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FOREWORD

Congratulations on picking up Malware Data Science. You're on your way to
equipping vyourself with the skills necessary to become a cybersecurity
professional. In this book, you’ll tind a wonderful introduction to data science as
applied to malware analysis, as well as the requisite skills and tools you need to

be proficient at it.

There are far more jobs in cybersecurity than there are qualified candidates,
so the good news is that cybersecurity is a great field to get into. The bad news
is that the skills required to stay current are changing rapidly. As i1s often the
case, necessity is the mother of invention. With far more demand for skilled
cybersecurity professionals than there is supply, data science algorithms are
filling the gap by providing new insights and predictions about threats against
networks. The traditional model of watchmen monitoring network data is
rapidly becoming obsolete as data science is increasingly being used to find
threat patterns in terabytes of data. And thank goodness for that, because
monitoring a screen of alerts is about as exciting as monitoring a video camera
surveillance system of a parking lot.

So what exactly is data science and how does it apply to security? As you’ll see
in the Introduction, data science applied to security is the art and science of
using machine learning, data mining, and visualization to detect threats against
networks. While you’ll find a lot of hyperbole around machine learning and
artificial intelligence driven by marketing, there are, in fact, very good use cases
for these technologies that are in production today.

For instance, when it comes to malware detection, both the volume of
malware production and the cost to the adversary in changing malware
signatures has rendered signature-only based approaches to malware obsolete.
Instead, antivirus companies are now training neural networks or other types of
machine learning algorithms over very large datasets of malware to learn their
characteristics, so that new variants of malware can be detected without having



to update the model daily. The combination of signature-based and machine
learning—based detection provides coverage for both known and unknown
malware. This 1s a topic both Josh and Hillary are experts in and trom which
they speak from deep experience.

But malware detection is only one use case for data science. In fact, when it
comes to finding threats on the network, today’s sophisticated adversaries often
will not drop executable programs. Instead, they will exploit existing software
for initial access and then leverage system tools to pivot from one machine to
the next using the user privileges obtained through exploitation. From an
adversarial point of view this approach doesn’t leave behind artitacts such as
malware that antivirus software will detect. However, a good endpoint logging
system or an endpoint detection and response (EDR) system will capture system
level activities and send this telemetry to the cloud, from where analysts can
attempt to piece together the digital footprints of an intruder. This process of
combing through massive streams of data and continuously looking for patterns
of intrusion is a problem well-suited for data science, specifically data mining
with statistical algorithms and data visualization. You can expect more and more
Security Operations Centers (SOCs) to adopt data mining and artificial
intelligence technologies. It’s really the only way to cull through massive data

sets of system events to identify actual attacks.

Cybersecurity is undergoing massive shifts in technology and its operations,
and data science is driving the change. We are fortunate to have experts like

Josh Saxe and Hillary Sanders not only share their expertise with us, but do it in

such an engaging and accessible way. This is your opportunity to learn what
they know and apply it to your own work so you can stay ahead of the changes
in technology and the adversaries you’re charged with defeating.

Anup K. Ghosh, PhD
Founder, Invincea, Inc

Washington, DC
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INTRODUCTION

If you're working in security, chances are you’re using data science more than
ever before, even if you may not realize it. For example, your antivirus product
uses data science algorithms to detect malware. Your firewall vendor may have
data science algorithms detecting suspicious network activity. Your security
information and event management (SIEM) software probably uses data science
to identity suspicious trends in your data. Whether conspicuously or not, the
entire security industry is moving toward incorporating more data science into
security products.

Advanced I'T security professionals are incorporating their own custom
machine learning algorithms into their workflows. For example, in recent
conference presentations and news articles, security analysts at Target,
Mastercard, and Wells Fargo all described developing custom data science

technologies that they use as part of their security workflows.! If you’re not
already on the data science bandwagon, there’s no better time to upgrade your
skills to include data science into your security practice.

What Is Data Science?

Data science is a growing set of algorithmic tools that allow us to understand and
make predictions about data using statistics, mathematics, and artful statistical



data visualizations. More specific definitions exist, but generally, data science
has three subcomponents: machine learning, data mining, and data visualization.

In the security context, machine learning algorithms learn from training data
to detect new threats. These methods have been proven to detect malware that
flies under the radar of traditional detection techniques like signatures. Data
mining algorithms search security data for interesting patterns (such as
relationships between threat actors) that might help us discern attack campaigns
targeting our organizations. Finally, data visualization renders sterile, tabular
data into graphical format to make it easier for people to spot interesting and
suspicious trends. I cover all three areas in depth in this book and show you how
to apply them.

Why Data Science Matters for Security

Data science is critically important for the future of cybersecurity for three
reasons: tirst, security i1s @/l about data. When we seek to detect cyber threats,
we’re analyzing data in the form of files, logs, network packets, and other
artifacts. Traditionally, security professionals didn’t use data science techniques
to make detections based on these data sources. Instead, they used file hashes,
custom-written rules like signatures, and manually defined heuristics. Although
these techniques have their merits, they required handcrafted techniques for
each type of attack, necessitating too much manual work to keep up with the
changing cyber threat landscape. In recent years, data science techniques have
become crucial in bolstering our ability to detect threats.

Second, data science is important to cybersecurity because the number of
cyberattacks on the internet has grown dramatically. "T'ake the growth of the
malware underworld as an example. In 2008, there were about 1 million unique
malware executables known to the security community. By 2012, there were 100
million. As this book goes to press in 2018, there are more than 700 million
malicious executables known to the security community (bttps://www.av-

test.org/en/statistics/malware/), and this number is likely to grow.

Due to the sheer volume of malware, manual detection techniques such as
signatures are no longer a reasonable method for detecting all cyberattacks.

Because data science techniques automate much of the work that goes into



detecting cyberattacks, and vastly decrease the memory usage needed to detect
such attacks, they hold tremendous promise in defending networks and users as
cyber threats grow.

Finally, data science matters for security because data science is #he technical
trend of the decade, both inside and outside of the security industry, and it will
likely remain so through the next decade. Indeed, you’ve probably seen
applications of data science everywhere—in personal voice assistants (Amazon
Echo, Siri, and Google Home), self-driving cars, ad recommendation systems,
web search engines, medical image analysis systems, and fitness tracking apps.

We can expect data science—driven systems to have major impacts in legal
services, education, and other areas. Because data science has become a key
enabler across the technical landscape, universities, major companies (Google,
Facebook, Microsoft, and IBM), and governments are investing billions of
dollars to improve data science tools. Thanks to these investments, data science
tools will become even more adept at solving hard attack-detection problems.

Applying Data Science to Malware

‘This book focuses on data science as it applies to malware, which we detine as

executable programs written with malicious intent, because malware continues
to be the primary means by which threat actors gain a foothold on networks and
subsequently achieve their goals. For example, in the ransomware scourge that
has emerged in recent years, attackers typically send users malicious email
attachments that download ransomware executables (malware) to users’
machines, which then encrypt users’ data and ask them for a ransom to decrypt
the data. Although skilled attackers working for governments sometimes avoid
using malware altogether to tly under the radar ot detection systems, malware
continues to be the major enabling technology in cyberattacks today.

By homing in on a specific application of security data science rather than
attempting to cover security data science broadly, this book aims to show more
thoroughly how data science techniques can be applied to a major security
problem. By understanding malware data science, you’ll be better equipped to
apply data science to other areas of security, like detecting network attacks,

phishing emails, or suspicious user behavior. Indeed, almost all the techniques



youw’ll learn in this book apply to building data science detection and intelligence

systems in general, not just for malware.

Who Should Read This Book?

This book 1s aimed toward security professionals who are interested in learning

more about how to apply data science to computer security problems. If

computer security #nd data science are new to you, you might find yourself

having to look up terms to give yourself a little bit of context, but you can still

read this

book successfully. If you’re only interested in data science, but not

security, this book is probably not for you.

About This Book

The first part of the book consists of three chapters that cover basic reverse

engineering concepts necessary for understanding the malware data science

techniques discussed later in the book. If you’re new to malware, read the first

three chapters tirst. It you're an old hand at malware reverse engineering, you

can skip these chapters.

e Chapter 1: Basic Static Malware Analysis covers static analysis

techniques for picking apart malware files and discovering how they

achieve malicious ends on our computers.

e Chapter 2: Beyond Basic Static Analysis: x86 Disassembly gives you a

brief overview of x86 assembly language and how to disassemble and

FEVEersc Gl’lgillﬁ Cr Il’lﬂh«VﬂfC.

e Chapter 3: A Brieft Introduction to Dynamic Analysis concludes the

reverse engineering section of the book by discussing dynamic analysis,

which involves running malware in controlled environments to learn

about its behavior.

The next two chapters of the book, Chapters 4 and 5, focus on malware

relationship analysis, which involves looking at similarities and ditferences

between collections of malware to identify malware campaigns against your



organization, such as a ransomware campaign controlled by a group of
cybercriminals, or a concerted, targeted attack on your organization. These
stand-alone chapters are for readers who are interested not only in detecting
malware, but also in extracting valuable threat intelligence to learn who 1is
attacking their network. If you’re less interested in threat intelligence and more
interested in data science—driven malware detection, you can safely skip these

chapters.

e Chapter 4: Identifying Attack Campaigns Using Malware Networks
shows you how to analyze and visualize malware based on shared

attributes, such as the hostnames that malware programs call out to.

e Chapter 5: Shared Code Analysis explains how to identify and visualize
shared code relationships between malware samples, which can help you
identity whether groups of malware samples came from one or multiple

criminal groups.

