(% MORGAN &CLAYPOOL PUBLISHERS

Markov Logic

An Interface Layer for Artificial Intelligence

Pedro Domingos

Daniel Lowd

SYNTHESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LLEARNING

Ronald J. Brachman and Thomas G. Dietterich, Series Editors

Markov Logic:
An Interface Layer for
Artificial Intelligence

Copyright © 2009 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in

printed reviews, without the prior permission of the publisher.

Markov Logic: An Interface Layer for Artificial Intelligence
Pedro Domingos and Daniel Lowd

www.morganclaypool.com

ISBN: 9781598296921 paperback
[SBN: 9781598296938 ebook

DOI 10.2200/500206 ED1V01Y200907AIMO007

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Lecture #7
Series Editors: Ronald J. Brachman, Yaheo! Research
Thomas Dietterich, Oregon State University

Series ISSN
Synthesis Lectures on Artificial Intelligence and Machine Learning
Print 1939-4608 Electronic 1939-4616

Contents

Acknowledgments. X
T OAUCEION « o« e et e e e e e e e e e e e e e e 1
1.1 The Interface Layer. . ..o e e 1
1.2 What Is the Interface Layer for AI? ... 3
1.3 Markov Logic and Alchemy: An Emerging Solution............coooiuinina... 4
1.4 Overview of the Book. ... e e e et 7
Markov Logic .. 9
2.1 First-Order Logic ... oo 9
2.2 IMarkov NetWorks .. v vt et e e e e 11
2.3 Markov Logic. 12
2.4 Relation to Other Approachescoviiiiiiiiiiiiiii i 19
S S = L <3 23
3.1 Inferring the Most Probable Explanation 23
3.2 Computing Conditional Probabilities. oo 25
33 LazylInferenceot s 29
3.4 Lifted Inferenceot e e e e 35
L earning . oottt e e 43
41 Weight Learningoo oot 43
4.2 Structure Learning and Theory Revision............oooooooi 52
4.3 Unsupervised Learning 56
4.4 Transfer Learning 62
oIS OIS .« sttt 71

5.1 Continuous Domains . ..ottt iae ettt eitae e e ansaneeeransnnns 71

viii

CONTENTS

5.2 Infinite Domaims . vvu ettt e 75
5.3 Recursive Markov Logico e 84
5.4 Relational Decision Theory.. ... 91
APPLCALIONS © .ottt et ettt e 97
6.1 Collective ClassifICation . .« v vu ittt ettt e et et ettt e ettt e e aiaeeans 97
6.2 Social Network Analysis and Link Prediction, 98
6.3 Entity Resolution 103
6.4 Information Extractionttt 104
6.5 Unsupervised Coreference Resolutiono, 106
6.6 Robot Mapping........coiuiiiiiii e 111
6.7 Link-based Clusteringoouiuiiiiiiiiii i 113
6.8 Semantic Network Extraction from Text. ... i 116
COMCIUSION ot ettt e et e et e et et e e e e e e e e e 121
The Alchemy Systemot e 125
Al Input Files. ..o 125
A2 TLErONCE et et e e e e 127
A3 Weight Learning 128
A4 Structure Learningooouii i 128
Bibliography 131

Biography 145

Acknowledgments

We are grateful to all the people who contributed to the development of Markov logic and Alchemy:
colleagues, users, developers, reviewers, and others. We thank our families for their patience and
Support.

The research described in this book was partly funded by ARO grant W911NF-08-1-0242,
DARPA contracts FA8750-05-2-0283, FA8750-07-D-0185, HR0011-06-C-0025, HR0011-07-
C-0060 and NBCH-D030010, NSF grants 1IS-0534881, I1S-0803481 and EIA-0303609, ONR
grants N-00014-05-1-0313 and N00014-08-1-0670, an NSF CAREER Award (first author), a
Sloan Research Fellowship (first author), an NSF Graduate Fellowship (second author) and a Mi-
crosoft Research Graduate Fellowship (second author). The views and conclusions contained in this
document are those of the authors and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of ARO, DARPA, NSF, ONR, or the United States

Government.

Pedro Domingos and Daniel Lowd
Seattle, Washington

Copyrighted material

CHAPTER 1

Introduction
1.1 THE INTERFACE LAYER

Artificial intelligence (AI) has made tremendous progress in its first 50 years. However, it is still very
far from reaching and surpassing human intelligence. At the current rate of progress, the crossover
point will not be reached for hundreds of years. We need innovations that will permanently increase
the rate of progress. Most research is inevitably incremental, but the size of those increments depends
on the paradigms and tools that researchers have available. Improving these provides more than a
one-time gain; it enables researchers to consistently produce larger increments of progress at a higher
rate. If we do it enough times, we may be able to shorten those hundreds of years to decades, as
llustrated in Figure 1.1.

If we look at other subfields of computer science, we see that in most cases progress has been
enabled above all by the creation of an interface layer that separates innovation above and below it,
while allowing cach to benefit from the other. Below the layer, rescarch improves the foundations (or,
more pragmatically, the infrastructure); above it, research improves existing applications and invents
new ones. Table 1.1 shows examples of interface layers from various subfields of computer science. In
cach of these fields, the development of the interface layer triggered a period of rapid progress above
and below it. In most cases, this progress continues today. For example, new applications enabled
by the Internet continue to appear, and protocol extensions continue to be proposed. In many cases,
the progress sparked by the new layer resulted in new industries, or in sizable expansions of existing

ones.
Artificial
. 'y Intelligence
Qe Human Human
Intelligence Intelligence
Artificial
- ‘Intelligence .
1956 2006 2056 1956 2006 2056

Figure 1.1: The first 100 years of Al. The graph on the right illustrates how increasing our rate of
progress several times could bring about human-level intelligence much faster.

2 CHAPTERI1. INTRODUCTION

Table 1.1: Examples of interface layers.

Field Interface Layer Below the Layer Above the Layer
Hardware VLSI design VLSI modules Computer-aided
chip design
Architecture Microprocessors ALUs, buses Compilers, operating
systems
Operating systems Virtual machines Hardware Software
Programming systems | High-level languages Compilers, Programming
code optimizers
Databases Relational model Query optimization, Enterprise applications
transaction mgmt.
Networking Internet Protocols, routers ‘Web, email
HCI Graphical user interface Widget toolkits Productivity suites
Al 43 Inference, learning Planning, NLP, vision,
robotics

The interface layer allows each innovation below it to automatically become available to all
the applications above it, without the “infrastructure” researchers having to know the details of the
applications, or even what all the existing or possible applications are. Conversely, new applications
(and improvements to existing ones) can be developed with little or no knowledge of the infrastructure
below the layer. Without it, cach innovation needs to be separately combined with each other, an
0 (n?) problem that in practice is too costly to solve, leaving only a few of the connections made.
When the layer is available, each innovation needs to be combined only with the layer itself. Thus,
we obtain O (n?2) benefits with O () work, as illustrated in Figure 1.2.

In each case, the separation between applications above the layer and infrastructure below
it is not perfect. If we care enough about a particular application, we can usually improve it by
developing infrastructure specifically for it. However, most applications are served well enough by
the general-purpose machinery, and in many cases would not be economically feasible without it.
For example, ASICs (application-specific integrated circuits) are far more efficient for their specific
applications than general-purpose microprocessors; but the vast majority of applications are still run
on the latter. Interface layers are an instance of the 80/20 rule: they allow us to obtain 80% of the
benefits for 20% of the cost.

