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Introduction

0.1 Classical manifolds by an external atlas

A smooth manifold is usually defined as a topological space X equipped
with a C*™-atlas of charts, indexed by a set [

u U = X, (tel). (0.1)

A chart u' is a homeomorphism between an open euclidean space U; (i.e.
an open subspace of some space R™ with euclidean topology) and an open
subspace X; of X. We assume that these open subsets cover X and that
every transition map (between open euclidean spaces)

uf = uju’: U= Uj (1,j € 1), (0.2)

is of class C*° (i.e. has continuous partial derivatives of any order).

Here u;: X; — Uj is the inverse of v/, and the ‘composite’ uju': U; = U;
(an abuse of notation) is partially defined on the open subset u;(X; N Xj),
possibly empty. We shall often distinguish partial mappings by a dot-
marked arrow.

The space X is thus locally euclidean, with a locally constant dimen-
sion. It is often required to be Hausdorff paracompact, but we drop these
conditions, adding them when it is the case.

If YV is also a smooth manifold, with charts v": V}, = Y}, (h € H), a
C>®-mapping f: X — Y is a map such that all the partial mappings

f;L =vhfui: Uz"') I/h (1:611, h'EH)" (03)

are of class C°°. Again, as in (0.2), there is an abuse of notation: we are
‘composing’ three arrows

ut: Uy = X, f: X =Y, vp: Yn — Vi,

which are not consecutive.
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This could be fixed with Ehresmann’s pseudoproduct (recalled below),
but we want to work with ordinary composition in categories of partial
mappings, along the following line.

(a) We write as C the category of topological spaces and partial continuous
mappings defined on open subspaces. A morphism f: X —Y is defined
on an open subspace Def f of X; for a consecutive morphism g: Y - Z|
the composite gf: X -+ Z is defined on those z € X (if any) such that
f(z) € Def g.

We write as C* the subcategory of C of open euclidean spaces and
partial C**-mappings, defined on open subspaces.

(b) We replace the homeomorphism u': U; — X; with the topological
embedding ut: U; — X; the latter has a backward morphism u;: X - U;
in C (defined on Xj;), characterised by the relations

u' = u'u;ut, w; = wu;u'U;, (0.4)

which make these morphisms partial inverse to each other (as in semigroup
theory).

We can now replace the ‘illegitimate compositions’ of (0.2) and (0.3)
with legitimate ones, in C

u; :ujui: Ui X+ Uj, vpfut: Ui X =Y =V, (0.5)

and we can require that these composites (whose domain and codomain
are open euclidean spaces) belong to the subcategory €.

(c) More generally, for each r € NU {oo,w}, we write as C" the subcategory
of C of open euclidean spaces and partial C"-mappings defined on open
subspaces. (C” means continuous and C¥ means analytic; for 0 < r < oo,
a C"-mapping has all continuous partial derivatives of order < r.)

C"-manifolds are dealt with as above. Topological manifolds correspond
to the case r = 0 (in which case the transition maps u; automatically
belong to CY).

(d) Categories of partial mappings will generally be denoted by calligraphic
letters. The prime example is the category S of sets and partial mappings.
As a crucial fact, a category of partial mappings has a canonical order:
for two partial mappings f,g: X =+ Y the relation f < g, means that f is
a restriction of g (with Def f contained in Def g). The order is consistent
with composition: &, C and C" are ordered categories.
The reader may know, or guess, that the ‘categories of partial mappings’
(like § or C) we are using can be obtained by a general construction, starting

from an ‘ordinary’ category (like Set or Top) and a suitable subcategory (the
embeddings of the definition-sets). This point, dealt with in Section 5.1, plays



0.2 Intrinsic manifolds on ordered categories 3

here a minor role: we prefer to work directly in the relevant categories of partial
mappings.

0.2 Intrinsic manifolds on ordered categories

Loosely speaking, it is possible to define a C"-manifold in an intrinsic way,
inside the category C", as a collection (U;) of objects, equipped with a
family (uj U;~»Uj) of transition morphisms — a system of instructions
specifying how the different charts U; should be glued together. The gluing
will be realised in an external category, namely in C.

More precisely, we define an (intrinsic) manifold on the ordered category
C", indexed by a set I, as a diagram

U= ((U;), (Uj))l

in C”, consisting of objects U; (the charts, for i € I) and morphisms
uf: Uy~ Uj (the transition morphisms, for i,j € I), satisfying three ax-
ioms which use the canonical order of the category C” (for i, j,k € I):

(i) ui=1y, (identity law),

N

(ii) uiu} < ul (composition law, or triangle inequality),
(i) vl = ululul

¥ ¥ (symmetry law).

4
2

From a formal point of view, U is a small category enriched on the ordered
category C”, with an additional symmetry condition. The transition mapping uj
plays the role of Hom(i, j), while axiom (ii) replaces the composition mapping
Hom(i, j) x Hom(j, k) — Hom(i, k).

All this makes sense in the theory of enriched categories on ordered categories,
reviewed in Chapter 6.

Plainly, if we start from the usual charts u*: U; — X and define their
transition morphisms u} as above, in 0.5, these axioms are satisfied. Con-
versely, if we start from a family (uj) satisfying the conditions above, we
shall see (in 3.5.9) that we can reconstruct the space X = glU as the glu-
ing of the diagram U, a quotient of the disjoint union of all U/; modulo the
equivalence relation produced by the transition maps. (More precisely, the
pair (X, (u': U; — X)) will be the lax colimit of the diagram (u}), in
the ordered category C.)

The diagram U will often be written as ((U;), (u}))s, or as Uy. The
family (u;) is called the intrinsic atlas, or the gluing atlas, of the manifold.

In the ordered categories C and C” (and in all the others used in this
analysis of local structures), a prominent role will be played by the endo-
morphisms e: X -+ X which are restriction of identities, called projectors.
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The projectors of X are idempotent endomorphisms and commute, form-
ing a semilattice (i.e. an ordered set with all meets)

Prj(X)={e: X=X |e<idX}, ene =ee =¢e. (0.6)

In fact, the projectors determine the order: for parallel morphisms f,g:
X -Y, the relation f < g, is equivalent to the existence of e € Prj(X)
such that f = ge. We can always take as e the support e(f) of f, namely
the partial identity on Def f, or equivalently the least e € Prj(X) such
that fe = f.

These projectors satisfy axioms (see 3.3.5), and supply the categories C
and C" with the structure of an e-cohesive category, or e-category, one of
the main ingredients of our analysis.

More precisely, C and C" are totally cohesive e-categories, which means
that every family of ‘compatible’ morphisms f;: X -+ Y has a join

sz XY,

and composition distributes over these joins.

Being a compatible family can be simply read as ‘upper bounded’,
but the important fact is that this property is characterised by supports.
Namely, for f,g: X =Y, we say that f and g are compatible, or linked
(written as f!g), if

felg) =gelf) (0.7)

which means that they coincide wherever they are both defined. If the
morphisms (f;);c; are pairwise linked, the join f = V f; is defined on
UDef f;, and its graph is the union of the graphs of all f;.

A general presentation of cohesive structures (<,!) on categories can be
found in Section 3.1, either determined by projectors or more general.

0.3 Morphisms of manifolds as linked profunctors

We can now define the category Mf C”, of C"-manifolds and ‘linked pro-
functors’ between them, extending the formula (0.3), where a morphism
f: U~V is determined by its components

f}L; = 'Uh.fui: UT ned Vvha

on the charts of domain and codomain. A morphism in MfC" will be a
‘linked profunctor’, that is an enriched profunctor between enriched cate-
gories, satisfying a compatibility condition.
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More precisely, an (enriched) profunctor
CI,:((L;z)IH: (Ui,u;—)] —)(Vh,vz)H (08)

is a family of morphisms af;l: U; <+ Vy, in C” such that, for all 7,7 € I and
h,ke H

(1) a,";l ul < ap, vltal < al (profunctor laws).
It will be said to be linked, or compatible, if it has a resolution e;;, € PrjU;
(i € I, h € H), defined by the property:

(ii) al e;n = I al, (left linking law),
which is meant to ensure:

- that linked profunctors can be composed,

- that the gluing of a linked profunctor gives a single-valued partial map-
ping a: glU—-glV.

The resolution can be expressed by supports, taking e;p, = g(a,il).

The usual matrix composition of profunctors works, because C" is to-

tally cohesive: composing a: U — V with a consecutive linked profunctor
b: (Vi, v g — (Wi, v7) ar, the composites

bt aly: Ui Vi Wy (R€ H),

form a linked family (for every ¢ € I, m € M), and the component ¢, of
c="ba: U — W is computed as their linked join

(;';"n: U; < W, C::n = Viyen bﬁi (l;:,. (0.9)

This composition is based on resolutions (or supports): we cannot simply
work in an ordered category with joins of upper bounded families of parallel
morphisms — a sort of ‘conditioned quantaloid’.

