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Foreword

Businesses are increasingly built around events—the real-time activity data of what is
happening in a company—but what is the right infrastructure for harnessing the
power of events? This is a question I have been thinking about since 2009, when I
started the Apache Kafka project at LinkedIn. In 2014, I cofounded Confluent to
definitively answer it. Beyond providing a way to store and access discrete events, an
event streaming platform needs a mechanism to connect with a myriad of external
systems. It also requires global schema management, metrics, and monitoring. But
perhaps most important of all is stream processing—continuous computation over
never-ending streams of data—without which an event streaming platform is simply
incomplete.

Now more than ever, stream processing plays a key role in how businesses interact
with the world. In 2011, Marc Andreessen wrote an article titled “Why Software Is
Eating the World.” The core idea is that any process that can be moved into software
eventually will be. Marc turned out to be prescient. The most obvious outcome is that
software has permeated every industry imaginable.

But a lesser understood and more important outcome is that businesses are
increasingly defined in software. Put differently, the core processes a business
executes—from how it creates a product, to how it interacts with customers, to how it
delivers services—are increasingly specified, monitored, and executed in software.
What has changed because of that dynamic? Software, in this new world, is far less
likely to be directly interacting with a human. Instead, it is more likely that its purpose
is to programmatically trigger actions or react to other pieces of software that carry
out business directly.

It begs the question: are our traditional application architectures, centered around
existing databases, sufficient for this emerging world? Virtually all databases, from the
most established relational databases to the newest key-value stores, follow a
paradigm in which data is passively stored and the database waits for commands to
retrieve or modify it. This paradigm was driven by human-facing applications in which
a user looks at an interface and initiates actions that are translated into database
queries. We think that is only half the problem, and the problem of storing data needs
to be complemented with the ability to react to and process events.

Events and stream processing are the keys to succeeding in this new world. Events
support the continuous flow of data throughout a business, and stream processing
automatically executes code in response to change at any level of detail—doing it in
concert with knowledge of all changes that came before it. Modern stream processing
systems like Kafka Streams and ksqIDB make it easy to build applications for a world



that speaks software.

In this book, Mitch Seymour lucidly describes these state-of-the-art systems from first
principles. Mastering Kafka Streams and ksqlDB surveys core concepts, details the
nuances of how each system works, and provides hands-on examples for using them
for business in the real world. Stream processing has never been a more essential

programming paradigm—and Mastering Kafka Streams and ksqIDB illuminates the path to
succeeding at it.

Jay Kreps
Cocreator of Apache Kafka,
Cofounder and CEO of Confluent



Preface

For data engineers and data scientists, there’s never a shortage of technologies that are
competing for our attention. Whether we’re perusing our favorite subreddits, scanning
Hacker News, reading tech blogs, or weaving through hundreds of tables at a tech
conference, there are so many things to look at that it can start to feel overwhelming.

But if we can find a quiet corner to just think for a minute, and let all of the buzz fade
into the background, we can start to distinguish patterns from the noise. You see, we
live in the age of explosive data growth, and many of these technologies were created
to help us store and process data at scale. We're told that these are modern solutions
for modern problems, and we sit around discussing “big data” as if the idea is avant-
garde, when really the focus on data volume is only half the story.

Technologies that only solve for the data volume problem tend to have batch-oriented
techniques for processing data. This involves running a job on some pile of data that
has accumulated for a period of time. In some ways, this is like trying to drink the
ocean all at once. With modern computing power and paradigms, some technologies
actually manage to achieve this, though usually at the expense of high latency.

Instead, there’s another property of modern data that we focus on in this book: data
moves over networks in steady and never-ending streams. The technologies we cover
in this book, Kafka Streams and ksqlDB, are specifically designed to process these
continuous data streams in real time, and provide huge competitive advantages over
the ocean-drinking variety. After all, many business problems are time-sensitive, and if
you need to enrich, transform, or react to data as soon as it comes in, then Kafka
Streams and ksqlDB will help get you there with ease and efficiency.

Learning Kafka Streams and ksqIDB is also a great way to familiarize yourself with the
larger concepts involved in stream processing. This includes modeling data in different
ways (streams and tables), applying stateless transformations of data, using local state
for more advanced operations (joins, aggregations), understanding the different time
semantics and methods for grouping data into time buckets/windows, and more. In
other words, your knowledge of Kafka Streams and ksqlDB will help you distinguish
and evaluate different stream processing solutions that currently exist and may come
into existence sometime in the future.

I'm excited to share these technologies with you because they have both made an
impact on my own career and helped me accomplish technological feats that I thought
were beyond my own capabilities. In fact, by the time you finish reading this sentence,
one of my Kafka Streams applications will have processed nine million events. The
feeling you’ll get by providing real business value without having to invest exorbitant



amounts of time on the solution will keep you working with these technologies for
years to come, and the succinct and expressive language constructs make the process
feel more like an art form than a labor. And just like any other art form, whether it be
a life-changing song or a beautiful painting, it’s human nature to want to share it. So
consider this book a mixtape from me to you, with my favorite compilations from the
stream processing space available for your enjoyment: Kafka Streams and ksqlDB,
Volume 1.

Who Should Read This Book

This book is for data engineers who want to learn how to build highly scalable stream
processing applications for moving, enriching, and transforming large amounts of data
in real time. These skills are often needed to support business intelligence initiatives,
analytic pipelines, threat detection, event processing, and more. Data scientists and
analysts who want to upgrade their skills by analyzing real-time data streams will also
find value in this book, which is an exciting departure from the batch processing space
that has typically dominated these fields. Prior experience with Apache Kafka is not
required, though some familiarity with the Java programming language will make the

Kafka Streams tutorials easier to follow.
Navigating This Book

This book is organized roughly as follows:

e Chapter 1 provides an introduction to Kafka and a tutorial for running a
single-node Kafka cluster.

e Chapter 2 provides an introduction to Kafka Streams, starting with a
background and architectural review, and ending with a tutorial for running a
simple Kafka Streams application.

e Chapters 3 and 4 discuss the stateless and stateful operators in the Kafka
Streams high-level DSL (domain-specific language). Each chapter includes a
tutorial that will demonstrate how to use these operators to solve an
interesting business problem.

e Chapter 5 discusses the role that time plays in our stream processing
applications, and demonstrates how to use windows to perform more
advanced stateful operations, including windowed joins and aggregations. A
tutorial inspired by predictive healthcare will demonstrate the key concepts.

» Chapter 6 describes how stateful processing works under the hood, and
provides some operational tips for stateful Kafka Streams applications.

e Chapter 7 dives into Kafka Streams’ lower-level Processor API, which can be



used for scheduling periodic functions, and provides more granular access to
application state and record metadata. The tutorial in this chapter is inspired
by 10T (Internet of Things) use cases.

o Chapter 8 provides an introduction to ksqlDB, and discusses the history and
architecture of this technology. The tutorial in this chapter will show you how
to install and run a ksqlDB server instance, and work with the ksqlDB CLI.

¢ Chapter 9 discusses ksqlDB’s data integration features, which are powered by
Kafka Connect.

e Chapters 10 and 11 discuss the ksqIDB SQL dialect in detail, demonstrating
how to work with different collection types, perform push queries and pull
queries, and more. The concepts will be introduced using a tutorial based on a
Netflix use case: tracking changes to various shows/films, and making these
changes available to other applications.

 Chapter 12 provides the information you need to deploy your Kafka Streams
and ksqlDB applications to production. This includes information on
monitoring, testing, and containerizing your applications.

Source Code

The source code for this book can be found on GitHub at https://github.com/mitch-
seymour/mastering-kafka-streams-and-ksqldb.

Instructions for building and running each tutorial will be included in the repository.
Kafka Streams Version

At the time of this writing, the latest version of Kafka Streams was version 2.7.0. This is
the version we use in this book, though in many cases, the code will also work with
older or newer versions of the Kafka Streams library. We will make efforts to update
the source code when newer versions introduce breaking changes, and will stage these

updates in a dedicated branch (e.g., kafka-streams-2.8).
ksqlDB Version

At the time of this writing, the latest version of ksqIDB was version 0.14.0.
Compatibility with older and newer versions of ksqlDB is less guaranteed due to the
ongoing and rapid development of this technology, and the lack of a major version
(e.g., 1.0) at the time of this book’s publication. We will make efforts to update the
source code when newer versions introduce breaking changes, and will stage these
updates in a dedicated branch (e.g., ksqldb-0.15). However, it is recommended to avoid

versions older than 0.14.0 when running the examples in this book.
Conventions Used in This Book



The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

Tip

This element signifies a tip or suggestion.
Note

This element signifies a general note.
Warning

This element indicates a warning or caution.
Using Code Examples

Supplemental material (code examples, exercises, etc.) can be found on the book’s
GitHub page, https://github.com/mitch-seymour/mastering-kafka-streams-and-ksqldb.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code



from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Mastering Kafka Streams
and ksqIDB by Mitch Seymour (0’Reilly). Copyright 2021 Mitch Seymour, 978-1-492-
06249-3.”

If you feel your use of code examples falls outside fair use or the permission given

above, feel free to contact us at permissions@oreilly.com.
O’Reilly Online Learning
Note

For more than 40 years, O'Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning paths,
interactive coding environments, and a vast collection of text and video from O’Reilly

and 200+ other publishers. For more information, visit http://oreilly.com.
How to Contact Us

Please address comments and questions concerning this book to the publisher:
O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreilly/mastering-kafka-streams.
Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly.



Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.
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Chapter 1. A Rapid Introduction to Kafka

The amount of data in the world is growing exponentially and, according to the World
Economic Forum, the number of bytes being stored in the world already far exceeds
the number of stars in the observable universe.

When you think of this data, you might think of piles of bytes sitting in data
warehouses, in relational databases, or on distributed filesystems. Systems like these
have trained us to think of data in its resting state. In other words, data is sitting
somewhere, resting, and when you need to process it, you run some query or job
against the pile of bytes.

This view of the world is the more traditional way of thinking about data. However,
while data can certainly pile up in places, more often than not, it’s moving. You see,
many systems generate continuous streams of data, including 10T sensors, medical
sensors, financial systems, user and customer analytics software, application and
server logs, and more. Even data that eventually finds a nice place to rest likely travels
across the network at some point before it finds its forever home.

If we want to process data in real time, while it moves, we can’t simply wait for it to
pile up somewhere and then run a query or job at some interval of our choosing. That
approach can handle some business use cases, but many important use cases require us
to process, enrich, transform, and respond to data incrementally as it becomes
available. Therefore, we need something that has a very different worldview of data: a
technology that gives us access to data in its flowing state, and which allows us to work
with these continuous and unbounded data streams quickly and efficiently. This is
where Apache Kafka comes in.

Apache Kafka (or simply, Kafka) is a streaming platform for ingesting, storing,
accessing, and processing streams of data. While the entire platform is very
interesting, this book focuses on what I find to be the most compelling part of Kafka:
the stream processing layer. However, to understand Kafka Streams and ksqlDB (both
of which operate at this layer, and the latter of which also operates at the stream
ingestion layer), it is necessary to have a working knowledge of how Kafka, as a
platform, works.

Therefore, this chapter will introduce you to some important concepts and
terminology that you will need for the rest of the book. If you already have a working
knowledge of Kafka, feel free to skip this chapter. Otherwise, keep reading.

Some of the questions we will answer in this chapter include:

e How does Kafka simplify communication between systems?



e What are the main components in Kafka’s architecture?
» Which storage abstraction most closely models streams?
e How does Kafka store data in a fault-tolerant and durable manner?

e How is high availability and fault tolerance achieved at the data processing
layers?

We will conclude this chapter with a tutorial showing how to install and run Kafka. But

first, let’s start by looking at Kafka’s communication model.
Communication Model

Perhaps the most common communication pattern between systems is the
synchronous, client-server model. When we talk about systems in this context, we
mean applications, microservices, databases, and anything else that reads and writes
data over a network. The client-server model is simple at first, and involves direct
communication between systems, as shown in Figure 1-1.

7~

System

— |
\ )

Direct communication
is simple at first

System

.

Figure 1-1. Point-to-point communication is simple to maintain and reason about when you have a small
number of systems

For example, you may have an application that synchronously queries a database for



some data, or a collection of microservices that talk to each other directly.

However, when more systems need to communicate, point-to-point communication
becomes difficult to scale. The result is a complex web of communication pathways
that can be difficult to reason about and maintain. Figure 1-2 shows just how confusing
it can get, even with a relatively small number of systems.

System System System

Very difficult o
to maintain A

System System System

Figure 1-2. The result of adding more systems is a complex web of communication channels, which is
difficult to maintain

Some of the drawbacks of the client-server model include:

e Systems become tightly coupled because their communication depends on
knowledge of each other. This makes maintaining and updating these systems
more difficult than it needs to be.

» Synchronous communication leaves little room for error since there are no
delivery guarantees if one of the systems goes offline.