The next four chapters cover everything you need to know to understand,
apply, and implement machine learning—based malware detection systems.
‘These chapters also provide a foundation for applying machine learning to other

security contexts.

e Chapter 6: Understanding Machine Learning-Based Malware
Detectors is an accessible, intuitive, and non-mathematical introduction
to basic machine learning concepts. It you have a history with machine
learning, this chapter will provide a convenient refresher.

e Chapter 7: Evaluating Malware Detection Systems shows you how to
evaluate the accuracy of your machine learning systems using basic
statistical methods so that you can select the best possible approach.

e Chapter 8: Building Machine Learning Detectors introduces open
source machine learning tools you can use to build your own machine

learning systems and explains how to use them.

e Chapter 9: Visualizing Malware Trends covers how to visualize
malware threat data to reveal attack campaigns and trends using Python,
and how to integrate data visualization into your day-to-day workflow



when analyzing security data.

‘The last three chapters introduce deep learning, an advanced area of machine
learning that involves a bit more math. Deep learning is a hot growth area
within security data science, and these chapters provide enough to get you
started.

e Chapter 10: Deep Learning Basics covers the basic concepts that
underlie deep learning.

e Chapter 11: Building a Neural Network Malware Detector with
Keras explains how to implement deep learning—based malware detection

systems in Python using open source tools.

e Chapter 12: Becoming a Data Scientist concludes the book by sharing
different pathways to becoming a data scientist and qualities that can help
you succeed in the field.

e Appendix: An Overview of Datasets and Tools describes the data and
example tool implementations accompanying the book.

How to Use the Sample Code and Data

No good programming book is complete without sample code to play with and
extend on your own. Sample code and data accompany each chapter of this book
and are described exhaustively in the appendix. All the code targets Python 2.7
in Linux environments. To access the code and data, you can download a
VirtualBox Linux virtual machine, which has the code, data, and supporting
open source tools all set up and ready to go, and run it within your own
VirtualBox environment. You can download the book’s accompanying data at
http://www.malwaredatascience.com/, and you can download the VirtualBox for
free at hrtps://www.virtualbox.org/wiki/Downloads. 'The code has been tested on
Linux, but if you prefer to work outside of the Linux VirtualBox, the same code
should work almost as well on MacOS, and to a lesser extent on Windows
machines.

It you’d rather install the code and data in your own Linux environment, you

can download them here: http://www.malwaredatascience.com/. You’ll find a



directory for each chapter in the downloadable archive, and within each

chapter’s directory there are code/ and data/ d

irectories that contain the

corresponding code and data. Code files corres

bond to chapter listings or

sections, whichever makes more sense for the application at hand. Some code

files are exactly like the listings, whereas others have been changed slightly to

make 1t easier for you to play with parameters and other options. Code

directories come with pip requirements.txt tiles, which give the open source

libraries that the code in that chapter depends on to run. To install these

libraries on your machine, simply type pip -r requirements.txt in each chapter’s

code/ directory.

Now that you have access to the code and data for this book, let’s get started.



1

BASIC STATIC MALWARE ANALYSIS

In this chapter we look at the basics of static malware analysis. Static analysis is

performed by analyzing a program file’s disassembled code, graphical images,
printable strings, and other on-disk resources. It refers to reverse engineering
without actually running the program. Although static analysis techniques have
their shortcomings, they can help us understand a wide variety of malware.
Through careful reverse engineering, you’ll be able to better understand the
benefits that malware binaries provide attackers after they’ve taken possession of
a target, as well as the ways attackers can hide and continue their attacks on an
infected machine. As you’ll see, this chapter combines descriptions and
examples. Each section introduces a static analysis technique and then illustrates
its application in real-world analysis.

I begin this chapter by describing the Portable Executable (PE) file format
used by most Windows programs, and then examine how to use the popular
Python library pefile to dissect a real-world malware binary. I then describe
techniques such as imports analysis, graphical image analysis, and strings
analysis. In all cases, I show you how to use open source tools to apply the
analysis technique to real-world malware. Finally, at the end of the chapter, I



introduce ways malware can make life ditficult tor malware analysts and discuss
some ways to mitigate these issues.

You’ll find the malware sample used in the examples in this chapter in this

book’s data under the directory /ch1. T'o demonstrate the techniques discussed
in this chapter, we use #7chot.cxe, an Internet Relay Chat (IRC) bot created for
experimental use, as an example of the kinds of malware commonly observed in
the wild. As such, the program is designed to stay resident on a target computer
while connected to an IRC server. After 7rchot.exe gets hold of a target, attackers
can control the target computer via IRC, allowing them to take actions such as
turning on a webcam to capture and surreptitiously extract video feeds of the
target’s physical location, taking screenshots of the desktop, extracting files from
the target machine, and so on. Throughout this chapter, I demonstrate how

static analysis techniques can reveal the capabilities of this malware.

The Microsoft Windows Portable Executable Format

To perform static malware analysis, you need to understand the Windows PE
format, which describes the structure of modern Windows program files such as
.exe, .dll, and .sys files and defines the way they store data. PE files contain x86
instructions, data such as images and text, and metadata that a program needs in

order to run.

'The PE format was originally designed to do the following:

Tell Windows how to load a program into memory The PE format
describes which chunks of a file should be loaded into memory, and where.
[t also tells you where in the program code Windows should start a
program’s execution and which dynamically linked code libraries should be

loaded into memory.

Supply media (or resources) a running program may use in the course
of its execution These resources can include strings of characters like the

ones in GUI dialogs or console output, as well as images or videos.

Supply security data such as digital code signatures Windows uses such
security data to ensure that code comes from a trusted source.



‘The PE tormat accomplishes all of this by leveraging the series of constructs
shown in Figure 1-1.

® .reloc section (memory translations)

@ .rsrc section (strings, images, . . .

® .idata section |imported libraries)

© .text section (program code)

O Section headers

Increasing file offsets

© Optional header

® PE header

© DOS header

Figure 1-1: The PE file format

As the figure shows, the PE format includes a series of headers telling the
operating system how to load the program into memory. It also includes a series
of sections that contain the actual program data. Windows loads the sections
into memory such that their memory oftsets correspond to where they appear
on disk. Let’s explore this file structure in more detail, starting with the PE
header. We'll skip over a discussion of the DOS header, which is a relic of the
1980s-era Microsoft DOS operating system and only present for compatibility

'€d5s0I11S.

The PE Header

Shown at the bottom of Figure 1-1, above the DOS header @, is the PE header

A, which defines a program’s general attributes such as binary code, images,



compressed data, and other program attributes. It also tells us whether a
program is designed for 32- or 64-bit systems. The PE header provides basic
but useful contextual information to the malware analyst. For example, the

header includes a timestamp field that can give away the time at which the
malware author compiled the file. This happens when malware authors forget to
replace this field with a bogus value, which they often do.

The Optional Header

‘The optional header @ is actually ubiquitous in today’s PE executable programs,
contrary to what its name suggests. It detines the location of the program’s entry
point in the PE file, which refers to the first instruction the program runs once
loaded. It also defines the size of the data that Windows loads into memory as 1t
loads the PE file, the Windows subsystem, the program targets (such as the
Windows GUI or the Windows command line), and other high-level details
about the program. The information in this header can prove invaluable to
reverse engineers, because a program’s entry point tells them where to begin

reverse engineering.

Section Headers

Section headers @ describe the data sections contained within a PE tile. A section
in a PE file is a chunk of data that either will be mapped into memory when the
operating system loads a program or will contain instructions about how the
program should be loaded into memory. In other words, a section is a sequence
of bytes on disk that will either become a contiguous string of bytes in memory
or inform the operating system about some aspect of the loading process.
Section headers also tell Windows what permissions it should grant to
sections, such as whether they should be readable, writable, or executable by the
program when it’s executing. For example, the .text section containing x86 code

will typically be marked readable and executable but not writable to prevent

program code from accidentally moditying itself in the course of execution.

A number of sections, such as .text and .rsrc, are depicted in Figure 1-1.
These get mapped into memory when the PE file is executed. Other special

sections, such as the .reloc section, aren’t mapped into memory. We’ll discuss



these sections as well. Let’s go over the sections shown in Figure 1-1.

The .text Section
Each PE program contains at least one section of x86 code marked executable in

its section header; these sections are almost always named .text ©. We'll

disassemble the data in the .text section when performing program disassembly

and reverse engineering in Chapter 2.

The .idata Section

The .idata section @, also called #mzports, contains the Import Address Table (IAT),
which lists dynamically linked libraries and their functions. The IA'T is among
the most important PE structures to inspect when initially approaching a PE
binary for analysis because it reveals the library calls a program makes, which in

turn can betray the malware’s high-level functionality.

The Data Sections

The data sections in a PE file can include sections like .rsrc, .data, and .rdata,

which store items such as mouse cursor images, button skins, audio, and other

media used by a program. For example, the .rsrc section @ in Figure 1-1
contains printable character strings that a program uses to render text as strings.

The information in the .rsrc (resources) section can be vital to malware
analysts because by examining the printable character strings, graphical images,
and other assets in a PE file, they can gain vital clues about the file’s
functionality. In “Examining Malware Images” on page 7, you’ll learn how to
use the icoutils toolkit (including icotool and wrestool) to extract graphical
images from malware binaries’ resources sections. Then, in “Examining
Malware Strings” on page 8, you’ll learn how to extract printable strings from

malware resources sections.