The essential feature of an interface layer is that it provides a language of operations that is all
the infrastructure needs to support, and all that the applications need to know about. Designing it is
a difficult balancing act between providing what the applications need and staying within what the
infrastructure can do. A good interface layer exposes important distinctions and hides unimportant
ones, How to do this is often far from obvious. Creating a successful new interface layer is thus not
casy. Typically, it initially faces skepticism, because it is less efficient than the existing alternatives,
and appears too ambitious, being beset by difficulties that are only resolved by later research. But
once the layer becomes established, it enables innovations that were previously unthinkable.

1.2. WHAT IS THE INTERFACE LAYER FOR AI? 3

N Y i/

[Interface Layer

>< /‘i%\

Figure 1.2: An interface layer provides the benefits of O (n?) connections between applications and

oD

L — .

infrastructure algorithms with just O (n) connections.

1.2 WHAT ISTHE INTERFACE LAYER FOR AI?

In Al the interface layer has been conspicuously absent, and this, perhaps more than any other factor,
has limited the rate of progress. An carly candidate for this role was first-order logic. However, it
quickly became apparent that first-order logic has many shortcomings as a basis for Al, leading
to a long series of efforts to extend it. Unfortunately, none of these extensions has achieved wide
acceptance. Perhaps the closest first-order logic has come to providing an interface layer is the
Prolog language. However, it remains a niche language even within Al This is largely because,
being essentially a subset of first-order logic, it shares its limitations, and is thus insufficient to
support most applications at the 80/20 level.

Many (if not most) of the shortcomings of logic can be overcome by the use of probability.
Here, graphical models (i.e., Bayesian and Markov networks) have to some extent played the part of
an interface layer, but one with a limited range. Although they provide a unifying language for many
different probabilistic models, graphical models can only represent distributions over propositional
universes, and are thus insufficiently expressive for general Al In practice, this limitation is often
circumvented by manually transforming the rich relational domain of interest into a simplified
propositional one, but the cost, brittleness, and lack of reusability of this manual work is precisely
what a good interface layer should avoid. Also, to the extent that graphical models can provide an
interface layer, they have done so mostly at the conceptual level. No widely accepted languages or
standards for representing and using graphical models exist today. Many toolkits with specialized
functionality have been developed, but none that could be used as widely as (say) SQL engines are in
databases. Perhaps the most widely used such toolkit is BUGS, but it is quite limited in the learning
and inference infrastructure it provides. Although very popular with Bayesian statisticians, it fails
the 80/20 test for Al

It is clear that the Al interface layer needs to integrate first-order logic and graphical models.
One or the other by itself cannot provide the minimum functionality needed to support the full range
of Al applications. Further, the two need to be fully integrated, and not simply provided alongside
each other. Most applications require simultaneously the expressiveness of first-order logic and the

4 CHAPTERI1. INTRODUCTION

Table 1.2: Examples of logical and statistical Al
Field Logical Approach Statistical Approach

Knowledge representation First-order logic Graphical models

Automated reasoning Satisfiability testing Markov chain Monte Carlo
Machine learning Inductive logic programming Neural networks

Planning Classical planning Markov decision processes

Natural language processing | Definite clause grammars Probabilistic context-free grammars

robustness of probability, not just one or the other. Unfortunately, the split between logical and
statistical Al runs very deep. It dates to the earliest days of the field, and continues to be highly
visible today. It takes a different form in each subfield of AI, but it is omnipresent. Table 1.2 shows
examples of this. In each case, both the logical and the statistical approach contribute something
important. This justifies the abundant rescarch on cach of them, but also implics that ultimately a
combination of the two is required.

In recent years,we have begun to see increasingly frequent attempts to achieve such a combina-
tion in each subfield. In knowledge representation, knowledge-based model construction combines
logic programming and Bayesian networks, and substantial theoretical work on combining logic and
probability has appeared. In automated reasoning, researchers have identified common schemas in
satisfiability testing, constraint processing and probabilistic inference. In machine learning, statisti-
cal relational learning combines inductive logic programming and statistical learning. In planning,
relational MDPs add aspects of classical planning to MDPs. In natural language processing, work
on recognizing textual entailment and on learning to map sentences to logical form combines logical
and statistical components. However, for the most part these developments have been pursued inde-
pendently, and have not benefited from each other. This is largely attributable to the O (n =) problem:
researchers in one subfield can connect their work to perhaps one or two others, but connecting it
to all of them is not practically feasible.

1.3 MARKOVLOGICAND ALCHEMY:
AN EMERGING SOLUTION

We have recently introduced Markov logic, a language that combines first-order logic and Markov
networks. A knowledge base (KB)in Markov logicis a set of first-order formulas with weights. Given
a set of constants representing objects in the domain of interest, it defines a probability distribution
over possible worlds, each world being an assignment of truth values to all possible ground atoms. The
distribution is in the form of a log-linear model: a normalized exponentiated weighted combination
of features of the world.! Each feature is a grounding of a formula in the KB, with the corresponding
weight. In first-order logic, formulas are hard constraints: a world that violates even a single formula
1Log—llnear models are also known as, or closely related to, Markov networks, Markov random fields, maximum entropy models,

Gibbs distributions, and exponential models; and they have Bayesian networks, Boltzmann machines, conditional random fields,
and logistic regression as special cases.

1.3. MARKOV LOGIC AND ALCHEMY: AN EMERGING SOLUTION

Table 1.3: A comparison of Alchemy, Prolog, and BUGS.

Aspect Alchemy Prolog

Representation | First-order logic + Markov networks Horn clauses Bayesian networks
Inference Model checking, MCMC, lifted BP Theorem proving Gibbs sampling
Learning Parameters and structure No Parameters
Uncertainty Yes No Yes

Relational Yes Yes No

1s impossible. In Markov logic, formulas are soft constraints: a world that violates a formula is less
probable than one that satisfies it, other things being equal, but not impossible. The weight of a
formula represents its strength as a constraint. Finite first-order logic is the limit of Markov logic
when all weights tend to infinity. Markov logic allows an existing first-order KB to be transformed
into a probabilistic model simply by assigning weights to the formulas, manually or by learning
them from data. It allows multiple KBs to be merged without resolving their inconsistencies, and
obviates the need to exhaustively specify the conditions under which a formula can be applied. On
the statistical side, it allows very complex models to be represented very compactly; in particular,
it provides an elegant language for expressing non-i.i.d. models (i.e., models where data points are
not assumed independent and identically distributed). It also facilitates the incorporation of rich
domain knowledge, reducing reliance on purely empirical learning.

Markov logic builds on previous developments in knowledge-based model construction and
statistical relational learning, but goes beyond them in combining first-order logic and graphical
models without restrictions. Unlike previous representations, it is supported by a full range of learning
and inference algorithms, in each case combining logical and statistical elements. Because of its
generality, it provides a natural framework for integrating the logical and statistical approaches in
each field. For example, DCGs and PCFGs are both special cases of Markov logic, and classical
planning and MDPs can both be elegantly formulated using Markov logic and decision theory. With
Markov logic, combining classical planning and MDPs, or DCGs and PCFGs, does not require new
algorithms; the existing general-purpose inference and learning facilities can be directly applied.

Al can be roughly divided into “foundational” and “application” areas. Foundational areas
include knowledge representation, automated reasoning, probabilistic models, and machine learn-
ing. Application areas include planning, vision, robotics, speech, natural language processing, and
multi-agent systems. An interface layer for Al must provide the former, and serve the latter. We have
developed the Alchemy system as an open-source embodiment of Markov logic and implementation
of algorithms for it [60]. Alchemy seamlessly combines first-order knowledge representation, model
checking, probabilistic inference, inductive logic programming, and generative/discriminative pa-
rameter learning. Table 1.3 compares Alchemy with Prolog and BUGS, and shows that it provides
a critical mass of capabilities not previously available.

