
simply doesn't have the context that a human has—it does not know what relevance a
particular word bears to the reader. Continually updating the blacklist with new sus-
picious words is a laborious process, and in no way guarantees perfect coverage.

Even though your machine-learned model may work perfectly on a training set, you
might find that it performs badly on a testing set. A common reason for this problem
is that the model has overfit its classification boundaries to the training data, learning
characteristics of the dataset that do not generalize well across other unseen datasets.
For instance, your spam filter might learn from a training set that all emails contain-
ing the words “inheritance” and “Nigeria” can immediately be given a high suspicion
score, but it does not know about the legitimate email chain discussion between
employees about estate inheritances in Nigerian agricultural insurance schemes.

With all these limitations in mind, we should approach machine learning with equal
parts of enthusiasm and caution, remembering that not everything can instantly be
made better with Al
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CHAPTER 2
Classifying and Clustering

In this chapter, we discuss the most useful machine learning techniques for security
applications. After covering some of the basic principles of machine learning, we
offer up a toolbox of machine learning algorithms that you can choose from when
approaching any given security problem. We have tried to include enough detail
about each technique so that you can know when and how to use it, but we do not
attempt to cover all the nuances and complexities of the algorithms.

This chapter has more mathematical detail than the rest of the book; if you want to
skip the details and begin trying out the techniques, we recommend you read the sec-
tions “Machine Learning in Practice: A Worked Example” on page 27 and “Practical
Considerations in Classification” on page 55 and then look at a few of the most popu-
lar supervised and unsupervised algorithms: logistic regression, decision trees and
forests, and k-means clustering,

Machine Learning: Problems and Approaches

Suppose that you are in charge of computer security for your company. You install
firewalls, hold phishing training, ensure secure coding practices, and much more. But
at the end of the day, all your CEO cares about is that you don't have a breach. So, you
take it upon yourself to build systems that can detect and block malicious traffic to
any attack surface. Ultimately, these systems must decide the following:

« For every file sent through the network, does it contain malware?
« For every login attempt, has someone’s password been compromised?
o For every email received, is it a phishing attempt?

« For every request to your servers, is it a denial-of-service (DoS) attack?
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« For every outbound request from your network, is it a bot calling its command-
and-control server?

These tasks are all classification tasks—binary decisions about the nature of the
observed event.

Your job can thus be rephrased as follows:
Classify all events in your network as malicious or legitimate.

When phrased in this manner, the task seems almost hopeless; how are you supposed
to classify all traffic? But not to fear! You have a secret weapon: data.

Specifically, you have historical logs of binary files, login attempts, emails received,
and inbound and outbound requests. In some cases, you might even know of attacks
in the past and be able to associate these attacks with the corresponding events in
your logs. Now, to begin solving your problem, you look for patterns in the past data
that seem to indicate malicious attacks. For example, you observe that when a single
[P address is making more than 20 requests per second to your servers over a period
of 5 minutes, it's probably a DoS attack. (Maybe your servers went down under such a
load in the past.)

After you have found patterns in the data, the next step is to encode these patterns as
an algorithm—that is, a function that takes as input data about whatever you're trying
to classify and outputs a binary response: “malicious” or “legitimate.” In our example,
this algorithm would be very simple:' it takes as input the number of requests from an
[P address over the 5 minutes prior to the request, and outputs “legitimate” if the
number is less than 6,000 and "malicious™ if it is greater than 6,000.

At this point, you have learned from the data and created an algorithm to block bad
traffic. Congratulations! But there should be something nagging at you: what'’s special
about the number 20? Why isn't the limit 19 or 21?7 Or 19.77? Ideally you should have
some principled way of determining which one of these options, or in fact which real
number, is best. And if you use an algorithm to scan historical data and find the best
classification rule according to some mathematical definition of “best,” this process is
called machine learning.

More generally, machine learning is the process of using historical data to create a
prediction algorithm for future data. The task we just considered was one of classifi-
cation: determine which class a new data point (the request) falls into. Classification
can be binary, as we just saw, in which there are only two classes, or multiclass; for
example, if you want to determine whether a piece of malware is ransomware, a key-
logger, or a remote access trojan.

1 Simple algorithms like this one are usually called “rules.”
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Machine learning can also be used to solve regression problems, in which we try to
predict the value of a real-number variable. For example, you might want to predict
the number of phishing emails an employee receives in a given month, given data
about their position, access privileges, tenure in the company, security hygiene score,
and so on. Regression problems for which the inputs have a time dimension are
sometimes called time series analysis; for example, predicting the value of a stock
tomorrow given its past performance, or the number of account sign-ins from the
Seattle office given a known history. Anomaly detection is a layer on top of regression:
it refers to the problem of determining when an observed value is sufficiently differ-
ent from a predicted value to indicate that something unusual is going on.

Machine learning is also used to solve clustering problems: given a bunch of data
points, which ones are similar to one another? For example, if you are trying to ana-
lyze a large dataset of internet traffic to your site, you might want to know which
requests group together. Some clusters might be botnets, some might be mobile pro-
viders, and some might be legitimate users.

Machine learning can be supervised, in which case you have labels on historical data
and you are trying to predict labels on future data. For example, given a large corpus
of emails labeled as spam or ham, you can train a spam classifier that tries to predict
whether a new incoming message is spam. Alternatively, machine learning can be
unsupervised, in which case you have no labels on the historical data; you might not
even know what the labels are that you're trying to predict, for example if you have an
unknown number of botnets attacking your network that you want to disambiguate
from one another. Classification and regression tasks are examples of supervised
learning, and clustering is a typical form of unsupervised learning.

Machine Learning in Practice: A Worked Example

As we said earlier, machine learning is the process of using historical data to come up
with a prediction algorithm for previously unseen data. Let’s examine how this pro-
cess works, using a simple dataset as an example. The dataset that we are using is
transaction data for online purchases collected from an ecommerce retailer.* The
dataset contains 39,221 transactions, each comprising 5 properties that can be used to
describe the transaction, as well as a binary “label” indicating whether this transac-
tion is an instance of fraud—"1" if fraudulent, and “0” if not. The comma-separated
values (CSV) format that this data is in is a standard way of representing data for ana-
lytics. Observing that the first row in the file indicates the names for each positional
value in each subsequent line, let’s consider what each value means by examining a
randomly selected row of data:

2 You can find the dataset in chapter2/datasets/payment_fraud.csv in our code repository.
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accountAgeDays,numItems, localTime,paymentMethod,paymentMethodAgeDays, label

196, 1, 4.962055, creditcard, 5.10625, 0

Putting this in a more human-readable form:

accountAgeDays: 196
numItems: 1
localTime: 4.962055
paymentMethod: creditcard
paymentMethodAgeDays: 5.10625
label: 0

We see that this transaction was made through a user account that was created 196
days ago (accountAgeDays), and that the user purchased 1 item (numItems) at around
4:58 AM in the consumer’s local time (localTime). Payment was made through credit
card (paymentMethod), and this method of payment was added about 5 days before
the transaction (paymentMethodAgeDays). The label is 0, which indicates that this
transaction is not fraudulent.

Now, you might ask how we came to learn that a certain transaction was fraudulent.
If someone made an unauthorized transaction using your credit card, assuming that
you were vigilant, you would file a chargeback for this transaction, indicating that the
transaction was not made by you and you want to get your money back. Similar pro-
cesses exist for payments made through other payment methods, such as PayPal or
store credit. The chargeback is a strong and clear indication that the transaction is
fraudulent, allowing us to collect data about fraudulent transactions.

However, the reason we cant use chargeback data in real time is that merchants
receive chargeback details many months after the transaction has gone through—
after they have shipped the items out to the attackers, never to be seen again. Typi-
cally, the retailer absorbs all losses in situations like this, which could translate to
potentially enormous losses in revenue. This financial loss could be mitigated if we
had a way to predict how likely a transaction is to be fraudulent before we ship the
items out. Now, we could examine the data and come up with some rules, such as “If
the payment method was added in the last day and the number of items is at least 10,
the transaction is fraudulent.” But such a rule might have too many false positives.
How can we use data to find the best prediction algorithm? This is what machine
learning does.

Each property of a transaction is called a feature in machine learning parlance. What
we want to achieve is to have a machine learning algorithm learn how to identify a
fraudulent transaction from the five features in our dataset. Because the dataset con-
tains a label for what we are aiming to predict, we call this a “labeled dataset” and can
perform supervised learning on it. (If there had been no label, we could only have
performed semi-supervised learning or unsupervised learning.) The ideal fraud
detection system will take in features of a transaction and return a probability score
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for how likely this transaction is to be fraudulent. Let’s see how we can create a proto-
type system by using machine learning.