The .reloc Section

A PE binary’s code is not position independent, which means it will not execute

correctly 1f it’'s moved from its intended memory location to a new memory

location. The .reloc section @ gets around this by allowing code to be moved



without breaking. It tells the Windows operating system to translate memory
addresses in a PE file’s code if the code has been moved so that the code still
runs correctly. These translations usually involve adding or subtracting an oftset
from a memory address.

Although a PE file’s .reloc section may well contain information you’ll want
to use in your malware analysis, we won’t discuss it further in this book because
our focus is on applying machine learning and data analysis to malware, not
doing the kind of hardcore reverse engineering that involves looking at

relocations.

Dissecting the PE Format Using pefile

The pefile Python module, written and maintained by Ero Carerra, has become
an industry-standard malware analysis library for dissecting PE files. In this
section, | show you how to use pefile to dissect irchot.exe. The irchot.exe file can
be found on the virtual machine accompanying this book in the directory
~/malware_data_science/ch1/data. Listing 1-1 assumes that irchot.exe 1s in your

current working directory.

Enter the tollowing to install the pefile library so that we can import it
within Python:

S pip install pefile

Now, use the commands in Listing 1-1 to start Python, import the pefile

module, and open and parse the PE file irchot.exe using pefile.

S python
>>> import pefile

>>> pe = pefile.PE("ircbot.exe")

Listing 1-1: Loading the pefile module and parsing a PE file (ircbot.exe)

We instantiate pefile.PE, which is the core class implemented by the PE
module. It parses PE files so that we can examine their attributes. By calling the
PE constructor, we load and parse the specified PE file, which is #rcbot.exe in this



example. Now that we’ve loaded and parsed our file, run the code in Listing 1-2
to pull information from zrchot.exe’s PE fields.

# based on Ero Carrera's example code (pefile library author)
for section in pe.sections:
print (section.Name, hex(section.VirtualAddress),
hex(section.Misc VirtualSize), section.SizeOfRawData )

Listing 1-2: Iterating through the PE file’s sections and printing information about them

Listing 1-3 shows the output.

('.text\x00\x00\x00', @'0x1000', @ '0x32830', ©207360)
('.rdata\x00\x00', '0x34000', 'Ox427a', 17408)

('.data\x00\x00\x00', '0x39000', 'Ox5cff8', 10752)
('.idata\x00\x00', 'Ox96000', 'Oxbbo', 3072)
('.reloc\x00\x00', 'Ox97000', 'Ox211d', 8704)

Listing 1-3: Pulling section data from ircbot.exe using Python's pefile module

As you can see in Listing 1-3, we’ve pulled data from five different sections of
the PE file: .text, .rdata, .data, .idata, and .reloc. The output is given as five
tuples, one for each PE section pulled. The first entry on each line identifies the
PE section. (You can ignore the series of \xee null bytes, which are simply C-
style null string terminators.) The remaining fields tell us what each section’s
memory utilization will be once it’s loaded into memory and where in memory

it will be found once loaded.

For example, ox1e00 @ 1s the base virtual memory address where these sections
will be loaded. Think of this as the section’s base memory address. The ox32830

® in the virtual size field specifies the amount of memory required by the

section once loaded. The 207360 © in the third field represents the amount of

data the section will take up within that chunk of memory.

In addition to using pefile to parse a program’s sections, we can also use it to
list the DLLs a binary will load, as well as the function calls it will request
within those DLLs. We can do this by dumping a PE file’s IAT. Listing 1-4

shows how to use pefile to dump the IAT for irchot.exe.




$ python

pe = pefile.PE("ircbot.exe")

for entry in pe.DIRECTORY_ENTRY_IMPORT:
print entry.dll
for function in entry.imports:

print '"\t',function.name

Listing 1-4: Extracting imports from ircbot.exe

Listing 1-4 should produce the output shown in Listing 1-5 (truncated for
brevity).

KERNEL32.DLL
GetLocalTime
Exi1tThread
CloseHandle

@ WriteFile

#® CreateFileA

Ex1tProcess
® CreateProcessA
GetTickCount
GetModuleFileNameA
--5nip--

Listing 1-5: Contents of the IAT of ircbot.exe, showing library functions used by this
malware

As you can see in Listing 1-5, this output is valuable for malware analysis
because it lists a rich array of functions that the malware declares and will

reference. For example, the first few lines of the output tell us that the malware

will write to files using writeFile @, open files using the createfilea call @, and

create new processes using CreateProcessA ©. Although this is fairly basic
information about the malware, it’s a start in understanding the malware’s
behavior in more detail.

Examining Malware Images

To understand how malware may be designed to game a target, let’s look at the



icons contained in its .rsrc section. For example, malware binaries are often
designed to trick users into clicking them by masquerading as Word documents,
cgame installers, PDF files, and so on. You also find images in the malware
suggesting programs of interest to the attackers themselves, such as network
attack tools and programs run by attackers for the remote control of
compromised machines. T have even seen binaries containing desktop icons of
jihadists, images of evil-looking cyberpunk cartoon characters, and images of
Kalashnikov rifles. For our sample image analysis, let’s consider a malware

sample the security company Mandiant identified as having been crafted by a

Chinese state-sponsored hacking group. You can find this sample malware in
this chapter’s data directory under the name fakepdfmalware.exe. 'This sample
uses an Adobe Acrobat icon to trick users into thinking it is an Adobe Acrobat
document, when in fact it’s a malicious PE executable.

Before we can extract the images from the fakepdfmalware.exe binary using
the Linux command line tool wrestool, we first need to create a directory to hold

the images we’ll extract. Listing 1-6 shows how to do all this.

S mkdir images
S wrestool -x fakepdfmalware.exe -output=images
$ icotool -x -0 images images/*.ico

Listing 1-6: Shell commands that extract images from a malware sample

We first use mkdir images to create a directory to hold the extracted images.
Next, we use wrestool to extract image resources (-x) from fakepdfmalware.exe to
/images and then use icotool to extract (-x) and convert (-o) any resources in the
Adobe .ico icon format into .png graphics so that we can view them using
standard image viewer tools. It you don’t have wrestool installed on your system,
you can download it at http://www.nongnu.org/icoutils/.

Once you’ve used wrestool to convert the images in the target executable to
the PNG format, you should be able open them in your favorite image viewer
and see the Adobe Acrobat icon at various resolutions. As my example here
demonstrates, extracting images and 1cons from PE files 1s relatively

straightforward and can quickly reveal interesting and useful information about



malware binaries. Similarly, we can easily extract printable strings from malware
for more information, which we’ll do next.

Examining Malware Strings

Strings are sequences of printable characters within a program binary. Malware
analysts often rely on strings in a malicious sample to get a quick sense of what
may be going on inside it. These strings often contain things like HTTP and
F'TP commands that download web pages and files, IP addresses and hostnames
that tell you what addresses the malware connects to, and the like. Sometimes
even the language used to write the strings can hint at a malware binary’s
country of origin, though this can be faked. You may even find text in a string
that explains in leetspeak the purpose of a malicious binary.

Strings can also reveal more technical information about a binary. For
example, you may find information about the compiler used to create it, the
programming language the binary was written in, embedded scripts or H'TML,
and so on. Although malware authors can obfuscate, encrypt, and compress all
of these traces, even advanced malware authors often leave at least some traces
exposed, making it particularly important to examine strings dumps when

analyzing malware.

Using the strings Program

‘The standard way to view all strings in a file 1s to use the command line tool

strings, which uses the following syntax:

S strings filepath | less

This command prints all strings in a file to the terminal, line by line. Adding
| less at the end prevents the strings from just scrolling across the terminal. By
default, the strings command finds all printable strings with a minimum length
of 4 bytes, but you can set a different minimum length and change various other
parameters, as listed in the commands manual page. I recommend simply using

the default minimum string length of 4, but you can change the minimum string

length using the -n option. For example, strings -n 10 filepath would extract



only strings with a minimum length ot 10 bytes.

Analyzing Your strings Dump

Now that we dumped a malware program’s printable strings, the challenge 1s to
understand what the strings mean. For example, let’s say we dump the strings to
the zrchotstring.txt tile for irchot.exe, which we explored earlier in this chapter

using the pefile library, like this:

$ strings ircbot.exe > ircbotstring.txt

The contents of irchotstring.txt contain thousands of lines of text, but some of
these lines should stick out. For example, Listing 1-7 shows a bunch of lines

extracted from the string dump that begin with the word powNLOAD.

[ DOWNLOAD]: Bad URL, or DNS Error: %s.

[ DOWNLOAD]: Update failed: Error executing file: %s.
[ DOWNLOAD]: Downloaded %.1fKB to %s @ %.1fKB/sec. Updating.
| DOWNLOAD]: Opened: %s.

--5nip--

| DOWNLOAD ] : Downloaded %.1f KB to %s @ %.1f KB/sec.
'DOWNLOAD]: CRC Failed (%d !'= %d).

[DOWNLOAD]: Filesize is incorrect: (%d '= %d).

[ DOWNLOAD]: Update: %s (%dKB transferred).
[DOWNLOAD]: File download: %s (%dKB transferred).

[ DOWNLOAD]: Couldn't open file: %s.