For researchers and practitioners in application areas, Alchemy offers a large reduction in the
effort required to assemble a state-of-the-art solution, and to extend it beyond the state of the art.

5

6 CHAPTERI1. INTRODUCTION

The representation, inference and learning components required for each subtask, both logical and
probabilistic, no longer need to be built or patched together piece by piece; Alchemy provides them,
and the solution is built simply by writing formulas in Markov logic. A few lines of Alchemy suffice
to build state-of-the-art systems for applications like collective classification, link prediction, entity
resolution, information extraction, ontology mapping, and others. Because each of these pieces is
now simple to implement, combining them into larger systems becomes straightforward, and is no
longer a major engineering challenge. For example, we are currently beginning to build a complete
natural language processing system in Alchemy, which aims to provide the functionality of current
systems in one to two orders of magnitude fewer lines of code. Most significantly, Alchemy facilitates
extending NLP systems beyond the current state of the art, for example by integrating probabilities
into semantic analysis.

One of our goals with Alchemy is to support the growth of a repository of reusable knowl-
edge bases in Markov logic, akin to the shareware repositories available today, and building on the
traditional knowledge bases already available. Given such a repository, the first step of an application
project becomes the selection of relevant knowledge. This may be used as is or manually refined. A
new knowledge base is initiated by writing down plausible hypotheses about the new domain. This
is followed by induction from data of new knowledge for the task. The formulas and weights of the
supporting knowledge bases may also be adjusted based on data from the new task. New knowledge
1s added by noting and correcting the failures of the induced and refined KBs, and the process re-
peats. Over time, new knowledge is gradually accumulated, and existing knowledge is refined and
specialized to different (sub)domains. Experience shows that neither knowledge engineering nor
machine learning by itself is sufficient to reach human-level Al, and a simple two-stage solution of
knowledge engineering followed by machine learning is also insufficient. What is needed is a fine-
grained combination of the two, where each one bootstraps from the other, and at the end of each
loop of bootstrapping the Al system’s state of knowledge is more advanced than at the beginning.
Alchemy supports this.

More broadly, a tool like Alchemy can help the focus of research shift from very specialized
goals to higher-level ones. This is essential to speed progress in Al. As the field has grown, it has
become atomized, butultimately the pieces need to be brought back together. However, attempting to
do this without an interface layer, by gluing together a large number of disparate picces, rapidly turns
into an engineering quagmire; systems become increasingly hard to build on for further progress, and
eventually sheer complexity slows progress to a crawl. By keeping the pieces simpler and providing
a uniform language for representing and combining them, even if at some cost in performance, an
interface layer enables us to reach much farther before hitting the complexity wall. At that point, we
have hopefully acquired the knowledge and insights to design the next higher-level interface layer,
and in this way we can continue to make rapid progress.

Highly focused research is essential for progress, and often provides immediate real-world
benefits in its own right. But these benefits will be dwarfed by those obtained if Al reaches and
surpasses human intelligence, and to contribute toward this, improvements in performance in the

1.4. OVERVIEW OFTHE BOOK 7

subtasks need to translate into improvements in the larger tasks. When the subtasks are pursued
in isolation, there is no guarantee that this will happen, and in fact experience suggests that the
tendency will be for the subtask solutions to evolve into local optima, which are best in isolation
but not in combination. By increasing the granularity of the tasks that can be routinely attempted,
platforms like Alchemy make this less likely, and help us reach human-level Al sooner.

1.4 OVERVIEW OF THE BOOK

In the remainder of this book, we will describe the Markov logic representation in greater detail,
along with algorithms and applications.

In Chapter 2, we first provide basic background on first-order logic and probabilistic graphical
models. We then define the Markov logic representation, building and unifying these two perspec-
tives. We conclude by showing how Markov logic relates to some of the many other combinations
of logic and probability that have been proposed in recent years.

Chapters 3 and 4 present state-of-the-art algorithms for reasoning and learning with Markov
logic. These algorithms build on standard methods for first-order logic or graphical models, includ-
ing satisfability, Markov chain Monte Carlo, and belief propagation for inference; and inductive
logic programming and convex optimization for learning. In many cases, these methods have been
combined and extended to handle additional challenges introduced by the rich Markov logic repre-
sentation.

Chapter 5 goes beyond the basic Markov logic representation to describe several extensions
that increase its power or applicability to particular problems. In particular, we cover how Markov
logic can be extended to continuous and infinite domains, combined with decision theory, and
generalized to represent uncertain disjunctions and existential quantifiers. In addition to solving
particular problems better, these extensions demonstrate that Markov logic can easily be adapted
when necessary to explicitly support the features of new problems.

Chapter 6 is devoted to exploring applications of Markov logic to several real-world problems,
including collective classification, link prediction, link-based clustering, entity resolution, informa-
tion extraction, social network analysis, and robot mapping. Most datasets and models from this
chapter can be found online at http://alchemy.cs.washington.edu.

We conclude in Chapter 7 with final thoughts and future directions. An appendix provides a
brief introduction to Alchemy.

Sample course slides to accompany this book are available at
http://www.cs.washington.edu/homes/pedrod/803/.

Copyrighted material

CHAPTER 2

Markov Logic

In this chapter, we provide a detailed description of the Markov logic representation. We begin
by providing background on first-order logic and probabilistic graphical models and then show
how Markov logic unifies and builds on these concepts. Finally, we compare Markov logic to other
representations that combine probability and logic.

2.1 FIRST-ORDER LOGIC

A first-order knowledge base (KB) is a set of sentences or formulas in first-order logic [37]. Formulas
are constructed using four types of symbols: constants, variables, functions, and predicates. Constant
symbols represent objects in the domain of interest (e.g., people: Anna, Bob, Chris, etc.). Variable
symbols range over the objects in the domain. Function symbols (e.g., Mother0f) represent mappings
from tuples of objects to objects. Predicate symbols represent relations among objects in the domain
(e.g., Friends) or attributes of objects (e.g., Smokes). An inferpretation specifies which objects,
functions and relations in the domain are represented by which symbols. Variables and constants
may be #yped,in which case variables range only over objects of the corresponding type, and constants
can only represent objects of the corresponding type. For example, the variable x might range over
people (e.g., Anna, Bob, etc.), and the constant C might represent a city (e.g., Seattle, Tokyo, etc.).

A termis any expression representing an object in the domain. It can be a constant, a variable, or
a function applied to a tuple of terms. For example, Anna, x,and GreatestCommonDivisor(x, y) are
terms. An atomic formula or atom is a predicate symbol applied to a tuple of terms (e.g., Friends(x,
MotherOf(Anna))). Formulas are recursively constructed from atomic formulas using logical con-
nectives and quantifiers. If Fj and F; are formulas, the following are also formulas: = F) (negation),
which is true iff F} is false; Fi A F (conjunction), which is true iff both F| and F; are true; Fy vV F>
(disjunction), which is true iff Fj or F is true; Fj = F5 (implication), which is true iff F) is false
or Fy is truey Fy < F> (equivalence), which is true iff /| and F» have the same truth value; Vx F)
(universal quantification), which is true iff Fj 1s true for every object x in the domain; and 3x F)
(existential quantification), which is true iff F is true for at least one object x in the domain. Paren-
theses may be used to enforce precedence. A positive literal is an atomic formula; a negative literal
is a negated atomic formula. The formulas in a KB are implicitly conjoined, and thus a KB can be
viewed as a single large formula. A ground term is a term containing no variables. A ground atom
or ground predicate is an atomic formula all of whose arguments are ground terms. A possible world
(along with an interpretation) assigns a truth value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true. The basic inference
problem in first-order logic is to determine whether a knowledge base KB enza:ls a formula F, i.e.,

10 CHAPTER2. MARKOV LOGIC

Table 2.1: Example of a first-order knowledge base and MLN. Fr() is short for Friends(), Sm() for
Smokes(), and Ca() for Cancer().