Similar to how we approached the spam classification problem in Chapter 1, we'll
take advantage of the functionality in the Python machine learning library scikit-
learn. In addition, we'll use Pandas, a popular data analysis library for Python, to per-
form some lightweight data wrangling. First, we'll use the pandas.read_csv() utility
to read the dataset in the CSV file:

import pandas as pd

df = pd.read csv('chl/payment fraud.csv')

Notice that the result of read csv() is stored into the variable df, short for Data-
Frame. A DataFrame is a Pandas data structure that represents datasets in a two-
dimensional table-like form, allowing for operations to be applied on rows or
columns. DataFrame objects allow you to perform a plethora of manipulations on the
data, but we will not dive into the specifics here.” Let’s use the DataFrame.sample()
function to retrieve a snippet of three rows from df:

df.sample(2)

accountAgeDays numitems localTime paymentMethod paymentMethodAgeDays label

31442 2000 1 4748314  storecredit 0.000000 0
27232 1 1 4886641  storecredit 0.000000 1
8687 878 1 4921349  paypal 0.000000 0

This command returns a tabular view of three random rows. The left column indi-
cates the numerical index of each selected row, and the top row indicates the name of
each column. Note that one column stands out because it is of non-numerical type:
paymentMethod. There are three possible values that this feature takes on in our data-
set: creditcard, paypal, and storecredit. This feature is called a categorical variable
because it takes on a value indicating the category it belongs to. Many machine learn-
ing algorithms require all features to be numeric.* We can use pandas.get_dummies()
to convert variables from categorical to numeric:’

3 For more information on Pandas DataFrames, see the documentation.

4 This is not true for all machine learning algorithms. For example, decision trees do not require any or all fea-
tures to be numeric. The advantage of expressing features in numeric terms is that each data point can be
expressed as a vector in a real vector space, and we can apply all the techniques of linear algebra and multi-
variable calculus to the problem.

5 Typically, we'll set the pd.get_dummies() argument drop_first to True to avoid the so-called "dummy vari-
able trap,” in which independent variables being closely correlated violates assumptions of independence in
regression. We chose to keep things simple to avoid confusion, but elaborate on this problem in Chapter 5.
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df = pd.get_dummies(df, columns=['paymentMethod'])

Upon inspection of the new DataFrame object, we notice that three new columns
have been added to the table—paymentMethod creditcard, paymentMethod paypal,
and paymentMethod storecredit:

df.sample(3)

accountAgeDays ... paymentMethod_creditcard paymentMethod paypal paymentMethod_storecredit
23393 57 v 1 0 0
3355 1,366 .. 0 1 0
34248 19 e 1 0 0

Each of these features is a binary feature (i.e., they take on a value of either 0 or 1),
and each row has exactly one of these features set to 1, hence the name of this method
of categorical variable encoding: one-hot encoding. These variables are called dummy
variables in statistics terminology.

Now, we can divide the dataset into training and test sets (as we did in Chapter 1):

from sklearn.model selection import train test split

X _train, X test, y train, y test = train_test split(
df.drop( ' Label', axis=1), df['label'],
test size=0.33, random_state=17)

The sklearn.model_selection.train_test_split() function helps us split our
dataset into training and test sets. Notice that in the first argument to the function, we

passed in df .drop( 'label', axis=1). This will be split into X_train and X_test to
the ratio of 0.67:0.33 because we passed in test_size=0.33, which means that we
want two-thirds of the dataset to be used for training the machine learning algorithm,
and the remaining third, the test set, to be used to see how well the algorithm per-
forms. We are dropping the label column from X before splitting it into X_train and
X_test, and passing in the label column as y—df[ 'label']. The labels will then be
split in the same ratio into y_trainand y_test.

Now let’s apply a standard supervised learning algorithm, logistic regression, to this
data:

from sklearn.linear_model import LogisticRegression

clf = LogisticRegression()

clf.fit(X_train, y train)
In the first line, we import the sklearn.linear_model.LogisticRegression class.
Then, in the second line, we initialize the LogisticRegression object by invoking the
constructor. In the third line, we feed X_train and y_train (i.e., the training set) into
the fit() function, resulting in a trained classifier model, which is stored in the c1f
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object. This classifier has taken the training data and used logistic regression (which
we elaborate on further in the next section) to distill some generalizations about frau-
dulent and nonfraudulent transactions into a model.

To make predictions using this model, all we need to do now is to pass some unla-
beled features into this classifier object’s predict() function:

y_pred = clf.predict(X_test)

Inspecting y_pred, we can see the label predictions made for each row in X_test.
Note that at training time the classifier did not have any access to y_test at all; the
predictions made, contained in y_pred, are thus purely a result of the generalizations

learned from the training set. We use the sklearn.metrics.accuracy_score() func-
tion (that we also used in Chapter 1) to get a feel of how good these predictions are:

from sklearn.metrics import accuracy score
print(accuracy score(y pred, y test))

> 0.99992273816

A 99.992% accuracy is pretty good! However, we discussed in Chapter 1 that the
accuracy score can often be a misleading oversimplification and is quite a bad metric
for evaluating results like this. Let’s generate a confusion matrix, instead:

from sklearn.metrics import confusion_matrix

print(confusion matrix(y test, y pred))

Predicted NOT FRAUD Predicted FRAUD

Actual NOT FRAUD 12,753 0
Actual FRAUD 1 189

There appears to only be a single misclassification in the entire test set. 189 transac-
tions are correctly flagged as fraud, and there is 1 false negative in which the fraudu-
lent transaction was not detected. There are zero false positives.

As a recap, here is the entire piece of code that we used to train and test our logistic
regression payment fraud detection model:®

import pandas as pd

from sklearn.model selection import train test split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, confusion_matrix

6 You can find this example as a Python Jupyter notebook in our repo at chapter2/logistic-regression-fraud-
detection.ipynb.
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# Read in the data from the CSV file
df = pd.read csv('chl/payment fraud.csv')

# Convert categorical feature into dummy variables with one-hot encoding
df = pd.get dummies(df, columns=['paymentMethod'])

# Split dataset into training and test sets

X_train, X _test, y train, y _test = train_test split(
df .drop('label', axis=1), df['label’'],
test_size=0.33, random_state=17)

# Initialize and train classifier model
clf = LogisticRegression().fi1t(X_train, y_train)

# Make predictions on test set
y pred = clf.predict(X _test)

# Compare test set predictions with ground truth labels
print(accuracy score(y pred, y test))
print(confusion matrix(y_test, y pred))

We can apply this model to any given incoming transaction and get a probability
score for how likely this transaction is to be fraudulent:

clLf.predict proba(df real)

# Array that represents the probability of the transaction
# having a label of @ (in position @) or 1 (in position 1)
> [[ 9.99999994e-01 5.87025707e-09]]

Taking df_real to be a DataFrame that contains a single row representing an incom-
ing transaction received by the online retailer, the classifier predicts that this transac-
tion is 99.9999994% likely to not be fraudulent (remember that y = 0 means not
fraudulent).

You might have noticed that all the work of machine learning—i.e., the part where we
learn the prediction algorithm—has been abstracted out into the single scikit-learn
API call, LogisticRegression.fit(). So, what actually goes on in this black box that
allows this model to learn how to predict fraudulent transactions? We will now open
up the box and find out.

Training Algorithms to Learn

At its core, a machine learning algorithm takes in a fraining dataset and outputs a
model. The model is an algorithm that takes in new data points in the same form as
the training data and outputs a prediction. All machine learning algorithms are
defined by three interdependent components:
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« A model family, which describes the universe of models from which we can
choose

o A loss function, which allows us to quantitatively compare different models

« An optimization procedure, which allows us to choose the best model in the
family

Let’s now consider each of these components.

Model Families

Recall that we expressed our fraud dataset in terms of seven numerical features: four
features from the raw data and three from the one-hot encoding of the payment
method. We can thus think of each transaction as a point in a seven-dimensional real
vector space, and our goal is to divide up the space into areas of fraud and nonfraud
transactions. The “model” output by our machine learning algorithm is a description
of this division of the vector space.

In theory, the division of our vector space into fraud and nonfraud areas can be infin-
itely complex; in practice, most algorithms produce a decision boundary, which is a
surface in the vector space.” One side of the decision boundary consists of the points
labeled as fraud, and the other side consists of the points labeled as nonfraud. The
boundary can be as simple as a line (or hyperplane in higher dimensions) or as com-
plex as a union of nonlinear disconnected regions. Figure 2-1 presents some
examples.

>

Figure 2-1. Examples of two-dimensional spaces divided by a decision boundary

7 Technically, a differentiable, oriented surface.
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If we want to be more granular, instead of mapping each point in the vector space to
either “fraud” or "nonfraud,” we can map each point to a probability of fraud. In this
case our machine learning algorithm outputs a function that assigns each point in the
vector space a value between 0 and 1, to be interpreted in our example as the proba-
bility of fraud.

Any given machine learning algorithm restricts itself to finding a certain type of deci-
sion boundary or probability function that can be described by a finite number of
model parameters. The simplest decision boundary is a linear decision boundary—
that is, a hyperplane in the vector space. An oriented hyperplane H in an n-
dimensional vector space can be described by an n-dimensional vector 6 orthogonal
to the hyperplane, plus another vector f indicating how far the hyperplane is from
the origin:

H: 0-(x—B) =0

This description allows us to divide the vector space in two; to assign probabilities we
want to look at the distance of the point x from the hyperplane H. We can thus com-
pute a real-valued “score™

s(x)=0-(x-P)=0-x+b

where we have let b = — 0 - . Our model to compute the score can thus be described
by n + 1 model parameters: n parameters to describe the vector 6, and one “oftset”
parameter b. To turn the score into a classification, we simply choose a threshold
above which all scores indicate fraud, and below which all scores indicate nonfraud.