0.4 The interest of an intrinsic approach

This formalisation will allow us to move between different contexts.

For instance, the tangent bundle of an open n-dimensional euclidean
space U is the trivial vector bundle TU = U x R™. The present machin-
ery automatically extends this obvious setting to the tangent functor of
differentiable manifolds

T: MfC" — MfV (r>0) (0.10)

with values in the category of vector bundles, presented as intrinsic mani-
folds on an ordered category V of trivial vector bundles (in Section 4.2).
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The same procedure works for tensor calculus.

In a more elementary way, the embedding of C” in the category C of topo-
logical spaces and partial continuous mappings defined on open subspaces
gives the topological realisation of C"-manifolds

MfC™ = C (0.11)

taking into account that the second category is gluing complete (each mani-
fold on C has a gluing space), and therefore C is equivalent to Mf C.

For a reader acquainted with the theory of enriched categories, we note
that the property of Cauchy completeness of enriched categories, which is
crucial in other contexts, is less important here where the morphisms are
based on profunctors: replacing an intrinsic atlas by a complete one would
simply give an isomorphic object (with respect to profunctors).

Furthermore, this can only be done when the basis of enrichment is a
small category: it is the case for topological or differentiable manifolds,
but not for fibre bundles. (Cauchy completion of enriched categories is
reviewed in Chapter 6.)

0.5 An outline

Every chapter and every section has its own introduction; this is a brief
synopsis, and involves topics which may be unknown to the reader.

Chapter 1 introduces the theory of ordered sets, semigroups and cate-
gories, as far as needed in this book. Some care is devoted to the classical
theory of inverse semigroups. Limits and colimits in categories are only
examined in their basic forms; adjoint functors are briefly presented.

Chapter 2 is devoted to ordered categories, equipped with a local order
between parallel morphisms, as in Section 0.1.

The main part of the chapter deals with inverse categories and their
canonical order, a natural extension of inverse semigroups. In fact, our
categories of partial mappings, like C and C” (see 2.1.4), have an inverse
core, IC and IC", formed of the ‘partial isomorphisms’ of the category (see
2.4.4,2.4.5).

The symmetry law 0.2(iii) forces the transition maps of a manifold to
belong to the inverse core; but we need the whole categories C and C"
to construct the general morphisms of manifolds, as presented above, in
Section 0.3.

Some topological prerequisites are also reviewed in this chapter.



0.6 Manifolds by Ehresmann’s pseudogroups 7

Chapter 3 introduces and studies ‘cohesive categories’, as ordered cate-
gories equipped with a structure which allows us to build our categories of
local structures, like Mf C".

We are mainly interested in e-cohesive categories, where the order [ <
g, and the linking relation f!g, of morphisms are determined by their
supports e(f) and e(g). But we also give a more general, unifying notion
of cohesive category, because the linking relation of the inverse cores IC and
IC™ is not determined in this way: it also needs cosupports, on codomains.

Theoretically, the main results are the gluing completion theorems 3.5.8
and 3.6.7, which give the universal properties of the categories of manifolds
built in this chapter.

Chapter 4 shows how various concrete local structures (and their inter-
play) can be formalised in this way: topological and differentiable mani-
folds, manifolds with boundary, foliated manifolds, fibre bundles, vector
bundles, G-bundles, simplicial complexes, etc.

New developments, inspired by Directed Algebraic Topology [G8], deal
with ‘locally cartesian ordered manifolds’, which are spaces with distin-
guished paths, generally non-reversible (in Sections 4.3-4.5).

Chapter 5 gives further information on category theory. On this basis,

Chapter 6 studies the relationship of our approach to manifolds with the
general theory of enriched categories.

Finally, Chapter 7 collects the solutions of most exercises.

0.6 Manifolds by Ehresmann’s pseudogroups

Loosely speaking, the approach of C. Ehresmann to differentiable manifold
and other local structures relies on categories of total mappings, equipped
with a global order (examined in Sections 2.8 and 6.7).
(a) First we need the groupoid Iso(Top) = Iso(C) of topological spaces and
homeomorphisms, equipped with a ‘global order’ f' C f on its maps, de-
fined as follows: the homeomorphism f’: X’ — Y’ is the restriction of the
homeomorphism f: X — Y, from an open subspace X’ of X to an open
subspace Y’ = f(X’) of Y.
(b) Similarly we have the groupoid Iso(C") = Iso(C) N C" of open euclidean
spaces and C"-diffeomorphisms, with the restricted global order.

A chart is again a total homeomorphism in Iso(C)

ut: U, — X, (0.12)

as in the classical definition recalled above, with inverse u;: X; — U;.
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To make sense of the condition expressed in (0.2) we resort to the ex-
tended composition, or pseudoproduct

uj-ui: ui(X; N X;) — ui (X N X;), (0.13)

namely the homeomorphism that takes u;(x) to u;(z), for all z € X; N X.

This extended composition turns the set of morphisms of Iso(C) into
an (inverse) semigroup; one can then require the composite to belong to
Iso(C").

One constructs in this way a groupoid of manifolds and diffeomorphisms
of class C".

This approach makes a deep use of formal set theory, which we prefer to
avoid: dealing with maps f: X — Y, g: Z — W between arbitrary spaces
the meaning of the relation f C g and of the pseudoproduct feg seems to
be unclear, unless all these spaces are known to be subspaces of a given
space.

This can be managed for Hausdorff paracompact differentiable mani-
folds, using the Whitney embedding theorem, according to which an
n-dimensional manifold of this kind can always be embedded in R?" (as
exploited in Section 4.6). In other cases, for instance for fibre bundles,
there is no opportunity of this kind.

0.7 Prerequisites, notation and conventions

This book is addressed to readers with different formation, in Topology,
or Differential Geometry, or Category Theory, or Semigroup Theory, or
perhaps other fields; at the cost of dealing with aspects that can be obvious
to one reader or another.

We only assume as known the basic theory of topological spaces, dif-
ferentiable manifolds, abelian groups, modules and vector spaces. Ordered
sets, semigroups and categories are introduced and studied as far as needed
here. Banach spaces occur in a marginal way. Deeper results, when used,
are referred to.

The symbol C denotes weak inclusion. A singleton set is often written
as {*x}. The equivalence class of an element x, with respect to an assigned
equivalence relation, is generally written as [z]. A bullet in a diagram
stands for an object.

We write as | X | the underlying set of a structured set X, e.g. a topological
space, or a semigroup. Dealing with topological spaces, the term map will
often be used for ‘continuous mapping’; neighbourhood can be abridged to
‘nbhd’.
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A ring R is assumed to be unital, and a (left) R-module is assumed to
be unitary.

The symbols N, Z, Q, R, C denote the sets of natural, integral, rational,
real or complex numbers. The topology of the standard euclidean sphere
S" is reviewed in Section 2.5.

The standard compact interval [0, 1] is also written as I. Open and semi-
open real intervals are denoted as ]a,b|, [a,b], etc. — a notation, which
distinguishes the open interval ]a, b from the pair (a,b), as in Bourbaki’s
treatise.

Categories of partial mappings, like § and C, play a central role (see
Section 2.1). Our analysis of these categories will be based (as in Sec-
tion 0.3) on particular idempotent endomorphisms e: X - X, the ‘partial
identities’, called projectors. Of course these morphisms should not be con-
fused with the projections of a cartesian product, nor with the projection
on a quotient.

A part marked with * is out of the main line of exposition. It may refer
to issues dealt with in the sequel, or be addressed to readers with some
knowledge of the subject, or give references to higher topics.

Most exercises have a solution or convenient hints. These can be found
in Chapter 7, or — occasionally — below the exercise, if they are important
for the sequel. Easy exercises may be left to the reader.

0.8 Sources and outgrowth

Our presentation of manifolds as intrinsic atlases in cohesive categories, in
Chapters 3 and 4, is an expansion of matter published in two articles, in
1989-90 [G3, G4], partially based on a long work on inverse categories
in Homological Algebra, in the 1970’s and 1980’s. (The results of the latter
are summarised in [G2], and exposed in the recent book [G9].)

Presenting manifolds in an intrinsic way can be found in the literature.
But the roots of our approach rely on two main domains.

(i) A first source was Ehresmann’s work on local structures, in the 1960’s.

(ii) Another main source is the theory of enriched categories [EiK, K12], and
Lawvere’s claim that many interesting mathematical structures (besides
forming categories) are themselves categories, enriched on a suitable basis:
a monoidal category as in Lawvere’s article, in 1974 [Lw], or more generally
a bicategory as in many subsequent papers [Bet, Wal, Wa2, BetC, BetW1,
BetW2|.
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The bases we actually use are very particular bicategories: ordered cate-
gories with ‘linked’ joins, preserved by composition.

Other papers of the 1980’s are related to our approach, or to the struc-
tures we are using.