I"‘,nglish and First-Order Logic Clausal Form
“Friends of friends are friends.”

VxVyVz Fr(x, y) A Fr(y, z) = Fr(x, z) —Fr(x, y) v -Fr(y, z) v Fr(x, z) 0.7

“Smoking causes cancer.”
Vx Sm(x) = Ca(x) —Sm(x) Vv Ca(x) 1.5
“If two people are friends and one

smokes, then so does the other.”
VxVy Fr(x, y) A Sm(x) = Sm(y) =Fr(x, y) Vv =Sm(x) V Sm(y) 1.1

if F is true in all worlds where KB is true (denoted by KB |= F). This is often done by refutation:
KB entails F iff KBU —F is unsatisfiable. (Thus, if a KB contains a contradiction, all formulas
trivially follow from it, which makes painstaking knowledge engineering a necessity.) For automated
inference, itis often convenient to convert formulas to a more regular form, typically clausal form (also
known as conjunctive normal form (CNF)). A KB in clausal form is a conjunction of clauses, a clause
being a disjunction of literals. Every KB in first-order logic can be converted to clausal form using a
mechanical sequence of steps.! Clausal form is used in resolution, a sound and refutation-complete
inference procedure for first-order logic [122].

Inference in first-order logic is only semidecidable. Because of this, knowledge bases are often
constructed using a restricted subset of first-order logic with more desirable properties. The most
widely used restriction is to Horn clauses, which are clauses containing at most one positive literal.
The Prolog programming language is based on Horn clause logic [72]. Prolog programs can be
learned from databases by searching for Horn clauses that (approximately) hold in the data; this is
studied in the field of inductive logic programming (ILP) [65].

Table 2.1 shows a simple KB and its conversion to clausal form. Note that, while these
formulas may be #ypically true in the real world, they are not a/ways true. In most domains it is very
difficult to come up with non-trivial formulas that are always true, and such formulas capture only a
fraction of the relevant knowledge. Thus, despite its expressiveness, pure first-order logic has limited
applicability to practical Al problems. Many ad hoc extensions to address this have been proposed.
In the more limited case of propositional logic, the problem is well solved by probabilistic graphical
models such as Markov networks, described in the next section. We will later show how to generalize
these models to the first-order case.

IThis conversion includes the removal of existential quantifiers by Skolemization, which is not sound in general. However, in finite
domains an existentiallv quantified formula can simply be replaced by a disjunction of its groundings.

2.2. MARKOVNETWORKS

2.2 MARKOV NETWORKS

A Markov network (also known as Markov random field) is a model for the joint distribution of a
set of variables X = (X, X2,..., X,,) € & [99]. It is composed of an undirected graph G and a
set of potential functions ¢y. The graph has a node for each variable, and the model has a potential
function for each clique in the graph. A potential function is a non-negative real-valued function
of the state of the corresponding clique. The joint distribution represented by a Markov network is
given by

1
P(X=x)= E]:[m-(x{k]) (2.1)

where x() is the state of the kth clique (i.e., the state of the variables that appear in that clique).
Z, known as the partition function,is given by Z = 3" v [, ¢« (x()). Markov networks are often
conveniently represented as log-/inear models, with each clique potential replaced by an exponentiated
weighted sum of features of the state, leading to

|
P(X=x) = Ecxp ij_fj(x) (2.2)

i

A feature may be any real-valued function of the state. Except where stated, this book will focus
on binary features, f;(x) € {0, 1}. In the most direct translation from the potential-function form
(Equation 2.1), there is one feature corresponding to each possible state x4} of each clique, with
its weight being log ¢ (x(x}). This representation is exponential in the size of the cliques. However,
we are free to specify a much smaller number of features (e.g., logical functions of the state of the
clique), allowing for a more compact representation than the potential-function form, particularly
when large cliques are present. Markov logic will take advantage of this.

Inference in Markov networks is #P-complete [123]. The most widely used method for ap-
proximate inference in Markov networks is Markov chain Monte Carlo (MCMC) [40], and in
particular Gibbs sampling, which proceeds by sampling each variable in turn given its Markov blan-
ket. (The Markov blanket of a node is the minimal set of nodes that renders it independent of the
remaining network; in a Markov network, this is simply the node’s neighbors in the graph.) Marginal
probabilities are computed by counting over these samples; conditional probabilities are computed
by running the Gibbs sampler with the conditioning variables clamped to their given values.

Another popular method for inference in Markov networks is belief propagation [156], a
message-passing algorithm that performs exact inference on tree-structured Markov networks.
When applied to graphs with loops, the results are approximate and the algorithm may not converge.
Nonetheless, loopy belief propagation 1s more efficient than Gibbs sampling in many applications.

Maximum-likelihood or MAP estimates of Markov network weights cannot be computed
in closed form but, because the log-likelihood is a concave function of the weights, they can be
found efficiently (modulo inference) using standard gradient-based or quasi-Newton optimization

11

12 CHAPTER 2. MARKOV LOGIC

methods [95]. Another alternative is iterative scaling [24]. Features can also be learned from data,
for example by greedily constructing conjunctions of atomic features [24].

23 MARKOVLOGIC

A first-order KB can be seen as a set of hard constraints on the set of possible worlds: if a world violates
even one formula, it has zero probability. The basic idea in MLNs is to soften these constraints: when
a world violates one formula in the KB it 1s less probable, but not impossible. The fewer formulas
a world violates, the more probable it is. Each formula has an associated weight that reflects how
strong a constraint it is: the higher the weight, the greater the difference in log probability between
a world that satisfies the formula and one that does not, other things being equal.

Definition 2.1. A Markov logic network L is a set of pairs (F;, w;), where F; is a formula in first-
order logic and wj 1s a real number. Together with a finite set of constants C = {c1, c2, ..., ¢c|c|}, 1t
defines a Markov network M ¢ (Equations 2.1 and 2.2) as follows:

1. M| c contains one binary node for each possible grounding of each predicate appearing in L.
The value of the node is 1 if the ground predicate is true, and 0 otherwise.

2. My ¢ contains one feature for each possible grounding of each formula F; in L. The value of
this feature is 1 if the ground formula is true, and 0 otherwise. The weight of the feature is the
w; associated with F; in L.

The syntax of the formulas in an MLN is the standard syntax of first-order logic [37]. Free
(unquantified) variables are treated as universally quantified at the outermost level of the formula.
In this book, we will often assume that the set of formulas 1s in function-free clausal form for
convenience, but our methods can be applied to other MLNs as well.

An MLN can be viewed as a zemplate for constructing Markov networks. Given different sets
of constants, it will produce different networks, and these may be of widely varying size, but all will
have certain regularities in structure and parameters, given by the MLN (e.g., all groundings of the
same formula will have the same weight). We call each of these networks a ground Markov network
to distinguish it from the first-order MLN. From Definition 2.1 and Equations 2.1 and 2.2, the
probability distribution over possible worlds x specified by the ground Markov network M ¢ is
given by

l l n;lx
P(X=x)= — Xp (Z wm;(ﬂ) = Enfﬁf(x[i}) i(x) (2.3)

where n;(x) 1s the number of true groundings of F; in x, x(;) is the state (truth values) of the
predicates appearing in F;, and ¢; (x(;;) = e". Note that, although we defined MLNs as log-linear
models, they could equally well be defined as products of potential functions, as the second equality
above shows. This will be the most convenient approach in domains with a mixture of hard and

2.3. MARKOVLOGIC 13

Friends(A,B)

.