[f we want to map the real-valued score s(x) to a probability, we must apply a function
that maps the real numbers to the interval [0,1]. The standard function to apply is
known as the logistic function or sigmoid function,’® as illustrated in Figure 2-2. It is
formulated as:

1

hg(x) =

N
| +e 9%

8 The full background for why this particular function is selected as the hypothesis function for binary logistic
regression is slightly more involved, and we will not go into much more detail here. For further details, see
section 4.4 of The Elements of Statistical Learning, 2nd ed., by Trevor Hastie, Robert Tibshirani, and Jerome H.
Friedman (Springer).

34 | Chapter 2: Classifying and Clustering



1.0

0.8

0.6

0.4

0.2

0.0

I | | | |
-10 5 0 g 10

Figure 2-2. The sigmoid function

The output of the logistic function can be interpreted as a probability, allowing us to
define the likelihood of the dependent variable taking on a particular value given
some input feature vector x.

Loss Functions

Now that we have restricted our choice of prediction algorithms to a certain parame-
trized family, we must choose the best one for the given training data. How do we
know when we have found the best algorithm? We define the best algorithm to be one
that optimizes some quantity computed from the data. This quantity is called an
objective function. In the case of machine learning, the objective function is also
known as a cost function or loss function, because it measures the “cost” of wrong pre-
dictions or the “loss” associated with them.

Mathematically, a loss function is a function that maps a set of pairs of (predicted
label, truth label) to a real number. The goal of a machine learning algorithm is to find
the model parameters that produce predicted labels for the training set that minimize
the loss function.

In regression problems, for which the prediction algorithm outputs a real number
instead of a label, the standard loss function is the sum of squared errors. If y, is the

true value and y. is the predicted value, the loss function is as follows:
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We can use this loss function for classification problems as well, where y. is either 0

or 1, and . is the probability estimate output by the algorithm.

For logistic regression, we use negative log likelihood as the loss function. The likeli-
hood of a set of probability predictions {p,} for a given set of ground truth labels {y}

is defined to be the probability that these truth labels would have arisen if sampled
from a set of binomial distributions according to the probabilities {p }. Concretely, if

the truth label y, is 0, the likelihood of 0 is 1 — p.—the probability that 0 would have
been sampled from a binomial distribution with mean p.. If the truth label y; is 1, the
likelihood is p..

The likelihood of the entire set of predictions is the product of the individual likeli-
hoods:

L({p:ih i) = 1—:[ (1-p;)- Hlpz‘

The goal of logistic regression is to find parameters that produce probabilities {p}
that maximize the likelihood.

To make computations easier, and, in particular, because most optimization methods
require computing derivatives of the loss function, we take the negative log of the
likelihood. As maximizing the likelihood is equivalent to minimizing the negative log
likelihood, we call negative log likelihood the loss function:

t{pib i) = = 2((1 - y;) log (1 - p;) + y; log p)

Here we have used the fact that y, is always 0 or 1 to combine the two products into a
single term.

Optimization

The last step in the machine learning procedure is to search for the optimal set of
parameters that minimizes the loss function. To carry out this search we use an opti-
mization algorithm. There may be many different optimization algorithms available to
you when fitting your machine learning model.” Most scikit-learn estimators (e.g.,

9 A seminal book that defined the field of convex optimization (note that not all optimization problems we
speak of may be convex in nature) is Convex Optimization by Stephen P. Boyd and Lieven Vandenberghe
(Cambridge University Press).
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LogisticRegression) allow you to specify the numerical solver to use, but what are
the differences between the different options, and how do you go about selecting one?

The job of an optimization algorithm is to minimize (or maximize) an objective func-
tion. In the case of machine learning, the objective function is expressed in terms of
the model’s learnable parameters (6 and b in the previous example), and the goal is to
find the values of 8 and b that optimize the objective function.

Optimization algorithms mainly come in two different flavors:

First-order algorithms

These algorithms optimize the objective function using the first derivatives of the
function with respect to the learnable parameters. Gradient descent methods are
the most popular types of first-order optimization algorithms; we can use them
to find the inputs to a function that give the minimum (or maximum) value.
Computing the gradient of a function (i.e., the partial derivatives with respect to
each variable) allows us to determine the instantaneous direction that the param-
eters need to move in order to achieve a more optimal outcome.

Second-order algorithms
As the name suggests, these algorithms use the second derivatives to optimize the
objective function. Second-order algorithms will not fall victim to paths of slow
convergence. For example, second-order algorithms are good at detecting saddle
points, whereas first-order algorithms are likely to become stuck at these points.
However, second-order methods are often slower and more expensive to
compute.

First-order methods tend to be much more frequently used because of their relative
efficiency. Picking a suitable optimization algorithm depends on the size of the data-
set, the nature of the cost function, the type of learning problem, and speed/resource
requirements for the operation. In addition, some regularization techniques can also
have compatibility issues with certain types of optimizers. First-order algorithms
include the following:

o« LIBLINEAR" is the default solver for the linear estimators in scikit-learn. This
algorithm tends to not do well on larger datasets; as suggested by the scikit-learn
documentation, the Stochastic Average Gradient (SAG) or SAGA (improvement
to SAG) methods work better for large datasets."

10 Rong-En Fan et al,, “LIBLINEAR: A Library for Large Linear Classification,” Journal of Machine Learning
Research 9 (2008): 1871-1874.

11 Francis Bach, “Stochastic Optimization: Beyond Stochastic Gradients and Convexity.” INRIA - Ecole Normale
Supérieure, Paris, France. Joint tutorial with Suvrit Sra, MIT - NIPS - 2016.
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Different optimization algorithms deal with multiclass classification differently.
LIBLINEAR works only on binary classification. For it to work in a multiclass
scenario, it has to use the one-versus-rest scheme:; we discuss this scheme more
fully in Chapter 5.

Stochastic Gradient Descent (SGD) is a very simple and efficient algorithm for
optimization that performs a parameter update for each separate training exam-
ple. The stochastic nature of the gradient descent means that the algorithm is
more likely to discover new and possibly better local minima as compared to
standard gradient descent. However, it typically results in high-variance oscilla-
tions, which can result in a delay in convergence. This can be solved with a
decreasing learning rate (i.e., exponentially decrease the learning rate) that results
in smaller fluctuations as the algorithm approaches convergence.

The technique called momentum also helps accelerate SGD convergence by navi-
gating the optimization movement only in the relevant directions and softening
any movement in irrelevant directions, which stabilizes SGD.

Optimization algorithms such as AdaGrad, AdaDelta, and Adam (Adaptive
Moment Estimation) allow for separate and adaptive learning rates for each
parameter that solve some problems in the other simpler gradient descent algo-
rithms.

When your training dataset is large, you will need to use a distributed optimiza-
tion algorithm. One popular algorithm is the Alternating Direction Method of

Multipliers (ADMM)."?

Example: Gradient descent

To conclude this section, we go briefly into the details of gradient descent, a powertful
optimization algorithm that has been applied to many different machine learning
problems.

The standard algorithm for gradient descent is as follows:

l.

Select random starting parameters for the machine learning model. In the case of
a linear model, this means selecting a random normal vector € and offset S,
which results in a random hyperplane in n-dimensional space.

2. Compute the value of the gradient of the loss function for this model at the point

described by these parameters.

12 Stephen Boyd et al., “Distributed Optimization and Statistical Learning via the Alternating Direction Method
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3. Change the model parameters in the direction of greatest gradient decrease by a
certain small magnitude, typically referred to as the a or learning rate.

4. Iterate: repeat steps 2 and 3 until convergence or a satistactory optimization result
is attained.

Figure 2-3 illustrates the intermediate results of a gradient descent optimization pro-
cess of a linear regression. At zero iterations, observe that the regression line, formed
with the randomly chosen parameters, does not fit the dataset at all. As you can imag-
ine, the value of the sum-of-squares cost function is quite large at this point. At three
iterations, notice that the regression line has very quickly moved to a more sensible
position. Between 5 and 20 iterations the regression line slowly adjusts itself to more
optimal positions where the cost function is minimized. If performing any more iter-
ations doesn’t decrease the cost function significantly, we can say that the optimiza-
tion has converged, and we have the final learned parameters for the trained model.
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Figure 2-3. Regression line after a progressive number of iterations of gradient descent
optimization (0, 3, 5, and 20 iterations of gradient descent, shown at the upper left,
upper right, lower left, and lower right, respectively)

Which optimization algorithm?

As with many things in data science, no optimization algorithm is one-size-fits-all,
and there are no clear rules for which algorithm definitely performs better for certain

Training Algorithms to Learn | 39



types of problems. A certain amount of trial-and-error experimentation is often
needed to find an algorithm that suits your requirements and meets your needs.
There are many considerations other than convergence or speed that you should take
into account when selecting an optimizer. Starting with the default or the most sensi-
ble option and iterating when you see clues for improvements is generally a good
strategy.