(a) S. Kasangian and R.F.C. Walters worked in the perspective opened by
Lawvere, aiming to present differentiable manifolds as symmetric enriched
categories on an involutive ordered category with all joins of parallel map,
and to explore Cauchy-completeness in this context. Their research was
presented in an (unpublished) talk at a Surrey meeting on Category Theory,
in 1982 [KaW].

Constructing categories similar to € and C”, but having all joins (rather
than the linked ones), leads to complications. Something of this kind will
be presented in Section 4.6, taking advantage of the fact that n-dimensional
differentiable manifolds can be embedded in R?", where the transition maps
can be treated as partial identities, and have arbitrary joins. General local
structures cannot be dealt with in this way.

(b) Dominical categories and p-categories, other formalisations of cate-
gories of partial mappings, were introduced in the 1980’s by R.A. Di Paola,
A. Heller, G. Rosolini and E. Robinson [Di, He, DiH, Rs, RoR], making use
of a monoidal structure derived from cartesian products. These categories
have a natural e-structure (see 3.3.9(c)).

Finally, after the introduction of e-categories in [G3, G4], this struc-
ture has been used in computer science and category theory, under the
name of ‘restriction category’ and equivalent axioms [CoL]: see 3.3.9(d).
Later, totally cohesive e-categories have also been used, under the name
of ‘join-restriction categories’. A recent paper acknowledges the fact that
restriction categories are the same as e-categories [CoG].
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1

Order, semigroups and categories

This is an introductory chapter on ordered sets, semigroups, inverse semi-
groups and categories. Many points will be obvious to one reader or an-
other, according to their interests.

The choice of arguments is aimed at the present applications, and by no
means representative of Order Theory, or Semigroup Theory, or Category
Theory. Complements on categories will be added in Chapters 5 and 6,
related to topics that appear in the previous parts.

We recall that the symbol C always denotes weak inclusion. The basic
theory of topological spaces, groups, rings and modules is assumed to be
known. Solutions of non-obvious exercises can generally be found in the
last chapter. A part marked with * refers to developments which are not
technically needed, or are referred to.

1.1 Preordered sets, lattices and semigroups
We begin by reviewing the basic notions of preordered sets and semigroups;
we also examine the interplay of preorders and topology.
Further information on lattice theory can be found in Birkhoff [Bi] and
Grétzer [Gr]; on semigroup theory in Clifford Preston [CP], Howie [Ho]
and Lawson [Ls].

1.1.1 Preordered and ordered sets

We use the following terminology.

A preordered set X is a set equipped with a preorder relation x < x’
(read as x precedes '), which is assumed to be reflexive and transitive. It
is an ordered set if the relation is anti-symmetric: if x < 2’ and 2’ < =,
then z = z’; an order relation is more often written as z < z’. If useful,

12



1.1 Preordered sets, lattices and semigroups 13

one can write x <x &' and z <x z'. A symmetric preorder relation is an
equivalence relation, often written as z ~ z’.

In a totally ordered set any two elements are comparable: x < z orx’ < x.
An ordered set is often called a ‘partially ordered set’, abbreviated to ‘poset’,
to mean that totality is not assumed (but not excluded).

Every set X has a discrete order x = x’, which is the finest, or least
preorder relation. It also has an indiscrete, or chaotic preorder, the relation
x,z’ € X, which is the coarsest, or greatest preorder relation on X.

A preordered set X has an associated equivalence relation z ~ z’ defined
by the conjunction: z < z’ and 2’ < x. The quotient X/~ has an induced
order:

] < [2] & z=<d. (1.1)

If X is a preordered set, X°P is the opposite, or dual one — with reversed
preorder. Every topic of the theory of preordered sets has a dual instance,
which comes from the opposite preordered set, or sets.

Let X be a preordered set. The minimum min X is an element which
precedes all the elements of X (and can exist or not, of course); the maz-
imum max X is an element preceded by all the elements of X. They are
determined up to the associated equivalence relation in X, and uniquely
determined if X is ordered. They can also be written as L and T (bottomn
and top).

Every subset of a preordered set will be equipped with the restricted
preorder, by default.

A mapping f: X — Y between preordered sets is said to be monotone,
or preorder-preserving, or (weakly) increasing, if x <x 2’ implies f(z) <y
f(@"), for all z, 2" € X. Tt is isotone if it preserves and reflects the preorder:
x <x @’ if and only if f(z) <y f(2). (If X is an ordered set, this implies
that f is injective.)

An isomorphism f: X — Y of preordered sets is a bijective monotone
mapping whose inverse mapping f~': Y — X is also monotone; equiva-
lently, f is an isotone bijection. More generally, an embedding f: X — Y of
preordered sets is an injective isotone mapping, and gives an isomorphism
from X to the preordered subset f(X) CY.

Ezamples (a) The set R of real numbers, equipped with the natural order
x < v, is called the ordered line. It is a totally ordered set. Its cartesian
power R™ has a canonical (partial) order:

(15 Tn) < (Y1, 0y ¥n) & (foralli=1,...,n: x; <), (1.2)

that will be called the cartesian order of R™.
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(b) More generally, any cartesian product X = [I; X; of preordered sets
has a canonical preorder, defined componentwise as above: (1;) <x ()
if and ouly if, for all indices i, x; < y; in X;. The preorder of X is the
coarsest that makes all projections X — X; monotone.

(c) For every set S, the power set PS is ordered by inclusion, with minimum
() and maximum S. This order is not total, as soon as S has more than 1
element.

(d) In the set N of natural numbers, the divisibility relation n | m means
that m = nn’ for some n’ € N; it is an order relation, with minimum 1 and
maximum 0. In the set Z of integers the divisibility relation is a preorder;
the associated equivalence relation is k = +£’, and the associated ordered
set Z/~ is isomorphic to N (ordered by divisibility). The minimum of Z is
1 (or —1), the (unique) maximum is 0.

1.1.2 Infima and suprema
Let X be an ordered set. For A C X and a € X, the sets of their lower
bounds and their upper bounds in X will be written as
L(A)={z € X |z < a,forall a € A},
la=L({a}) = {r € X |v <a}.
UA)={r e X |a<ux,foral ae A}
Ta=U({a})={z € X |a=<z}.

(1.3)

The infimum infxA of A in X, or greatest lower bound, or meet, is
defined as

infx A = max (L(A)), (1.4)

also written as infA or A A. Dually, the supremum supy A of A in X, or
least upper bound, or join, is

supy A = min (U(A)) = inf xer A, (1.5)

also written as sup A or V A. (These outcomes can exist or not.) If A has
a minimum m, the infimum also exists and inf x A = max ([m) = min A; if
A has a maximum, supy A = max A.

Every element of X is (trivially) a lower bound and an upper bound of
the empty subset; if X has a greatest and a least element, we have:

infx® = max X = supy X, supy® =min X =infxX. (1.6)

These definitions can be extended to preordered sets, but then joins and
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meets are only determined up to the equivalence relation associated to our
preorder.

A meet semilattice, or lower semilattice, X is an ordered set where every
pair z,y € X has a meet x Ay = inf{x,y}; a I-semilattice is also assumed
to have a top element, written as 1 (or T), which acts as a unit for the
meet operation. Equivalently, a 1-semilattice is an ordered set where every
finite subset A has a greatest lower bound A A.

Dually, a join semilattice, or upper semilattice, has all binary joins x v y;
a 0-semilattice is also assumed to have a bottom element, written as 0 or L;
in other words, a O-semilattice is an ordered set where every finite subset
A has a least upper bound V A.

An ordered set is said to be filtered (or directed) if every pair z,y € X
has an upper bound; dually, it is cofiltered if every pair has a lower bound.

1.1.3 From lattices to boolean algebras

A lattice is an ordered set where every pair z,y € X has a meet zAry =
inf{x,y} and a join x vy = sup{z,y}.

A bounded lattice is also required to have a top element, written as 1 (or
T), and a bottom element 0 (or L), that are units for the meet and join
operation, respectively. (In category theory the term ‘lattice’ is often used
in this sense; we do not follow this convention here.)

A lattice is said to be distributive if the meet operation distributes over
the join operation

(D) (zvy)rz=(xrz)v(ynz),
or equivalently if the join distributes over the meet (see Exercise 1.1.4(a)).

A boolean algebra is a distributive bounded lattice where every element
x has a complement z’, defined by the following properties

zrz’ =0, rvr =1, (1.7)

and determined by them (as proved in Exercise 1.1.4(h)).

A complete lattice X is an ordered set where every subset has a join and
a meet. But actually it is sufficient to assume the existence of all meets (or
all joins), since one can recover the join of a subset A C X as the meet of
its upper bounds, or symmetrically (as proved in Exercise 1.1.4(d))

VA=AUA), ANA=V(L(A)). (1.8)

More precisely, the first formula above means that, for any subset A of an
ordered set X, V A exists if and only if A (U(A)) exists, and — in this case —
they coincide.
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1.1.4 Ezxercises and complements
The non-obvious solutions of these exercises can be found in Chapter 7.