N

Friends(B,A)

Figure 2.1: Ground Markov network obtained by applying the last two formulas in Table 2.1 to the
constants Anna(A) and Bob(B).

Friends(A,A)

soft constraints (i.c., where some formulas hold with certainty, leading to zero probabilities for some
worlds).

The graphical structure of My ¢ follows from Definition 2.1: there is an edge between two
nodes of M ¢ iff the corresponding ground predicates appear together in at least one grounding
of one formula in L. Thus, the predicates in each ground formula form a (not necessarily maximal)
clique in My c. Figure 2.1 shows the graph of the ground Markov network defined by the last two
formulas in Table 2.1 and the constants Anna and Bob. Each node in this graph is a ground predicate
(e.g., Friends(Anna, Bob)). The graph contains an arc between each pair of predicates that appear
together in some grounding of one of the formulas. M; ¢ can now be used to infer the probability
that Anna and Bob are friends given their smoking habits, the probability that Bob has cancer given
his friendship with Anna and whether she has cancer, etc.

Each state of M ¢ represents a possible world. A possible world is a set of objects, a set of
functions (mappings from tuples of objects to objects), and a set of relations that hold between those
objects; together with an interpretation, they determine the truth value of each ground predicate.
The following assumptions ensure that the set of possible worlds for (L, C) is finite, and that
M ¢ represents a unique, well-defined probability distribution over those worlds, irrespective of
the interpretation and domain. These assumptions are quite reasonable in most practical applications,
and greatly simplify the use of MLNs. For the remaining cases, we discuss below the extent to which
each one can be relaxed.

Assumption 2.2. Unique names. Different constants refer to different objects [37].

Assumption 2.3. Domain closure. The only objects in the domain are those representable using the
constant and function symbols in (L, C) [37].

14 CHAPTER 2. MARKOV LOGIC

Table 2.2: Construction of all groundings of a first-order formula under Assumptions 2.2-2.4.

function Ground(F)
input: F,a formula in first-order logic
output: G r, a set of ground formulas
for each existentially quantified subformula 3x §(x) in F
F < F with dx S(x) replaced by S(c1) V S(c2) V...V S(cic)),
where S(c;) is S(x) with x replaced by ¢;
Gr < {F}
for each universally quantified variable x
for each formula Fj(x) in G
Gr < (Gp\ Fi(x))U{Fj(c1), Fj(e2),..., Fileicp},
where Fj(c;) 1s F;(x) with x replaced by ¢;
for each formula F; € Gf
repeat
for each function f(ay, aa, ...) all of whose arguments are constants
Fj < Fjwith f(aj, az,...) replaced by ¢, where ¢ = f(ay, az, ...)
until F; contains no functions
return G g

Assumption 2.4. Known functions. For each Sfunction appearing in L, the value of that function
applied to every possible tuple of arguments is known, and is an element of C.

This last assumption allows us to replace functions by their values when grounding formulas.
Thus the only ground predicates that need to be considered are those having constants as argu-
ments. The infinite number of terms constructible from all functions and constants in (L, C) (the
“Herbrand universe” of (L, C)) can be ignored, because each of those terms corresponds to a known
constant in C, and predicates involving them are already represented as the predicates involving the
corresponding constants. The possible groundings of a predicate in Definition 2.1 are thus obtained
simply by replacing each variable in the predicate with each constant in C, and replacing each func-
tion term in the predicate by the corresponding constant. Table 2.2 shows how the groundings of a
formula are obtained given Assumptions 2.2-2.4.

Assumption 2.2 (unique names) can be removed by introducing the equality predicate
(Equals(x, y),orx = y forshort) and adding the necessary axioms to the MLN: equalityis reflexive,
symmetric and transitive; for each unary predicate P, ¥xVy x = y = (P(x) < P(y)); and similarly
for higher-order predicates and functions [37]. The resulting MLN will have a node for each pair of
constants, whose value is 1 if the constants represent the same object and 0 otherwise; these nodes
will be connected to each other and to the rest of the network by arcs representing the axioms above.

2.3. MARKOVLOGIC 15

Note that this allows us to make probabilistic inferences about the equality of two constants. The
example in Section 6.3 successfully uses this as the basis of an approach to entity resolution.

If the number u of unknown objects is known, Assumption 2.3 (domain closure) can be
removed simply by introducing u arbitrary new constants. If u is unknown but finite, Assumption 2.3
can be removed by introducing a distribution over u, grounding the MLN with each number of
unknown objects,and computing the probability of a formula F as P(F) = Z::;"b‘ Pu) P(FlME.C)’
where M} c 1s the ground MLN with « unknown objects. Markovlogic can also be applied to infinite
domains; details are in Section 5.2.

Let H; ¢ be the set of all ground terms constructible from the function symbols in L and
the constants in L and C (the “Herbrand universe” of (L, C)). Assumption 2.4 (known functions)
can be removed by treating each element of Hy ¢ as an additional constant and applying the same
procedure used to remove the unique names assumption. For example, with a function G(x) and
constants A and B, the MLN will now contain nodes for G(A) = A, G(A) = B, etc. This leads to an
infinite number of new constants, requiring the corresponding extension of MLNs. However, if we
restrict the level of nesting to some maximum, the resulting MLN is still finite.

To summarize, Assumptions 2.2—2.4 can be removed as long the domain is finite. Section 5.2
discusses how to extend MLNs to infinite domains. In the remainder of this book we proceed under
Assumptions 2.2-2.4, except where noted.

A first-order KB can be transformed into an MLN simply by assigning a weight to each
formula. For example, the formulas (or clauses) and weights in the last two columns of Table 2.1
constitute an MLN. According to this MLN, other things being equal, a world where n smokers

don’t have cancer is e!"

times less probable than a world where all smokers have cancer. Note that
all the formulas in Table 2.1 are false in the real world as universally quantified logical statements,
but capture useful information on friendships and smoking habits, when viewed as features of a
Markov network. For example, it is well known that teenage friends tend to have similar smoking
habits [73]. In fact, an MLN like the one in Table 2.1 succinctly represents a type of model that is
a staple of social network analysis [149].

It is easy to see that MLNs subsume essentially all propositional probabilistic models, as

detailed below.

Theorem 2.5. Ewery probability distribution over discrete or finite-precision numeric variables can be

represented as a Markov logic network.

Proof. Consider first the case of Boolean variables (X1, X2, ..., X,,). Define a predicate of zero
arity Ry, for each variable X, and include in the MLN L a formula for each possible state of
(X1, X2, ..., X,). This formula is a conjunction of n literals, with the Ath literal being R () if X,
1s true in the state, and =R, () otherwise. The formula’s weight is log P(X |, X2, ..., X,;). (If some
states have zero probability, use instead the product form (see Equation 2.3), with ¢; () equal to the
probability of the ith state.) Since all predicates in L have zero arity, L defines the same Markov
network M ¢ irrespective of C,with one node for each variable X,. For any state, the corresponding

16 CHAPTER2. MARKOV LOGIC

formula is true and all others are false, and thus Equation 2.3 represents the original distribution
(notice that Z = 1). The generalization to arbitrary discrete variables is straightforward, by defining
a zero-arity predicate for each value of each variable. Similarly for finite-precision numeric variables,
by noting that they can be represented as Boolean vectors. O

Of course, compact factored models like Markov networks and Bayesian networks can still
be represented compactly by MLNSs, by defining formulas for the corresponding factors (arbitrary
features in Markov networks, and states of a node and its parents in Bayesian networks).?

First-order logic (with Assumptions 2.2-2.4 above) is the special case of MLNs obtained
when all weights are equal and tend to infinity, as described below.