* Systems may use different communication protocols, scaling strategies to deal
with increased load, failure-handling strategies, etc. As a result, you may end
up with multiple species of systems to maintain (software speciation), which
hurts maintainability and defies the common wisdom that we should treat
applications like cattle instead of pets.

 Receiving systems can easily be overwhelmed, since they don’t control the
pace at which new requests or data comes in. Without a request buffer, they



operate at the whims of the applications that are making requests.

e There isn’t a strong notion for what is being communicated between these
systems. The nomenclature of the client-server model has put too much
emphasis on requests and responses, and not enough emphasis on the data itself.
Data should be the focal point of data-driven systems.

e Communication is not replayable. This makes it difficult to reconstruct the state
of a system.

Kafka simplifies communication between systems by acting as a centralized
communication hub (often likened to a central nervous system), in which systems can
send and receive data without knowledge of each other. The communication pattern it
implements is called the publish-subscribe pattern (or simply, pub/sub), and the result is
a drastically simpler communication model, as shown in Figure 1-3.

System System System

|
Communication backbone I :
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System System System

Figure 1-3. Kafka removes the complexity of point-to-point communication by acting as a communication
hub between systems

If we add more detail to the preceding diagram, we can begin to identify the main
components involved in Kafka’s communication model, as shown in Figure 1-4.
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Figure 1-4. The Kafka communication model, redrawn with more detail to show the main components of
the Kafka platform

Q jnstead of having multiple systems communicate directly with each other,
producers simply publish their data to one or more topics, without caring who
comes along to read the data.

Topics are named streams (or channels) of related data that are stored in a Kafka
cluster. They serve a similar purpose as tables in a database (i.e., to group related
data). However, they do not impose a particular schema, but rather store the raw
bytes of data, which makes them very flexible to work with.!

Consumers are processes that read (or subscribe) to data in one or more topics. They
do not communicate directly with the producers, but rather listen to data on any
stream they happen to be interested in.

Consumers can work together as a group (called a consumer group) in order to
distribute work across multiple processes.

Kafka’s communication model, which puts more emphasis on flowing streams of data
that can easily be read from and written to by multiple processes, comes with several
advantages, including:

 Systems become decoupled and easier to maintain because they can produce
and consume data without knowledge of other systems.



e Asynchronous communication comes with stronger delivery guarantees. If a
consumer goes down, it will simply pick up from where it left off when it
comes back online again (or, when running with multiple consumers in a
consumer group, the work will be redistributed to one of the other members).

e Systems can standardize on the communication protocol (a high-performance
binary TCP protocol is used when talking to Kafka clusters), as well as scaling
strategies and fault-tolerance mechanisms (which are driven by consumer
groups). This allows us to write software that is broadly consistent, and which
fits in our head.

¢ Consumers can process data at a rate they can handle. Unprocessed data is
stored in Kafka, in a durable and fault-tolerant manner, until the consumer is
ready to process it. In other words, if the stream your consumer is reading
from suddenly turns into a firehose, the Kafka cluster will act as a buffer,
preventing your consumers from being overwhelmed.

e A stronger notion of what data is being communicated, in the form of events.
An event is a piece of data with a certain structure, which we will discuss in
“Events”. The main point, for now, is that we can focus on the data flowing
through our streams, instead of spending so much time disentangling the
communication layer like we would in the client-server model.

 Systems can rebuild their state anytime by replaying the events in a topic.

One important difference between the pub/sub model and the client-server model is
that communication is not bidirectional in Kafka’s pub/sub model. In other words,
streams flow one way. If a system produces some data to a Kafka topic, and relies on
another system to do something with the data (i.e., enrich or transform it), the
enriched data will need to be written to another topic and subsequently consumed by
the original process. This is simple to coordinate, but it changes the way we think
about communication.

As long as you remember the communication channels (topics) are stream-like in
nature (i.e., flowing unidirectionally, and may have multiple sources and multiple
downstream consumers), it’s easy to design systems that simply listen to whatever
stream of flowing bytes they are interested in, and produce data to topics (named
streams) whenever they want to share data with one or more systems. We will be
working a lot with Kafka topics in the following chapters (each Kafka Streams and
ksqlDB application we build will read, and usually write to, one or more Kafka topics),
so by the time you reach the end of this book, this will be second nature for you.



Now that we’ve seen how Kafka’s communication model simplifies the way systems
communicate with each other, and that named streams called topics act as the
communication medium between systems, let’s gain a deeper understanding of how

streams come into play in Kafka’s storage layer.
How Are Streams Stored?

When a team of LinkedIn engineers? saw the potential in a stream-driven data
platform, they had to answer an important question: how should unbounded and
continuous data streams be modeled at the storage layer?

Ultimately, the storage abstraction they identified was already present in many types
of data systems, including traditional databases, key-value stores, version control
systems, and more. The abstraction is the simple, yet powerful commit log (or simply,
log).

Note

When we talk about logs in this book, we're not referring to application logs, which emit
information about a running process (e.g., HTTP server logs). Instead, we are referring
to a specific data structure that is described in the following paragraphs.

Logs are append-only data structures that capture an ordered sequence of events. Let’s
examine the italicized attributes in more detail, and build some intuition around logs,
by creating a simple log from the command line. For example, let’s create a log called

user_purchases, and populate it with some dummy data using the following
command:

# create the logfile
touch users.log

# generate four dummy records in our log

echo "timestamp=1597373669,user_1id=1,purchases=1" >> users.log
echo "timestamp=1597373669,user_1id=2,purchases=1" >> users.log
echo "timestamp=1597373669,user_1id=3,purchases=1" >> users.log
echo "timestamp=1597373669,user_id=4,purchases=1" >> users.log

Now if we look at the log we created, it contains four users that have made a single
purchase:

# print the contents of the log
cat users.log

# output

timestamp=1597373669,user_1id=1,purchases=1
timestamp=1597373669,user_1id=2,purchases=1
timestamp=1597373669,user_1id=3,purchases=1



timestamp=1597373669,user_1id=4,purchases=1

The first attribute of logs is that they are written to in an append-only manner. This

means that if user_id=1 comes along and makes a second purchase, we do not update
the first record, since each record is immutable in a log. Instead, we just append the
new record to the end:

# append a new record to the log
echo "timestamp=1597374265,user_1id=1,purchases=2" >> users.log

# print the contents of the log
cat users.log

# output
timestamp=1597373669,user_id=1,purchases=1 @
timestamp=1597373669,user_1id=2,purchases=1
timestamp=1597373669,user_1id=3,purchases=1
timestamp=1597373669,user_id=4,purchases=1
timestamp=1597374265,user_id=1,purchases=2 @

® once arecord is written to the log, it is considered immutable. Therefore, if we
need to perform an update (e.g., to change the purchase count for a user), then the
original record is left untouched.

@ 11 order to model the update, we simply append the new value to the end of the
log. The log will contain both the old record and the new record, both of which are
immutable.

Any system that wants to examine the purchase counts for each user can simply read

each record in the log, in order, and the last record they will see for user_id=1 will
contain the updated purchase amount. This brings us to the second attribute of logs:
they are ordered.

The preceding log happens to be in timestamp order (see the first column), but that’s
not what we mean by ordered. In fact, Kafka does store a timestamp for each record in
the log, but the records do not have to be in timestamp order. When we say a log is
ordered, what we mean is that a record’s position in the log is fixed, and never changes.
If we reprint the log again, this time with line numbers, you can see the position in the
first column:

# print the contents of the log, with line numbers
cat -n users.log



#

1 timestamp=1597373669,user_id=1,purchases=1
2 timestamp=1597373669,user_1id=2,purchases=1
3 timestamp=1597373669,user_1id=3,purchases=1
4 timestamp=1597373669,user_id=4,purchases=1
5 timestamp=1597374265,user_1id=1,purchases=2

Now, imagine a scenario where ordering couldn’t be guaranteed. Multiple processes

could read the user_id=1 updates in a different order, creating disagreement about
the actual purchase count for this user. By ensuring the logs are ordered, the data can
be processed deterministically® by multiple processes.*

Furthermore, while the position of each log entry in the preceding example uses line
numbers, Kafka refers to the position of each entry in its distributed log as an offset.
Offsets start at 0 and they enable an important behavior: they allow multiple consumer
groups to each read from the same log, and maintain their own positions in the
log/stream they are reading from. This is shown in Figure 1-5.

Now that we’ve gained some intuition around Kafka’s log-based storage layer by
creating our own log from the command line, let’s tie these ideas back to the higher-
level constructs we identified in Kafka’s communication model. We'll start by
continuing our discussion of topics, and learning about something called partitions.

Offsets

a8 1000608800

Consumer Consumer
consumer group: A| |consumer group: B

Current position: 8 Current position: 3

Figure 1-5. Multiple consumer groups can read from the same log, each maintaining their position based on
the offset they have read/processed

Topics and Partitions

In our discussion of Kafka’s communication model, we learned that Kafka has the
concept of named streams called topics. Furthermore, Kafka topics are extremely
flexible with what you store in them. For example, you can have homogeneous topics
that contain only one type of data, or heterogeneous topics that contain multiple types of



data.’ A depiction of these different strategies is shown in Figure 1-6.
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Figure 1-6. Different strategies exist for storing events in topics; homogeneous topics generally contain one
event type (e.g., clicks) while heterogeneous topics contain multiple event types (e.g., clicks and
page_views)

We have also learned that append-only commit logs are used to model streams in
Kafka’s storage layer. So, does this mean that each topic correlates with a log file? Not
exactly. You see, Kafka is a distributed log, and it’s hard to distribute just one of
something. So if we want to achieve some level of parallelism with the way we
distribute and process logs, we need to create lots of them. This is why Kafka topics are
broken into smaller units called partitions.

Partitions are individual logs (i.e., the data structures we discussed in the previous
section) where data is produced and consumed from. Since the commit log abstraction
is implemented at the partition level, this is the level at which ordering is guaranteed,
with each partition having its own set of offsets. Global ordering is not supported at
the topic level, which is why producers often route related records to the same
partition.®

Ideally, data will be distributed relatively evenly across all partitions in a topic. But
you could also end up with partitions of different sizes. Figure 1-7 shows an example of
a topic with three different partitions.
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Figure 1-7. A Kafka topic configured with three partitions

The number of partitions for a given topic is configurable, and having more partitions
in a topic generally translates to more parallelism and throughput, though there are
some trade-offs of having too many partitions.” We'll talk about this more throughout
the book, but the important takeaway is that only one consumer per consumer group
can consume from a partition (individual members across different consumer groups
can consume from the same partition, however, as shown in Figure 1-5).

Therefore, if you want to spread the processing load across N consumers in a single
consumer group, you need N partitions. If you have fewer members in a consumer
group than there are partitions on the source topic (i.e., the topic that is being read
from), that’s OK: each consumer can process multiple partitions. If you have more
members in a consumer group than there are partitions on the source topic, then some
consumers will be idle.

With this in mind, we can improve our definition of what a topic is. A topic is a named
stream, composed of multiple partitions. And each partition is modeled as a commit
log that stores data in a totally ordered and append-only sequence. So what exactly is
stored in a topic partition? We’ll explore this in the next section.

Events

In this book, we spend a lot of time talking about processing data in topics. However,
we still haven’t developed a full understanding of what kind of data is stored in a Kafka
topic (and, more specifically, in a topic’s partitions).

A lot of the existing literature on Kafka, including the official documentation, uses a
variety of terms to describe the data in a topic, including messages, records, and
events. These terms are often used interchangeably, but the one we have favored in



this book (though we still use the other terms occasionally) is event. An event is a
timestamped key-value pair that records something that happened. The basic anatomy of
each event captured in a topic partition is shown in Figure 1-8.

Anatomy of an event

@ Headers .[ J

o Key [ 3] Timestamp
O value

1

\ J

Figure 1-8. Anatomy of an event, which is what is stored in topic partitions

o Application-level headers contain optional metadata about an event. We don’t work
with these very often in this book.

2 Keys are also optional, but play an important role in how data is distributed across
partitions. We will see this over the next few chapters, but generally speaking, they
are used to identify related records.

© Fach event is associated with a timestamp. We’ll learn more about timestamps in
Chapter 5.



© The value contains the actual message contents, encoded as a byte array. It’s up to
clients to deserialize the raw bytes into a more meaningful structure (e.g., a JSON
object or Avro record). We will talk about byte array deserialization in detail in
“Serialization/Deserialization”.

Now that we have a good understanding of what data is stored in a topic, let’s get a
deeper look at Kafka’s clustered deployment model. This will provide more

information about how data is physically stored in Kafka.
Kafka Cluster and Brokers

Having a centralized communication point means reliability and fault tolerance are
extremely important. It also means that the communication backbone needs to be
scalable, i.e., able to handle increased amounts of load. This is why Kafka operates as a
cluster, and multiple machines, called brokers, are involved in the storage and retrieval
of data.