Supervised Classification Algorithms

Now that we know how machine learning algorithms work in principle, we will
briefly describe some of the most popular supervised learning algorithms for classifi-
cation.

Logistic Regression

Although we discussed logistic regression in some detail earlier, we go over its key
properties here. Logistic regression takes as input numerical feature vectors and
attempts to predict the log odds" ot each data point occurring; we can convert the log
odds to probabilities by using the sigmoid function discussed earlier. In the log odds
space, the decision boundary is linear, so increasing the value of a feature monotoni-
cally increases or decreases (depending on the sign of the coefficient) the score out-
put by the model.

Why Not Linear Regression?

Linear regression, taught in every introductory statistics course, is a powerful tool for
predicting future outcomes based on past data. The algorithm takes data consisting of
input variables (expressed as vectors in a vector space) and a response variable (a real
number) and produces a “best fit” linear model that maps each point in the vector
space to its predicted response. Why can’t we use it to solve classification problems?
The issue is that linear regression predicts a real-valued variable, and in classification
we want to predict a categorical variable. If we try to map the two categories to 0 and 1
and perform linear regression, we end up with a line that maps input variables to
some output, as demonstrated in Figure 2-4. But what does this output mean? We
can't interpret it as a probability, because it can take values below 0 or above 1, as in
the figure. We could interpret it as a score and choose a threshold for the class bound-
ary, but while this approach works technically it does not produce a good classifier.
The reason is that the squared-error loss function used in linear regression does not
accurately reflect how far points are from the classification boundary: in the example

13 For an event X that occurs with probability p, the odds of X are p/(1 — p), and the log odds are log (p/(1 — p)).
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of Figure 2-4, the point at X = 1 has larger error than the points around X = 10, even
though this point will be farther from the classification boundary (e.g., X = 50).

1.2

1.0

02 04 06 0.8

0.2 0.0

0 20 40 60 80 100

Figure 2-4. Linear regression for classification

Logistic regression is one of the most popular algorithms in practice due to a number
of properties: it can be trained very efficiently and in a distributed manner, it scales
well to millions of features, it admits a concise description and fast scoring algorithm
(a simple dot product), and it is explainable—each features contribution to the final
score can be computed.

However, there are a few important things to be aware of when considering logistic
regression as a supervised learning technique:

o Logistic regression assumes linearity of features (independent variables) and log
odds, requiring that features are linearly related to the log odds. If this assumption
is broken the model will perform poorly.

 Features should have little to no multicollinearity;'* that is, independent variables
should be truly independent from one another.

« Logistic regression typically requires a larger sample size compared to other
machine learning algorithms like linear regression. Maximum likelihood esti-

14 This assumption is not exclusive to logistic regression. Most other machine learning algorithms also require
that features be uncorrelated.
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mates (used in logistic regression) are less powerful than ordinary least squares
(used in linear regression), which results in requiring more training samples to
achieve the same statistical learning power."”

Decision Trees

Decision trees are very versatile supervised learning models that have the important
property of being easy to interpret. A decision tree is, as its name suggests, a binary
tree data structure that is used to make a decision. Trees are a very intuitive way of
displaying and analyzing data and are popularly used even outside of the machine
learning field. With the ability to predict both categorical values (classification trees)
and real values (regression trees) as well as being able to take in numerical and cate-
gorical data without any normalization or dummy variable creation,' it'’s not difficult
to see why they are a popular choice for machine learning.

Let’s see how a typical (top-down) learning decision tree is constructed:

1. Starting at the root of the tree, the full dataset is split based on a binary condition
into two child subsets. For example, if the condition is "age > 18, all data points
for which this condition is true go to the left child and all data points for which
this condition is false go to the right child.

2. The child subsets are further recursively partitioned into smaller subsets based
on other conditions. Splitting conditions are automatically selected at each step
based on what condition best splits the set of items. There are a few common
metrics by which the quality of a split is measured:

Gini impurity
If samples in a subset were randomly labeled according to the distribution of
labels in the set, the proportion of samples incorrectly labeled would be the
Gini impurity. For example, if a subset were made up of 25% samples with
label 0 (and 75% with label 1), assigning label 0 to a random 25% of all sam-
ples (and label 1 to the rest) would give 37.5% incorrect labels: 75% of the

15 For performing logistic regression on smaller datasets, consider using exact logistic regression.

16 Note that as of late 2017, scikit-learn’s implementation of decision trees (sklearn. tree.DecisionTreeClassi
fier and other tree-based learners) does not properly handle categorical data. Categorical variables encoded
with integer labels (i.e., with sklearn.preprocessing.LabelEncoder and not sklearn.preprocessing.0OneHo
tEncoder or the pandas.get_dummies() function) will be incorrectly treated as numerical variables. Even
though a scikit-learn maintainer claimed that models like sklearn.tree.RandomForestClassifier tend to be
“very robust to categorical features abusively encoded as integer features in practice,), it is still highly recom-
mended that you convert categorical variables to dummy/one-hot variables before feeding them into sklearn
decision trees. There should be a new feature for tree-based learners to have support for categorical splits (up
to 64 categories per feature) in 2018.
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label-0 samples and 25% of the label-1 samples would be incorrect. A higher-
quality decision tree split would split the set into subsets cleanly separated by
their label, hence resulting in a lower Gini impurity; that is, the rate of mis-
classification would be low if most points in a set belong to the same class.

Variance reduction
Often used in regression trees, where the dependent variable is continuous.
Variance reduction is defined as the total reduction in a set’s variance as a
result of the split into two subsets. The best split at a node in a decision tree
would be the split that results in the greatest variance reduction.

Information gain
Information gain is a measure of the purity of the subsets resulting from a
split. It is calculated by subtracting the weighted sum of each decision tree
child node’s entropy from the parent node’s entropy. The smaller the entropy
of the children, the greater the information gain, hence the better the split.

3. There are a few different methods for determining when to stop splitting nodes:

« When all leaves of the tree are pure—that is, all leaf nodes each only contain
samples belonging to the same class—stop splitting.

« When a branch of the tree has reached a certain predefined maximum depth,
the branch stops being split.

« When either of the child nodes will contain fewer than the minimum number
of samples, the node will not be partitioned.

4. Ultimately the algorithm outputs a tree structure where each node represents a
binary decision, the children of each node represent the two possible outcomes
of that decision, and each leaf represents the classification of data points follow-
ing the path from the root to that leaf. (For impure leaves, the decision is deter-
mined by majority vote of the training data samples at that leaf.)

An important quality of decision trees is the relative ease of explaining classification
or regression results, since every prediction can be expressed in a series of Boolean
conditions that trace a path from the root of the tree to a leaf node. For example, if a
decision tree model predicted that a malware sample belongs to malware family A, we
know it is because the binary was signed before 2015, does not hook into the window
manager framework, does make multiple network calls out to Russian IP addresses,
etc. Because each sample traverses at most the height of the binary tree (time com-
plexity O(log 1)), decision trees are also efficient to train and make predictions on. As
a result, they perform favorably for large datasets.
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Nevertheless, decision trees have some limitations:

« Decision trees often suffer from the problem of overfitting, wherein trees are
overly complex and don’t generalize well beyond the training set. Pruning is
introduced as a regularization method to reduce the complexity of trees.

« Decision trees are more inefficient at expressing some kinds of relationships than
others. For example, Figures 2-5 and 2-6 present the minimal decision tree
required to represent the AND, OR, and XOR relationships. Notice how XOR
requires one more intermediate node and split to be appropriately represented,
even in this simple example. For realistic datasets, this can quickly result in
exploding model complexity.

Figure 2-6. Decision tree for A-XOR-B > y=1 (bottom)
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 Decision trees tend to be less accurate and robust than other supervised learning
techniques. Small changes to the training dataset can result in large changes to
the tree, which in turn result in changes to model predictions. This means that
decision trees (and most other related models) are unsuitable for use in online
learning or incremental learning.

« Split-quality metrics for categorical variables in decision trees are biased toward
variables with more possible values; that is, splits on continuous variables or cate-
gorical variables with three or more categories will be chosen with a greater prob-
ability than binary variables.

« Greedy training of decision trees (as it is almost always done) does not guarantee
an optimal decision tree because locally optimal and not globally optimal deci-
sions are made at each split point. In fact, the training of a globally optimal deci-
sion tree is an NP-complete problem."”

Decision Forests

An ensemble refers to a combination of multiple classifiers that creates a more com-
plex, and often better performing, classifier. Combining decision trees into ensembles
is a proved technique for creating high-quality classifiers. These ensembles are aptly
named decision forests. The two most common types of forests used in practice are
decision forests and gradient-boosted decision trees:

« Random forests are formed by simple ensembling of multiple decision trees, typi-
cally ranging from tens to thousands of trees. After training each individual deci-
sion tree, overall random forest predictions are made by taking the statistical
mode of individual tree predictions for classification trees (i.e., each tree “votes”),
and the statistical mean of individual tree predictions for regression trees.