Theorem 2.6. Let KB be a satisfiable knowledge base, L be the MLN obtained by assigning weight w to
every formula in KB, C be the set of constants appearing in KB, P, (x) be the probability assigned to a (set
of) possible world(s) x by My, c, Xkp be the set of worlds that satisfy KB, and F be an arbitrary formula
in first-order logic. Then:

1. Vx € Xxp limy_ oo Pu(x) = |Xgp| ™"
Vx g XKB]imw_,x Pw(x) =0

2. Forall F, KB |= F ifflim,_ o P,(F) = 1.

Proof. Let k be the number of ground formulas in M; ¢. By Equation 2.3, if x € Axp then
P,(x) =" /Z,and if x & Xgp then Py (x) < e*~V"/Z Thus all x € Xgp are equiprobable and
lim,, oo P(X'\ Xgp)/P(Xgp) < limy,_ oo (|X\ Xgpl/|Xxp)e™ =0, PfO\’ing Part 1. By defini-
tion of entailment, KB |= F iff every world that satisfies KB also satisfies F. Therefore, letting
X' be the set of worlds that satisty F,if KB |= F then Xgxp € Xf and P, (F) = Z.UE(‘.’}-‘ P,(x) =
P, (Xkp).Since, from Part 1,1im,_. o P, (Xgp) = |,thisimplies thatif’ KB |= F then P, (F) = 1.
The inverse direction of Part 2 is proved by noting that if P, (F) = 1 then every world with non-zero
probability must satisfy F, and this includes every world in Xgp. O

In other words, in the limit of all equal infinite weights, the MLN represents a uniform
distribution over the worlds that satisfy the KB, and all entailment queries can be answered by
computing the probability of the query formula and checking whether it is 1. Even when weights
are finite, first-order logic is “embedded” in MLNs in the following sense. Assume without loss of
generality that all weights are non-negative. (A formula with a negative weight w can be replaced
by its negation with weight —w.) If the knowledge base composed of the formulas in an MLN L
(negated, if their weight is negative) is satisfiable, then, for any C, the satisfying assignments are the
modes of the distribution represented by My ¢. This is because the modes are the worlds x with
maximum) _; w;n;(x) (see Equation 2.3), and this expression is maximized when all groundings of

2While some conditional independence structures can be compactly represented with directed graphs but not with undirected
ones, they still lead to compact models in the form of Equation 2.3 (i.e., as products of potential functions).

2.3. MARKOV LOGIC

all formulas are true (i.e., the KB is satisfied). Unlike an ordinary first-order KB, however, an MLN
can produce useful results even when it contains contradictions. An MLN can also be obtained by
merging several KBs, even if they are partly incompatible. This is potentially useful in areas like the
Semantic Web [5] and mass collaboration [116].

Itis interesting to sec a simple example of how MLNs generalize first-order logic. Consider an
MLN containing the single formula Vx R(x) = S(x) with weight w,and C = {A}. This leads to four
possible worlds: {—R(A4), =S(4)}, {—R(4), S(A)},{R(A), =S(A)},and {R(A), S(A)}. From Equation 2.3
we obtain that P ({R(A), =S(A)}) = 1/(3e"™ + 1) and the probability of each of the other three worlds
ise” /(3¢" + 1). (The denominator is the partition function Z; see Section 2.2.) Thus, if w > 0, the
effect of the MLN is to make the world that is inconsistent with Vx R(x) = S(x) less likely than
the other three. From the probabilities above we obtain that P(S(A)|R(A)) = 1/(1 4+ e™"). When
w — 00, P(S(A)|R(A)) — 1, recovering the logical entailment.

A first-order KB partitions the set of possible worlds into two subsets: those that satisfy the KB
and those that do not. An MLN has many more degrees of freedom: it can partition the set of possible
worlds into many more subsets, and assign a different probability to each. How to use this freedom
is a key decision for both knowledge engineering and learning. At one extreme, the MLN can add
little to logic, treating the whole knowledge base as a single formula, and assigning one probability to
the worlds that satisfy it and another to the worlds that do not. At the other extreme, each formula
in the KB can be converted into clausal form, and a weight associated with each clause.* The more
finely divided into subformulas a KB 1s, the more gradual the drop-off in probability as a world
violates more of those subformulas, and the greater the flexibility in specifying distributions over
worlds. From a knowledge engineering point of view, the decision about which formulas constitute
indivisible constraints should reflect domain knowledge and the goals of modeling. From a learning
point of view, dividing the KB into more formulas increases the number of parameters, with the
corresponding tradeoff in bias and variance.

It 1s also interesting to see an example of how MLNs generalize commonly-used statistical
models. One of the most widely used models for classification is logistic regression. Logistic re-
gression predicts the probability that an example with features f = (f1,..., fi,...) 1s of class ¢
according to the equation:

PC=1F=f)_ v
]"g(mczowzﬂ) B 2N

i=1

This can be implemented as an MLN using a unit clause for the class, C(x), with weight a, and a
formula of the form F; (x) A C(x) for each feature, with weight b;. This yields the distribution

P(C=c,F=f)= %exp (ﬂC+Zbiﬁf‘)
1

3This conversion can be done in the standard way [37], except that, instead of introducing Skolem functions, existentially quantified
formulas should be replaced by disjunctions, as in Table 2.2.

17

18 CHAPTER 2. MARKOV LOGIC
resulting in
P(C=1F=f) expla+);bif)
P(C=0F=/f) exp0)

n
=expla —{—Zb;f,-
i

as desired.

In practice, we have found it useful to add each predicate to the MLN as a unit clause.
In other words, for each predicate R(xy,x2,...) appearing in the MLN, we add the formula
Vxi,x2,... R(xy,x2,...) with some weight wg. The weight of a unit clause can (roughly speaking)
capture the marginal distribution of the corresponding predicate, leaving the weights of the non-unit
clauses free to model only dependencies between predicates.

When manually constructing an MLN or interpreting a learned one, it 1s useful to have an
intuitive understanding of the weights. Consider a ground formula F with weight w. All other things
being equal, a world where F is true i1s ¢ times as likely as a world where F is false. Let U; and
Uy be the number of possible worlds in which F is true and false, respectively. If F is independent
from all other ground formulas, then its probability is given by the following function:

P(F)= ———
1+ ghew

Solving for w:
P(F) Ui
w=log ——— — log —
P(=F) U,
Therefore, w can be interpreted as the difference between the log odds of F according to the MLN
and according to the uniform distribution. However, if F shares atoms with other formulas, as will
typically be the case, it may not be possible to keep those formulas’ truth values unchanged while
reversing F’s. In this case, there is no longer a one-to-one correspondence between weights and
probabilities of formulas.* Nevertheless, the probabilities of all formulas collectively determine all
weights if we view them as constraints on a maximum entropy distribution, or treat them as empirical
probabilities and learn the maximum likelihood weights (the two are equivalent) [24]. Thus a good
way to set the weights of an MLN is to write down the probability with which each formula should
hold, treat these as empirical frequencies, and learn the weights from them using the algorithms in
Section 4.1. Conversely, the weights in a learned MLN can be viewed as collectively encoding the
empirical formula probabilities.

The size of ground Markov networks can be vastly reduced by having typed constants and
variables, and only grounding variables to constants of the same type. However, even in this case the
size of the network may still be extremely large. Fortunately, there are a number of ways to further
reduce this size, as we will see in Chapter 3.

#This is an unavoidable side-effect of the power and flexibility of Markov networks. In Bayesian networks, parameters are proba-
bilities, but at the cost of greatly restricting the ways in which the distribution may be factored. In particular, potential functions

must be conditional probabilities, and the directed graph must have no cycles. The latter condition is particularly troublesome to
enforce in relational extensions [141].