Kafka clusters can be quite large, and can even span multiple data centers and
geographic regions. However, in this book, we will usually work with a single-node
Kafka cluster since that is all we need to start working with Kafka Streams and ksqIDB.
In production, you’ll likely want at least three brokers, and you will want to set the
replication of your Kafka topic so that your data is replicated across multiple brokers
(we’ll see this later in this chapter’s tutorial). This allows us to achieve high availability
and to avoid data loss in case one machine goes down.

Now, when we talk about data being stored and replicated across brokers, we're really
talking about individual partitions in a topic. For example, a topic may have three
partitions that are spread across three brokers, as shown in Figure 1-9.
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Figure 1-9. Partitions are spread across the available brokers, meaning that a topic can span multiple

machines in the Kafka cluster

As you can see, this allows topics to be quite large, since they can grow beyond the

capacity of a single machine. To achieve fault tolerance and high availability, you can
set a replication factor when configuring the topic. For example, a replication factor of

2 will allow the partition to be stored on two different brokers. This is shown in
Figure 1-10.
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Figure 1-10. Increasing the replication factor to 2 will cause the partitions to be stored on two different
brokers

Whenever a partition is replicated across multiple brokers, one broker will be
designated as the leader, which means it will process all read/write requests from
producers/consumers for the given partition. The other brokers that contain the
replicated partitions are called followers, and they simply copy the data from the
leader. If the leader fails, then one of the followers will be promoted as the new leader.

Furthermore, as the load on your cluster increases over time, you can expand your
cluster by adding even more brokers, and triggering a partition reassignment. This will
allow you to migrate data from the old machines to a fresh, new machine.

Finally, brokers also play an important role with maintaining the membership of
consumer groups. We'll explore this in the next section.
Consumer Groups

Kafka is optimized for high throughput and low latency. To take advantage of this on



the consumer side, we need to be able to parallelize work across multiple processes.
This is accomplished with consumer groups.

Consumer groups are made up of multiple cooperating consumers, and the
membership of these groups can change over time. For example, new consumers can
come online to scale the processing load, and consumers can also go offline either for
planned maintenance or due to unexpected failure. Therefore, Kafka needs some way
of maintaining the membership of each group, and redistributing work when
necessary.

To facilitate this, every consumer group is assigned to a special broker called the group
coordinator, which is responsible for receiving heartbeats from the consumers, and
triggering a rebalance of work whenever a consumer is marked as dead. A depiction of
consumers heartbeating back to a group coordinator is shown in Figure 1-11.
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Figure 1-11. Three consumers in a group, heartbeating back to group coordinator



Every active member of the consumer group is eligible to receive a partition
assignment. For example, the work distribution across three healthy consumers may
look like the diagram in Figure 1-12.

Topic with 3 partitions Consumer group

Partition 1 ;“ ( EI 0 ].; Consumer
Partitionz; 765432]0:

Figure 1-12. Three healthy consumers splitting the read/processing workload of a three-partition Kafka
topic

However, if a consumer instance becomes unhealthy and cannot heartbeat back to the
cluster, then work will automatically be reassigned to the healthy consumers. For
example, in Figure 1-13, the middle consumer has been assigned the partition that was
previously being handled by the unhealthy consumer.

Topic with 3 partitions - Consumer group "
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Figure 1-13. Work is redistributed when consumer processes fail

As you can see, consumer groups are extremely important in achieving high
availability and fault tolerance at the data processing layer. With this, let’s now

commence our tutorial by learning how to install Kafka.
Installing Kafka

There are detailed instructions for installing Kafka manually in the official
documentation. However, to keep things as simple as possible, most of the tutorials in
this book utilize Docker, which allows us to deploy Kafka and our stream processing
applications inside a containerized environment.



Therefore, we will be installing Kafka using Docker Compose, and we’ll be using Docker
images that are published by Confluent.? The first step is to download and install
Docker from the Docker install page.

Next, save the following configuration to a file called docker-compose.yml:

version: '2'

services:
zookeeper:

image: confluentinc/cp-zookeeper:6.0.0

hostname: zookeeper

container_name: zookeeper

ports:
- "2181:2181"

environment:
ZOOKEEPER_CLIENT_PORT: 2181
ZOOKEEPER_TICK_TIME: 2000

kafka: @
image: confluentinc/cp-enterprise-kafka:6.0.0
hostname: kafka
container_name: kafka
depends_on:
- zookeeper
ports:
- "29092:29092"
environment:
KAFKA_BROKER_ID: 1
KAFKA_ZOOKEEPER_CONNECT: 'zookeeper:2181'
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: |
PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT
KAFKA_ADVERTISED_LISTENERS: |
PLAINTEXT://kafka:9092,PLAINTEXT_HOST://localhost:29092
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1

(1]

The first container, which we’ve named zookeeper, will contain the ZooKeeper
installation. We haven't talked about ZooKeeper in this introduction since, at the
time of this writing, it is being actively removed from Kafka. However, it is a
centralized service for storing metadata such as topic configuration. Soon, it will
no longer be included in Kafka, but we are including it here since this book was
published before ZooKeeper was fully removed.

The second container, called kafka, will contain the Kafka installation. This is
where our broker (which comprises our single-node cluster) will run and where we



will execute some of Kafka’s console scripts for interacting with the cluster.

Finally, run the following command to start a local Kafka cluster:
docker-compose up

With our Kafka cluster running, we are now ready to proceed with our tutorial.
Hello, Kafka

In this simple tutorial, we will demonstrate how to create a Kafka topic, write data to a
topic using a producer, and finally, read data from a topic using a consumer. The first
thing we need to do is log in to the container that has Kafka installed. We can do this
by running the following command:

docker-compose exec kafka bash

Now, let’s create a topic, called users. We'll use one of the console scripts (kafka-
topics) that is included with Kafka. The following command shows how to do this:

kafka-topics \ @
--bootstrap-server localhost:9092 \ @
--create \
--topic users \ @
--partitions 4 \ @
--replication-factor 1 @

# output
Created topic users.

° kafka-topics is a console script that is included with Kafka.

@ , bootstrap server is the host/IP pair for one or more brokers.

© There are many flags for interacting with Kafka topics, including - -1ist, --
describe, and - -delete. Here, we use the - -create flag since we are creating a
new topic.

4]

The topic name is users.



© Split our topic into four partitions.

® Since we're running a single-node cluster, we will set the replication factor to 1. In

production, you will want to set this to a higher value (such as 3) to ensure high-
availability.

Note

The console scripts we use in this section are included in the Kafka source distribution.
In a vanilla Kafka installation, these scripts include the .sh file extension (e.g., kafka-
topics.sh, kafka-console-producer.sh, etc.). However, the file extension is dropped in
Confluent Platform (which is why we ran kafka-topics instead of kafka-topics.sh in the
previous code snippet).

Once the topic has been created, you can print a description of the topic, including its
configuration, using the following command:

kafka-topics \
--bootstrap-server localhost:9092 \
--describe \ @
--topic users

# output

Topic: users PartitionCount: 4 ReplicationFactor: 1 Configs:
Topic: users Partition: 0 Leader: 1 Replicas: 1 Isr: 1
Topic: users Partition: 1 Leader: 1 Replicas: 1 Isr: 1
Topic: users Partition: 2 Leader: 1 Replicas: 1 Isr: 1
Topic: users Partition: 3 Leader: 1 Replicas: 1 Isr: 1

(1]

The - -describe flag allows us to view configuration information for a given topic.

Now, let’s produce some data using the built-in kafka-console-producer script:

kafka-console-producer \ ]
--bootstrap-server localhost:9092 \
--property key.separator=, \ @
--property parse.key=true \
--topic users

(1]

The kafka-console-producer script, which is included with Kafka, can be used to
produce data to a topic. However, once we start working with Kafka Streams and



ksqIDB, the producer processes will be embedded in the underlying Java library, so
we won’t need to use this script outside of testing and development purposes.

e We will be producing a set of key-value pairs to our users topic. This property

states that our key and values will be separated using the , character.

The previous command will drop you in an interactive prompt. From here, we can

input several key-value pairs to produce to the users topic. When you are finished,
press Control-C on your keyboard to exit the prompt:

>1,mitch
>2,elyse
>3,1sabelle
>4, sammy

After producing the data to our topic, we can use the kafka-console-consumer script
to read the data. The following command shows how:

kafka-console-consumer \ @
--bootstrap-server localhost:9092 \
--topic users \
--from-beginning @

# output
mitch
elyse
isabelle
sammy

The kafka-console-consumer script is also included in the Kafka distribution.

Similar to what we mentioned for the kafka-console-producer script, most of the
tutorials in this book will leverage consumer processes that are built into Katka
Streams and ksqlDB, instead of using this standalone console script (which is useful
for testing purposes).

The - - from-beginning flag indicates that we should start consuming from the
beginning of the Kafka topic.

By default, the kafka-console-consumer will only print the message value. But as we
learned earlier, events actually contain more information, including a key, a



timestamp, and headers. Let’s pass in some additional properties to the console
consumer so that we can see the timestamp and key values as well:’

kafka-console-consumer \
--bootstrap-server localhost:9092 \
--topic users \
--property print.timestamp=true \
--property print.key=true \
--property print.value=true \
- -from-beginning

# output

CreateTime:1598226962606 1 mitch
CreateTime: 1598226964342 2 elyse
CreateTime:1598226966732 3 isabelle
CreateTime: 1598226968731 4 sammy

That’s it! You have now learned how to perform some very basic interactions with a
Kafka cluster. The final step is to tear down our local cluster using the following
command:

docker-compose down

Summary

Kafka’s communication model makes it easy for multiple systems to communicate, and
its fast, durable, and append-only storage layer makes it possible to work with fast-
moving streams of data with ease. By using a clustered deployment, Kafka can achieve
high availability and fault tolerance at the storage layer by replicating data across
multiple machines, called brokers. Furthermore, the cluster’s ability to receive
heartbeats from consumer processes, and update the membership of consumer groups,
allows for high availability, fault tolerance, and workload scalability at the stream
processing and consumption layer. All of these features have made Kafka one of the
most popular stream processing platforms in existence.

You now have enough background on Kafka to get started with Kafka Streams and
ksqlDB. In the next section, we will begin our journey with Kafka Streams by seeing
how it fits in the wider Kafka ecosystem, and by learning how we can use this library to
work with data at the stream processing layer.

! We talk about the raw byte arrays that are stored in topics, as well as the process of
deserializing the bytes into higher-level structures like JSON objects/Avro records, in
Chapter 3.

? Jay Kreps, Neha Narkhede, and Jun Rao initially led the development of Kafka.



3 Deterministic means the same inputs will produce the same outputs.

* This is why traditional databases use logs for replication. Logs are used to capture
each write operation on the leader database, and process the same writes, in order, on a
replica database in order to deterministically re-create the same dataset on another
machine.

> Martin Kleppmann has an interesting article on this topic, which can be found at
https://oreil.ly/tDZMm. He talks about the various trade-offs and the reasons why one
might choose one strategy over another. Also, Robert Yokota’s follow-up article goes
into more depth about how to support multiple event types when using Confluent
Schema Registry for schema management/evolution.

¢ The partitioning strategy is configurable, but a popular strategy, including the one
that is implemented in Kafka Streams and ksqlDB, involves setting the partition based
on the record key (which can be extracted from the payload of the record or set
explicitly). We’ll discuss this in more detail over the next few chapters.

” The trade-offs include longer recovery periods after certain failure scenarios,
increased resource utilization (file descriptors, memory), and increased end-to-end
latency.

8 There are many Docker images to choose from for running Kafka. However, the
Confluent images are a convenient choice since Confluent also provides Docker images
for some of the other technologies we will use in this book, including ksqIDB and
Confluent Schema Registry.

% As of version 2.7, youcan also use the --property print.headers=true ﬂag to print
the message headers.
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Chapter 2. Getting Started with Kafka Streams

Kafka Streams is a lightweight, yet powerful Java library for enriching, transforming,
and processing real-time streams of data. In this chapter, you will be introduced to
Kafka Streams at a high level. Think of it as a first date, where you will learn a little
about Kafka Streams’ background and get an initial glance at its features.

By the end of this date, er... mean chapter, you will understand the following:

e Where Kafka Streams fits in the Kafka ecosystem
» Why Kafka Streams was built in the first place

» What kinds of features and operational characteristics are present in this
library

» Who Kafka Streams is appropriate for
e How Kafka Streams compares to other stream processing solutions

e How to create and run a basic Kafka Streams application

So without further ado, let’s get our metaphorical date started with a simple question

for Kafka Streams: where do you live (...in the Kafka ecosystem)?
The Kafka Ecosystem

Kafka Streams lives among a group of technologies that are collectively referred to as
the Kafka ecosystem. In Chapter 1, we learned that at the heart of Apache Kafka is a
distributed, append-only log that we can produce messages to and read messages from.
Furthermore, the core Kafka code base includes some important APIs for interacting
with this log (which is separated into categories of messages called topics). Three APIs
in the Kafka ecosystem, which are summarized in Table 2-1, are concerned with the
movement of data to and from Kafka.