Listing 1-/: The strings output showing evidence that the malware can download files
specified by the attacker onto a target machine

These lines indicate that ircbot.exe will attempt to download files specitied by
an attacker onto the target machine.

Let’s try analyzing another one. The string dump shown in Listing 1-8
indicates that z7chot.exe can act as a web server that listens on the target machine
for connections from the attacker.

O GET
O HTTP/1.0 200 OK



Server: myBot
Cache-Control: no-cache,no-store,max-age=0
pragma: no-cache
Content-Type: %s
Content-Length: %1
Accept-Ranges: bytes
Date: %s %s GMT
Last-Modified: %s %s GMT
Expires: %s %s GMT
Connection: close
HTTP/1.0 200 OK

© Server: myBot
Cache-Control: no-cache,no-store,max-age=0
pragma: no-cache
Content-Type: %s
Accept-Ranges: bytes
Date: %s %s GMT
Last-Modified: %s %s GMT
Expires: %s %s CMT
Connection: close
HH:mm:ss
ddd, dd MMM yyyy
application/octet-stream
text/html

Listing 1-8: The strings output showing that the malware has an HTTP server to which
the attacker can connect

Listing 1-8 shows a wide variety of HT'TP boilerplates used by #rchot.exe to
implement an IH'TTP server. It’s likely that this ITTTP server allows the
attacker to connect to a target machine via HT'I'P to issue commands, such as
the command to take a screenshot of the victim’s desktop and send it back to the
attacker. We see evidence of HI'TP functionality throughout the listing. For

example, the ¢eT method @ requests data from an internet resource. The line
HTTP/1.0 200 oK @ is an H'T'TP string that returns the status code 200, indicating

that all went well with an HT'TP network transaction, and Server: myBot ©
indicates that the name of the H'T'TP server is myBot, a giveaway that irchot.exe
has a built-in H'T'I'P server.



All ot this information 1s useful in understanding and stopping a particular
malware sample or malicious campaign. For example, knowing that a malware
sample has an H'T'TP server that outputs certain strings when you connect to it
allows you to scan your network to identify infected hosts.

Summary

In this chapter, you got a high-level overview of static malware analysis, which
involves inspecting a malware program without actually running it. You learned
about the PE file format that defines Windows .exe and .d// tiles, and you
learned how to use the Python library pefile to dissect a real-world malware
irchot.exe binary. You also used static analysis techniques such as image analysis
and strings analysis to extract more information from malware samples. Chapter
2 continues our discussion of static malware analysis with a focus on analyzing

the assembly code that can be recovered from malware.



2

BEYOND BASIC STATIC ANALYSIS: X86
DISASSEMBLY

To thoroughly understand a malicious program, we often need to go beyond
basic static analysis of its sections, strings, imports, and images. This involves
reverse engineering a program’s assembly code. Indeed, disassembly and reverse

engineering lie at the heart of deep static analysis of malware samples.

Because reverse engineering is an art, technical craft, and science, a thorough
exploration is beyond the scope of this chapter. My goal here is to introduce you
to reverse engineering so that you can apply it to malware data science.
Understanding this methodology is essential for successtully applying machine
learning and data analysis to malware.

In this chapter I start with the concepts you’ll need to understand x86
disassembly. Later in the chapter I show how malware authors attempt to bypass
disassembly and discuss ways to mitigate these anti-analysis and anti-detection
maneuvers. But first, let’s review some common disassembly methods as well as
the basics of x86 assembly language.



Disassembly Methods

Disassembly 1s the process by which we translate malware’s binary code into valid
x86 assembly language. Malware authors generally write malware programs in a
high-level language like C or C++ and then use a compiler to compile the source
code into x86 binary code. Assembly language is the human-readable
representation of this binary code. Theretfore, disassembling a malware program
into assembly language is necessary to understand how it behaves at its core.

Unfortunately, disassembly is no easy feat because malware authors regularly
employ tricks to thwart would-be reverse engineers. In fact, perfect disassembly
in the face of deliberate obfuscation is an unsolved problem in computer
science. Currently, only approximate, error-prone methods exist for

disassembling such programs.

For example, consider the case of self-modifying code, or binary code that
modifies itself as it executes. The only way to disassemble this code properly is
to understand the program logic by which the code modifies itself, but that can
be exceedingly complex.

Because pertect disassembly is currently impossible, we must use imperfect
methods to accomplish this task. The method we’ll use is /linear disassembly,
which involves identifying the contiguous sequence of bytes in the Portable
Executable (PE) file that corresponds to its x86 program code and then
decoding these bytes. The key limitation of this approach is that it ignores
subtleties about how instructions are decoded by the CPU in the course of
program execution. Also, it doesn’t account for the various obfuscations

malware authors sometimes use to make their programs harder to analyze.

The other methods of reverse engineering, which we won’t cover here, are
the more complex disassembly methods used by industrial-grade disassemblers
such as IDA Pro. These more advanced methods actually simulate or reason
about program execution to discover which assembly instructions a program
might reach as a result of a series of conditional branches.

Although this type of disassembly can be more accurate than linear
disassembly, 1t’s far more CPU intensive than linear disassembly methods,
making it less suitable for data science purposes where the focus is on

disassembling thousands or even millions of programs.



Before you can begin analysis using linear disassembly, however, you’ll need
to review the basic components of assembly language.

Basics of x86 Assembly Language

Assembly language is the lowest-level human-readable programming language
for a given architecture, and 1t maps closely to the binary instruction format of a
particular CPU architecture. A line of assembly language is almost always
equivalent to a single CPU instruction. Because assembly is so low level, you
can often retrieve it easily from a malware binary by using the right tools.

GGaining basic proficiency in reading disassembled malware x86 code is easier
than you might think. This is because most malware assembly code spends most
of its time calling into the operating system by way of the Windows operating
system’s dynamic-link libraries (DLLs), which are loaded into program memory at
runtime. Malware programs use DLLs to do most of the real work, such as
moditying the system registry, moving and copying files, making network
connections and communicating via network protocols, and so on. Therefore,
following malware assembly code often involves understanding the ways in
which function calls are made from assembly and understanding what various
DLL calls do. Of course, things can get much more complicated, but knowing
this much can reveal a lot about the malware.

In the following sections I introduce some important assembly language
concepts. I also explain some abstract concepts like control flow and control
flow graphs. Finally, we disassemble the irchot.exe program and explore how its
assembly and control flow can give us insight into its purpose.

There are two major dialects of x86 assembly: Intel and AT&'T. In this book
[ use Intel syntax, which can be obtained from all major disassemblers and is the

syntax used in the oftficial Intel documentation of the x86 CPU.

Let’s start by taking a look at CPU registers.

CPU Registers

Registers are small data storage units on which x86 CPUs perform computations.
Because registers are located on the CPU itself, register access is orders of



magnitude faster than memory access. This i1s why core computational
operations, such as arithmetic and condition testing instructions, all target
registers. It’s also why the CPU uses registers to store information about the
status of running programs. Although many registers are available to
experienced x86 assembly programmers, we’ll just focus on a few important ones
here.

General-Purpose Registers

General-purpose registers are like scratch space for assembly programmers. On
a 32-bit system, each of these registers contains 32, 16, or 8 bits of space against
which we can perform arithmetic operations, bitwise operations, byte order—
swapping operations, and more.

In common computational workflows, programs move data into registers
from memory or trom external hardware devices, perform some operations on
this data, and then move the data back out to memory for storage. For example,
to sort a long list, a program typically pulls list items in from an array in

memory, compares them in the registers, and then writes the comparison results

back out to memory.

—

['o understand some of the nuances of the general-purpose register model in
the Intel 32-bit architecture, take a look at Figure 2-1.
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Figure 2-1: Registers in the x86 architecture

The vertical axis shows the layout ot the general-purpose registers, and the

horizontal axis shows how EAX, EBX, ECX, and EDX are subdivided. EAX,
EBX, ECX, and EDX are 32-bit registers that have smaller, 16-bit registers
inside them: AX, BX, CX, and DX. As you can see in the figure, these 16-bit
registers can be subdivided into upper and lower 8-bit registers: AH, AL, BH,
BL, CH, CL, DH, and DL. Although it’s sometimes useful to address the
subdivisions in EAX, EBX, ECX, and EDX, you’ll mostly see direct references
to EAX, EBX, ECX, and EDX.

Stack and Control Flow Registers

The stack management registers store critical information about the program

stack, which is responsible for storing local variables for tunctions, arguments



passed into functions, and control information relating to the program control
flow. Let’s go over some of these registers.

In simple terms, the ESP register points to the top of the stack for the
currently executing tunction, whereas the EBP register points to the bottom of
the stack for the currently executing function. This is crucial information for
modern programs, because it means that by referencing data relative to the stack
rather than using its absolute address, procedural and object-oriented code can

access local variables more gracetully and efticiently.

Although you won’t see direct references to the EIP register in x86 assembly
code, it’s important in security analysis, particularly in the context of
vulnerability research and buffer-overtflow exploit development. This is because
EIP contains the memory address of the currently executing instruction.
Attackers can use buffer-overflow exploits to corrupt the value of the EIP
register indirectly and take control of program execution.

In addition to its role in exploitation, EIP is also important in the analysis of
malicious code deployed by malware. Using a debugger we can inspect EIP’s
value at any moment, which helps us understand what code malware 1s executing

at any particular time.