You might notice that simply having many decision trees in the forest will result
in highly similar trees and a lot of repeated splits across different trees, especially
for features that are strong predictors of the dependent variable. The random for-
est algorithm addresses this issue using the following training algorithm:

1. For the training of each individual tree, randomly draw a subset of N samples
from the training dataset.

17 Laurent Hyafil and R.L. Rivest, “Constructing Optimal Binary Decision Trees is NP-Complete,” Information
Processing Letters 5:1 (1976): 15-17.
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2. At each split point, we randomly select m features from the p available features,
where m < p," and pick the optimal split point from these m features."”

3. Repeat step 2 until the individual tree is trained.

4. Repeat steps 1, 2, and 3 until all trees in the forest are trained.

Single decision trees tend to overfit to their training sets, and random forests
mitigate this effect by taking the average of multiple decision trees, which usually
improves model performance. In addition, because each tree in the random for-
est can be trained independently of all other trees, it is straightforward to paral-
lelize the training algorithm and therefore random forests are very efficient to
train. However, the increased complexity of random forests can make them much
more storage intensive, and it is much harder to explain predictions than with sin-
gle decision trees.

o Gradient-boosted decision trees (GBDTs) make use of smarter combinations of
individual decision tree predictions to result in better overall predictions. In gra-
dient boosting, multiple weak learners are selectively combined by performing
gradient descent optimization on the loss function to result in a much stronger
learning model.

The basic technique of gradient boosting is to add individual trees to the forest
one at a time, using a gradient descent procedure to minimize the loss when
adding trees. Addition of more trees to the forest stops either when a fixed limit
is hit, when validation set loss reaches an acceptable level, or when adding more
trees no longer improves this loss.

Several improvements to basic GBDTs have been made to result in better per-
forming, better generalizing, and more efficient models. Let’s look at a handful of
them:

1. Gradient boosting requires weak learners. Placing artificial constraints on trees,
such as limits on tree depth, number of nodes per tree, or minimum number of
samples per node, can help constrain these trees without overly diminishing
their learning ability.

2. It can happen that the decision trees added early on in the additive training of
gradient-boosted ensembles contribute much more to the overall prediction
than the trees added later in the process. This situation results in an imbal-

18 For classification problems with p total features, m = /p is recommended. For regression tasks, m = p/3 is
recommended. Refer to section 15.2 of The Elements of Statistical Learning, 2nd ed., by Trevor Hastie, Robert
Tibshirani, and Jerome Friedman.

19 There also exist variants of random forests that limit the set of features available to an individual decision tree;
for example, if the total feature set is {A,B,C,D,E,EG}, all split points made in decision tree 1 might randomly
select only three features out of the subset of features {A,B,D,EG}.
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anced model that limits the benefits of ensembling. To solve this problem, the
contribution of each tree is weighted to slow down the learning process, using a
technique called shrinkage, to reduce the influence of individual trees and
allow future trees to further improve the model.

3. We can combine the stochasticity of random forests with gradient boosting by
subsampling the dataset before creating a tree and subsampling the features
before creating a split.

4. We can use standard and popular regularization techniques such as L, and L,
regularization to smooth final learned weights to further avoid overfitting.

XGBoost™ is a popular GBDT flavor that achieves state-of-the-art results while
scaling well to large datasets. As the algorithm that was responsible for many
winning submissions to machine learning competitions, it garnered the attention
of the machine learning community and has become the decision forest algo-
rithm of choice for many practitioners. Nevertheless, GBDTs are more prone to
overfitting than random forests, and also more difficult to parallelize because they
use additive training, which relies on the results of a given tree to update gradi-
ents for the subsequent tree. We can mitigate overfitting of GBDTs by using
shrinkage, and we can parallelize training within a single tree instead of across
multiple trees.

Support Vector Machines

Like logistic regression, a support vector machine (SVM) is (in its simplest form) a lin-
ear classifier, which means that it produces a hyperplane in a vector space that
attempts to separate the two classes in the dataset. The difference between logistic
regression and SVMs is the loss function. Logistic regression uses a log-likelihood
function that penalizes all points proportionally to the error in the probability esti-
mate, even those on the correct side of the hyperplane. An SVM, on the other hand,
uses a hinge loss, which penalizes only those points on the wrong side of the hyper-
plane or very near it on the correct side.

More specifically, the SVM classifier attempts to find the maximum-margin hyper-
plane separating the two classes, where “margin” indicates the distance from the sepa-
rating plane to the closest data points on each side. For the case in which the data is
not linearly separable, points within the margin are penalized proportionately to their
distance from the margin. Figure 2-7 shows a concrete example: the two classes are
represented by white and black points, respectively. The solid line is the separating

20 Tiangi Chen and Carlos Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2016): 785-794.
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plane and the dashed lines are the margins. The square points are the support vectors;
that is, those that provide nonzero contribution to the loss function. This loss func-
tion is expressed mathematically as:

N
p+C 2 ¢,

1 =1

where f is the margin, . is the distance from the ith support vector to the margin,

and C is a model hyperparameter that determines the relative contribution of the two
terms.

0
o
0 o
N
o
o
O o
°
0
. o
o

Figure 2-7. Classification boundary (dark line) and margins (dashed lines) for linear
SVM separating two classes (black and white points); squares represent support vectors

To classify a new data point x, we simply determine which side of the plane x falls on.
[f we want to get a real-valued score we can compute the distance from x to the sepa-
rating plane and then apply a sigmoid to map to [0,1].

The real power of SVMs comes from the kernel trick, which is a mathematical trans-
formation that takes a linear decision boundary and produces a nonlinear boundary.
At a high level, a kernel transforms one vector space, V', to another space, V,. Math-

ematically, the kernel is a function on V| x V| defined by K(x, y), and each x € V, is
mapped to the function K(x, -); V, is the space spanned by all such functions. For

example, we can recover the linear SVM by defining K to be the usual dot product

K(x,y)=x-y.
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If the kernel is nonlinear, a linear classifier in V| will produce a nonlinear classifier in
V,. The most popular choice is the radial basis function K(x,y) = e 71~/ Even
though we omit the mathematical details here,” you can think of an SVM with the
RBF kernel as producing a sort of smoothed linear combination of spheres around
each point x, where the inside of each sphere is classified the same as x, and the out-
side is assigned the opposite class. The parameter y determines the radius of these
spheres; i.e., how close to each point you need to be in order to be classified like that
point. The parameter C determines the “smoothing”; a large value of C will lead to the
classifier consisting of a union of spheres, while a small value will yield a wigglier
boundary influenced somewhat by each sphere. We can therefore see that too large a
value of C will produce a model that overfits the training data, whereas too small a
value will give a poor classifier in terms of accuracy. (Note that y is unique to the RBE
kernel, whereas C exhibits the same properties for any kernel, including the linear
SVM. Optimal values of these parameters are usually found using grid search.)

SVMs have shown very good performance in practice, especially in high-dimensional
spaces, and the fact that they can be described in terms of support vectors leads to
efficient implementations for scoring new data points. However, the complexity of
training a kernelized SVM grows quadratically with the number of training samples,
so that for training set sizes beyond a few million, kernels are rarely used and the
decision boundary is linear. Another disadvantage is that the scores output by SVMs
are not interpretable as probabilities; converting scores to probabilities requires addi-
tional computation and cross-validation, for example using Platt scaling or isotonic
regression. The scikit-learn documentation has further details.

Naive Bayes

The Naive Bayes classifier is one of the oldest statistical classifiers. The classifier is
called "naive” because it makes a very strong statistical assumption, namely that fea-
tures are chosen independently from some (unknown) distribution. This assumption
never actually holds in real life. For example, consider a spam classifier for which the
features are the words in the message. The Naive Bayes assumption posits that a spam
message is composed by sampling words independently, where each word w has a
probability p, ¢ pam of being sampled, and similarly for good messages. This assump-
tion is clearly ludicrous; for one thing, it completely ignores word ordering. Yet
despite the fact that the assumption doesn't hold, Naive Bayes classifiers have been
shown to be quite effective for problems such as spam classification.

21 See section 5.8 and Chapter 12 of The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman.
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The main idea behind Naive Bayes is as follows: given a data point with feature set
X = x,...,Xx,, we want to determine the probability that the label Y for this point is

the class C. In Equation 2-1, this concept is expressed as a conditional probability.

Equation 2-1.

X = (xl, ...,xﬂ)]

Pr[}’zC

Now using Bayes’ Theorem, this probability can be reexpressed as in Equation 2-2.

Equation 2-2.
Pr [X = (:1::11r ...,xﬂ)‘ Y = CI . Pr [V = C]
Pr [X = (:r:l, ...,x”)]

[f we make the very strong assumption that for samples in each class the features are
chosen independently of one another, we get Equation 2-3.

Equation 2-3.

1
Pr|X=(x,..x )| Y=C|=]] Pr{X;=x,|Y=C]|

1= 1

we can estimate the numerator of Equation 2-2 from labeled data:
Pr [X.=x, | Y = C] is simply the fraction of samples with the ith feature equal to x,

out of all the samples in class C, whereas Pr [Y = C] is the fraction of samples in class
C out of all the labeled samples.

What about the denominator of Equation 2-2? It turns out that we dont need to com-
pute this, because in two-class classification it is sufficient to compute the ratio of the
probability estimates for the two classes C, and C,. This ratio (Equation 2-4) gives a

positive real number score.