(a) In a lattice X, the property 1.1.3(D) implies that the join operation
distributes over the meet.

(b) In a distributive bounded lattice X, the complement of x, defined in
(1.7), is unique.

(c) In an ordered set X, the lower and upper bounds of subsets A, B C X
satisfy these properties

ACB = L(A) D> L(B) and U(A) D U(B),
ACUL(A), A C LU(A),
LUL(A) = L(4),  ULU(A) = U(A).

(1.9)

*The mappings L,U: PX — PX form thus a contravariant Galois con-
nection, see 1.8.8(e).*

(d) Prove the formulas (1.8).

(e) A totally ordered set X is always a lattice, with z Ay = min {z, y} and
xvy =max {x,y}; it is a distributive lattice.

(f) The ordered line R and its (partially ordered) cartesian power R™ are
distributive lattices, without minimum and maximum. They are condi-
tionally complete: every non-empty upper bounded subset has a join, and
every non-empty lower bounded subset has a meet. Prove that these two
properties are equivalent, in every ordered set X.

(g) Prove that an ordered set X has all joins of upper bounded subsets if
and only if it has all meets of non-empty subsets. The interval [0, 4+o0c[ of
the ordered line has this form of ‘conditioned completeness’, and lacks a

maximuin.

(h) In a power set PS, a subset A C PS is more easily understood as an
indexed family (A;);er of subsets of S. A lower bound of this family is any
subset contained in all of them, and the greatest is M A;. Symmetrically,
the least upper bound of the family is U A;.

PS is a complete boolean algebra, where joins and meets are unions
and intersections, while the boolean complement of a subset A is the set-
theoretical complement X \ A.

(i) The ordered set Sub(A) of submodules of an R-module A has also
all meets, which are intersections: AA; = MA;. Therefore Sub(A) is a
complete lattice, and V A; is the least submodule of A containing the set-
theoretical union U A;.
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The join is often written as 2> A;, because it can be realised as the set of
elements of A which are sums 21 + T2 + ... + x,, of elements of U A,.

(j) Show that the lattice Sub(A) of subgroups of an abelian group need not
be distributive. (It has a weaker distributive property, dealt with in 1.1.9.)
Hints: take A = 7.

*(k) Frames and quantales will be treated in Section 6.1.

1.1.5 Semigroups

A semigroup S is a set equipped with an associative operation, generally
written in multiplicative form, as ab or a.b. We do not exclude the empty
semigroup, as is often the case in semigroup theory (cf. [CP], p. 1) and
universal algebra.

If S is a semigroup, S°P is the opposite or dual one, with reversed product
a*b = ba. As for preorders, every topic or statement of the theory of
semigroups has a dual instance.

For two subsets A, B C S and an element = € S, one writes

AB={ablac A, be B} C S,

(1.10)
tA={z}A={za|ac A}, Az =A{z}={ax|ac A}

In a semigroup S, a subsemigroup is a subset T' closed under product:
TT C T. The intersection .S; of a family of subsemigroups of S is a
subsemigroup (also because we are not excluding the empty subsemigroup).
Therefore, the set Sub(S) of subsemigroups of S forms a complete lattice
with respect to inclusion; its minimum is the empty subsemigroup.

If A is a subset of S, the subsemigroup (A) of S generated by A is the
least subsemigroup of S that contains A. Formally, it is the intersection
of all the subsemigroups of S that contain A; concretely, it consists of all
products x1x5 ... x, of elements of A (for n a positive integer). The join
V S; of a family of subsemigroups of S is generated by their union US;.

A homomorphism h: S — T of semigroups is a mapping that preserves
the product: h(ab) = h(a).h(b), for all a,b € S. Its image h(S) is a
subsemigroup of T'.

1.1.6 Unit and absorbing element

The semigroup S is called a unital semigroup, or a monoid, when it has a
unit 1 (acting as an identity for the product), that is obviously unique.
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The unit is also written as 1g when useful. A homomorphism of monoids
is assumed to preserve the unit.

Every semigroup S has an associated monoid S, obtained by adding an
element 1 ¢ S and extending the product in the obvious way: la = a = al
for all a € S'. Note that if S already has a unit e, the latter is no longer a
unit in S*.

The universal property of this construction says that every semigroup-
homomorphism f: S — M with values in a monoid can be uniquely
extended to a monoid-homomorphism g: S — M, letting g(1) = 1.
*(Universal properties are formalised in 1.5.7.)*

(Our convention on this point differs from the usual one in semigroup theory,
where one takes S' = S when § is already unital. In this way the previous uni-
versal property is not satisfied, and the procedure S + S* cannot be extended
to homomorphisms.)

An absorbing element for the semigroup S is an element z such that
za = z = az for all @ € S. This uniquely determined element can be
written as 0 or oo, as convenient.

Again, every semigroup S has an associated semigroup with an absorbing
element S, obtained by adding an element oo ¢ S and extending the
product in the obvious way: ocoa = oo = aoc for all @ € S°°. There is again
an obvious universal property.

1.1.7 Idempotents

In a semigroup S the idempotent elements e (such that ee = e) play an im-
portant role, and should be viewed as ‘partial identities’: see 1.2.4. *(This
role will be formalised by a category, the ‘idempotent completion’ of S, in
2.2.5.)*

The set of idempotent elements of S, often denoted by E (or Eg) has a
canonical order e < f, characterised by the following conditions, which are
easily seen to be equivalent:

(i) e=ef = fe,
(i) e= fef,
(iii) e€ SfNfS,
(iv) e fSf.

The set E is not closed under product in S, generally. But the product
of two commuting idempotents e, f is always idempotent

ef =fe = efef=ceff=ef, (1.11)
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and then the element ef = fe is the meet e » f, with respect to the canon-
ical order of E.

If S is a monoid, the unit 1 is the greatest element of Eg. An absorbing
element is the least element of Fg.

Every homomorphism h: § — T of semigroups restricts to a mapping
Es — E7 that preserves the canonical order.

An idempotent semigroup (also called a band in semigroup theory) is a
semigroup where each element is idempotent.

1.1.8 *Preorder and Alexandrov topologies

The reader may have noticed a similarity of the theories of preordered sets
and topological spaces. In fact, the former can be ‘embedded’ in the latter,
so that — for instance — the finest preorder corresponds to the finest
topology, the coarsest to the coarsest.

Let X be an arbitrary topological space. For a € X, we write as @ the
closure of the singleton {a}, also called the closure of the point a. The
specialisation preorder of the space X is defined by

r<y © r€EY & TCY, (1.12)

sothata={z € X |z < a}.

Generally speaking, this preorder misses a large part of the information
contained in the topology: for instance, in a space where all singletons are
closed, this preorder is discrete: x = y. Thus, on the set R, the euclidean
and the discrete topology give the same order relation.

This is no longer the case if we restrict in a convenient way the topologies
we are considering.

An Alexandrov topology, named after Pavel S. Alexandrov, is a topol-
ogy where the open sets are stable under arbitrary unions and arbitrary
intersections; equivalently, the same is true of closed sets.

In this case, for any subset A C X

A= Ugcaq, (1.13)

because this union is closed, and obviously the least closed subset contain-
ing A. Therefore, an Alexandrov topology is determined by the closure of
its points, and also by the specialisation preorder. The topology is T if
and only if the specialisation preorder is an order relation.

The reader may now guess that preordered sets are ‘the same as’ spaces
with Alexandrov topology, and monotone mappings amount to continuous
mappings between such spaces.
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More precisely, the previous argument makes the category of preordered
sets isomorphic to a full subcategory of the category of topological spaces,
formed of the spaces with Alexandrov topology. Similarly, ordered sets
correspond to spaces with an Alexandrov Tg-topology.

All this is well known; details can be found in [G11], 3.2.7 and 6.5.4.

1.1.9 *Modular lattices

The lattice Sub(A) of submodules of an R-module is not distributive, gen-
erally; but one can easily check that it always satisfies a weaker, restricted
form of distributivity, called ‘modularity’ (as proved in Exercise (a)).

Namely, a lattice is said to be modular if it satisfies the following selfdual
property (for all elements z,y, z)

(M) if z < z then (zvy)rz=av(yaz).
For instance, if A is the Klein four-element group Z/2 & 7Z/2, the lattice

Sub(A4) is isomorphic to the lattice M = {0,z,y,2,1} of five elements
displayed in the following diagram, at the left

Y
2 T z (1.14)

where the relation a < b, is represented by an arrow a — b, and the meet
(resp. join) of any two elements among z, ¥, z is 0 (resp. 1). This lattice is
not distributive: note that x has two distinct complements, y and z. On
the other hand, the lattice N displayed above is not even modular, as z < y
but (zvy)rz=zand zv(ynaz) =2z

Ezercises and complements. (a) Every lattice Sub(A) of submodules is
modular.