Table 2-1. APIs for moving data to and from Kafka

API Topic interaction Examples
Producer Writing messages to Kafka topics. « Filebeat
API
« rsyslog
s Custom
producers
Consumer Reading messages from Kafka topics. « Logstash
API
« kafkacat
+ Custom
consumers

Connect  Connecting external data stores, APIs, and filesystems to Kafka

+ JDBC source
API topics.

connector

Involves both reading from topics (sink connectors) and writing

o Elasticsearch
to topics (source connectors).

sink connector

e Custom
connectors

However, while moving data through Kafka is certainly important for creating data
pipelines, some business problems require us to also process and react to data as it
becomes available in Kafka. This is referred to as stream processing, and there are
multiple ways of building stream processing applications with Kafka. Therefore, let’s
take a look at how stream processing applications were implemented before Kafka
Streams was introduced, and how a dedicated stream processing library came to exist

alongside the other APIs in the Kafka ecosystem.
Before Kafka Streams

Before Kafka Streams existed, there was a void in the Kafka ecosystem.! Not the kind of
void you might encounter during your morning meditation that makes you feel
refreshed and enlightened, but the kind of void that made building stream processing
applications more difficult than it needed to be. I'm talking about the lack of library
support for processing data in Kafka topics.

During these early days of the Kafka ecosystem, there were two main options for



building Kafka-based stream processing applications:

» Use the Consumer and Producer APIs directly

e Use another stream processing framework (e.g., Apache Spark Streaming,
Apache Flink)

With the Consumer and Producer APIs, you can read from and write to the event
stream directly using a number of programming languages (Python, Java, Go, C/C++,
Node.js, etc.) and perform any kind of data processing logic you'd like, as long as you're
willing to write a lot of code from scratch. These APIs are very basic and lack many of
the primitives that would qualify them as a stream processing API, including:

e Local and fault-tolerant state?
e Arich set of operators for transforming streams of data
o More advanced representations of streams®

» Sophisticated handling of time*

Therefore, if you want to do anything nontrivial, like aggregate records, join separate
streams of data, group events into windowed time buckets, or run ad hoc queries
against your stream, you will hit a wall of complexity pretty quickly. The Producer and
Consumer APIs do not contain any abstractions to help you with these kinds of use
cases, so you will be left to your own devices as soon as it’s time to do something more
advanced with your event stream.

The second option, which involves adopting a full-blown streaming platform like
Apache Spark or Apache Flink, introduces a lot of unneeded complexity. We talk about
the downsides of this approach in “Comparison to Other Systems”, but the short
version is that if we’re optimizing for simplicity and power, then we need a solution
that gives us the stream processing primitives without the overhead of a processing
cluster. We also need better integration with Kafka, especially when it comes to
working with intermediate representations of data outside of the source and sink
topics.

Fortunately for us, the Kafka community recognized the need for a stream processing

API in the Kafka ecosystem and decided to build it.”
Enter Kafka Streams

In 2016, the Kafka ecosystem was forever changed when the first version of Kafka
Streams (also called the Streams API) was released. With its inception, the landscape of
stream processing applications that relied so heavily on hand-rolled features gave way



to more advanced applications, which leveraged community-developed patterns and
abstractions for transforming and processing real-time event streams.

Unlike the Producer, Consumer, and Connect APIs, Kafka Streams is dedicated to
helping you process real-time data streams, not just move data to and from Kafka.’ It
makes it easy to consume real-time streams of events as they move through our data
pipeline, apply data transformation logic using a rich set of stream processing
operators and primitives, and optionally write new representations of the data back to
Kafka (i.e., if we want to make the transformed or enriched events available to
downstream systems).

Figure 2-1 depicts the previously discussed APIs in the Kafka ecosystem, with Kafka
Streams operating at the stream processing layer.
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Kafka Connect ;
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-- Enriched/
transformed
data
pr?)tcrggsrinng wib Kafka Streams
Uses embedded consumer/producer,
and contains APIs for enriching and
transforming data

Figure 2-1. Kafka Streams is the “brain” of the Kafka ecosgzstem, consuming records from the event stream,
processing the data, and optionally writing enriched or transformed records back to Kafka

As you can see from the diagram in Figure 2-1, Kafka Streams operates at an exciting
layer of the Kafka ecosystem: the place where data from many sources converges. This
is the layer where sophisticated data enrichment, transformation, and processing can



happen. It’s the same place where, in a pre-Kafka Streams world, we would have
tediously written our own stream processing abstractions (using the
Consumer/Producer API approach) or absorbed a complexity hit by using another
framework. Now, let’s get a first look at the features of Kafka Streams that allow us to

operate at this layer in a fun and efficient way.
Features at a Glance

Kafka Streams offers many features that make it an excellent choice for modern
stream processing applications. We’ll be going over these in detail in the following
chapters, but here are just a few of the features you can look forward to:

¢ A high-level DSL that looks and feels like Java’s streaming API. The DSL
provides a fluent and functional approach to processing data streams that is
easy to learn and use.

» Alow-level Processor API that gives developers fine-grained control when
they need it.

» Convenient abstractions for modeling data as either streams or tables.

 The ability to join streams and tables, which is useful for data transformation
and enrichment.

e Operators and utilities for building both stateless and stateful stream
processing applications.

¢ Support for time-based operations, including windowing and periodic
functions.

e Easy installation. It’s just a library, so you can add Kafka Streams to any Java
application.’

e Scalability, reliability, maintainability.

As you begin exploring these features in this book, you will quickly see why this library
is so widely used and loved. Both the high-level DSL and low-level Processor API are
not only easy to learn, but are also extremely powerful. Advanced stream processing
tasks (such as joining live, moving streams of data) can be accomplished with very
little code, which makes the development experience truly enjoyable.

Now, the last bullet point pertains to the long-term stability of our stream processing
applications. After all, many technologies are exciting to learn in the beginning, but
what really counts is whether or not Kafka Streams will continue to be a good choice as
our relationship gets more complicated through real-world, long-term usage of this



library. Therefore, it makes sense to evaluate the long-term viability of Kafka Streams
before getting too far down the rabbit hole. So how should we go about doing this?

Let’s start by looking at Kafka Streams’ operational characteristics.
Operational Characteristics

In Martin Kleppmann’s excellent book, Designing Data-Intensive Applications (O’Reilly),
the author highlights three important goals for data systems:

e Scalability
e Reliability
» Maintainability

These goals provide a useful framework for evaluating Kafka Streams, so in this
section, we will define these terms and discover how Kafka Streams achieves each of
them.

Scalability

Systems are considered scalable when they can cope and remain performant as load
increases. In Chapter 1, we learned that scaling Kafka topics involves adding more
partitions and, when needed, more Kafka brokers (the latter is only needed if the topic
grows beyond the existing capacity of your Kafka cluster).

Similarly, in Kafka Streams, the unit of work is a single topic-partition, and Kafka
automatically distributes work to groups of cooperating consumers called consumer
groups.® This has two important implications:

¢ Since the unit of work in Kafka Streams is a single topic-partition, and since
topics can be expanded by adding more partitions, the amount of work a Kafka
Streams application can undertake can be scaled by increasing the number of
partitions on the source topics.’

By leveraging consumer groups, the total amount of work being handled by a
Kafka Streams application can be distributed across multiple, cooperating
instances of your application.

A quick note about the second point. When you deploy a Kafka Streams application,
you will almost always deploy multiple application instances, each handling a subset of
the work (e.g., if your source topic has 32 partitions, then you have 32 units of work
that can be distributed across all cooperating consumers). For example, you could
deploy four application instances, each handling eight partitions (4 * 8 = 32), or you
could just as easily deploy sixteen instances of your application, each handling two



partitions (16 * 2 = 32).

However, regardless of how many application instances you end up deploying, Kafka
Streams’ ability to cope with increased load by adding more partitions (units of work)
and application instances (workers) makes Kafka Streams scalable.

On a similar note, Kafka Streams is also elastic, allowing you to seamlessly (albeit
manually) scale the number of application instances in or out, with a limit on the scale-
out path being the number of tasks that are created for your topology. We’ll discuss

tasks in more detail in “Tasks and Stream Threads”.
Reliability

Reliability is an important feature of data systems, not only from an engineering
perspective (we don’t want to be woken up at 3 a.m. due to some fault in the system),
but also from our customers’ perspective (we don’t want the system to go offline in any
noticeable way, and we certainly can’t tolerate data loss or corruption). Kafka Streams
comes with a few fault-tolerant features,'® but the most obvious one is something
we’ve already touched on in “Consumer Groups™: automatic failovers and partition
rebalancing via consumer groups.

If you deploy multiple instances of your Kafka Streams application and one goes offline
due to some fault in the system (e.g., a hardware failure), then Kafka will automatically
redistribute the load to the other healthy instances. When the failure is resolved (or, in
more modern architectures that leverage an orchestration system like Kubernetes,
when the application is moved to a healthy node), then Kafka will rebalance the work

again. This ability to gracefully handle faults makes Kafka Streams reliable.
Maintainability

It is well known that the majority of the cost of software is not in its initial development, but in its
ongoing maintenance—fixing bugs, keeping its systems operational, investigating failures...

Martin Kleppmann

Since Kafka Streams is a Java library, troubleshooting and fixing bugs is relatively
straightforward since we’re working with standalone applications, and patterns for
both troubleshooting and monitoring Java applications are well established and may
already be in use at your organization (collecting and analyzing application logs,
capturing application and JVM metrics, profiling and tracing, etc.).

Furthermore, since the Kafka Streams API is succinct and intuitive, code-level
maintenance is less time-consuming than one would expect with more complicated
libraries, and is very easy to understand for beginners and experts alike. If you build a
Kafka Streams application and then don’t touch it for months, you likely won’t suffer



the usual project amnesia and require a lot of ramp-up time to understand the
previous code you've written. For the same reasons, new project maintainers can
typically get up to speed pretty quickly with a Kafka Streams application, which

improves maintainability even further.
Comparison to Other Systems

By this point, you should be starting to feel comfortable about starting a long-term
relationship with Kafka Streams. But before things get too serious, isn’t it natural to
see if there are other fish in the sea?

Actually, it is sometimes difficult to evaluate how good a technology is without
knowing how it stacks up against its competitors. So let’s take a look at how Kafka
Streams compares to some other popular technologies in the stream processing
space.!! We'll start by comparing Kafka Streams’ deployment model with other popular

systems.
Deployment Model

Kafka Streams takes a different approach to stream processing than technologies like
Apache Flink and Apache Spark Streaming. The latter systems require you to set up a
dedicated processing cluster for submitting and running your stream processing
program. This can introduce a lot of complexity and overhead. Even experienced
engineers at well-established companies have conceded that the overhead of a
processing cluster is nontrivial. In an interview with Nitin Sharma at Netflix, I learned
that it took around six months to adapt to the nuances of Apache Flink and build a
highly reliable production Apache Flink application and cluster.

On the other hand, Kafka Streams is implemented as a Java library, so getting started is
much easier since you don’t need to worry about a cluster manager; you simply need to
add the Kafka Streams dependency to your Java application. Being able to build a
stream processing application as a standalone program also means you have a lot of
freedom in terms of how you monitor, package, and deploy your code. For example, at
Mailchimp, our Kafka Streams applications are deployed using the same patterns and
tooling we use for other internal Java applications. This ability to immediately
integrate into your company’s systems is a huge advantage for Kafka Streams.

Next, let’s explore how Kafka Streams’ processing model compares to other systems in

this space.
Processing Model

Another key differentiator between Kafka Streams and systems like Apache Spark
Streaming or Trident is that Kafka Streams implements event-at-a-time processing, so
events are processed immediately, one at a time, as they come in. This is considered
true streaming and provides lower latency than the alternative approach, which is



called micro-batching. Micro-batching involves grouping records into small groups (or
batches), which are buffered in memory and later emitted at some interval (e.g., every
500 milliseconds). Figure 2-2 depicts the difference between event-at-a-time and
micro-batch processing.
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Figure 2-2. Micro-batching involves grouping records into small batches and emitting them to downstream
processors at a fixed interval; event-at-a-time processing allows each event to be processed at soon as it
comes in, instead of waiting for a batch to materialize

Note

Frameworks that use micro-batching are often optimized for greater throughput at the
cost of higher latency. In Kafka Streams, you can achieve extremely low latency while
also maintaining high throughput by splitting data across many partitions.

Finally, let’s take a look at Kafka Streams’ data processing architecture, and see how its

focus on streaming differs from other systems.
Kappa Architecture

Another important consideration when comparing Kafka Streams to other solutions is
whether or not your use case requires support for both batch and stream processing.
At the time of this writing, Kafka Streams focuses solely on streaming use cases'? (this
is called a Kappa architecture), while frameworks like Apache Flink and Apache Spark
support both batch and stream processing (this is called a Lambda architecture).
However, architectures that support both batch and streaming use cases aren’t
without their drawbacks. Jay Kreps discussed some of the disadvantages of a hybrid
system nearly two years before Kafka Streams was introduced into the Kafka
ecosystem:



The operational burden of running and debugging two systems is going to be very high. And any
new abstraction can only provide the features supported by the intersection of the two systems.