Equation 2-4.
Pr{Y=C, | X=(x;..x,)
Pr :Y = Cz | X = (xl,...,x”):

H =

Pr|Y=C|II/_, Pr X, =x|Y=C]
: — : _
Pr[Y=ClII'_, Pr[X.=x|Y=C,

i
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A score of 6 > 1 indicates that C, is the more likely class, whereas 6 < 1 indicates that

C, is more likely. (If optimizing for one of precision or recall you might want to
choose a different threshold for the classification boundary.)

The astute observer will notice that we obtained our score € without reference to a
loss function or an optimization algorithm. The optimization algorithm is actually
hidden in the estimate of Pr [X; = x. | Y = C]; using the fraction of samples observed

in the training data gives the maximum likelihood estimate, the same loss function
used for logistic regression. The similarity to logistic regression doesn't stop there: it
we take logarithms of Equation 2-4 the righthand side becomes a linear function of
the features, so we can view Naive Bayes as a linear classifier, as well.

A few subtleties arise when trying to use Naive Bayes in practice:

« What happens when all of the examples of some feature are in the same class (e.g.
brand names of common sex enhancement drugs appear only in spam mes-
sages)? Then, one of the terms of Equation 2-4 will be zero, leading to a zero or
infinity estimate for 6, which doesn't make sense. To get around this problem we
use smoothing, which means adding “phantom™ samples to the labeled data for
each feature. For example, if we are smoothing by a factor of a, we would calcu-
late the value for a feature as follows:

(# samples in class C with feature x.) + «

Pr{X,=x|Y=C|=
X =x, | (# samples in class C ) + a - (# of features)

The choice a = 1 is called Laplace smoothing, whereas a < 1 is called Lidstone
smoothing.
» What happens if a feature x; appears in our validation set (or worse, in real-life

scoring) that did not appear in the training set? In this case we have no estimate
for Pr [ X, =x. | Y = C| at all. A naive estimate would be to set the probability to

Pr [Y = C]; for more sophisticated approaches see the work of Freeman.*

As a final note, we can map the score 0 € (0, e0) to a probability in (0,1) using the
mapping 0 — TH&J; however, this probability estimate will not be properly calibrated.

As with SVMs, to obtain better probability estimates we recommend techniques such
as Platt scaling or isotonic regression.

22 David Freeman, “Using Naive Bayes to Detect Spammy Names in Social Networks,” Proceedings of the 2013
ACM Workshop on Artificial Intelligence in Security (2013): 3-12.
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k-Nearest Neighbors

The k-nearest neighbors (k-NN) algorithm is the most well-known example of a lazy
learning algorithm. This type of machine learning technique puts off most computa-
tions to classification time instead of doing the work at training time. Lazy learning
models don't learn generalizations of the data during the training phase. Instead, they
record all of the training data points they are passed and use this information to make
the local generalizations around the test sample during classification. k-NN is one of
the simplest machine learning algorithms:

« The training phase simply consists of storing all the feature vectors and corre-
sponding sample labels in the model.

 The classification prediction® is simply the most common label out of the test
sample’s k nearest neighbors (hence the name).

The distance metrics for determining how "near” points are to each other in an n-
dimensional feature space (where n is the size of the feature vectors) are typically the
Euclidean distance for continuous variables and the Hamming distance for discrete
variables.

As you might imagine, with such a simple algorithm the training phase of k-NN is
typically very fast compared to other learning algorithms, at the cost of classification
processing time. Also, the fact that all feature vectors and labels need to be stored
within the model results in a very space-inefficient model. (A k-NN model that takes
in 1 GB of training feature vectors will at least be 1 GB in size.)

The simplicity of k-NN makes it a popular example for teaching the concept of
machine learning to novices, but it is rarely seen in practical scenarios because of the
serious drawbacks it has. These include:

« Large model sizes, because models must store (at least) all training data feature
vectors and labels.

« Slow classification speeds, because all generalization work is pushed off until clas-
sification time. Searching for the nearest neighbors can be time consuming, espe-
cially if the model stores training data points in a manner that is not optimized
for spatial search. k-d trees (explained in “k-d trees” on page 72) are often used as
an optimized data structure to speed up neighbor searches.*

23 k-NN can also be used for regression—typically, the average of a test samples k nearest neighboring sample
labels is taken to be the prediction result.

24 Jon Louis Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Communications
of the ACM 18 (1975): 509-517.
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 High sensitivity to class imbalance™ in the dataset. Classifications will be skewed
towards the classes with more samples in the training data since there is a greater
likelihood that samples of these classes will make it into the k-NN set of any
given test sample.

« Diminished classification accuracy due to noisy, redundant, or unscaled features.
(Choosing a larger k reduces the effect of noise in the training data, but also can
result in a weaker learner.)

 Difficulty in choosing the parameter k. Classification results are highly dependent
on this parameter, and it can be difficult to choose a k that works well across all
parts of the feature space because of differing densities within the dataset.

« Breaks down in high dimensions due to the “curse of dimensionality.” In addition,
with more dimensions in the feature space, the “neighborhood” of any arbitrary
point becomes larger, which results in noisier neighbor selection.

Neural Networks

Artificial neural networks (ANNSs) are a class of machine learning techniques that
have seen a resurgence in popularity recently. One can trace the origins of neural net-
works all the way back to 1942, when McCulloch and Pitts published a groundbreak-
ing paper postulating how neurons in the human nervous system might work.”
Between then and the 1970s, neural network research advanced at a slow pace, in
large part due to von Neumann computing architectures (which are quite in opposi-
tion to the idea of ANNSs) being in vogue. Even after interest in the field was renewed
in the 1980s, research was still slow because the computational requirements of train-
ing these networks meant that researchers often had to wait days or weeks for the
results of their experiments. What triggered the recent popularity of neural networks
was a combination of hardware advancements—namely graphics processing units
(GPUs) for “almost magically” parallelizing and speeding up ANN training—and the
availability of the huge amounts of data that ANNs need to get good at complex tasks
like image and speech recognition.

The human brain is composed of a humongous number of neurons (on the order of
10 billion), each with connections to tens of thousands of other neurons. Each neu-
ron receives electrochemical inputs from other neurons, and if the sum of these elec-
trical inputs exceeds a certain level, the neuron then triggers an output transmission
of another electrochemical signal to its attached neurons. If the input does not exceed
this level, the neuron does not trigger any output. Each neuron is a very simple

25 We explain the concept of class imbalance in greater detail in Chapter 5.

26 W.S. McCulloch and W.H. Pitts, “A Logical Calculus of Ideas Immanent in Nervous Activity,” Bulletin of Math-
ematical Biophysics 5 (1942): 115-133.
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In any case, if you are artificially sampling your training data, be sure to either leave
the validation and test sets unsampled or use a performance metric that is invariant
under sampling (such as ROC AUC, described in “Choosing Thresholds and Com-
paring Models”™ on page 62). Otherwise, sampling the validation set will skew your
performance metrics.

Missing features

In an ideal world every event is logged perfectly with exactly the data you need to
classify. In real life, things go wrong: bugs appear in the logging; you only realize
partway through data collection that you need to log a certain feature; some features
are delayed or purged. As a result, some of your samples might have missing features.
How do you incorporate these samples into your training set?

One approach is to simply remove any event with missing features. If the features are
missing due to sporadic random failures this might be a good choice; however, if the
data with missing features is clustered around a certain event or type of data, throw-
ing out this data will change your distribution.

To use a sample with a missing feature you will need to impute the value of the miss-
ing feature. There is a large literature on imputation that we won't attempt to delve
into here; it suffices to say that the simplest approach is to assign the missing feature
the average or median value for that feature. More complex approaches involve using
existing features to predict the value of the missing feature.

Large events

In an adversarial setting, you might have large-scale attacks from relatively unsophis-
ticated actors that you are able to stop easily. If you naively include these events in
your training data your model might learn how to stop these attacks but not how to
address smaller, more sophisticated attacks. Thus, for better performance you might
need to downsample large-scale events.

Attacker evolution

In an adversarial environment the attackers will rarely give up after you deploy a new
defense—instead, they will modify their methods to try to circumvent your defenses,
you will need to respond, and so on, and so forth, and so on. Thus, not only does the
distribution of attacks change over time, but it changes directly in response to your
actions. To produce a model that is robust against current attacks, your training set
should thus weight recent data more heavily, either by relying only on the past # days
or weeks, or by using some kind of decay function to downsample historical data.

On the other hand, it may be dangerous for your model to “forget” attacks from the
past. As a concrete example, suppose that each day you train a new model on the past
seven days worth of data. An attack happens on Monday that you are not able to stop
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(though you do find and label it quickly). On Tuesday your model picks up the new
labeled data and is able to stop the attack. On Wednesday the attacker realizes they
are blocked and gives up. Now consider what happens the next Wednesday: there
have been no examples of this attack in the past seven days, so the model you produce
might not be tuned to stop it—and if the attacker finds the hole, the entire cycle will
repeat.

All of the preceding considerations illustrate what could go wrong with certain
choices of training data. It is up to you to weigh the trade-offs between data freshness,
historical robustness, and system capacity to produce the best solution for your
needs.