*(b) In figure (1.14), N is the ‘basic’ non-modular lattice, in the sense that:
a lattice is modular if and only if it does not contain a sublattice isomorphic
to N ([Bi], L7, Theorem 12).

Similarly, M is the basic non-distributive modular lattice: a modular lat-
tice is distributive if and only if it does not contain a sublattice isomorphic
to M ([Bi], IL.8, Theorem 13).

These two theorems can be combined, to characterise distributive lattices
among all lattices.
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1.2 Regular and inverse semigroups

After introducing regular and inverse semigroups, we prove a classical re-
sult: inverse semigroups are the same as regular semigroups with commut-
ing idempotents (Vagner-Liber Theorem, in 1.2.6).

Then we briefly introduce orthodox semigroups, a more general notion.

The theory of orthodox, inverse and quasi-inverse semigroups was devel-
oped by B.M. Schein [Sc], N.R. Reilly and M.E. Scheiblich [ReS], T.E. Hall
[Ha], M. Yamada [Ya], A.H. Clifford and G.B. Preston [CP], and others,
starting in the 1960’s. It can now be found in Howie’s and Lawson’s books
[Ho, Ls].

1.2.1 Regular semigroups

One says that the elements a, b of the semigroup S are partial inverses, or
form a regular pair, if

a = aba, b = bab. (1.15)

The semigroup S is said to be regular if every element has some partial
inverse (which need not be unique). This property, introduced by von
Neumann [vN] in 1936 for the multiplicative semigroup of a ring, will also
be called von Neumann reqularity.

Note that each of the two relations above, in (1.15), implies that ab and
ba are idempotent elements of S. On the other hand, every idempotent
element e is a partial inverse of itself; therefore, an idempotent semigroup
is always regular.

A homomorphism of semigroups preserves regular pairs.

We shall see, in 1.3.3, that the endo-relations of any R-module form a
regular monoid.

1.2.2 Proposition (Regular semigroups)

(a) The semigroup S is reqular if (and only if) for every a € S there is
some b € S such that a = aba.

(b) Let S be a reqular semigroup. If the set Eg has a maximum 1, this is
a unit for S.

Note. The property in (a) is often taken as the definition of a regular
semigroup.

Proof (a) If this property holds, then ab and ba are idempotents.
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It follows that b’ = bab is a partial inverse of a:
ab’a = a(bab)a = (ab)(ab)a = aba = a,
b'ab’ = (bab)a(bab) = b(ab)(ab)(ab) = bab =1V'.

(b) If 1 = max Fg, then e = el = le for every idempotent e. Any element
a can be written as a = a(ba) = (ab)a where ba and ab are idempotents, so
that a = al = la. O

1.2.83 Inverse semigroups

The semigroup S is said to be inverse if every element a has precisely one
partial inverse, which we write as a*. (In semigroup theory a is usually
said to be ‘inverse’ to a; we keep the term ‘partial inverse’.)

In this case, an element a is said to be symmetric if a = af, which is
equivalent to a = a®. In particular, every idempotent e is a symmetric
element: e = e, but there can be symmetric elements which are not idem-
potent (see below). Any element a € S has two associated idempotents,
ala and aa®, which will be further analysed below (in 1.3.2); moreover, a
is idempotent if and only if a = a*a, if and only if a = aa®.

By definition, an inverse subsemigroup of an inverse semigroup S is a
subsemigroup closed under partial inverses. A homomorphism between
inverse semigroups automatically preserves the partial inverses (and is thus
a homomorphism of inverse semigroups).

Exercises and complements. (a) If S is a monoid, an invertible element a

has a unique partial inverse: its inverse a 1.

(b) Every group is an inverse semigroup; more precisely, a group is the same
as an inverse monoid were the left (or the right) cancellation law holds.

(¢) In a group, the symmetric elements are the involutive ones, with a® = 1,
and there is only one idempotent, the unit.

(d) The monoid S(X) of endomappings of any set X is a regular semigroup.

(e) The monoid S(X) is not inverse, except trivial cases (to be determined).

1.2.4 Partial bijections of a set

We show now that every set X has an associated inverse semigroup Z(X)
of ‘partial bijections’, introduced by V.V. Vagner (also transliterated as
Wagner) in 1952 [Val], and called the symmetric inverse semigroup of X,
by analogy with the symmetric group of permutations of X.
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In analogy with Cayley theorem for groups, we shall see that every inverse
semigroup S can be embedded as an inverse subsemigroup of Z(5), in 1.3.6.

A partial bijection of the set X will be a bijective mapping f: U — V
between subsets U, V' of X (possibly empty). We write

Def f = U, Val f = V. (1.16)

(Equivalently, it is an injective mapping U — X defined on a subset of X;
but we shall not use the term ‘partial injection’, which can mask the symmetric
character of the notion.)

These mappings form the set Z(X). Given another bijective mapping
g: V' — W between subsets of X, the composite gf is again a partial
bijection of X, defined where it makes sense

Def(9f) ={z € X |z €U f(x) eV'},  (9f)(z) = g(f(x)). (1.17)

The operation is associative: Z(X) is a monoid, with unit the identity
mapping id X (everywhere defined, of course). The empty bijection 0 is
the absorbing element of the semigroup: 0f = 0 = f0, for every f € Z(X)
(cf. 1.1.6).

Finally, Z(X) is an inverse monoid: a bijective mapping f: U — V be-
tween subsets of X has a unique partial inverse in Z(X), represented by the
inverse mapping f%: V — U. Let us note that the associated idempotents

fif=idu, frf=idv, (1.18)

coincide with the unit id X if and only if f is a tofal bijection X — X.
Only in this case the partial inverse f is a true inverse, and will be written
as f1.

We have already seen that an element f € Z(X) is idempotent if and only
if f = f*f. Therefore the idempotents of the symmetric inverse semigroup
Z(X) coincide with the partial identities id (U) of X, i.e. the identities of
the subsets U C X.

1.2.5 Other examples

If X is a topological space we are interested in the set I7(X) of its partial
homeomorphisms, i.e. homeomorphisms f: U — V between subspaces of
X, and (even more) in the subset IC(X) of homeomorphisms f: U — V
between open subspaces of X.

The notation IT, IC will be explained in Definition 2.4.4. *(It stands for
the ‘inverse core’ of two categories, 7 and C, of partial continuous mappings.
Similarly, 7 is the inverse core of the category S of sets and partial mappings.)*
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Writing the underlying set of the space X as |X|, we have the following
inclusions of inverse subsemigroups:

IC(X) CIT(X) CZ(]X]).

1.2.6 Theorem (Vagner-Liber Therem on Inverse Semigroups)

A semigroup is inverse if and only if it is regular and its idempotents com-
mute.

In an wmverse semigroup S the idempotents form a meet semilattice Eg.

Proof An implication, due to V.V. Vagner [Va2], in 1952, is easy: we
assume that the semigroup S is regular and its idempotents commute, and
prove the uniqueness of partial inverses.

Indeed, if b and ¢ are partial inverses to a, then the products ab, ba, ac,
ca are (commuting) idempotents, and b must coincide with ¢

b = bab = b(aca)b = b(a(cacac)a)b = (ba)(ca)c(ac)(ab)
= (ca)(ba)c(ab)(ac) = c(aba)c(aba)c = cacac = cac = c.

The other implication, due to A.E. Liber [Li], in 1954, is harder to prove.
We suppose that S is an inverse semigroup, take two idempotents e, f and
show that they commute, following the argument in Clifford-Preston [CP],
Theorem 1.17.

First we prove that the product ef is idempotent. Let a be the partial
inverse of ef

(ef)alef) =ef,  alefla=a.
Then b = ae is also a partial inverse of ef, because
(ef)bef) = (ef)ae(ef) = (ef)alef) = ef,
blef)b = ae(ef)ae = alef)ae = ae.
It follows that a = ae. Similarly fa = a, and then a is idempotent:
aa = ae.fa = alef)a = a.

Therefore a is the partial inverse of itself, and coincides with ef, which
is idempotent; similarly fe is idempotent. Finally, ef (being idempotent)
is the partial inverse of itself; but it is also the partial inverse of fe

(ef)fe)ef) =efef =ef,  (fe)(ef)(fe) = fe.fe = fe,
and therefore ef = fe.
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The last claim follows from (1.11): in any semigroup the product of two
commuting idempotents is idempotent. L]

1.2.7 Orthodox semigroups
A semigroup § is said to be orthodoz if it is regular and its idempotents
are closed under product: Fg.Fg C Es. The name was introduced by
Hall [Ha] in 1969, but the property had already been used under different
names, by Schein [Sc] and Reilly—Scheiblich [ReS].