EFLAGS is a status register that contains CPU flzgs, which are bits that store
status information about the state of the currently executing program. The
EFLAGS register is central to the process ot making conditional branches, or
changes in execution flow resulting from the outcome of if/then-style program

logic, within x86 programs. Specifically, whenever an x86 assembly program
checks whether some value is greater or less than zero and then jumps to a
function based on the outcome of this test, the EFLAGS register plays an
enabling role, as described in more detail in “Basic Blocks and Control Flow
Graphs” on page 19.

Arithmetic Instructions

Instructions operate on general-purpose registers. You can perform simple
computations with the general-purpose registers using arithmetic instructions.
For example, add, sub, inc, dec, and mul are examples ot arithmetic instructions
you’ll encounter frequently in malware reverse engineering. Table 2-1 lists



some examples ot basic instructions and their syntax.

Tahle 2-1: Arithmetic Instructions

Instructions Description

add ebx, 100  Adds 100 to the value in EBX and then stores the result in EBX
sub ebx, 100 Subtracts 100 from the value in EBX and then stores the result in EBX
inc ah Increments the value in AH by 1

dec al Decrements the value in AL by 1

The add instruction adds two integers and stores the result in the first
operand specified, whether this 1s a memory location or a register according to
the following syntax. Keep in mind only one argument can be a memory
location. The sub instruction is similar to add, except it subtracts integers. The

inc instruction increments a register or memory location’s integer value,

whereas dec decrements a register or memory location’s integer value.

Data Movement Instructions

The x86 processor provides a robust set of instructions for moving data between
registers and memory. These instructions provide the underlying mechanisms
that allow us to manipulate data. The staple memory movement instruction is
the mov instruction. Table 2-2 shows how you can use the mov instruction to
move data around.

Table 2-2: Data Movement |Instructions

Instructions Description

mov ebx,eax Moves the value in register EAX into register EBX

mov eax, [0x12345678] Moves the data at memory address 0x12345678 into the EAX register

mov edx, 1 Moves the value 1 into the register EDX

mov [0x12345678], eax Moves the value in EAX into the memory location 0x12345678

Related to the mov instruction, the lea instruction loads the absolute memory

address specified into the register used for getting a pointer to a memory

location. For example, lea edx, [esp-4] subtracts 4 from the value in ESP and



loads the resulting value into EDX.

Stack Instructions

The stack in x86 assembly is a data structure that allows you to push and pop
values onto and off of it. This is similar to how you would add and remove
plates on and off the top of a stack of plates.

Because control flow is often expressed through C-style function calls in x86
assembly and because these function calls use the stack to pass arguments,
allocate local variables, and remember what part of the program to return to
after a function finishes executing, the stack and control flow need to be

understood together.

The push instruction pushes values onto the program stack when the

programmer wants to save a register value onto the stack, and the pop instruction
deletes values from the stack and places them into a designated register.

The push mnstruction uses the following syntax to perform its operations:

push 1

In this example, the program points the stack pointer (the register ESP) to a
new memory address, thereby making room for the value (1), which is now
stored at the top location on the stack. Then it copies the value from the
argument to the memory location the CPU has just made room for on the top
of the stack.

Let’s contrast this with pop:

pop eax

The program uses pop to pop the top value off the stack and move it into a
specified register. In this example, pop eax pops the top value off the stack and
moves 1t Into eax.

An unintuitive but important detail to understand about the x86 program
stack is that it grows downward in memory, so that the highest value on the
stack 1s actually stored at the lowest address in stack memory. This becomes
very important to remember when you analyze assembly code that references



data stored on the stack, as it can quickly get contusing unless you know the
stack’s memory layout.

Because the x86 stack grows downward in memory, when the push instruction
allocates space on the program stack for a new value, it decrements the value of
ESP so that it points to a lower location in memory and then copies a value
from the target register into that memory location, starting at the top address of
the stack and growing up. Conversely, the pop instruction actually copies the top
value off of the stack and then increments the value of ESP so it points to a
higher memory location.

Control Flow Instructions

An x86 program’s control flow defines the network ot possible instruction
execution sequences a program may execute, depending on the data, device
interactions, and other inputs the program might receive. Control tlow

instructions define a program’s control flow. They are more complicated than
stack mstructions but still quite intuitive. Because control tlow 1s often expressed
through C-style function calls in x86 assembly, the stack and control flow are
closely related. They’re also related because these function calls use the stack to
pass arguments, allocate local variables, and remember what part of the program

to return to after a function finishes executing.

The call and ret control tlow instructions are the most important in terms of
how programs call functions in x86 assembly and how programs return from
functions atter these functions are done executing.

The call instruction calls a function. Think of this as a function you might
write in a higher-level language like C to allow the program to return to the
instruction after the call instruction is invoked and the function has finished

executing. You can invoke the call instruction using the following syntax, where
address denotes the memory location where the function’s code begins:

call address

The call instruction does two things. First, it pushes the address of the
instruction that will execute after the function call returns onto the top of the

stack so that the program knows what address to return to after the called



function finishes executing. Second, call replaces the current value of EIP with
the value specified by the address operand. Then, the CPU begins execution at
the new memory location pointed to by EIP.

Just as call initiates a function call, the ret instruction completes it. You can

use the ret instruction on its own and without any parameter, as shown here:

ret

When invoked, ret pops the top value off the stack, which we expect to be
the saved program counter value (EIP) that the call instruction pushed onto the

stack when the call instruction was invoked. Then it places the popped program

counter value back into EIP and resumes execution.

The jmp instruction is another important control flow construction, which
operates more simply than call. Instead of worrying about saving EIP, jmp
simply tells the CPU to move to the memory address specified as its parameter
and begin execution there. For example, jmp 0x12345678 tells the CPU to start
executing the program code stored at memory location 0x12345678 on the next
Instruction.

You may be wondering how you can make jmp and call instructions execute
in a conditional way, such as “if the program has received a network packet,
execute the following function.” The answer 1s that x86 assembly doesn’t have
high-level constructs like if, then, else, else if, and so on. Instead, branching to
an address within a program’s code typically requires two instructions: a cmp
instruction, which checks the value in some register against some test value and
stores the result of that test in the EFLAGS register, and a conditional branch
instruction.

Most conditional branch instructions start with a 7, which allows the program
to jump to a memory address, and are post-fixed with letters that stand for the
condition being tested. For example, jge tells the program to jump if greater
than or equal to. This means that the value in the register being tested must be

oreater than or equal to the test value.

The cmp instruction uses the following syntax:

cmp register, memory location, or literal, register, memory location, or



{iteral

As stated earlier, cmp compares the value in the specified general-purpose
register with value and then stores the result of that comparison in the EFLAGS
register.

T'he various conditional jmp instructions are then invoked as follows:

J* address

As you can see, we can prefix 7 to any number of conditional test instructions.
For example, to jump only it the value tested i1s greater than or equal to the
value in the register, use the following instruction:

jge address

Note that unlike the case of the call and ret instructions, the jmp family of
instructions never touches the program stack. In fact, in the case of the jmp
family of instructions, the x86 program is responsible for tracking its own
execution tlow and potentially saving or deleting information about what
addresses it has visited and where it should return to after a particular sequence
of instructions has executed.

Basic Blocks and Control Flow Graphs
Although x86 programs look sequential when we scroll through their code in a
text editor, they actually have loops, conditional branches, and unconditional

branches (control tlow). All of these give each x86 program a network structure.
Let’s use the simple toy assembly program in Listing 2-1 to see how this works.

setup: # symbol standing in for address of instruction on the next Line
O mov eax, 10
loopstart: # symbol standing in for address of the instruction on the next
Line
A sub eax, 1
© cmp 0, eax
jne Sloopstart
loopend: # symbol standing in for address of the instruction on the next

line



mov eax, 1

# more code would go here

Listing 2-1: Assembly program for understanding control flow graph

As you can see, this program initializes a counter to the value 10, stored in
register EAX @. Next, it does a loop in which the value in EAX is decremented

by 1 @ on each iteration. Finally, once EAX has reached a value of 0 @, the
program breaks out of the loop.

In the language of control flow graph analysis, we can think of these
instructions as comprising three basic blocks. A basic block is a sequence of
instructions that we know will always execute contiguously. In other words, a
basic block always ends with either a branching instruction or an instruction
that is the target of a branch, and it always begins with either the first
instruction of the program, called the program’s entry point, or a branch target.

In Listing 2-1, you can see where the basic blocks of our simple program
begin and end. The first basic block is composed of the instruction mov eax, 16
under setup:. The second basic block is composed of lines beginning with sub
eax, 1 thI'(Jugh jne Sloopstart under loopstart:, and the third starts at mov eax, 1
under loopend:. We can visualize the relationships between the basic blocks
using the graph in Figure 2-2. (We use the term graph synonymously with the
term zetwork; in computer science, these terms are interchangeable.)

loopstart:

setup: ’ sub eax, 1 loopend:

mov eax, 10 N cmp O, eax 1

move eax,

jne $loopstart

Figure 2-2: A visualization of the control flow graph of our simple assembly program

If one basic block can ever flow into another basic block, we connect it, as
shown in Figure 2-2. The figure shows that the setup basic block leads to the

loopstart basic block, which repeats 10 times before it transitions to the loopend



basic block. Real-world programs have control tlow graphs such as these, but
they’re much more complicated, with thousands of basic blocks and thousands
of interconnections.