Feature Selection

[f you have a reasonably efficient machine learning infrastructure, most of your time
and energy will be spent on feature engineering—figuring out signals that you can
use to identity attacks, and then building them into your training and scoring pipe-
line. To make best use of your effort, you want to use only features that provide high
discriminatory power; the addition of each feature should noticeably improve your
model.

In addition to requiring extra effort to build and maintain, redundant features can
hurt the quality of your model. If the number of features is greater than the number
of data points, your model will be overfit: there are enough model parameters to draw
a curve through all the training data. In addition, highly correlated features can lead
to instability in model decisions. For example, if you have a feature that is “number of
logins yesterday” and one that is “number of logins in the last two days,” the informa-
tion you are trying to collect will be split between the two features essentially arbitrar-
ily, and the model might not learn that either of these features is important.

You can solve the feature correlation problem by computing covariance matrices
between your features and combining highly correlated features (or projecting them
into orthogonal spaces; in the previous example, "number of logins in the day before
yesterday” would be a better choice than “number of logins in the last two days”).

There are number of techniques to address the feature selection problem:

o Logistic regression, SVMs, and decision trees/forests have methods of determin-
ing relative feature importance; you can run these and keep only the features with
highest importance.

» You can use L, regularization (see the next section) for feature selection in logis-

tic regression and SVM classifiers.

o If the number 7 of features is reasonably small (say, n < 100) you can use a “build
it up” approach: build n one-feature models and determine which is best on your
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validation set; then build n-1 two-feature models, and so on, until the gain of
adding an additional feature is below a certain threshold.

« Similarly, you can use a “leave one out” approach: build a model on n features,
then n models on n-1 features and keep the best, and so on until the loss of
removing an additional feature is too great.

scikit-learn implements the sklearn.feature_selection.SelectFromModel helper
utility that assists operators in selecting features based on importance weights. As
long as a trained estimator has the feature_importances_ or coef_ attribute after fit-
ting,”® it can be passed into SelectFromModel for feature selection importance rank-
ing. Assuming that we have a pretrained DecisionTreeClassifier model (variable
name clf) and an original training dataset (variable name train_x) with 119 fea-
tures, here is a short code snippet showing how to use SelectFromModel to keep only
features with a feature_importance that lies above the mean:*"

from sklearn.feature_selection import SelectFromModel
sfm = SelectFromModel(clf, prefit=True)

# Generate new training set, keeping only the selected features
train _x new = sfm.transform(train_ x)

print("Original num features: {}, selected num features: {}"
.format(train_x.shape[1], train x new.shape[1]))

> Original num features: 119, selected num features: 7

28 Most tree-based estimators like DecisionTreeClassifier and RandomForestClassifier, as well as some
ensemble estimators like GradientBoostingClassifier, have the feature importances attribute. General-
ized linear models such as LinearRegression and LogisticRegression and support vector machines such as
SVC have the coef_ attribute, allowing SelectFromModel to compare magnitudes of the coefficients or impor-
tances corresponding to each feature.

29 Using the mean as a feature importance threshold is the default strategy of SelectFromModel unless you spec-
ifty the threshold parameter as something else; for example, median or a static value.

30 You can find an example of applying sklearn. feature_selection.SelectFromModel to a real problem in a
Python Jupyter notebook in chapter2/select-from-model-nslkdd.ipynb from our code repository.
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Overfitting and Underfitting

One problem that can occur with any machine learning algorithm is overfitting: the
model you construct matches the training data so thoroughly that it does not general-
ize well to unseen data. For example, consider the decision boundary shown for a
two-dimensional dataset in the left of Figure 2-9. All points are classified correctly,
but the shape of the boundary is very complex, and it is unlikely that this boundary
can be used to effectively separate new points.

Figure 2-9. Left: overfit decision boundary; right: underfit decision boundary

On the other hand, too simple of a model might also result in poor generalization to
unseen data; this problem is called underfitting. Consider, for example, the decision
boundary shown on the right side of Figure 2-9; this simple line is correct on the
training data a majority of the time, but makes a lot of errors and will likely also have
poor performance on unseen data.

The most common approach to minimizing overfitting and underfitting is to incor-
porate model complexity into the training procedure. The mathematical term for this
is regularization, which means adding a term to the loss function that represents
model complexity quantitatively. It ¢ represents the model, y; the training labels, and

y; the predictions (either labels or probabilities), the regularized loss function is:

V() = LTy ) +1- 0
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where € is the aforementioned ordinary loss function, and 2 is a penalty term. For
example, in a decision tree (2 could be the number of leaves; then trees with too many
leaves would be penalized. You can adjust the parameter A to balance the trade-off

between the ordinary loss function and the regularization term. If A is too small, you
might get an overfit model; if it is too large, you might get an underfit model.

In logistic regression the standard regularization term is the norm of the coefficient
vector B = (B, .... B,,)- There are two different ways to compute the norm: L, regulari-

zation uses the standard Euclidean norm |B| = Z. ﬁf whereas L, regularization uses
the so-called “Manhattan distance” norm || = 2. | ﬁ:‘

that local minima occur when feature coefficients are zero; L, regularization thus

. The L, norm has the property

selects the features that contribute most to the model.

When using regularized logistic regression, you must take care to normalize the fea-
tures before training the model, for example by applying a linear transformation that
results in each feature having mean 0 and standard deviation 1. If no such transfor-
mation is applied, the coefficients of different features are not comparable. For exam-
ple, the feature that is account age in seconds will in general be much larger than the
feature that is number of friends in the social graph. Thus, the coefficient for age will
be much smaller than the coefficient for friends in order to have the same effect, and
regularization will penalize the friends coefficient much more strongly.

Regardless of the model you are using, you should choose your regularization param-
eters based on experimental data from the validation set. But be careful not to overfit
to your validation set! That’s what the test set is for: if performance on the test set is
much worse than on the validation set, you have overfit your parameters.

Choosing Thresholds and Comparing Models

The supervised classification algorithm you choose will typically output a real-valued
score, and you will need to choose a threshold or thresholds®’ above which to block
the activity or show additional friction (e.g., require a phone number). How do you
choose this threshold? This choice is ultimately a business decision, based on the
trade-off between security and user friction. Ideally you can come up with some cost
function—for example, 1 false positive is equal to 10 false negatives—and minimize
the total cost on a representative sample of the data. Another option is to fix a
precision or recall target—for example, 98%—and choose a threshold that achieves
that target.

31 The default method that most machine learning libraries use to deal with this is to pick the class that has the
highest score and use that as the prediction result. For instance, for a binary classification problem this simply
translates to a threshold of 50%, but for a three-class (or more) classification problem the class with the high-
est probability/confidence is selected as the classifier’s prediction result.
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Now suppose that you have two versions of your model with different parameters
(e.g., different regularization) or even different model families (e.g., logistic regres-
sion versus random forest). Which one is better? If you have a cost function this is
easy: compute the cost of the two versions on the same dataset and choose the lower-
cost option. If fixing a precision target, choose the version that optimizes recall, and
vice versa.

Another common method for model comparison is to plot the receiver operating
characteristic (ROC) curve and compute the area under the curve (AUC). The ROC
curve plots false positive rate (FP / (FP + TN)) on the x-axis and true positive rate
(TP / (TP + FN), also known as recall) on the y-axis. Each point on the curve corre-
sponds to a score threshold and represents the (FPR, TPR) pair at that threshold. The
AUC can be interpreted as the probability that a randomly chosen positive example
has a higher score than a randomly chosen negative example; under this interpreta-
tion it’s easy to see that the worst case is AUC 0.5, which is equivalent to a random
ordering of samples.*

Figure 2-10 shows an example ROC curve, with the line y = x plotted for comparison.
Because the AUC is very high, we have used a log scale to zoom in on the lefthand
side, which is where differences between high-performance models will appear; if you
are operating only in the high-precision region of the curve, you may want to calcu-
late up to a threshold false positive rate, such as 1%.

One nice property of AUC is that it is unaffected by sampling bias. Thus, if you sam-
ple two classes with different weights, the AUC you get on the resulting dataset will be
representative of the AUC on the unsampled dataset.

32 If the AUC is less than 0.5, by reversing the classifier labels you can produce a classifier with AUC > 0.5.
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Receiver operating characteristic example
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Figure 2-10. ROC curves

One common metric that is limited in real-world usefulness is the F-score, which is
defined as follows:

l +«a
a 1 «
— +
precision — recall

The F-score combines precision and recall and harshly penalizes extremes; however,
it requires choosing a threshold and a relative weighting of precision and recall (para-
metrized by «).
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Clustering

Bad things often happen in bunches. For example, if someone is trying to breach your
network, there is a good chance that they will try many times before actually getting
through. Or, if someone is sending pharmaceutical spam, they will need to send a lot
of emails in order to get enough people to fall for the scam. Thus, your job as a
defender will be made easier if you can segment your traffic into groups belonging to
the same actor, and then block traffic from malicious actors. This process of segmen-
tation is called clustering.

In this section, we survey some common techniques for clustering data. Of course,
grouping your data is not an end in and of itself—your ultimate goal is to determine
which clusters consist of malicious activity. Thus, we will also discuss various techni-
ques for labeling the clusters generated by the different algorithms.