These challenges didn’t stop projects like Apache Beam, which defines a unified
programming model for batch and stream processing, from gaining popularity in
recent years. But Apache Beam isn’t comparable to Kafka Streams in the same way that
Apache Flink is. Instead, Apache Beam is an API layer that relies on an execution
engine to do most of the work. For example, both Apache Flink and Apache Spark can
be used as execution engines (often referred to as runners) in Apache Beam. So when
you compare Kafka Streams to Apache Beam, you must also consider the execution
engine that you plan on using in addition to the Beam API itself.

Furthermore, Apache Beam-driven pipelines lack some important features that are
offered in Kafka Streams. Robert Yokota, who created an experimental Kafka Streams
Beam Runner and who maintains several innovative projects in the Kafka ecosystem,'3
puts it this way in his comparison of different streaming frameworks:

One way to state the differences between the two systems is as follows:

+ Kafka Streams is a stream-relational processing platform.

« Apache Beam is a stream-only processing platform.

A stream-relational processing platform has the following capabilities which are typically missing
in a stream-only processing platform:

« Relations (or tables) are first-class citizens, i.e., each has an independent identity.
* Relations can be transformed into other relations.

* Relations can be queried in an ad-hoc manner.

We will demonstrate each of the bulleted features over the next several chapters, but
for now, suffice it to say that many of Kafka Streams’ most powerful features
(including the ability to query the state of a stream) are not available in Apache Beam
or other more generalized frameworks.'* Furthermore, the Kappa architecture offers a
simpler and more specialized approach for working with streams of data, which can
improve the development experience and simplify the operation and maintenance of
your software. So if your use case doesn’t require batch processing, then hybrid
systems will introduce unnecessary complexity.

Now that we’ve looked at the competition, let’s look at some Kafka Streams use cases.
Use Cases

Kafka Streams is optimized for processing unbounded datasets quickly and efficiently,



and is therefore a great solution for problems in low-latency, time-critical domains. A
few example use cases include:

* Financial data processing (Flipkart), purchase monitoring, fraud detection
e Algorithmic trading

 Stock market/crypto exchange monitoring

e Real-time inventory tracking and replenishment (Walmart)

» Event booking, seat selection (Ticketmaster)

 Email delivery tracking and monitoring (Mailchimp)

e Video game telemetry processing (Activision, the publisher of Call of Duty)
e Search indexing (Yelp)

 Geospatial tracking/calculations (e.g., distance comparison, arrival
projections)

e Smart Home/IoT sensor processing (sometimes called AIOT, or the Artificial
Intelligence of Things)

e Change data capture (Redhat)

e Sports broadcasting/real-time widgets (Gracenote)

 Real-time ad platforms (Pinterest)

« Predictive healthcare, vitals monitoring (Children’s Healthcare of Atlanta)
e Chat infrastructure (Slack), chat bots, virtual assistants

e Machine learning pipelines (Twitter) and platforms (Kafka Graphs)

The list goes on and on, but the common characteristic across all of these examples is
that they require (or at least benefit from) real-time decision making or data processing.
The spectrum of these use cases, and others you will encounter in the wild, is really
quite fascinating. On one end of the spectrum, you may be processing streams at the
hobbyist level by analyzing sensor output from a Smart Home device. However, you
could also use Kafka Streams in a healthcare setting to monitor and react to changes in
a trauma victim’s condition, as Children’s Healthcare of Atlanta has done.

Kafka Streams is also a great choice for building microservices on top of real-time
event streams. It not only simplifies typical stream processing operations (filtering,



joining, windowing, and transforming data), but as you will see in “Interactive
Queries”, it is also capable of exposing the state of a stream using a feature called
interactive queries. The state of a stream could be an aggregation of some kind (e.g., the
total number of views for each video in a streaming platform) or even the latest
representation for a rapidly changing entity in your event stream (e.g., the latest stock
price for a given stock symbol).

Now that you have some idea of who is using Kafka Streams and what kinds of use
cases it is well suited for, let’s take a quick look at Kafka Streams’ architecture before

we start writing any code.
Processor Topologies

Kafka Streams leverages a programming paradigm called dataflow programming (DFP),
which is a data-centric method of representing programs as a series of inputs, outputs,
and processing stages. This leads to a very natural and intuitive way of creating stream
processing programs and is one of the many reasons I think Kafka Streams is easy to

pick up for beginners.
Note

This section will dive a little deeper into Kafka Streams architecture. If you prefer to
get your feet wet with Kafka Streams and revisit this section later, feel free to proceed
to “Introducing Our Tutorial: Hello, Streams”.

Instead of building a program as a sequence of steps, the stream processing logic in a
Kafka Streams application is structured as a directed acyclic graph (DAG). Figure 2-3
shows an example DAG that depicts how data flows through a set of stream processors.
The nodes (the rectangles in the diagram) represent a processing step, or processor,
and the edges (the lines connecting the nodes in the diagram) represent input and
output streams (where data flows from one processor to another).
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Figure 2-3. Kafka Streams borrows some of its design from dataflow programming, and structures stream
processing programs as a graph of processors through which data flows

There are three basic kinds of processors in Kafka Streams:

Source processors
Sources are where information flows into the Kafka Streams application. Data is
read from a Kafka topic and sent to one or more stream processors.

Stream processors

These processors are responsible for applying data processing/transformation logic
on the input stream. In the high-level DSL, these processors are defined using a set



of built-in operators that are exposed by the Kafka Streams library, which we will be
going over in detail in the following chapters. Some example operators are filter,
map, flatMap, and join.

Sink processors

Sinks are where enriched, transformed, filtered, or otherwise processed records are
written back to Kafka, either to be handled by another stream processing
application or to be sent to a downstream data store via something like Kafka
Connect. Like source processors, sink processors are connected to a Kafka topic.

A collection of processors forms a processor topology, which is often referred to as
simply the topology in both this book and the wider Kafka Streams community. As we go
through each tutorial in this part of the book, we will first design the topology by
creating a DAG that connects the source, stream, and sink processors. Then, we will
simply implement the topology by writing some Java code. To demonstrate this, let’s
go through the exercise of translating some project requirements into a processor
topology (represented by a DAG). This will help you learn how to think like a Kafka
Streams developer.

Scenario

Say we are building a chatbot with Kafka Streams, and we have a topic named
slack-mentions that contains every Slack message that mentions our bot,
@StreamsBot. We will design our bot so that it expects each mention to be
followed by a command, like @StreamsBot restart myservice.

We want to implement a basic processor topology that does some
preprocessing/validation of these Slack messages. First, we need to consume each
message in the source topic, determine if the command is valid, and if so, write

the Slack message to a topic called valid-mentions. If the command is not valid
(e.g., someone makes a spelling error when mentioning our bot, such as

@StreamsBot restart serverrr), then we will write to a topic named invalid-
mentions).

In this case, we would translate these requirements to the topology shown in
Figure 2-4,
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Figure 2-4. An example processor topology that contains a single source processor for reading Slack
messages from Kafka (s lack-mentions), a single stream processor that checks the validity of each
message (isValid), and two sink processors that route the message to one of two output topics based
on the previous check (valid-mentions, invalid-mentions)

Starting with the tutorial in the next chapter, we will then begin to implement any
topology we design using the Kafka Streams APIL. But first, let’s take a look at a related
concept: sub-topologies.

Sub-Topologies

Kafka Streams also has the notion of sub-topologies. In the previous example, we
designed a processor topology that consumes events from a single source topic (slack-
mentions) and performs some preprocessing on a stream of raw chat messages.
However, if our application needs to consume from multiple source topics, then Kafka
Streams will (under most circumstances®) divide our topology into smaller sub-
topologies to parallelize the work even further. This division of work is possible since
operations on one input stream can be executed independently of operations on
another input stream.

For example, let’s keep building our chatbot by adding two new stream processors: one
that consumes from the valid-mentions topic and performs whatever command was



issued to StreamsBot (e.g., restart server), and another processor that consumes
from the invalid-mentions topic and posts an error response back to Slack.'®

As you can see in Figure 2-5, our topology now has three Kafka topics it reads from:

slack-mentions, valid-mentions, and invalid-mentions. Each time we read from a
new source topic, Kafka Streams divides the topology into smaller sections that it can
execute independently. In this example, we end up with three sub-topologies for our
chatbot application, each denoted by a star in the figure.
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Figure 2-5. A processor topology, subdivided into sub-topologies (demarcated by dotted lines)



Notice that both the valid-mentions and invalid-mentions topics serve as a sink
processor in the first sub-topology, but as a source processor in the second and third
sub-topologies. When this occurs, there is no direct data exchange between sub-
topologies. Records are produced to Kafka in the sink processor, and reread from Kafka
by the source processors.

Now that we understand how to represent a stream processing program as a processor
topology, let’s take a look at how data actually flows through the interconnected

processors in a Kafka Streams application.
Depth-First Processing

Kafka Streams uses a depth-first strategy when processing data. When a new record is
received, it is routed through each stream processor in the topology before another
record is processed. The flow of data through Kafka Streams looks something like
what’s shown in Figure 2-6.
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Figure 2-6. In depth-first processing, a single record moves through the entire topology before another
record is processed

This depth-first strategy makes the dataflow much easier to reason about, but also
means that slow stream processing operations can block other records from being
processed in the same thread. Figure 2-7 demonstrates something you will never see
happen in Kafka Streams: multiple records going through a topology at once.
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Figure 2-7. Multiple records will never go through the topology at the same time




Note

When multiple sub-topologies are in play, the single-event rule does not apply to the
entire topology, but to each sub-topology.

Now that we know how to design processor topologies and how data flows through
them, let’s take a look at the advantages of this data-centric approach to building

stream processing applications.
Benefits of Dataflow Programming

There are several advantages of using Kafka Streams and the dataflow programming
model for building stream processing applications. First, representing the program as
a directed graph makes it easy to reason about. You don’t need to follow a bunch of
conditionals and control logic to figure out how data is flowing through your
application. Simply find the source and sink processors to determine where data
enters and exits your program, and look at the stream processors in between to
discover how the data is being processed, transformed, and enriched along the way.

Furthermore, expressing our stream processing program as a directed graph allows us
to standardize the way we frame real-time data processing problems and,
subsequently, the way we build our streaming solutions. A Kafka Streams application
that I write will have some level of familiarity to anyone who has worked with Kafka
Streams before in their own projects—not only due to the reusable abstractions
available in the library itself, but also thanks to a common problem-solving approach:
defining the flow of data using operators (nodes) and streams (edges). Again, this
makes Kafka Streams applications easy to reason about and maintain.

Directed graphs are also an intuitive way of visualizing the flow of data for non-
technical stakeholders. There is often a disconnect about how a program works
between engineering teams and nonengineering teams. Sometimes, this leads to
nontechnical teams treating the software as a closed box. This can have dangerous side
effects, especially in the age of data privacy laws and GDPR compliance, which requires
close coordination between engineers, legal teams, and other stakeholders. Thus, being
able to simply communicate how data is being processed in your application allows
people who are focused on another aspect of a business problem to understand or even
contribute to the design of your application.

Finally, the processor topology, which contains the source, sink, and stream
processors, acts as a template that can be instantiated and parallelized very easily
across multiple threads and application instances. Therefore, defining the dataflow in
this way allows us to realize performance and scalability benefits since we can easily
replicate our stream processing program when data volume demands it.



Now, to understand how this process of replicating topologies works, we first need to

understand the relationship between tasks, stream threads, and partitions.
Tasks and Stream Threads

When we define a topology in Kafka Streams, we are not actually executing the
program. Instead, we are building a template for how data should flow through our
application. This template (our topology) can be instantiated multiple times in a single
application instance, and parallelized across many tasks and stream threads (which we’ll
refer to as simply threads going forward.'”) There is a close relationship between the
number of tasks/threads and the amount of work your stream processing application
can handle, so understanding the content in this section is especially important for
achieving good performance with Kafka Streams.

Let’s start by looking at tasks:

A task is the smallest unit of work that can be performed in parallel in a Kafka Streams
application...

Slightly simplified, the maximum parallelism at which your application may run is bounded by
the maximum number of stream tasks, which itself is determined by the maximum number of
partitions of the input topic(s) the application is reading from.

Andy Bryant

Translating this quote into a formula, we can calculate the number of tasks that can be
created for a given Kafka Streams sub-topology'® with the following math:

max(source_topic_1_partitions, ... source_topic_n_partitions)

For example, if your topology reads from one source topic that contains 16 partitions,
then Kafka Streams will create 16 tasks, each of which will instantiate its own copy of
the underlying processor topology. Once Kafka Streams has created all of the tasks, it
will assign the source partitions to be read from to each task.