Disassembling ircbhot.exe Using pefile and capstone

Now that you have a good understanding of the basics of assembly language,
let’s disassemble the first 100 bytes of irchot.exe’s assembly code using linear
disassembly. To do this, we’ll use the open source Python libraries pefile
(introduced in Chapter 1) and capstone, which is an open source disassembly
library that can disassemble 32-bit x86 binary code. You can install both of these

libraries with pip using the following commands:

pip install pefile
pip install capstone

Once these two libraries are installed, we can leverage them to disassemble

irchot.exe using the code in Listing 2-2.

#!/usr/bin/python
import pefile

from capstone import *

# load the target PE file
pe = pefile.PE("ircbot.exe")

# get the address of the program entry point from the program header
entrypoint = pe.OPTIONAL_HEADER.AddressOfEntryPoint

# compute memory address where the entry code will be loaded into memory
entrypoint_address = entrypoint+pe.0OPTIONAL_HEADER.ImageBase

# get the binary code from the PE file object
binary_code = pe.get_memory_mapped_image()[entrypoint:entrypoint+100]

# initialize disassembler to disassemble 32 bit x86 binary code
disassembler = Cs(CS_ARCH_X86, CS_MODE_32)



# disassemble the code
for instruction in disassembler.disasm(binary_code, entrypoint_address):

print "%s\t%s" %(instruction.mnemonic, instruction.op_str)

Listing 2-2: Disassembling ircbot.exe

This should produce the following output:

@ push ebp
mov ebp, esp
push -1
push Ox437588
push 0x41982c

A mov eax, dword ptr fs:[0]
push eax
mov dword ptr fs:[0], esp
® add esp, -0x5c
push ebx
push esi
push edi
mov dword ptr [ebp - 0x18], esp
O call dword ptr [0x496308]
--5nip--

Don’t worry about understanding all of the instructions in the disassembly
output: that would involve an understanding of assembly that goes beyond the
scope of this book. However, you should feel comfortable with many of the

instructions in the output and have some sense of what they do. For example,

the malware pushes the value in register EBP onto the stack @, saving its value.
Then it proceeds to move the value in ESP into EBP and pushes some
numerical values onto the stack. The program moves some data in memory into

the EAX register @, and it adds the value -Ox5c¢ to the value in the ESP register
©. I'inally, the program uses the call instruction to call a function stored at the
memory address 0x496308 O.

Because this 1s not a book on reverse engineering, I won’t go into any more
depth here about what the code means. What I’ve presented is a start to
understanding how assembly language works. For more information on



assembly language, I recommend the Intel programmer’s manual at
bttp://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.btml.

Factors That Limit Static Analysis

In this chapter and Chapter 1, you learned about a variety of ways in which
static analysis techniques can be used to elucidate the purpose and methods of a
newly discovered malicious binary. Unfortunately, static analysis has limitations
that render it less useful in some circumstances. For example, malware authors
can employ certain offensive tactics that are far easier to implement than to
defend against. Let’s take a look at some of these offensive tactics and see how
to defend against them.

Packing

Malware packing is the process by which malware authors compress, encrypt, or
otherwise mangle the bulk of their malicious program so that it appears
inscrutable to malware analysts. When the malware is run, it unpacks itself and
then begins execution. The obvious way around malware packing is to actually
run the malware in a safe environment, a dynamic analysis technique I’ll cover

in Chapter 3.

Software packing is also used by benign software installers for legitimate reasons.
Benign software authors use packing to deliver their code because it allows them to
compress program resouvces to reduce software installer download sizes. It also belps
them thwart reverse engineering attempts by business competitors, and it provides a

convenient way to bundle many program rvesources within a single installer file.

Resource Obfuscation

Another anti-detection, anti-analysis technique malware authors use is resource
obfuscation. "They obfuscate the way program resources, such as strings and



oraphical images, are stored on disk, and then deobfuscate them at runtime so
they can be used by the malicious program. For example, a simple obftuscation

would be to add a value of 1 to all bytes in images and strings stored in the PE
resources section and then subtract 1 from all of this data at runtime. Of course,

any number of obfuscations are possible here, all of which make life difficult for

malware analysts attempting to make sense of a malware binary using static
analysis.

As with packing, one way around resource obfuscation is to just run the
malware in a safe environment. When this is not an option, the only mitigation
for resource obfuscation is to actually figure out the ways in which malware has
obfuscated its resources and to manually deobfuscate them, which is what

professional malware analysts often do.

Anti-disassembly Techniques

A third group of anti-detection, anti-analysis techniques used by malware
authors are anti-disassemnbly techniques. These techniques are designed to exploit
the inherent limitations of state-of-the-art disassembly techniques to hide code
from malware analysts or make malware analysts think that a block of code
stored on disk contains different instructions than it actually does.

An example of an anti-disassembly technique involves branching to a
memory location that the malware author’s disassemblers will interpret as a
different instruction, essentially hiding the malware’s true instructions from
reverse engineers. Anti-disassembly techniques have huge potential and there’s
no perfect way to defend against them. In practice, the two main defenses
against these techniques are to run malware samples in a dynamic environment
and to manually figure out where anti-disassembly strategies manifest within a

malware sample and how to bypass them.

Dynamically Downloaded Data

A tinal class of anti-analysis techniques malware authors use involves externally
sourcing data and code. For example, a malware sample may load code
dynamically from an external server at malware startup time. If this is the case,
static analysis will be useless against such code. Similarly, malware may source



decryption keys from external servers at startup time and then use these keys to
decrypt data or code that will be used in the malware’s execution.

Obviously, if the malware is using an industrial-strength encryption
algorithm, static analysis will not be sufficient to recover the encrypted data and
code. Such anti-analysis and anti-detection techniques are quite powerful, and
the only way around them is to acquire the code, data, or private keys on the
external servers by some means and then use them in one’s analysis of the

malware 1n question.

Summary

This chapter introduced x86 assembly code analysis and demonstrated how we
can perform disassembly-based static analysis on #rchot.exe using open source
Python tools. Although this is not meant to be a complete primer on x86
assembly, you should now feel comfortable enough that you have a starting
place for tiguring out what’s going on in a given malware assembly dump.
Finally, you learned ways in which malware authors can defend against
disassembly and other static analysis techniques, and how you can mitigate these
anti-analysis and anti-detection strategies. In Chapter 3, you’ll learn to conduct
dynamic malware analysis that makes up for many of the weaknesses of static

malware analysis.
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A BRIEF INTRODUCTION TO DYNAMIC ANALYSIS

In Chapter 2, you learned advanced static analysis techniques to disassemble the
assembly code recovered from malware. Although static analysis can be an
efficient way to gain useful information about malware by studying its ditferent
components on disk, it doesn’t allow us to observe malware behavior.

In this chapter, you’ll learn about the basics of dynamic malware analysis.
Unlike static analysis, which focuses on what malware looks like in file form,
dynamic analysis consists of running malware in a safe, contained environment
to see how it behaves. This 1s like introducing a dangerous bacterial strain into a
sealed environment to see its effects on other cells.

Using dynamic analysis, we can get around common static analysis hurdles,
such as packing and obfuscation, as well as gain more direct insight into the
purpose of a given malware sample. We begin by exploring basic dynamic
analysis techniques, their relevance to malware data science, and their
applications. We use open source tools like malwr.com to study examples of
dynamic analysis in action. Note that this is a condensed survey of the topic and

is not intended to be comprehensive. For a more complete introduction, check
out Practical Malware Analysis (No Starch Press, 2012).



Why Use Dynamic Analysis?
To understand why dynamic analysis matters, let’s consider the problem of
packed malware. Recall that packing malware refers to compressing or

obfuscating a malware’s x86 assembly code to hide the malicious nature of the

program. A packed malware sample unpacks itself when it infects a target

machine so that the code can execute.

We could try to disassemble a packed or obfuscated malware sample using

the static analysis tools discussed in Chapter 2, but this is a laborious process.
For example, with static analysis we’d first have to find the location of the
obtfuscated code in the malware tile. Then we’d have to find the location of the
deobfuscation subroutines that deobfuscate this code so that it can run. After
locating the subroutines, we’d have to figure out how this deobfuscation
procedure works in order to perform it on the code. Only then could we begin
the actual process of reverse engineering the malicious code.

A simple yet clever alternative to this process is to execute the malware in a
safe, contained environment called a sandbox. Running malware in a sandbox
allows it to unpack itselt as it would when infecting a real target. By simply
running malware, we can find out what servers a particular malware binary
connects to, what system configuration parameters it changes, and what device
[/0O (input/output) it attempts to perform.

Dynamic Analysis for Malware Data Science

Dynamic analysis is useful not only for malware reverse engineering but also for
malware data science. Because dynamic analysis reveals what a malware sample
does, we can compare its actions to those of other malware samples. For example,
because dynamic analysis shows what files malware samples write to disk, we can
use this data to connect those malware samples that write similar filenames to
disk. These kinds of clues help us categorize malware samples based on common
traits. They can even help us identify malware samples that were authored by

the same groups or are part of the same campaigns.

Most importantly, dynamic analysis is useful for building machine learning—
based malware detectors. We can train a detector to distinguish between



malicious and benign binaries by observing their behaviors during dynamic
analysis. For example, after observing thousands of dynamic analysis logs from
both malware and benign files, a machine learning system can learn that when
msword.exe launches a process named powershell.exe, this action is malicious, but
that when msword.exe launches Internet Explorer, this is probably harmless.
Chapter 8 will go into more detail about how we can build malware detectors
using data based on both static and dynamic analysis. But before we create
sophisticated malware detectors, let’s look at some basic tools for dynamic
analysis.