Clustering Algorithms

The geometric intuition behind clustering is straightforward: you want to group
together data points that are “close together” in some sense. Thus, for any algorithm
to work you need to have some concrete way to measure “closeness’; such a measure-
ment is called a metric. The metric and clustering algorithm you use will depend on
the form your data is in; for example, your data might consist of real-valued vectors,
lists of items, or sequences of bits. We now consider the most popular algorithms.

Grouping

The most basic clustering method is so simple that it is not even usually thought of as
a clustering method: namely, pick one or more dimensions and define each cluster to
be the set of items that share values in that dimension. In SQL syntax, this is the
GROUP BY statement, so we call this technique “grouping.” For example, if you group
on [P address, you will define one cluster per IP address, and the elements of the clus-
ter will be entities that share the same IP address.

We already saw the grouping technique at the beginning of this chapter, when we
considered high-volume requests coming in on the same IP address; this approach is
equivalent to clustering on IP address and labeling as malicious any cluster with more
than 20 queries per second. This example illustrated the power of clustering via sim-
ple grouping, and you will find that you can go pretty far without resorting to more
complex algorithmes.

k-means

k-means is usually the first algorithm that comes to mind when you think of cluster-
ing. k-means applies to real-valued vectors, when you know how many clusters you
expect; the number of clusters is denoted by k. The goal of the algorithm is to assign
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each data point to a cluster such that the sum of the distances from each point to its
cluster centroid is minimized. Here the notion of distance is the usual Euclidean dis-
tance in a vector space:

d(x, y) = \/zf(xi N }’z')z

In mathematical terms, the k-means algorithm computes a cluster assignment f: X —

{L,.

..k} that minimizes the loss function:

L(X) = Z d(x, Crix))
j

where X = {x,..,x, | is your dataset, ¢; is the jth centroid, and d is the distance

between two points. The value L(X) is called “inertia.”

The standard algorithm for computing k-means clusters is as follows:

1.
2.

Choose k centroids c, ..., ¢, at random.
Assign each data point x. to its nearest centroid.

Recompute the centroids ¢ j by taking the average of all the data points assigned
to the jth cluster.

Repeat (2) and (3) until the algorithm converges; that is, the difference between
L(X) on successive iterations is below a predetermined threshold.

k-means is a simple and effective clustering algorithm that scales well to very large
datasets. However, there are some things for which you need to be on the lookout:

66

« Since k is a fixed parameter of the algorithm, you must choose it appropriately. If

you know how many clusters you are looking for (e.g., if you are trying to cluster
different families of malware), you can simply choose k to be that number. Other-
wise, you will need to experiment with different values of k. It is also common to
choose values of k that are between one to three times the number of classes
(labels) in your data, in case some categories are discontinuous. Warning: loss
functions computed using different values of k are not comparable to each other!

You must normalize your data before using k-means. A typical normalization is
to map the jth coordinate x; to (x;-u,)/0;, where y; is the mean of the jth coordi-
nates, and o; is the standard deviation.
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To see why normalization is necessary, consider a two-dimensional dataset whose
first coordinate ranges between 0 and 1, and whose second coordinate ranges
between 0 and 100. Clearly the second coordinate will have a much greater
impact on the loss function, so you will lose information about how close
together points are in the first coordinate.

Do not use k-means with categorical features, even if you can represent them as a
number. For example, you could encode “red,” “green,” and "blue” as 0, 1, and 2,
respectively, but these numbers don’t make sense in a vector space—there is no
reason that blue should be twice as far from red as green is. This problem can be
addressed by one-hot encoding the categorical features as multiple binary fea-
tures (as discussed in the worked example earlier in this chapter), but...

Beware when using k-means with binary features. k-means can sometimes be used
with binary features, encoding the two responses as 0 and 1, or —1 and 1, but
results here can be unpredictable; the binary feature might become the dominant
feature determining the cluster, or its information might be lost entirely.

k-means loses effectiveness in high dimensions, due to the “curse of dimensional-
ity”—all points are roughly equally distant from each other. For best results use
k-means in low dimensions or after applying a dimensionality reduction algo-
rithm such as principal component analysis (PCA). Another option is to use the
L-infinity distance, where the distance between two points is taken to be the max-
imum of the difference of any coordinate:

d(x, y) = mﬂx:‘(‘xi - J"fD

k-means works best when the initial centroids are chosen at random; however,

this choice can make reproducing results difficult. Try different choices of initial
centroids to see how the results depend on the initialization.

k-means assumes that the clusters are spherical (globular) in nature. As you can
imagine, it does not work well on non-spherical distributions, such as the one illus-
trated in Figure 2-11.
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Figure 2-11. Nonspherical data distribution

Hierarchical clustering

Unlike the k-means algorithm, hierarchical clustering methods are not parametrized
by an operator-selected value k (the number of clusters you want to create). Choosing
an appropriate k is a nontrivial task, and can significantly affect clustering results.
Agglomerative (bottom-up) hierarchical clustering builds clusters as follows (illustrated
in Figure 2-12):

1. Assign each data point to its own cluster (Figure 2-12, bottom layer).

2. Merge the two clusters that are the most similar, where “most similar” is deter-
mined by a distance metric such as the Euclidean distance or Mahalanobis dis-
tance.

3. Repeat step 2 until there is only one cluster remaining (Figure 2-12, top layer).

4. Navigate the layers of this tree (dendrogram) and select the layer that gives you
the most appropriate clustering result.

Divisive (top-down) hierarchical clustering is another form of hierarchical clustering
that works in the opposite direction. Instead of starting with as many clusters as there
are data points, we begin with a single cluster consisting of all data points and start
dividing clusters based on the distance metric, stopping when each data point is in its
own separate cluster.
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Figure 2-12. Agglomerative hierarchical clustering dendrogram

There are some important points to take note of when considering whether to use
hierarchical clustering:

« Hierarchical clustering produces a dendrogram tree model, as illustrated in
Figure 2-12. This model can be more complex to analyze and takes up more stor-
age space than the centroids produced by k-means, but also conveys more infor-
mation about the underlying structure of the data. If model compactness or ease
of analysis is a priority, hierarchical clustering might not be your best option.

« k-means works with only a small selection of distance metrics (mostly Euclidean
distance) and requires numerical data to work. In contrast, hierarchical cluster-
ing works with almost any kind of distance metric or similarity function, as long
as it produces a result that can be numerically compared (e.g., C is more similar
to A than to B). You can use it with categorical data, mixed type data, strings,
images, and so on as long as an appropriate distance function is provided.

 Hierarchical clustering has high time complexity, which makes it unsuitable for
large datasets. Taking n to be the number of data points, agglomerative hierarchi-
cal clustering has a time complexity of O(rzz log (n)), and naive divisive cluster-
ing has a time complexity of O(2").

Locality-sensitive hashing

k-means is good for determining which items are close together when each item can
be represented as a sequence of numbers (i.e., a vector in a vector space). However,
many items that you would want to cluster do not easily admit such a representation.
The classic example is text documents, which are of variable length and admit essen-
tially an infinite choice of words and word orders. Another example is lists, such as

Clustering | 69



the set of IP addresses accessed by a given user, or the set of all of a user’s friends in a
social graph.

One very common similarity metric for unordered sets is Jaccard similarity. Jaccard
similarity is defined to be the proportion of common items between two sets, out of
all the items in the two sets. More precisely, for two sets X and Y, the Jaccard similar-
ity is defined as follows:

| XNY]

To generate clusters when your items are sets, all you need to do is find the groups of
items whose Jaccard similarities are very high. The problem here is that this compu-
tation is quadratic in the number of items—so as your dataset grows, finding the clus-
ters will quickly become impossible. Locality-sensitive hashing (LSH) attempts to solve
this problem. LSH is not normally considered a clustering algorithm, but you can use
it as a method for grouping similar items together according to some notion of “dis-
tance,” effectively achieving a similar effect to other more typical clustering algo-
rithms.

[f the items you want to cluster are not unordered sets (e.g., a text document), the
first step is to convert them into sets. For text documents, the most straightforward
conversion is into a bag of words—simply, a list of all the words that are included in
the document. Depending on your implementation, repeated words might or might
not be included multiple times in your list, and/or “stopwords” such as “a,” “the,” and

“of” might be excluded.

However, the bag-of-words conversion loses an important aspect of a text document,
namely the ordering of the words. To retain information about the ordering, we gen-
eralize the conversion into shingling: taking our list to be (overlapping) sequences of
consecutive words in the document. For example, if the document was “the quick
brown fox jumps over the lazy dog,” the three-word shingles would be:

{(the, quick, brown), (quick, brown, fox), (brown, fox, jumps), (fox, jumps, over),
(jumps, over, the), (over, the lazy), (the, lazy, dog)}
You also can perform shingling at the character level, which can be useful for short
documents or text strings that can't be parsed into words.

Now, given a dataset consisting of unordered sets, the question is how to efficiently
determine which ones are similar to one another according to the Jaccard metric. The
first step is to convert each set into a short “signature,” in such a way that documents
that are similar have similar signatures. The standard algorithm for this task is Min-
Hash, which works as follows:
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