As you can see, tasks are just logical units that are used to instantiate and run a
processor topology. Threads, on the other hand, are what actually execute the task. In
Kafka Streams, the stream threads are designed to be isolated and thread-safe.'’
Furthermore, unlike tasks, there isn’t any formula that Kafka Streams applies to figure
out how many threads your application should run. Instead, you are responsible for
specifying the thread count using a configuration property named

num.stream. threads. The upper bound for the number of threads you can utilize
corresponds to the task count, and there are different strategies for deciding on the



number of stream threads you should run with.?°

Now, let’s improve our understanding of these concepts by visualizing how tasks and
threads are created using two separate configs, each specifying a different number of
threads. In each example, our Kaftka Streams application is reading from a source topic

that contains four partitions (denoted by p1 - p4 in Figure 2-8).

First, let’s configure our application to run with two threads (num.stream. threads =

2). Since our source topic has four partitions, four tasks will be created and distributed
across each thread. We end up with the task/thread layout depicted in Figure 2-8.
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Figure 2-8. Four Kafka Streams tasks running in two threads

Running more than one task per thread is perfectly fine, but sometimes it is often
desirable to run with a higher thread count to take full advantage of the available CPU
resources. Increasing the number of threads doesn’t change the number of tasks, but it
does change the distribution of tasks among threads. For example, if we reconfigure
the same Kafka Streams application to run with four threads instead of two



(num.stream. threads = 4), we end up with the task/thread layout depicted in
Figure 2-9.
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Figure 2-9. Four Kafka Streams tasks running in four threads

Now that we’ve learned about Kafka Streams’ architecture, let’s take a look at the APIs

that Kafka Streams exposes for creating stream processing applications.
High-Level DSL Versus Low-Level Processor API

Different solutions present themselves at different layers of abstraction.

James Clear?

A common notion in the software engineering field is that abstraction usually comes at
a cost: the more you abstract the details away, the more the software feels like
“magic,” and the more control you give up. As you get started with Kafka Streams, you
may wonder what kind of control you will be giving up by choosing to implement a
stream processing application using a high-level library instead of designing your
solution using the lower-level Consumer/Producer APIs directly.

Luckily for us, Kafka Streams allows developers to choose the abstraction level that
works best for them, depending on the project and also the experience and preference
of the developer.



The two APIs you can choose from are:
e The high-level DSL
e The low-level Processor API

The relative abstraction level for both the high-level DSL and low-level Processor API is
shown in Figure 2-10.
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Figure 2-10. Abstraction levels of Kafka Streams APIs

The high-level DSL is built on top of the Processor API, but the interface each exposes
is slightly different. If you would like to build your stream processing application using
a functional style of programming, and would also like to leverage some higher-level
abstractions for working with your data (streams and tables), then the DSL is for you.

On the other hand, if you need lower-level access to your data (e.g., access to record
metadata), the ability to schedule periodic functions, more granular access to your
application state, or more fine-grained control over the timing of certain operations,
then the Processor API is a better choice. In the following tutorial, you will see
examples of both the DSL and Processor API. In subsequent chapters, we will explore
both the DSL and Processor API in further detail.

Now, the best way to see the difference between these two abstraction levels is with a



code example. Let’s move on to our first Kafka Streams tutorial: Hello Streams.
Introducing Our Tutorial: Hello, Streams

In this section, we will get our first hands-on experience with Kafka Streams. This is a
variation of the “Hello, world” tutorial that has become the standard when learning
new programming languages and libraries. There are two implementations of this
tutorial: the first uses the high-level DSL, while the second uses the low-level Processor
API. Both programs are functionally equivalent, and will print a simple greeting

whenever they receive a message from the users topic in Kafka (e.g., upon receiving
the message Mitch, each application will print Hello, Mitch).

Before we get started, let’s take a look at how to set up the project.
Project Setup

All of the tutorials in this book will require a running Kafka cluster, and the source
code for each chapter will include a docker-compose.yml file that will allow you to run a
development cluster using Docker. Since Kafka Streams applications are meant to run
outside of a Kafka cluster (e.g., on different machines than the brokers), it’s best to
view the Kafka cluster as a separate infrastructure piece that is required but distinct
from your Kafka Streams application.

To start running the Kafka cluster, clone the repository and change to the directory
containing this chapter’s tutorial. The following commands will do the trick:

$ git clone git@github.com:mitch-seymour/mastering-kafka-streams-and-ksqldb.git
$ cd mastering-kafka-streams-and-ksqldb/chapter-02/hello-streams

Then, start the Kafka cluster by running:

docker-compose up

The broker will be listening on port 29092.** Furthermore, the preceding command

will start a container that will precreate the users topic needed for this tutorial. Now,

with our Kafka cluster running, we can start building our Kafka Streams application.
Creating a New Project

In this book, we will use a build tool called Gradle?* to compile and run our Kafka
Streams applications. Other build tools (e.g., Maven) are also supported, but we have
chosen Gradle due to the improved readability of its build files.

In addition to being able to compile and run your code, Gradle can also be used to
quickly bootstrap new Kafka Streams applications that you build outside of this book.



This can be accomplished by creating a directory for your project to live in and then by

running the gradle init command from within that directory. An example of this
workflow is as follows:

$ mkdir my-project && cd my-project

$ gradle init \

--type java-application \

--dsl groovy \

--test-framework junit-jupiter \
--project-name my-project \
--package com.example

The source code for this book already contains the initialized project structure for

each tutorial, so it’s not necessary to run gradle init unless you are starting a new
project for yourself. We simply mention it here with the assumption that you will be
writing your own Kafka Streams applications at some point, and want a quick way to
bootstrap your next project.

Here is the basic project structure for a Kafka Streams application:

i: build.gradle @

il

main

| = java @
L— resources ©®
test
L— java ©

This is the project’s build file. It will specify all of the dependencies (including the
Kafka Streams library) needed by our application.

We will save our source code and topology definitions in src/main/java.
src/main/resources is typically used for storing configuration files.

Our unit and topology tests, which we will discuss in “Testing Kafka Streams”, will
live in src/test/java.

Now that we’ve learned how to bootstrap new Kafka Streams projects and have had an
initial look at the project structure, let’s take a look at how to add Kafka Streams to our



project.
Adding the Kafka Streams Dependency

To start working with Kafka Streams, we simply need to add the Kafka Streams library
as a dependency in our build file. (In Gradle projects, our build file is called
build.gradle.) An example build file is shown here:

plugins {
id 'java'
id 'application’

repositories {
jcenter()

dependencies {
implementation 'org.apache.kafka:kafka-streams:2.7.0' @
}

task runDSL(type: JavaExec) { @
main = 'com.example.DslExample'
classpath sourceSets.main.runtimeClasspath

}

task runProcessorAPI(type: JavaExec) { @
main = 'com.example.ProcessorApiExample’
classpath sourceSets.main.runtimeClasspath

Add the Kafka Streams dependency to our project.

This tutorial is unique among others in this book since we will be creating two
different versions of our topology. This line adds a Gradle task to execute the DSL
version of our application.

Similarly, this line adds a Gradle task to execute the Processor API version of our
application.

Now, to build our project (which will actually pull the dependency from the remote
repository into our project), we can run the following command:

./gradlew build



That’s it! Kafka Streams is installed and ready to use. Now, let’s continue with the
tutorial.

DSL
The DSL example is exceptionally simple. We first need to use a Kafka Streams class
called StreamsBuilder to build our processor topology:

StreamsBuilder builder = new StreamsBuilder();

Next, as we learned in “Processor Topologies”, we need to add a source processor in

order to read data from a Kafka topic (in this case, our topic will be called users).
There are a few different methods we could use here depending on how we decide to
model our data (we will discuss different approaches in “Streams and Tables”), but for
now, let’s model our data as a stream. The following line adds the source processor:

KStream<Void, String> stream = builder.stream("users"); @

We'll discuss this more in the next chapter, but the generics in KStream<Void,
String> refer to the key and value types. In this case, the key is empty (Void) and
the value is a String type.

Now, it’s time to add a stream processor. Since we're just printing a simple greeting for
each message, we can use the foreach operator with a simple lambda like so:

stream.foreach(
(key, value) -> {
System.out.println("(DSL) Hello, " + value);
1

Finally, it’s time to build our topology and start running our stream processing
application:

KafkaStreams streams = new KafkaStreams(builder.build(), config);
streams.start();

The full code, including some boilerplate needed to run the program, is shown in
Example 2-1.
Example 2-1. Hello, world—DSL example



class DslExample {

public static void main(String[] args) {
StreamsBuilder builder = new StreamsBuilder(); @

KStream<Void, String> stream = builder.stream("users"): @
stream.foreach( @
(key, value) -> {
System.out.println("(DSL) Hello, " + value);
s

// omitted for brevity
Properties config = ...;

KafkaStreams streams = new KafkaStreams(builder.build(), config); @
streams.start();

// close Kafka Streams when the JVM shuts down (e.g., SIGTERM)
Runtime.getRuntime().addShutdownHook(new Thread( :close)); @

©Q The builder is used to construct the topology.

(2]

Add a source processor that reads from the users topic.

(3]

Use the DSL’s foreach operator to print a simple message. The DSL includes many
operators that we will be exploring in upcoming chapters.

© We have omitted the Kafka Streams configuration for brevity, but will discuss this
in upcoming chapters. Among other things, this configuration allows us to specify
which Kafka cluster our application should read from and what consumer group
this application belongs to.

© puild the topology and start streaming.
@ (lose Kafka Streams when the JVM shuts down.
To run the application, simply execute the following command:

./gradlew runDSL --info



Now your Kafka Streams application is running and listening for incoming data. As you
may recall from “Hello, Kafka”, we can produce some data to our Kafka cluster using

the kafka-console-producer console script. To do this, run the following commands:

docker-compose exec kafka bash @

kafka-console-producer \ @
--bootstrap-server localhost:9092 \
--topic users

° The console scripts are available in the kafka container, which is running the

broker in our development cluster. You can also download these scripts as part of
the official Kafka distribution.

(2]

Start a local producer that will write data to the users topic.

Once you are in the producer prompt, create one or more records by typing the name
of the user, followed by the Enter key. When you are finished, press Control-C on your
keyboard to exit the prompt:

>angie

>guy
>kate
smark

Your Kafka Streams application should emit the following greetings:

(DSL) Hello, angie
(DSL) Hello, guy
(DSL) Hello, kate
(DSL) Hello, mark

We have now verified that our application is working as expected. We will explore
some more interesting use cases over the next several chapters, but this process of
defining a topology and running our application is a foundation we can build upon.
Next, let’s look at how to create the same Kafka Streams topology with the lower-level

Processor API.
Processor API

The Processor API lacks some of the abstractions available in the high-level DSL, and
its syntax is more of a direct reminder that we’re building processor topologies, with



methods like Topology.addSource, Topology.addProcessor, and Topology.addSink
(the latter of which is not used in this example). The first step in using the processor

topology is to instantiate a new Topology instance, like so:
Topology topology = new Topology();

Next, we will create a source processor to read data from the users topic, and a stream
processor to print a simple greeting. The stream processor references a class called

SayHelloProcessor that we’ll implement shortly:

topology.addSource("UserSource", "users"); @
topology.addProcessor("SayHello", SayHelloProcessor::new, "UserSource"); @

The first argument for the addSource method is an arbitrary name for this stream

processor. In this case, we simply call this processor UserSource. We will refer to
this name in the next line when we want to connect a child processor, which in
turn defines how data should flow through our topology. The second argument is

the topic name that this source processor should read from (in this case, users).

12}

This line creates a new downstream processor called SayHello whose processing

logic is defined in the SayHelloProcessor class (we will create this in the next
section). In the Processor API, we can connect one processor to another by
specifying the name of the parent processor. In this case, we specify the

UserSource processor as the parent of the SayHello processor, which means data
will flow from the UserSource to SayHello.

As we saw before, in the DSL tutorial, we now need to build the topology and call
streams.start() torun it:

KafkaStreams streams = new KafkaStreams(topology, config);
streams.start();

Before running the code, we need to implement the SayHelloProcessor class.
Whenever you build a custom stream processor using the Processor API, you need to

implement the Processor interface. The interface specifies methods for initializing the
stream processor (init), applying the stream processing logic to a single record



(process), and a cleanup function (close). The initialization and cleanup function
aren’t needed in this example.

The following is a simple implementation of SayHelloProcessor that we will use for
this example. We will explore more complex examples, and all of the interface

methods in the Processor interface (init, process, and close), in more detail in
Chapter 7.

public class SayHelloProcessor implements Processor<Void, String, Void, Void> { @
@0override
public void init(ProcessorContext<Void, Void> context) {} @

@Override
public void process(Record<Void, String> record) { ©
System.out.println("(Processor API) Hello, " + record.value());

}

@override
public void close() {} @

The first two generics in the Processor interface (in this example,
Processor<Void, String, ..., ...>)refer tothe input key and value types.
Since our keys are null and our values are usernames (i.e., text strings), Void and
String are the appropriate choices. The last two generics (Processor<..., ...,
Void, Void>) refer to the output key and value types. In this example, our
SayHelloProcessor simply prints a greeting. Since we aren’t forwarding any

output keys or values downstream, Void is the appropriate type for the final two
generics.?!