Basic Tools for Dynamic Analysis

You can find a number of free, open source tools for dynamic analysis online.
This section tfocuses on malwr.com and CuckooBox. The malwr.com site has a
web interface that allows you to submit binaries for dynamic analysis for free.
CuckooBox 1s a software platform that lets you set up your own dynamic
analysis environment so that you can analyze binaries locally. The creators of
the CuckooBox plattorm also operate malwr.com, and malwr.com runs
CuckooBox behind the scenes. Therefore, learning how to analyze results on

malwr.com will allow you to understand CuckooBox results.

At print time, malwr.com’s CuckooBox interface was down for maintenance.
Hopefully by the time you vead this section the site will be back up. If not, the
information provided in this chapter can be applied to output from your own
CuckooBox instance, which you can set up by following the instructions at
https://cuckoosandbox.org/.

Typical Malware Behaviors

The following are the major categories of actions a malware sample may take
upon execution:

Modifying the file system For example, writing a device driver to disk,



changing system configuration files, adding new programs to the file system,
and moditying registry keys to ensure the program auto-starts

Modifying the Windows registry to change the system configuration
For example, changing firewall settings

Loading device drivers For example, loading a device driver that records

user keystrokes

Network actions For example, resolving domain names and making H'TTP

requests

We’ll examine these behaviors in more detail using a malware sample and

analyzing its report on malwr.com.

Loading a File on malwr.com

To run a malware sample through malwr.com, navigate to https://malwr.com/
and then click the Submit button to upload and submit a binary for analysis.
We'll use a binary whose SHA256 hash starts with the characters d676d95,
which you can find in the data directory accompanying this chapter. I encourage
you to submit this binary to malwr.com and inspect the results yourself as we go.

‘The submit page is shown in Figure 3-1.
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select file

« Analyze the sample
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Figure 3-1: The malware sample submission page

After you submit your sample through this form, the site should prompt you
to wait for analysis to complete, which typically takes about five minutes. When
the results load, you can inspect them to understand what the executable did

when it was run in the dynamic analysis environment.

Analyzing Results on malwr.com

The results page for our sample should look something like Figure 3-2.



SRR
malwr %

W] Flattr |
Tags hone #

Analysis

CATEGORY STARTCD COMPLITED

FILE 2016-12-30 11 5605 2016-12-30 1158 24
File Details

FILE wordpiugin exe

WA MF

FILi 410112 bytes

S E

FILE PE3Z exacutable (GUI) intel BD38E. for MS Windows, UPX comoressad

IYPF

M5 Soa8 78502 52e803Cd9S Tde 60 3Cce1 74

YHA Y CB61EpCapedat’ 300 18a950910006a1bea2a%2(0

SHAZSE db /b

L

C1abbad 247258262080 M Slebedend b3 cddaellb Bace 0felan O

SHAS12  DOacald Maasbebaasodtadiidarci1de4 1 540000026M0LCT ea M aBLbabICl 36 30C

A

1Y

4200

=
=

4

Figure 3-2: The top of the results page for a malware sample on malwr.com

we’ll explore next.

Signatures Panel

ok

The results for this file illustrate some key aspects of dynamic analysis, which

he first two panels you’ll see on the results page are Analysis and File Details.

T

hese contain the time the file was run and other static details about the file.

el
T

e panel I will focus on here is the Signatures panel, shown in Figure 3-3.

his panel contains high-level information derived from the file itselt and 1ts

behavior when it was run in the dynamic analysis environment. Let’s discuss

what each of these signatures means.



File has been identified by at least one AntiVirus on Viruslotal as malicious
I he binary likely contains encrypted or comprassed data
| he exaculabie 1S compressed using UFA

Collects information to fingerprint the system (MachineGuid, DigitalProductid,
SystemBiosDate)

Creates an Alternate Data Stream (ADS)

Iinstalls itself for autorun at Windows startup

Figure 3-3: The malwr.com signatures that match the behavior of our malware sample

The first three signatures shown in the figure result from static analysis (that
is, these are results from the properties of the malware file itself, not its actions).
The first signature simply tells us that a number of antivirus engines on the
popular antivirus aggregator VirusTotal.com marked this file as malware. The
second indicates that the binary contains compressed or encrypted data, a
common sign of obfuscation. The third tells us that this binary was compressed
with the popular UPX packer. Although these static indicators on their own
don’t tell us what this file does, they do tell us that it’s likely malicious. (Note
that the color doesn’t correspond to static versus dynamic categories; instead, it
represents the severity of each rule, with red—the darker gray here—being
more suspicious than yellow.)

The next three signatures result from dynamic analysis of the file. The first
signature indicates that the program attempts to i1dentify the system’s hardware
and operating system. The second indicates that the program uses a pernicious
feature of Windows known as Alternate Data Streams (ADS), which allows
malware to hide data on disk such that it’s invisible when using standard file
system browsing tools. The third signature indicates that the file changes the
Windows registry so that when the system reboots, a program that it specified
will automatically execute. This would restart the malware whenever the user
reboots their system.



As you can see, even at the level of these automatically triggered signatures,
dynamic analysis adds significantly to our knowledge of the file’s intended

behavior.

Screenshots Panel

Beneath the Signatures panel is the Screenshots panel. This panel shows a
screenshot of the dynamic analysis environment desktop as the malware is
running. Figure 3-4 shows an example of what this looks like.
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Figure 3-4: A screen capture of our malware sample’s dynamic behavior

You can see that the malware we’re dealing with is ransomware, which is a
type of malware that encrypts a target’s files and forces them to pay up if they
want to get their data back. By simply running our malware, we were able to
uncover its purpose without resorting to reverse engineering.




Modified System Objects Panel

A row of headings under Screenshots shows the malware sample’s network
activity. Our binary did not engage in any network communications, but if it
had, we would see the hosts it contacted here. Figure 3-5 shows the Summary
panel.

Summary

ries REgIsiry Keys rAutexes

: \ DOCUME~1\User\LOCALS~1\Temp\wordplugin.exe

: \DOCUME~1

: \DOCUME~1\User
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: \DOCUME ~1\User\ LOCALS~1\Temp

\Documents and Settings\Userilocal Settings\Temp\wordplugin.exe
: \WINDOWS\system32\msctfime. ime
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Figure 3-5: The Files tab of the Summary pane, showing which files our malware sample
modified

This shows which system objects, like files, registry keys, and mutexes, the
malware has modified.

Looking at the Files tab in Figure 3-6, it’s clear that this ransomware
malware has indeed encrypted the user files on disk.

:\Perl\winid2\cpan. ico
t\Perl\win3d2\D3BAFC2EABAT13B05444CH5E75689DA2. locked
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t\Perl\win3d2\DOBOFFS4A1DD13B22F31C65CT756890ASFACECDEDLSAE . locked
C:\Perl\win32\perlhelp.ico
C:\Perl\win32\DEBOFFS4A1DD13B22F46C62D7S1E9ED2FEB2CDOC14DB4AF 25, lacked
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Figure 3-6: File paths in the Files tab of the Summary pane, suggesting that our sample



IS ransomware

After each file path 1s a file with a .Jocked extension, which we can infer is the
encrypted version of the file it has replaced.

Next, we’ll look at the Registry Keys tab, shown in Figure 3-7.

summary

Bes Registry Keys Mutexes
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HKEY LOCAL MACHINE\System\CurrentControlSet\Control\Computeriiame

ActiveComputeriame

Figure 3-/: The Registry Keys tab of the Summary pane, showing which registry keys our
malware sample modified

The registry i1s a database that Windows uses to store configuration
information. Configuration parameters are stored as registry keys, and these
keys have associated values. Similar to file paths on the Windows file system,
registry keys are backslash delimited. Malwr.com shows us what registry keys our
malware modified. Although this isn’t shown in Figure 3-7, if you view the
complete report on malwr.com, you should see that one notable registry key our
malware changed IS
HKEY _LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run, which 1S a
registry key that tells Windows to run programs each time a user logs on. It’s
very likely that our malware modifies this registry to tell Windows to restart the
malware every time the system boots up, which ensures that the malware
infection persists from reboot to reboot.

The Mutexes tab in the malwr.com report contains the names of the mutexes

the malware created, as shown in Figure 3-8.
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10Q4MUTEX .DefaultS5-1-5-21-1547161642-5879214085-839522115-1004
ShimCacheMutex

MSCTF.Shared .MUTEX . EMF

Figure 3-8: The Mutexes tab of the Summary pane, showing which mutexes our malware
sample created

Mutexes are lock files that signal that a program has taken possession of some
resource. Malware often uses mutexes to prevent itselt tfrom infecting a system
twice. It turns out that at least one  mutex  created
(CTFE.TimListCache. FMPDefaultS-1-5-21-1547161642-507921405-839522115-
[004MUTEX. DefaultS-1-5-21-1547161642-507921405-839522115-1004
ShimCacheMutex) i1s known by the security community to be associated with

malware and may be serving this purpose here.

APl Call Analysis
Clicking the Behavioral Analysis tab on the left panel of the makvr.com Ul, as
shown in Figure 3-9, should bring up detailed information about our malware
binary’s behavior.

This shows what API calls were made by each process launched by the
malware, along with their arguments and return wvalues. Perusing this
information is time consuming and requires expert knowledge of Windows
APIs. Although a detailed discussion of malware API call analysis 1s beyond the
scope of this book, if you're interested in learning more, you can look up

individual API calls to discover their effects.