Every inverse semigroup is orthodox, by the previous theorem. On the
other hand, every orthodox semigroup S has a finest ‘inverse congruence’
(making the quotient an inverse semigroup), as proved in [Ha].

A well-known characterisation, that will not be used here, says that a
regular semigroup is orthodox if and only if every partial inverse of an
idempotent element is also idempotent ([ReS], Lemma 1.3).

*Orthodox categories, a natural extension of orthodox semigroups, are

a main tool in the author’s analysis of coherence in Homological Algebra
[G9].*

1.2.8 Lemma (Regularity Lemma for semigroups)
In the semigroup S we assume that:
a = aba, a =abd. (1.19)
Then the following properties are equivalent:

(i) a'a = (a’a)(bb’)(a'a),

(ii) the element (b'a’)(ab) is idempotent.
Note. A similar result can be found in [ReS], Lemma 1.1. Note also that
the element (b'a’)(ab) is a product of idempotents; therefore condition (ii)
is automatically satisfied when S is an orthodox semigroup, or more partic-
ularly an inverse semigroup.

Proof The fact that (i) implies (ii) is trivial (and independent of (1.19)):
(b'a’ab)(b'a'ab) = b'(a’a)(bb')(a’a)b = b (a’a)b.
Conversely, if (ii) holds:

(a’a)(bV)(a’'a) = a/(abb'a’)a = (a’b'a’)(abl'a’)(aba)
=a'(V'a'ab)(V'd'ab)a = o’ (b'a'ab)a = (a'b'a’)(aba) = a’a.
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1.3 The involution and order of an inverse semigroup
We introduce involutive semigroups (in 1.3.1) and ordered semigroups (in
1.3.7).
An inverse semigroup has a canonical involution, given by the partial

inverses, and a canonical order, generated by the order of its idempotent
elements (see 1.1.7).

1.3.1 Involutive semigroups

An involutive semigroup will be a semigroup S equipped with an endo-
mapping a — a? that reverses the product and is involutive

(ab)? = b*.a*, (a*)f = a. (1.20)

This mapping is an anti-automorphism of S, that is an isomorphism
S — S°P. It automatically preserves the unit 1, if it exists: in fact

lﬁ.a = 1”.(1“ = (aﬁl)ﬂ = aﬁﬂ =a,

for every a € S.
The involution will be said to be regular (in the sense of von Neumann),

if for every a@ € S
aata = a. (1.21)

Then we also have afaa? = af, so that a and af are partial inverses
and the semigroup S is regular (cf. 1.2.1). Here we are only interested in
regular involutions, that play a central role in categories of partial bijections
or categories of relations of modules (and their extensions).

1.3.2 Projectors
Let S be a semigroup with regular involution. A projector of S will be a
symmetric idempotent, i.e. an element e such that ee = e = €.

They form a set
Prj(S) C Es. (1.22)
*In [G3]-[G5] these elements are called ‘projections’, a name with too many
meanings.*
Every element a € S has two associated projectors, which will be written
as follows:

e(a) = a‘a the support of a),
ela) ( ) (1.23)
e*(a) = aa* = e(a?) (the cosupport of a).
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*This terminology is explained by its extension to categories, where the sup-
port (resp. cosupport) of the morphism « is a projector of its domain (resp.
codomain), cf. 2.2.2.*

We have
a=a.e(a) =¢e"(a).a =e"(a).a.e(a). (1.24)
All the projectors of S arise as supports (and cosupports): an element
e € S is a projector if and only if e = e(e), if and only if e = e*(e).
The product of two projectors e, f is always idempotent
efef =ef.flefef =ef.(ef)f.ef = ef, (1.25)
and is a projector if and only if e and f commute (because (ef)f = flef =

Conversely every idempotent e is the product of two projectors:

e = ecfe = eef.efe = e*(e).e(e). (1.26)

1.3.3 Endo-relations of modules

If A is an R-module, the endo-relations a of A (i.e. the submodules of
A& A) form a unital semigroup R(A). Their product is the composition
of relations, defined by the following formula

ba ={(z,2) e A@ A|Jy € A: (z,y) € a and (y, 2) € b}. (1.27)
This monoid has an obvious involution, given by reversing pairs:
at = {(z,y) cADA| (y,x) € a}, (1.28)

and this involution is easily proved to be regular (see Exercise (a), below).
R(A) is thus a regular monoid.
Ezercises and complements. (a) The involution (1.28) is regular.

(b) The endo-relations of a set X, i.e. the subsets of X x X, form a semi-
group with a similar product and involution; the latter is not regular, pro-
vided that X has at least two elements.

*(c) As a consequence of a Coherence Theorem in Homological Algebra
([G9], Theorem 2.7.6), the following conditions on an R-module A are
equivalent:

- the (regular) monoid R(A) of endo-relations of A is orthodox,
- the (modular) lattice Sub(A) of submodules of A is distributive,

- the canonical isomorphisms between the subquotients of A are closed
under composition, and form a coherent system of isomorphisms.
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1.3.4 Proposition and Definition

Let S be an inverse semigroup.

(a) S has a canonmical involution: the mapping a +— a* that takes each
element to its partial inverse. This is the unique regular involution of S.

(b) The idempotents of S are the same as ils projectors for the involution.
They commute and form a meet semilattice Es = Prj(5)

e<f & e=ef = fe, enf=ef = fe (1.29)

Proof (a) Plainly, if S has a regular involution a — af, then af must be
the partial inverse of a.

Conversely, defining o in this way, we have to verify that the partial
inverse of ab is bfa®; this follows easily from the fact that the idempotents
of S commute (by Theorem 1.2.6):

(ab)(b*a®)(ab) = a(bb*)(a*a)b = a(a’a)(bb*)b = ab.
Similarly (b*a?)(ab)(ba?) = biak.
(One can also deduce these facts from the Regularity Lemma 1.2.8.)

(b) In an inverse semigroup every idempotent e is its own partial inverse
(as already remarked in 1.2.3), and therefore a symmetric element with
respect to the canonical involution: e = e.

The rest follows from the commutativity of idempotents. (]

1.3.5 Proposition (Characterisation of inverse semigroups, 1I)
For a semigroup S the following conditions are equivalent:
(i) S is inverse,
(i) S has a regular involution and its idempotents commute,
(#ii) S has a regular involution and its projectors commute,

(iv) S has a regular involution and its projectors form a subsemigroup.

Proof 1t is an easy consequence of Theorem 1.2.6. Indeed, the equivalence
of (i) and (ii) follows from 1.2.6 and 1.3.4 (that ensures the existence of a
regular involution in every inverse semigroup).

Then, condition (ii) trivially implies (iii). The converse follows from
the fact that, once we have a regular involution, every idempotent is the
product of two projectors (as we have seen in 1.3.2). The equivalence of
(iii) and (iv) is obvious, since (ef)* = ffef. ]
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1.3.6 *Theorem (Vagner-Preston Representation Theorem)

Every inverse semigroup S can be embedded as an inverse subsemigroup of
the symmetric inverse semigroup Z(S) (over its underlying set, see 1.2.4),
by the left translation:

A S = Z(9), ar— Ay,

(1.30)
Aa: @S — aS, Aa(z) =azx (for a € 5).

Note. In other words, every inverse semigroup is a semigroup of partial
bijections, as proved by Vagner [Va2] in 1952 and independently by Preston
in 1954. This result extends Cayley’s theorem: every group is a group of
bijections. It will not be used here.

Proof We follow the argument in Clifford-Preston [CP], Theorem 1.20,
with a slightly different notation.

First, let us note that the subset a*S = afaS admits the idempotent
e(a) = a*a as a left unit, while the subset a.S = aa®S admits the idempotent
e*(a) = aa® as a left unit.

This shows that A,: a*S — aS is a bijective mapping, with inverse
Agt: aS — ats.

Globally, the mapping A\: S — Z(S) is injective. In fact, if A\, = Ay we
have a‘aS = b*bS; but then afa = (afa)(afa) = (b*b)y (for some y € S)
and (b*b)(a’a) = a*a, which means that a?a < b*b in the meet semilattice
E = Prj(8); symmetrically, b*b < a*a and these projectors coincide. Now

a = aafa = \g(a)a = My(a¥)a = ba*a = bbb = b.

Finally, we have to prove that Ay, = MA,, for all a,b in S. Since
bar = b(ax), it suffices to show that Val (\;,) = Val(\A,) (and recall
that Def (A\,) = Val (A.:)).