2 o special initialization is needed in this example, so the method body is empty.
The generics in the ProcessorContext interface (ProcessorContext<Void,
Void>) refer to the output key and value types (again, as we’re not forwarding any

messages downstream in this example, both are Void).

The processing logic lives in the aptly named process method in the Processor

interface. Here, we print a simple greeting. Note that the generics in the Record
interface refer to the key and value type of the input records.



2 o special cleanup needed in this example.
We can now run the code using the same command we used in the DSL example:

./gradlew runProcessorAPI --info

You should see the following output to indicate your Kafka Streams application is
working as expected:

(Processor API) Hello, angie
(Processor API) Hello, guy

(Processor API) Hello, kate
(Processor API) Hello, mark

Now, despite the Processor API's power, which we will see in Chapter 7, using the DSL
is often preferable because, among other benefits, it includes two very powerful
abstractions: streams and tables. We will get our first look at these abstractions in the
next section.

Streams and Tables

If you look closely at Example 2-1, you will notice that we used a DSL operator called
stream to read a Kafka topic into a stream. The relevant line of code is:

KStream<Void, String> stream = builder.stream("users");

However, kafka streams also supports an additional way to view our data: as a table. in
this section, we’ll take a look at both options and learn when to use streams and when
to use tables.

As discussed in “Processor Topologies”, designing a processor topology involves
specifying a set of source and sink processors, which correspond to the topics your
application will read from and write to. However, instead of working with Kafka topics
directly, the Kafka Streams DSL allows you to work with different representations of a
topic, each of which are suitable for different use cases. There are two ways to model
the data in your Kafka topics: as a stream (also called a record stream) or a table (also
known as a changelog stream). The easiest way to compare these two data models is
through an example.

Say we have a topic containing ssh logs, where each record is keyed by a user ID as
shown in Table 2-2.



Table 2-2. Keyed records in a single
topic-partition

Key Value Offset

mitch  { "action": "login" } O
mitch  { "action": "logout" } 1
elyse { "action": "login" } 2

isabelle { "action": "login" } 3

Before consuming this data, we need to decide which abstraction to use: a stream or a
table. When making this decision, we need to consider whether or not we want to track

only the latest state/representation of a given key, or the entire history of messages.
Let’s compare the two options side by side:

Streams

These can be thought of as inserts in database parlance. Each distinct record

remains in this view of the log. The stream representation of our topic can be seen
in Table 2-3.

Table 2-3. Stream view of ssh logs

Key  Value Offset

mitch { "action": "login" } O
mitch  { "action": "logout" } 1
elyse { "action": "login" } 2

isabelle { "action": "login" } 3

Tables

Tables can be thought of as updates to a database. In this view of the logs, only the
current state (either the latest record for a given key or some kind of aggregation)
for each key is retained. Tables are usually built from compacted topics (i.e., topics



that are configured with a cleanup.policy of compact, which tells Kafka that you
only want to keep the latest representation of each key). The table representation
of our topic can be seen in Table 2-4.

Table 2-4. Table view of ssh logs

Key Value Offset

mitch  { "action": "logout" } 1
elyse { "action": "login" } 2

isabelle { "action": "login" } 3

Tables, by nature, are stateful, and are often used for performing aggregations in Kafka
Streams.?’ In Table 2-4, we didn’t really perform a mathematical aggregation, we just
kept the latest ssh event for each user ID. However, tables also support mathematical
aggregations, For example, instead of tracking the latest record for each key, we could

have just as easily calculated a rolling count. In this case, we would have ended up with

a slightly different table, where the values contain the result of our count aggregation.
You can see a count-aggregated table in Table 2-5.

Table 2-5. Aggregated
table view of ssh logs

Key Value Offset

mitch 2 1
elyse 1 2
isabelle 1 3

Careful readers may have noticed a discrepancy between the design of Kafka’s storage
layer (a distributed, append-only log) and a table. Records that are written to Kafka are
immutable, so how is it possible to model data as updates, using a table representation
of a Kafka topic?

The answer is simple: the table is materialized on the Kafka Streams side using a key-
value store which, by default, is implemented using RocksDB.?® By consuming an



ordered stream of events and keeping only the latest record for each key in the client-
side key-value store (more commonly called a state store in Kafka Streams
terminology), we end up with a table or map-like representation of the data. In other
words, the table isn’t something we consume from Kafka, but something we build on the
client side.

You can actually write a few lines of Java code to implement this basic idea. In the
following code snippet, the List represents a stream since it contains an ordered
collection of records,?” and the table is constructed by iterating through the list
(stream.forEach) and only retaining the latest record for a given key using a Map. The
following Java code demonstrates this basic idea:

import java.util.Map.Entry;

var stream = List.of(

Map.entry("a", 1),
Map.entry("b", 1),

Map.entry("a", 2));
var table = new HashMap<>();

stream.forEach((record) -> table.put(record.getKey(), record.getValue()));

If you were to print the stream and table after running this code, you would see the
following output:

stream ==> [a=1, b=1, a=2]

table ==> {a=2, b=1}

Of course, the Kafka Streams implementation of this is more sophisticated, and can

leverage fault-tolerant data structures as opposed to an in-memory Map. But this
ability to construct a table representation of an unbounded stream is only one side of a
more complex relationship between streams and tables, which we will explore next.
Stream/Table Duality

The duality of tables and streams comes from the fact that tables can be represented as
streams, and streams can be used to reconstruct tables. We saw the latter
transformation of a stream into a table in the previous section, when discussing the
discrepancy between Kafka’s append-only, immutable log and the notion of a mutable
table structure that accepts updates to its data.

This ability to reconstruct tables from streams isn’t unique to Kafka Streams, and is in



fact pretty common in various types of storage. For example, MySQL's replication
process relies on the same notion of taking a stream of events (i.e., row changes) to
reconstruct a source table on a downstream replica. Similarly, Redis has the notion of
an append-only file (AOF) that captures every command that is written to the in-
memory key-value store. If a Redis server goes offline, then the stream of commands in
the AOF can be replayed to reconstruct the dataset.

What about the other side of the coin (representing a table as a stream)? When viewing
a table, you are viewing a single point-in-time representation of a stream. As we saw
earlier, tables can be updated when a new record arrives. By changing our view of the
table to a stream, we can simply process the update as an insert, and append the new
record to the end of the log instead of updating the key. Again, the intuition behind
this can be seen using a few lines of Java code:

var stream = table.entrySet().stream().collect(Collectors.tolList());

stream.add(Map.entry("a", 3));

This time, if you print the contents of the stream, you'll see we're no longer using
update semantics, but instead insert semantics:

stream ==> [a=2, b=1, a=3]

So far, we've been working with the standard libraries in Java to build intuition around
streams and tables. However, when working with streams and tables in Kafka Streams,
you’ll use a set of more specialized abstractions. We’ll take a look at these abstractions
next.

KStream, KTable, GlobalKTable

One of the benefits of using the high-level DSL over the lower-level Processor API in
Kafka Streams is that the former includes a set of abstractions that make working with
streams and tables extremely easy.

The following list includes a high-level overview of each:
KStream

A KStreanm is an abstraction of a partitioned record stream, in which data is
represented using insert semantics (i.e., each event is considered to be independent
of other events).

KTable



A KTable is an abstraction of a partitioned table (i.e., changelog stream), in which
data is represented using update semantics (the latest representation of a given key
is tracked by the application). Since KTables are partitioned, each Kafka Streams
task contains only a subset of the full table.”

GlobalKTable

This is similar to a KTable, except each GlobalKTable contains a complete (i.e.,
unpartitioned) copy of the underlying data. We’ll learn when to use KTables and
when to use GlobalKTables in Chapter 4.

Kafka Streams applications can make use of multiple stream/table abstractions, or just
one. It’s entirely dependent on your use case, and as we work through the next few
chapters, you will learn when to use each one. This completes our initial discussion of
streams and tables, so let’s move on to the next chapter and explore Kafka Streams in

more depth.
Summary

Congratulations, you made it through the end of your first date with Kafka Streams.
Here’s what you learned:

 Kafka Streams lives in the stream processing layer of the Kafka ecosystem.
This is where sophisticated data processing, transformation, and enrichment
happen.

 Kafka Streams was built to simplify the development of stream processing
applications with a simple, functional API and a set of stream processing
primitives that can be reused across projects. When more control is needed, a
lower-level Processor API can also be used to define your topology.

 Kafka Streams has a friendlier learning curve and a simpler deployment model
than cluster-based solutions like Apache Flink and Apache Spark Streaming. It
also supports event-at-a-time processing, which is considered true streaming.

 Kafka Streams is great for solving problems that require or benefit from real-
time decision making and data processing. Furthermore, it is reliable,
maintainable, scalable, and elastic.

e Installing and running Kafka Streams is simple, and the code examples in this
chapter can be found at https://github.com/mitch-seymour/mastering-kafka-
streams-and-ksqldb.



In the next chapter, we’ll learn about stateless processing in Kafka Streams. We will
also get some hands-on experience with several new DSL operators, which will help us
build more advanced and powerful stream processing applications.

! We are referring to the official ecosystem here, which includes all of the components
that are maintained under the Apache Kafka project.

? Jay Kreps, one of the original authors of Apache Kafka, discussed this in detail in an
O'Reilly blog post back in 2014.

3 This includes aggregated streams/tables, which we’ll discuss later in this chapter.

* We have an entire chapter dedicated to time, but also see Matthias J. Sax’s great
presentation on the subject from Kafka Summit 2019.

> Guozhang Wang, who has played a key role in the development of Kafka Streams,
deserves much of the recognition for submitting the original KIP for what would later
become Kafka Streams. See https://oreil.ly/l12wbc.

¢ Kafka Connect veered a little into event processing territory by adding support for
something called single message transforms, but this is extremely limited compared to
what Kafka Streams can do.

7 Kafka Streams will work with other JVM-based languages as well, including Scala and
Kotlin. However, we exclusively use Java in this book.

8 Multiple consumer groups can consume from a single topic, and each consumer
group processes messages independently of other consumer groups.

? While partitions can be added to an existing topic, the recommended pattern is to
create a new source topic with the desired number of partitions, and to migrate all of
the existing workloads to the new topic.

9 Including some features that are specific to stateful applications, which we will discuss
in Chapter 4.

1 The ever-growing nature of the stream processing space makes it difficult to
compare every solution to Kafka Streams, so we have decided to focus on the most
popular and mature stream processing solutions available at the time of this writing.

12 Although there is an open, albeit dated, proposal to support batch processing in
Kafka Streams.

B3 Including a Kafka-backed relational database called KarelDB, a graph analytics
library built on Kafka Streams, and more. See https://yokota.blog.



4 At the time of this writing, Apache Flink had recently released a beta version of
queryable state, though the API itself was less mature and came with the following
warning in the official Flink documentation: “The client APIs for queryable state are
currently in an evolving state and there are no guarantees made about stability of the
provided interfaces. It is likely that there will be breaking API changes on the client
side in the upcoming Flink versions.” Therefore, while the Apache Flink team is
working to close this gap, Kafka Streams still has the more mature and production-
ready API for querying state.

15 The exception to this is when topics are joined. In this case, a single topology will
read from each source topic involved in the join without further dividing the step into
sub-topologies. This is required for the join to work. See “Co-Partitioning” for more
information.

16 In this example, we write to two intermediate topics (valid-mentions and invalid-

mentions) and then immediately consume data from each. Using intermediate topics
like this is usually only required for certain operations (for example, repartitioning
data). We do it here for discussion purposes only.

17 A Java application may execute many different types of threads. Our discussion will
simply focus on the stream threads that are created and managed by the Kafka Streams
library for running a processor topology.

18 Remember, a Kafka Streams topology can be composed of multiple sub-topologies, so
to get the number of tasks for the entire program, you should sum the task count
across all sub-topologies.

19 This doesn’t mean a poorly implemented stream processor is immune from
concurrency issues. However, by default, the stream threads do not share any state.

20 For example, the number of cores that your application has access to could inform
the number of threads you decide to run with. If your application instance is running
on a 4-core machine and your topology supports 16 tasks, you may want to configure
the thread count to 4, which will give you a thread for each core. On the other hand, if
your 16-task application was running on a 48-core machine, you may want to run with
16 threads (you wouldn’t run with 48 since the upper bound is the task count, or in this
case: 16).

21 From First Principles: Elon Musk on the Power of Thinking for Yourself.

22 1f you want to verify and have telnet installed, you can run echo 'exit' | telnet

localhost 29092. If the port is open, you should see “Connected to localhost” in the
output.



23 Instructions for installing Gradle can be found at https://gradle.org. We used version
6.6.1 for the tutorials in this book.