2.4. RELATION TO OTHER APPROACHES

2.4 RELATIONTO OTHER APPROACHES

Thereis a very large literature relating logic and probability; here we will focus only on the approaches
most closely related to Markov logic.

EARLY WORK

Attempts to combine logic and probability in AI date back to at least Nilsson [94]. Bacchus [1],
Halpern [43] and coworkers (e.g., [2]) studied the problem in detail from a theoretical standpoint.
They made a distinction between statistical statements (e.g., “65% of the students in our department
are undergraduate”) and statements about possible worlds (e.g., “The probability that Anna is an
undergraduate is 65%”), and provided methods for computing the latter from the former. In their
approach, a KB did not specify a complete and unique distribution over possible worlds, leaving its
status as a probabilistic model unclear. MLNs overcome this limitation by viewing KBs as Markov
network templates.

Paskin [97] extended the work of Bacchus ezal. [2] by associating a probability with each first-
order formula, and taking the maximum entropy distribution compatible with those probabilities.
This representation was still quite brittle, with a world that violates a single grounding of a universally
quantified formula being considered as unlikely as a world that violates all of them. In contrast, in
MLNs arule like Vx Smokes(x) = Cancer(x) causes the probability ofaworld to decrease smoothly
as the number of cancer-free smokers in it increases.

KNOWLEDGE-BASED MODEL CONSTRUCTION

Knowledge-based model construction (KBMC)is a combination of logic programmingand Bayesian
networks [151, 93, 55]. As in MLNs, nodes in KBMC represent ground predicates. Given a Horn
KB, KBMC answers a query by finding all possible backward-chaining proofs of the query and
evidence predicates from each other, constructing a Bayesian network over the ground predicates
in the proofs, and performing inference over this network. The parents of a predicate node in the
network are deterministic AND nodes representing the bodies of the clauses that have that node as
the head. The conditional probability of the node given these is specified by a combination function
(e.g., noisy OR or logistic regression). MLNs have several advantages compared to KBMC: they
allow arbitrary formulas (not just Horn clauses) and inference in any direction, they sidestep the
thorny problem of avoiding cycles in the Bayesian networks constructed by KBMC, and they do not
require the introduction of ad hoc combination functions for clauses with the same consequent.

A KBMC model can be translated into an MLN by writing down a set of formulas for each
first-order predicate Py (...) in the domain. Each formula is a conjunction containing Py (...) and one
literal per parent of Pi(...) (i.e., per first-order predicate appearing in a Horn clause having Py(...)
as the consequent). A subset of these literals are negated; there is one formula for each possible
combination of positive and negative literals. The weight of the formula 1s w = log[p/(1 — p)],
where p is the conditional probability of the child predicate when the corresponding conjunction
of parent literals 1s true, according to the combination function used. If the combination function is

19

20 CHAPTER 2. MARKOVLOGIC

logistic regression, it can be represented using only a linear number of formulas, taking advantage
of the fact that a logistic regression model 1s a (conditional) Markov network with a binary clique
between each predictor and the response. Noisy OR can similarly be represented with a linear number
of parents.

OTHER LOGIC PROGRAMMING APPROACHES

Stochastic logic programs (SLPs) [87, 17] are a combination of logic programming and log-linear
models. Puech and Muggleton [111] showed that SLPs are a special case of KBMC, and thus they
can be converted into MLNSs in the same way. Like MLNs, SLPs have one coefficient per clause,
but they represent distributions over Prolog proof trees rather than over predicates; the latter have
to be obtained by marginalization. Similar remarks apply to a number of other representations that
are essentially equivalent to SLPs, like independent choice logic [102] and PRISM [129].

MACCENT [23] is a system that learns log-lincar models with first-order features; each
feature is a conjunction of a class and a Prolog query (clause with empty head). A key difference
between MACCENT and MLNs is that MACCENT is a classification system (i.e., it predicts
the conditional distribution of an object’s class given its properties), while an MLN represents the
full joint distribution of a set of predicates. Like any probability estimation approach, MLNs can
be used for classification simply by issuing the appropriate conditional qucrics.5 In particular, a
MACCENT model can be converted into an MLN simply by defining a class predicate, adding the
corresponding features and their weights to the MLN, and adding a formula with infinite weight
stating that each object must have exactly one class. (This fails to model the marginal distribution
of the non-class predicates, which is not a problem if only classification queries will be issued.)
MACCENT can make use of deterministic background knowledge in the form of Prolog clauses;
these can be added to the MLN as formulas with infinite weight. In addition, MLNs allow uncertain
background knowledge (via formulas with finite weights). As we demonstrate in Section 6.1, MLNs
can be used for collective classification, where the classes of different objects can depend on each
other; MACCENT, which requires that each object be represented in a separate Prolog knowledge
base, does not have this capability.

Constraint logic programming (CLP) is an extension of logic programming where variables
are constrained instead of being bound to specific values during inference [64]. Probabilistic CLP
generalizes SLPs to CLP [121], and CLP(BN) combines CLP with Bayesian networks [128].
Unlike in MLNs, constraints in CLP(BN) are hard (i.e., they cannot be violated; rather, they define
the form of the probability distribution).

PROBABILISTIC RELATIONAL MODELS

Probabilistic relational models (PRMs) [36] are a combination of frame-based systems and Bayesian
networks. PRM:s can be converted into MLNSs by defining a predicate S(x, v) for each (propositional
or relational) attribute of each class, where S(x, v) means “The value of attribute S in object x is v.”

5 Conversely, joint distributions can be built up from classifiers (e.g., [44]), but this would be a significant extension of MACCENT.

23

CHAPTER 3

Inference

Inference in Markov logic lets us reason probabilistically about complex relationships. Since an
MLN acts as a template for a Markov network, we can always answer probabilistic queries using
standard Markov network inference methods on the instantiated network. However, due to the size
and complexity of the resulting network, this is often infeasible. Instead, the methods we discuss
here combine probabilistic methods with ideas from logical inference, including satisfiability and
resolution. This leads to efficient methods that take full advantage of the logical structure.

We consider two basic types of inference: finding the most likely state of the world consistent
with some evidence, and computing arbitrary conditional probabilities. We then discuss two ap-
proaches to making inference more tractable on large, relational problems: lazy inference, in which
only the groundings that deviate from a “default” value need to be instantiated; and lifted inference,
in which we group indistinguishable atoms together and treat them as a single unit during inference.

3.1 INFERRING THE MOST PROBABLE EXPLANATION

A basic inference task is finding the most probable state of the world y given some evidence x, where
x 1s a set of literals. (This is known as MAP inference in the Markov network literature, and MPE
inference in the Bayesian network literature.!) For Markov logic, this is formally defined as follows:

|
arg max P(y|x) = arg max — ex wini(x, y)
g max P g max - exp Z ini

= arg max Z win; (x, y) (3.1)

The first equality is due to Equation 2.3, which defines of the probability of a possible world. The
normalization constant is written as Z, to reflect the fact that we are only normalizing over possible
worlds consistent with x. In the second equality, we remove Z, since, being constant, it does not
affect the arg max operation. We can also remove the exponentiation because it i1s a monotonic
function. Therefore, the MPE problem in Markov logic reduces to finding the truth assignment that
maximizes the sum of weights of satisfied clauses.

This can be done using any weighted satisfiability solver, and (remarkably) need not be more
expensive than standard logical inference by model checking. (In fact, it can be faster, if some hard
constraints are softened.) The problem is NP-hard in general, but effective solvers exist, both exact
and approximate. The most commonly used approximate solver is MaxWalkSAT, a weighted variant
1 The term “MAP inference” is sometimes used to refer to finding the most probable configuration of a set of query variables,

given some evidence. The necessity of summing out all non-query, non-evidence variables makes this a harder inference problem
than the one we consider here, in which y is the complete state of the world.