Figure 3-9: The Behavioral Analysis pane of the malwr.com report for our malware
sample, showing when APl calls were made during the dynamic execution

Although malwr.com is a great resource tfor dynamically analyzing individual
malware samples, it isn’t great for performing dynamic analysis on large
numbers of samples. Executing large numbers of samples in a dynamic
environment is important for machine learning and data analysis because it
identifies relationships between malware samples’ dynamic execution patterns.
Creating machine learning systems that can detect instances of malware based
on their dynamic execution patterns requires running thousands of malware
samples.

In addition to this limitation, malwr.com doesn’t provide malware analysis
results in machine-parseable formats like XML or JSON. To address these
issues you must set up and run your own CuckooBox. Fortunately, CuckooBox
is free and open source. It also comes with step-by-step instructions for setting
up your very own dynamic analysis environment. I encourage you to do so by
going to http://cuckoosandbox.org/. Now that you understand how to interpret
dynamic malware results from malwr.com, which uses CuckooBox behind the



scenes, you'll also know how to analyze CuckooBox results once you have
CuckooBox up and running.

Limitations of Basic Dynamic Analysis

Dynamic analysis is a powerful tool, but it is no malware analysis panacea. In
fact, it has serious limitations. One limitation is that malware authors are aware
of CuckooBox and other dynamic analysis frameworks and attempt to
circumvent them by making their malware fail to execute when it detects that
it’s running in CuckooBox. The CuckooBox maintainers are aware that malware
authors try to do this, so they try to get around attempts by malware to
circumvent CuckooBox. This cat-and-mouse game plays out continuously such
that some malware samples will inevitably detect that they are running in

dynamic analysis environments and fail to execute when we try to run them.

Another limitation is that even without any circumvention attempts, dynamic
analysis might not reveal important malware behaviors. Consider the case of a
malware binary that connects back to a remote server upon execution and waits
for commands to be issued. These commands may, for example, tell the
malware sample to look for certain kinds of files on the victim host, to log
keystrokes, or turn on the webcam. In this case, if the remote server sends no
commands, or is no longer up, none of these malicious behaviors will be
revealed. Because of these limitations, dynamic analysis is not a fix-all for
malware analysis. In fact, professional malware analysts combine dynamic and
static analysis to achieve the best possible results.

Summary

In this chapter you ran dynamic analysis on a ransomware malware sample with
malwr.com to analyze the results. You also learned about the advantages and
shortcomings of dynamic analysis. Now that you’ve learned how to conduct
basic dynamic analysis, you’re ready to dive into malware data science.

The remainder of this book focuses on performing malware data science on

static analysis—based malware data. I’ll focus on static analysis because it’s

simpler and easier to get good results with compared to dynamic analysis,



making 1t a good starting place for getting your hands dirty with malware data
science. However, in each subsequent chapter I'll also explain how you can

apply data science methods to dynamic analysis—based data.
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IDENTIFYING ATTACK CAMPAIGNS USING
MALWARE NETWORKS

Malware network analysis can turn malware datasets into valuable threat
intelligence, revealing adversarial attack campaigns, common malware tactics,
and sources of malware samples. This approach consists of analyzing the ways in
which groups of malware samples are connected by their shared attributes,

whether those are embedded IP addresses, hostnames, strings of printable
characters, graphics, or similar.

For example, Figure 4-1 shows an example ot the power of malware network

analysis in a chart that took only seconds to generate with the techniques you’ll
learn in this chapter.
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Figure 4-1: Nation-state malware's social network connections revealed via shared
attribute analysis

The figure displays a group of nation state—grade malware samples
(represented as oval-shaped nodes) and their “social” interconnections (the lines
connecting the nodes). The connections are based on the fact that these samples
“call back” to the same hostnames and IP addresses, indicating they were
deployed by the same attackers. As you’ll learn in this chapter, you can use these
connections to help differentiate between a coordinated attack on your
organization and a disparate array of criminally motivated attackers.

By the end of the chapter you will have learned:



e The fundamentals of network analysis theory as it relates to extracting
threat intelligence from malware

e Ways to use visualizations to identify relationships between malware

samples

e How to create, visualize, and extract intelligence from malware networks
using Python and various open source toolkits for data analysis and
visualization

e How to tie all this knowledge together to reveal and analyze attack
campaigns within real-world malware datasets

Nodes and Edges

Before you can perform shared attribute analysis on malware, you need to
understand some basics about networks. Networks are collections of connected
objects (called nodes). The connections between these nodes are referred to as
edges. As abstract mathematical objects, the nodes in a network can represent
pretty much anything, as can their edges. What we care about for our purposes
is the structure of the interconnections between these nodes and edges, as this

can reveal telling details about malware.

When using networks to analyze malware, we can treat each individual
malware tile as the detinition of a node, and we can treat relationships of interest
(such as shared code or network behavior) as the definition of an edge. Similar

malware tiles share edges and thus cluster together when we apply force-
directed networks (you will see exactly how this works later). Alternatively, we
can treat both malware samples and attributes as nodes unto themselves. For

example, callback TP addresses have nodes, and so do malware samples.

Whenever malware samples call back to a particular IP address, they are
connected to that IP address node.

Networks of malware can be more complex than simply a set of nodes and
edges. Specitically, they can have attributes attached to either nodes or edges,
such as the percentage of code that two connected samples share. One common
edge attribute 1s a weight, with greater weights indicating stronger connections

between samples. Nodes may have their own attributes, such as the file size of



the malware samples they represent, but these are typically reterred to only as
attributes.

Bipartite Networks

A bipartite network 1s one whose nodes can be divided into two partitions
(groups), where neither partition contains internal connections. Networks of
this type can be used to show shared attributes between malware samples.

Figure 4-2 shows an example of a bipartite network in which malware sample
nodes go in the bottom partition, and domain names the samples “call back” to
(in order to communicate with the attacker) go in the other partition. Note that
callbacks never connect directly to other callbacks, and malware samples never
connect directly to other malware samples, as is characteristic of a bipartite
network.

As you can see, even such a simple visualization reveals an important piece of
intelligence: based on the malware samples’ shared callback servers, we can
ouess that sample_014 was probably deployed by the same attacker as
sample_37D. We can also guess that sample_37D and sample_F7F probably share
the same attacker, and that sample_014 and sample_F7F probably share the same
attacker, because they’re connected by sample sample_37D (and indeed, the
samples shown in Figure 4-2 all come from the same “AP’I'1” Chinese attacker
group).

We’d like to thank Mandiant and Mila Parkour for curating the APT1 samples
and making them available to the research community.
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Figure 4-2: A bipartite network. The nodes on top (the attributed partition) are callback
domain names. The nodes on the bottom (malware partition) are malware samples.

As the number of nodes and connections in our network grow very large, we
might want to see just how the malware samples are related, without having to
closely inspect all the attribute connections. We can examine malware sample
similarity by creating a bipartite network projection, which is a simpler version of
a bipartite network in which we link nodes in one partition ot the network it
they have nodes in the other partition (the attribute partition) in common. For

example, in the case of the malware samples shown in Figure 4-1, we’d be

creating a network in which malware samples are linked if they share callback
domain names.

Figure 4-3 shows the projected network of the shared-callback servers of the
entire Chinese AP'T'1 dataset referred to previously.



Figure 4-3: A projection of malware samples from the APT1 dataset, showing
connections between malware samples only if they share at least one server. The two big
clusters were used in two different attack campaigns.

The nodes here are malware samples, and they are linked if they share at
least one callback server. By showing connections between malware samples
only if they share callback servers, we can begin to see the overall “social
network” of these malware samples. As you can see in Figure 4-3, two large
oroupings exist (the large square cluster in the left-center area and the circular
cluster in the top-right area), which upon further inspection turn out to
correspond to two different campaigns carried out over the APT1 group’s 10-

year history.

Visualizing Malware Networks



As you perform shared attribute analysis of malware using networks, you’ll tind
that you rely heavily on network visualization software to create the networks
like the ones shown thus far. This section introduces how these network
visualizations can be created from an algorithmic perspective.

Crucially, the major challenge in doing network visualization is network
layout, which 1s the process of deciding where to render each node in a network
within a two- or three-dimensional coordinate space, depending on whether you
want your visualization to be two- or three-dimensional. When you’re placing

nodes on a network, the ideal way is to place them in the coordinate space such

that their visual distance trom one another is proportional to the shortest-path
distance between them in the network. In other words, nodes that are two hops
away from one another might be about two inches away from one another, and
nodes that are three hops away might be about three inches apart. Doing this
allows us to visualize clusters of similar nodes accurately to their actual
relationship. As you’ll see in the next section, however, this is often difficult to
achieve, especially when you’re working with more than three nodes.

The Distortion Problem

As 1t turns out, it’s often impossible to solve this network layout problem
perfectly. Figure 4-4 illustrates this difficulty.

As you can see in these simple networks, all nodes are connected to all other
nodes by edges of equal weights of 1. The ideal layout for these connections

would place all nodes equidistant from one another on the page. But as you can
see, as we create networks of four and then five nodes, as in (¢) and (d), we start
to introduce progressively more distortion due to edges of unequal length.
Unfortunately, we can only minimize, not eliminate this distortion, and that
minimization becomes one of the major goals of network visualization

algorithms.