If z € Val (\\,), there is some = € ¢*S such that ax € b*S and z = bax;
but then z € baS = Val(\,). Conversely, let z € Val(\y,) = baS =
baa®h'S. Then z = ba(afb?z') and the element x = afbfz’ belongs to aS.
Its image

() = ad®b?2’ = (aad®)(BD)b*2" = (VD) (aa®)b* 2,

belongs to b*S; thus A\y(Aa(x)) = ba(a*b?z’) = z belongs to Val (A\yA,). [
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1.3.7 Ordered semigroups

An ordered semigroup is a semigroup S equipped with an order relation
a < b consistent with the product:

ifa<a and b< b in S, then ab < d'l. (1.31)
Equivalently, for every a and b < b in S, we have: ab < ab’ and ba < b a.

Ezamples. In a meet (or join) semilattice the order is always consistent with
the operation. In an ordered ring the sum is consistent with the ordering,
but only the elements a > 0 give a monotone multiplication:

if b <V in S, then ab < ab’ and ba < ba.

1.3.8 Theorem
Let S be an inverse semigroup and E = Prj(S) its meet semilattice of
idempotents.
For a,b € S the following properties are equivalent:

(%) a = abla,

(i)  a = b(ata),

(ii*)  a = (aad*)b,

(ii1)  a = (aa®)b(ata),

(iv) a€bE,

(2v*) a € Eb,

(v) a€ EbE.

Proof Trivially, (ii) implies (iv). Conversely, if a = be for some e € E, then
b(a*a) = b(eb*be) = be(b*b)e = bb*b.e = be = a.

Similarly (ii*) is equivalent to (iv*) and (iii) is equivalent to (v).
Now, (iv) implies (v): if @ = be (with e € E) then a = (bb*)be € EbE.
Conversely, if a = fbe (with e, f € E) then

a = f(bb*)be = (bb*) fbe = b(V* fb)e
belongs to bE, because b* fb is idempotent:
(b fb) (b fb) = bF f(bb®) fb = b f £ (bb*)b = b fb.

Similarly, (iv*) is equivalent to (v), and we are left with proving that (i)
is equivalent to the other properties.
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The fact that (i) implies (v) is easily seen: if @ = aba, then a =
a(b*bb*)a = (ab®)b(b*a) belongs to EbE.

Conversely, let a = fbe (with e, f idempotents). Applying the Regularity
Lemma 1.2.8, from e = eee and fb = (fb)(b*f)(fb) we deduce that fb.e =
(fbe)(eb f)(fbe). Finally:

ab’a = (fbe)b*(fbe) = (fbe)(eb® f)(fbe) = fbe = a.

1.3.9 Theorem and Definition

(a) The inverse semigroup S has a canonical order a < b (consistent with
the product and partial inverses), that is defined by the equivalent properties
(i)-(v) of the previous theorem.

(b) This order of S extends the order in the meet semilattice E = Prj(S)
of idempotent elements, defined in 1.1.7, and is generated by the latter (as
an order of semigroups).

(c) If S is unital, the idempotent elements e are characterised by the con-
dition e < 1. Furthermore, the semigroup-order of S is generated by the
condition e < 1, for all idempotents e.

Proof (a) The relation a < b, is reflexive (use property 1.3.8(i)) and tran-
sitive (use 1.3.8(iv)); it is also antisymmetric: if @ = be and b = af (with
e,f € E), then a = afe=aef =be.ef =af =b.

The fact that the order is consistent with the product follows from the
Regularity Lemma 1.2.8. Indeed, assuming that a < b and o’ < ¥, we can
apply the lemma to the pairs (a.b") and (a’,¥*), concluding that aa’ =
(aa’)(b'*b)(aa’), which means that aa’ < bl'.

Finally, if a < b, then at < bl
(b) The first claim is obvious. As to the second, let us suppose we have in
S a semigroup-order a < b that extends the order < of E and prove that
the canonical order is finer.

If the pair a, b satisfies the equivalent properties (i)-(v) of 1.3.8, then ab*
and bfa are idempotent and

ab® = (aa®)(bb*) < bb*, b*a = (b*b)(a*a) < b°0.
Therefore, since the semigroup-order < extends the order of projectors:
a = abfa < bbla < bb*b = b.

(c) An obvious consequence of property 1.3.8(iv). ]
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1.4 Categories

In the second part of this chapter we review the basic notions of cate-
gory theory. Examples and exercises will focus on categories of topological
spaces or ordered sets, rather than algebraic structures — less present in
this analysis of local structures.

The theory of categories was established by Eilenberg and Mac Lane in
1945, in a well-known paper [EiM]. The interested reader will explore with
pleasure the books of S. Mac Lane [M3] and F. Borceux [Bo).

Two earlier books by B. Mitchell and P. Freyd [Mi, Frl] are centred
on abelian categories and their embedding in categories of modules. The
book by J. Addmek, H. Herrlich and G.E. Strecker [AHS] gives an accurate
analysis of ‘concrete categories’.

At a more elementary level, the author’s [G10] is a textbook for be-
ginners, also devoted to applications in Algebra, Topology and Algebraic
Topology.

Dealing with categories, one should avoid the usual paradoxes related
to ‘the set of all sets’. Here we make use of a particular set theory where
there are sets and classes; every set is also a class, but a proper class is
not a set: for instance the class of all sets and the class of all groups are
proper (see [AHS] or the Appendix of [Ke]). This approach is followed in
[Mi, Frl, AHS].

When two levels, like sets and classes, are insufficient, one can introduce
a third level of ‘hyperclasses’, called ‘conglomerates’ in [AHS].

*Alternatively, a more flexible setting widely used for categories is ordinary

Set Theory (say ZFC), with the assumption of the existence of a Grothendieck
universe, or of a suitable hierarchy of universes (cf. [M3], Section 1.6).*

1.4.1 Categories of structured sets

Loosely speaking, before giving a precise definition, a category C consists
of objects and morphisms, together with a (partial) composition law: given
three objects X,Y,Z and two ‘consecutive’ morphisms f: X — Y and
g: Y — Z, we have a composed morphism gf: X — Z.

This partial operation is associative (whenever composition is legiti-
mate); every object X has an identity id X which acts as a unit for le-
gitimate compositions.

The prime example is the category Set of sets (and mappings), where:

- an object is a set,
- the morphisms f: X — Y between two given sets X and Y are the
(set-theoretical) mappings from X to Y,
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- the composition law is the usual composition of mappings: (gf)(z) =

g(f(x))-

The following categories ‘of structured sets’ will often be used:
- the category Top of topological spaces (and continuous mappings),
- the category Ord of ordered sets (and monotone mappings),
- the category pOrd of preordered sets (and monotone mappings),
- the category Set, of pointed sets (and pointed mappings),
- the category Top, of pointed topological spaces (and pointed maps),
- the category Ab of abelian groups (and homomorphisms),

- the category Gp of groups (and homomorphisms)

- the category R Mod of (unitary) left modules on a given unital ring R,
- the category Ban of Banach spaces and continuous linear mappings,

- the category Bany of Banach spaces and linear weak contractions.

For the category Set,, let us recall that a pointed set is a pair (X, )
consisting of a set X and a base-element xy € X, while a pointed mapping
fi(X,z0) = (Y,yo) is a mapping f: X — Y such that f(z¢) = yo; their
composition is obvious.

Similarly, a pointed topological space (X, xg) is a space with a base-point,
and a pointed map f: (X, z) — (Y,2) is a continuous mapping from X
to Y such that f(z¢) = yo. The reader may know that the category Top,
is important in Algebraic Topology: for instance, the fundamental group
m1 (X, x¢) is defined for a pointed topaological space.

The categories Ban and Ban; will be used in a marginal, elementary way,
for examples and counterexamples. It is understood that we have chosen
either the real or the complex field of scalars. We also recall that a linear
weak contraction is a linear mapping with norm < 1.

A reader interested in the categorical aspects of Banach spaces is referred to
Semadeni’s book [Se].

When a category is named after its objects alone (e.g. the ‘category of
groups’), this means that the morphisms are understood to be the obvi-
ous ones (in this case the group-homomorphisms) and the composition is
understood to be the usual one.

Of course, different categories with the same objects have different names,
like Ban and Ban;.
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1.4.2 Definition
A category C consists of the following data:
(a) a class Ob C, whose clements are called objects of C,
(b) for every pair X,Y of objects, a set C(X,Y") (called a hom-set) whose
elements are called morphisms (or maps, or arrows) of C from X to Y and
written as f: X = Y,
(c) for every triple X, Y, Z of objects of C, a mapping of sets, called com-
position

CXY)xC(Y,2) = CX,2),  (f.9) =4,

that gives a partial composition law for pairs of consecutive morphisms.
The composite gf will also be written as g.f.

These data must satisfy the following axioms.

(i) (Associativity) Given three consecutive arrows, f: X - Y, g: Y — Z
and h: Z — W, one has: h(gf) = (hg)f.

(i) (Identities) Given an object X, there exists an endo-map e: X — X
which acts as a unit whenever composition makes sense; in other words if
f:X'— X and g: X — X", one has: ef = f and ge = g.

One shows, in the usual way, that e is determined by X; it is called the
identity of X and written as 1x or id X.