24 This version of the Processor interface was introduced In Kafka Streams version 2.7
and deprecates an earlier version of the interface that was available in Kafka Streams

2.6 and earlier. In the earlier version of the Processor interface, only input types are
specified. This presented some issues with type-safety checks, so the newer form of the

Processor interface is recommended.

25 In fact, tables are sometimes referred to as aggregated streams. See “Of Streams and
Tables in Kafka and Stream Processing, Part 1” by Michael Noll, which explores this
topic further.

26 RocksDB is a fast, embedded key-value store that was originally developed at
Facebook. We will talk more about RocksDB and key-value stores in Chapters 4-6.

7 To go even deeper with the analogy, the index position for each item in the list
would represent the offset of the record in the underlying Kafka topic.

8 Assuming your source topic contains more than one partition.



Chapter 3. Stateless Processing

The simplest form of stream processing requires no memory of previously seen events.
Each event is consumed, processed,' and subsequently forgotten. This paradigm is
called stateless processing, and Kafka Streams includes a rich set of operators for
working with data in a stateless way.

In this chapter, we will explore the stateless operators that are included in Kaftka
Streams, and in doing so, we’ll see how some of the most common stream processing
tasks can be tackled with ease. The topics we will explore include:

e Filtering records

¢ Adding and removing fields

 Rekeying records

e Branching streams

e Merging streams

 Transforming records into one or more outputs

e Enriching records, one at a time

we'll take a tutorial-based approach for introducing these concepts. Specifically, we’ll
be streaming data about cryptocurrencies from Twitter and applying some stateless
operators to convert the raw data into something more meaningful: investment
signals. By the end of this chapter, you will understand how to use stateless operators
in Kafka Streams to enrich and transform raw data, which will prepare you for the
more advanced concepts that we will explore in later chapters.

Before we jump into the tutorial, let’s get a better frame of reference for what stateless

processing is by comparing it to the other form of stream processing: stateful processing.
Stateless Versus Stateful Processing

One of the most important things you should consider when building a Kafka Streams
application is whether or not your application requires stateful processing. The
following describes the distinction between stateless and stateful stream processing:

* In stateless applications, each event handled by your Kafka Streams application
is processed independently of other events, and only stream views are needed
by your application (see “Streams and Tables”). In other words, your
application treats each event as a self-contained insert and requires no
memory of previously seen events.



e Stateful applications, on the other hand, need to remember information about
previously seen events in one or more steps of your processor topology, usually
for the purpose of aggregating, windowing, or joining event streams. These
applications are more complex under the hood since they need to track
additional data, or state.

In the high-level DSL, the type of stream processing application you ultimately build
boils down to the individual operators that are used in your topology.? Operators are

stream processing functions (e.g., filter, map, flatMap, join, etc.) that are applied to
events as they flow through your topology. Some operators, like filter, are
considered stateless because they only need to look at the current record to perform an
action (in this case, filter looks at each record individually to determine whether or
not the record should be forwarded to downstream processors). Other operators, like

count, are stateful since they require knowledge of previous events (count needs to
know how many events it has seen so far in order to track the number of messages).

If your Kafka Streams application requires only stateless operators (and therefore does
not need to maintain any memory of previously seen events), then your application is
considered stateless. However, if you introduce one or more stateful operators (which
we will learn about in the next chapter), regardless of whether or not your application
also uses stateless operators, then your application is considered stateful. The added
complexity of stateful applications warrants additional considerations with regards to
maintenance, scalability, and fault tolerance, so we will cover this form of stream
processing separately in the next chapter.

If all of this sounds a little abstract, don’t worry. We’ll demonstrate these concepts by
building a stateless Kafka Streams application in the following sections, and getting
some first-hand experience with stateless operators. So without further ado, let’s

introduce this chapter’s tutorial.
Introducing Our Tutorial: Processing a Twitter Stream

In this tutorial, we will explore the use case of algorithmic trading. Sometimes called
high-frequency trading (HFT), this lucrative practice involves building software to
evaluate and purchase securities automatically, by processing and responding to many
types of market signals with minimal latency.

To assist our fictional trading software, we will build a stream processing application
that will help us gauge market sentiment around different types of cryptocurrencies
(Bitcoin, Ethereum, Ripple, etc.), and use these sentiment scores as
investment/divestment signals in a custom trading algorithm.> Since millions of
people use Twitter to share their thoughts on cryptocurrencies and other topics, we



will use Twitter as the data source for our application.

Before we get started, let’s look at the steps required to build our stream processing
application. We will then use these requirements to design a processor topology, which
will be a helpful guide as we build our stateless Katka Streams application. The key
concepts in each step are italicized:

1. Tweets that mention certain digital currencies (#bitcoin, #ethereum) should be
consumed from a source topic called tweets:

e Since each record is JSON-encoded, we need to figure out how to
properly deserialize these records into higher-level data classes.

e Unneeded fields should be removed during the deserialization process
to simplify our code. Selecting only a subset of fields to work with is
referred to as projection, and is one of the most common tasks in
stream processing.

2. Retweets should be excluded from processing. This will involve some form of
data filtering.

3. Tweets that aren’t written in English should be branched into a separate stream
for translating.

4, Non-English tweets need to be translated to English. This involves mapping one
input value (the non-English tweet) to a new output value (an English-
translated tweet).

5. The newly translated tweets should be merged with the English tweets stream
to create one unified stream.

6. Each tweet should be enriched with a sentiment score, which indicates
whether Twitter users are conveying positive or negative emotion when
discussing certain digital currencies. Since a single tweet could mention
multiple cryptocurrencies, we will demonstrate how to convert each input

(tweet) into a variable number of outputs using a flatMap operator.

7. The enriched tweets should be serialized using Avro, and written to an output

topic called crypto-sentiment. Our fictional trading algorithm will read from
this topic and make investment decisions based on the signals it sees.

Now that the requirements have been captured, we can design our processor topology.
Figure 3-1 shows what we’ll be building in this chapter and how data will flow through



our Kafka Streams application.
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Figure 3-1. The topology that we will be implementing for our tweet enrichment application

With our topology design in hand, we can now start implementing our Kafka Streams
application by working our way through each of the processing steps (labeled 1-7) in
Figure 3-1. We will start by setting up our project, and then move on to the first step in

our topology: streaming tweets from the source topic.
Project Setup

The code for this chapter is located at https://github.com/mitch-seymour/mastering-kafka-
streams-and-ksqldb.git.

If you would like to reference the code as we work our way through each topology step,
clone the repository and change to the directory containing this chapter’s tutorial. The
following command will do the trick:



$ git clone git@github.com:mitch-seymour/mastering-kafka-streams-and-ksqldb.git
$ cd mastering-kafka-streams-and-ksqldb/chapter-03/crypto-sentiment

You can build the project anytime by running the following command:

$ ./gradlew build --info

Note

We have omitted the implementation details of tweet translation and sentiment
analysis (steps 4 and 6 in Figure 3-1) since they aren’t necessary to demonstrate the
stateless operators in Kafka Streams. However, the source code in GitHub does include
a full working example, so please consult the project’s README.md file if you are
interested in these implementation details.

Now that our project is set up, let’s start creating our Kafka Streams application.
Adding a KStream Source Processor

All Kafka Streams applications have one thing in common: they consume data from

one or more source topics. In this tutorial, we only have one source topic: tweets. This
topic is populated with tweets from the Twitter source connector, which streams
tweets from Twitter’s streaming API and writes JSON-encoded tweet records to Kafka.
An example tweet value? is shown in Example 3-1.

Example 3-1. Example record value in the tweets source topic

"CreatedAt": 1602545767000,
"Id": 1206079394583924736,
"Text": "Anyone else buying the Bitcoin dip?",
IlSourcell: IIH,
"User": {
|lIdIl: II123II’
"Name": "Mitch",
"Description”: "",
"ScreenName": "timeflown",
"URL": "https://twitter.com/timeflown",
"FollowersCount": "1128",

"FriendsCount": "1128"

Now that we know what the data looks like, the first step we need to tackle is getting
the data from our source topic into our Kafka Streams application. In the previous

chapter, we learned that we can use the KStream abstraction to represent a stateless
record stream. As you can see in the following code block, adding a KStream source



processor in Kafka Streams is simple and requires just a couple of lines of code:

StreamsBuilder builder = new StreamsBuilder(); @

KStream<byte[], byte[]> stream = builder.stream("tweets"); @

© When using the high-level DSL, processor topologies are built using a
StreamsBuilder instance.

2]

KStream instances are created by passing the topic name to the

StreamsBuilder.stream method. The stream method can optionally accept
additional parameters, which we will explore in later sections.

One thing you may notice is that the KStream we just created is parameterized with
byte[] types:

KStream<byte[], byte[]>

We briefly touched on this in the previous chapter, but the KStream interface leverages
two generics: one for specifying the type of keys (K) in our Kafka topic and the other

for specifying the type of values (V). If we were to peel back the floorboards in the
Kafka Streams library, we would see an interface that looks like this:

public interface KStream<K, V> {
// omitted for brevity
}

Therefore, our KStream instance, which is parameterized as KStream<byte[],

byte[ ]>, indicates that the record keys and values coming out of the tweets topic are
being encoded as byte arrays. However, we just mentioned that the tweet records are
actually encoded as JSON objects by the source connector (see Example 3-1), so what
gives?

Kafka Streams, by default, represents data flowing through our application as byte
arrays. This is due to the fact that Kafka itself stores and transmits data as raw byte
sequences, so representing the data as a byte array will always work (and is therefore a
sensible default). Storing and transmitting raw bytes makes Kafka flexible because it
doesn’t impose any particular data format on its clients, and also fast, since it requires



less memory and CPU cycles on the brokers to transfer a raw byte stream over the
network.’ However, this means that Kafka clients, including Kafka Streams
applications, are responsible for serializing and deserializing these byte streams in
order to work with higher-level objects and formats, including strings (delimited or
non-delimited), JSON, Avro, Protobuf, etc.®

Before we address the issue of deserializing our tweet records into higher-level objects,
let’s add the additional boilerplate code needed to run our Kafka Streams application.
For testability purposes, it’s often beneficial to separate the logic for building a Kafka
Streams topology from the code that actually runs the application. So the boilerplate
code will include two classes. First, we’ll define a class for building our Kafka Streams

topology, as shown in Example 3-2.
Example 3-2. A Java class that defines our Kafka Streams topology

class CryptoTopology {

public static Topology build() {
StreamsBuilder builder = new StreamsBuilder();

KStream<byte[], byte[]> stream = builder.stream("tweets");
stream.print(Printed.<byte[], byte[]>toSysOut().withLabel("tweets-stream")); @

return builder.build();

The print operator allows us to easily view data as it flows through our
application. It is generally recommended for development use only.

The second class, which we’ll call App, will simply instantiate and run the topology, as
shown in Example 3-3.

Example 3-3. A separate Java class used to run our Kafka Streams
application

class App {
public static void main(String[] args) {
Topology topology = CryptoTopology.build();

Properties config = new Properties(); @
config.put(StreamsConfig.APPLICATION_ID_CONFIG, "dev");
config.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:29092");
KafkaStreams streams = new KafkaStreams(topology, config); @

Runtime.getRuntime().addShutdownHook(new Thread(streams::close)); ©



System.out.println("Starting Twitter streams");
streams.start();
}

}

Q xafka Streams requires us to set some basic configuration, including an application
ID (which corresponds to a consumer group) and the Kafka bootstrap servers. We

set these configs using a Properties object.

Instantiate a KafkaStreams object with the processor topology and streams config.

Add a shutdown hook to gracefully stop the Kafka Streams application when a
global shutdown signal is received.

Start the Kafka Streams application. Note that streams.start() does not block,
and the topology is executed via background processing threads. This is the reason
why a shutdown hook is required.

Our application is now ready to run. If we were to start our Kafka Streams application

and then produce some data to our tweets topic, we would see the raw byte arrays (the
cryptic values that appear after the comma in each output row) being printed to the
screen:

[tweets-stream]: null, [B@c52d992
[tweets-stream]: null, [B@adec036
[tweets-stream]: null, [B@3812c614

As you might expect, the low-level nature of byte arrays makes them a little difficult to
work with. In fact, additional stream processing steps will be much easier to
implement if we find a different method of representing the data in our source topic.

This is where the concepts of data serialization and deserialization come into play.
Serialization/Deserialization

Kafka is a bytes-in, bytes-out stream processing platform. This means that clients, like
Kafka Streams, are responsible for converting the byte streams they consume into
higher-level objects. This process is called deserialization. Similarly, clients must also
convert any data they want to write back to Kafka back into byte arrays. This process is
called serialization. These processes are depicted in Figure 3-2.
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Figure 3-2. An architectural view of where the deserialization and serialization processes occur in a Kafka
Streams application

In Kafka Streams, serializer and deserializer classes are often combined into a single
class called a Serdes, and the library ships with several implementations, shown in

Table 3-1.” For example, the String Serdes (accessible via the Serdes.String()
method) includes both the String serializer and deserializer class.
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