3.2. COMPUTING CONDITIONAL PROBABILITIES 25
3.2 COMPUTING CONDITIONAL PROBABILITIES

MLNSs can answer arbitrary queries of the form “What is the probability that formula F; holds
given that formula F> does?” If F| and F, are two formulas in first-order logic, C is a finite set of
constants including any constants that appear in Fj or F, and L is an MLN, then

P(Fy|F2, L, C)

P(F\|F2, My c)
P(Fi AN F2 My)

P(F2|Mp c)

_ E.\’EXFl ﬁXFz P(X=X|ML,C) (3 2)
Y ovexy, P(X=x|ML,c)

where X'f, is the set of worlds where F; holds, M; ¢ is the Markov network defined by L and C,
and P(X = x|My ¢) is given by Equation 2.3. Ordinary conditional queries in graphical models are
the special case of Equation 3.2 where all predicates in Fy, F> and L are zero-arity and the formulas
are conjunctions. The question of whether a knowledge base KB entails a formula F in first-order
logic is the question of whether P(F|Lgp, Ckp,r) = 1,where L 1s the MLN obtained by assigning
infinite weight to all the formulas in KB, and Cgp,F is the set of all constants appearing in KB or F.
The question is answered by computing P (F|Lgp, Ckp.r) by Equation 3.2, with F> = True.

Computing Equation 3.2 directly is intractable in all but the smallest domains. Since MLN
inference subsumes probabilistic inference, which is #P-complete, and logical inference, which is
NP-complete even in finite domains, no better results can be expected. However, many of the large
number of techniques for efficient inference in either case are applicable to MLNs. Because MLNs
allow fine-grained encoding of knowledge, including context-specific independences, inference in
them may in some cases be more efficient than inference in an ordinary graphical model for the same
domain. On the logic side, the probabilistic semantics of MLNs allows for approximate inference,
with the corresponding potential gains in efficiency.

In principle, P(F|F2, L, C) can be approximated using an MCMC algorithm that rejects
all moves to states where F> does not hold, and counts the number of samples in which F} holds.
However, this may be too slow for arbitrary formulas. Instead, we focus on the case where F» is a
conjunction of ground literals. While less general than Equation 3.2, this is the most frequent type
of query in practice. In this scenario, further efficiency can be gained by applying a generalization of
knowledge-based model construction [151]. The basic idea is to only construct the minimal subset
of the ground network required to answer the query. This network is constructed by checking if the
atoms that the query formula directly depends on are in the evidence. If they are, the construction is
complete. Those that are not are added to the network, and we in turn check the atoms they depend
on. This process is repeated until all relevant atoms have been retrieved. While in the worst case it
yields no savings, in practice it can vastly reduce the time and memory required for inference.

Pseudocode for the network construction algorithm is shown in Table 3.2. See Figure 3.1 for
an example of the resulting network. The size of the network returned may be further reduced, and
the algorithm sped up, by noticing that any ground formula that is made true by the evidence can

84 CHAPTERS5. EXTENSIONS

A full proof can be found in Singla and Domingos [137].

Corollary 5.15. Let K be a locally finite knowledge base. Let « be a first-order formula, and LY, be the
MLN obtained by assigning weight w — o< to all clauses in K U {—a}. Then K entails a iff LY has no
satisfying measure. Mathematically,

KEa & |Sy¥) =0 (5.11)

Thus, for locally finite knowledge bases with Herbrand interpretations, first-order logic can
be viewed as the limiting case of Markov logic when all weights tend to infinity. Whether these

conditions can be relaxed is a question for future work.

5.3 RECURSIVE MARKOV LOGIC

In Markov logic, the unification of logic and probability 1s incomplete. Markov logic only treats
the top-level conjunction and universal quantifiers in a knowledge base as probabilistic, when in
principle any logical combination can be viewed as the limiting case of an underlying probability
distribution; disjunctions and existential quantifiers remain deterministic. Thus the symmetry be-
tween conjunctions and disjunctions, and between universal and existential quantifiers, is lost (except
in the infinite-weight limit).

For example, an MLN with the formula R(X) A S(X) can treat worlds that violate both R(X)
and S(X) as less probable than worlds that only violate one. Since an MLN acts as a soft conjunction,
the groundings of R(X) and S(X) simply appear as distinct formulas. (As usual, we will assume that the
knowledge base is converted to CNF before performing learning or inference.) This is not possible
for the disjunction R(X) Vv S(X): no distinction is made between satisfying both R(X) and S(X) and
satisfying just one. Since a universally quantified formula is effectively a conjunction over all its
groundings, while an existentially quantified formula is a disjunction over them, this leads to the two
quantifiers being handled differently.

This asymmetry can be avoided by “softening” disjunction and existential quantification in
the same way that Markov logic softens conjunction and universal quantification. The result is a
representation in which MLNs can have nested MLNs as features. We call these recursive Markov
logic networks, or recursive random fields (RRFs) for short.

RRFs have many desirable properties, including the ability to represent distributions like noisy
DNF, rules with exceptions, and m-of-all quantifiers much more compactly than MLNs. RRFs also
allow more flexibility in revising first-order theories to maximize data likelihood. Standard methods
for inference in Markov networks are easily extended to RRFs, and weight learning can be carried
out efficiently using a variant of the backpropagation algorithm.

RRF theory revision can be viewed as a first-order probabilistic analog of the KBANN algo-

rithm, which initializes a neural network with a propositional theory and uses backpropagation to

5.3. RECURSIVE MARKOVLOGIC 85

improve its fit to data [145]. A propositional RRF (where all predicates have zero arity) differs from
a multilayer perceptron in that its output is the joint probability of its inputs, not the regression of
a variable on others (or, in the probabilistic version, its conditional probability). Propositional RRFs
are an alternative to Boltzmann machines, with nested features playing the role of hidden variables.
Because the nested features are deterministic functions of the inputs, learning does not require EM,
and inference does not require marginalizing out variables.

A recursive random field is a log-linear model in which each feature is either an observable
random variable or the output of another recursive random field. To build up intuition, we first
describe the propositional case, then generalize it to the more interesting relational case. A concrete
example is given in a later subsection, and illustrated in Figure 5.1.

PROPOSITIONAL RRFS

While our primary goal is solving relational problems, RRFs may be interesting in propositional
domains as well. Propositional RRFs extend Markov random fields and Boltzmann machines in the
same way multilayer perceptrons extend single-layer ones. The extension is very simple in principle,
but allows RRFs to compactly represent important concepts, such as m-of-n. It also allows RRFs to
learn features via weight learning, which could be more effective than current feature-search methods
for Markov random fields.

The probability distribution represented by a propositional RRF is as follows:

1 .
PX =x) = Z—chp (Z wiff(xJ)

where Zp is a normalization constant, to ensure that the probabilities of all possible states x sum to
1. What makes this different from a standard Markov network is that the features can be built up
from other subfeatures to an arbitrary number of levels. Specifically, each f;(x) 1s either:

Jix)

x; (base case), or

Ji(x)

1 . .
—_ X Wi X recursive case
7 o Zj:] ()

In the recursive case, the summation is over all features f; referenced by the “parent” feature
fi- A child feature, f}, can appear in more than one parent feature, and thus an RRF can be viewed
as a directed acyclic graph of features. The attribute values are at the leaves, and the probability of
their configuration is given by the root. (Note that the probabilistic graphical model represented by
the RRF is still undirected.)

Since the overall distribution is simply a recursive feature, we can also write the probability
distribution as follows:

PX =x)= fox)