We generally assume that the following condition is also satisfied.

(iii) (Separation) Every map f: X — Y has a well-determined domain
Dom f = X and a well-determined codomain Cod f =Y.

Concretely, when constructing a category, one can forget about this con-
dition, since one can always satisfy it redefining a morphism f : X =Y as
a triple (X,Y; f) where f is a morphism from X to Y in the original sense
(possibly not satisfying the Separation axiom).

Two morphisms f, g are said to be parallel when they have the same
domain and the same codomain; the meaning of a pair of consecutive arrows
has already been mentioned.

Mor C denotes the class of all the morphisms of C, i.e. the disjoint union
of its hom-sets. The endomorphisms of every object X form a monoid

C(X) = C(X, X). (1.32)

If C is a category, the opposite (or dual) category, written as C°P, has the
same objects as C and ‘reversed arrows’, with ‘reversed composition’ g * f

CP(X,Y)=C(Y,X), g*f=Ffg, id®(X)=idX.  (1.33)
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Every topic of category theory has a dual instance, which comes from
the opposite category (or categories). A dual notion is often distinguished
by the prefix ‘co-’.

1.4.83 Small and large categories

We have assumed that a category C has a class Ob C of objects (e.g. the
class of all sets, or the class of all topological spaces) and, for every pair
X,Y of objects, a set C(X,Y") of morphisms from X to Y.

The categories of structured sets that we consider, like the examples of
1.4.1, are generally large categories, where the objects (or equivalently the
morphisms) form a proper class (i.e. not a set). A category C is said to be
small if the class Ob C is a set. A finite category is a small category whose
set of morphisms is finite (then the same is true of its set of objects, since
an object is determined by its identity).

A set X can be viewed as a discrete small category: its objects are the
elements of X, and the only arrows are their (formal) identities.

A preordered set X will often be viewed as a small category, where the
objects are the elements of X and the set X (z,z) contains precisely one
arrow if # < z’ (which can be written as (x,z): * — '), and no arrow
otherwise. Composition and identities are uniquely determined, as follows

(2, 2" (2, 2") = (z,2"), ide = (z,x), (1.34)

and all diagrams in such a category commute.

In this sense, categories generalise preordered sets. Their dualities agree:
the category associated to the opposite preordered set X°P (in 1.1.1) is
dual to the category associated to X. Loosely speaking, the extension
from preordered sets (or classes) to categories consists in allowing different
arrows between specified objects.

In particular, each finite ordinal defines a category, which is often written
as 0,1,2, ... Thus, 0 is the empty category; 1 is the singleton category, i.e.
the discrete category on one object; 2 is the arrow category, with two
objects (0 and 1), and one non-identity arrow, 0 — 1.

A monoid M can be viewed as a small category M with one object,
say #, and set of morphisms MorM = M(x) = M, with composition the
multiplication of M. In this sense, categories generalise monoids. Again,
their dualities coincide (see 1.1.5). Loosely speaking, a category can be
viewed as a ‘many-object’ extension of a monoid.

The relationship between categories and semigroups will be further ex-
plored in 2.3.1 and Section 2.8.
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1.4.4 Structural remarks

The following diagrams represent a preordered set and a monoid as small
categories of different kinds (as remarked above), and how a category can
combine both structures

s O

a preordered set a monoid a category

We only draw generators: composed arrows and identities are ‘virtually
present’. Thus, the second diagram represents a monoid with one generator.
We shall see how some aspects of the theory of preordered sets and the
theory of semigroups can be extended to categories:

(a) (many-arrow extensions) infima and suprema extend to categorical prod-
ucts and sums, Galois connections to adjunctions,

(b) (many-object extensions) regular and inverse monoids extend to wvon
Neumann regular and inwverse categories.

In a very loose sense, the alternative between (a) and (b) is concerned
with aspects of category theory where the objects play a relevant role, or
not.

Of course, each of the three theories has its specific topics, whose exten-
sion or restriction can be of little interest.

1.4.5 Isomorphisms

In a category C a morphism f: X — Y is said to be invertible, or an
isomorphism, if it has an inverse, i.e. a morphism g: Y — X such that
gf = 1x and fg = 1y. The latter is uniquely determined by f and written
as fL.

The isomorphism relation X = Y between objects of C (meaning that
there exists an isomorphism X — Y') is obviously an equivalence relation.

For instance, the isomorphisms of Set, Top and Ab are, respectively: the
bijective mappings of sets, the homeomorphisms of topological spaces and
the isomorphisms of abelian groups. The isomorphisms of Ban are the linear
homeomorphisms; the isomorphisms of Ban; are more restricted, namely
the bijective linear isometries.
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A groupoid is a category where every map is invertible. As above, a
groupoid can be viewed as ‘a group on many objects’.

Every category C has an associated groupoid Iso(C) on the same objects:
its arrows are the isomorphisms of C, composed as in C.

Examples and complements. (a) If X is a preordered set, viewed as a
category, two elements x, 2’ are isomorphic objects if and only if they cor-
respond each other in the associated equivalence relation (in 1.1.1). The
groupoid Iso(X) is this equivalence relation, viewed as a category.

(b) If M is a monoid, viewed as a category, an isomorphism amounts to an
invertible element, and Iso(M) is their group.

(c¢) Groupoids were introduced before categories, by H. Brandt in 1927
[Bra]. Brandt dealt with ‘connected’ groupoids, in a single-sorted version
where the only terms are the arrows, and the objects are represented by
their identities. Categories can also be presented in a single-sorted version:
see [M3], p. 9.

*(d) In the fundamental groupoid I1,(X) of a topological space X, an
object is any point x € X and an arrow [a]: z — y is a class of paths in
X, from z to y, up to homotopy with fixed end-points. The construction
is sketched in 4.3.1(b).

1.4.6 Subcategories, quotients and products of categories
(a) Let C be a category. A subcategory D is defined by assigning:
- a subclass Ob D C Ob C, whose elements are called objects of D,

- for every pair of objects X,Y of D, a subset D(X,Y) C C(X,Y), whose
elements are called morphisms of D, from X to Y,

so that the following conditions hold:

(i) the composite in C of morphisms of D belongs to D,

(ii) the identity in C of an object of D belongs to D.

Then D, equipped with the restricted composition law, is a category.

We say that D is a full subcategory of C if, for every pair of objects X, Y
of D, we have D(X,Y) = C(X,Y), so that D is determined by assigning a
subclass of objects. We say that D is a wide subcategory of C if it has the
same objects.

For instance, Ab is a full subcategory of Gp, Ord is a full subcategory of

pOrd, while Ban; is a wide subcategory of Ban and Tso(C) of C. Of course
a full and wide subcategory must be the total one.
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(b) A congruence R = (Rxy) in a category C consists of a family of equiv-
alence relations Rxy in each set of morphisms C(X,Y’), that is consistent
with composition:

if fRxy f and gRyzg', then (gf)Rxz (¢'f). (1.35)

Then one defines the quotient category D = C/R: the objects are those of
C, and D(X,Y) = C(X,Y)/Rxy; in other words, a morphism [f]: X =Y
in D is an equivalence class of morphisms X — Y in C. The composition
is induced by that of C, which is legitimate because of condition (1.35):

[9]-1f] = [9/]- (1.36)

For instance, in Top the homotopy relation f ~ f’ is (well-known to be)
a congruence of categories; the quotient category hoTop = Top/ ~ is called
the homotopy category of topological spaces, and is important in Algebraic
Topology. Plainly, a continuous mapping f: X — Y is a homotopy equiva-
lence if and only if its homotopy class [f] is an isomorphism of the category
hoTop.

The relation of isomorphism is wider in a quotient category (but it may
coincide with the original one, also in a non-trivial quotient).
(c) If C and D are categories, one defines the product category C x D. An
object is a pair (X,Y’) where X is in C and Y in D; a morphism is a pair
of morphisms

(f,9): (X,Y) — (X', Y"), (feC(X,X"), geD(Y,Y"). (1.37)
The composition of (f,g) with a consecutive morphism
(F,9): (X', ¥) = (X", ¥")
is (obviously) defined component-wise: (f',¢').(f,q) = (f'f,9'9)-

More generally one defines the cartesian product C = Il;¢; C; of a fam-
ily of categories (C;);cr indexed by a set I: an object of C is a family
(A;)ier where A; € Ob(C;) (for every index ¢), and a morphism f =
(fi): (A;) — (B;) is a family of morphisms f; € C;(A4;, B;); the composi-
tion is component-wise and id ((A4;);cr) = (id A;)ser.

1.4.7 Monomorphisms and epimorphisms

In a category, monomorphisms and epimorphisms, are defined by cancel-
lation properties with respect to composition. In a category of structured
sets, they represent an ‘approximation’ to the injective and surjective map-
pings of the category, and may coincide or not with the latter.



