WER Clgllglets
of Programming

Conversations with the Creators
of Major Programming Languages

Ule)

NasKkel

Masterminds of
Programming

Edited by Federico Biancuzzi and Shane Warden

O’REILLY"

Beijing * Cambridge * Farnham * KéIn * Sebastopol * Tokyo

Masterminds of Programming
Edited by Federico Biancuzzi and Shane Warden

Copyright ® 2009 Federico Biancuzzi and Shane Warden. All rights reserved. Printed in the

United States of America.
Published by O'Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our

corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram Proofreader: Nancy Kotary
Production Editor: Rachel Monaghan Cover Designer: Monica Kamsvaag
Indexer: Angela Howard Interior Designer: Marcia Friedman
Printing History:

March 2009: First Edition.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Masterminds of Programming and
related trade dress are trademarks of O'Reilly Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the

designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the

information contained herein.

ISBN: 978-0-596-51517-1
[LSI] [2014-03-21]

FOREWORD
PREFACE

C++

Bjarne Stroustrup
Design Decisions
Using the Language
OOP and Concurrency
Future
Teaching

PYTHON

Guido van Rossum
The Pythonic Way
The Good Programmer
Multiple Pythons

Expedients and Experience

APL

Adin D. Falkoff
Paper and Pencil
Elementary Principles
Parallelism

Legacy

FORTH
Charles H. Moore

The Forth Languade and Language Design

Hardware

Application Design

BASIC
Thomas E. Kurtz
The Goals Behind BASIC
Compiler Design
Languagde and Programming Practice
Language Design
Work Goals

CONTENTS

vii

13
16

19

20
27
32
37

43

44
47
53
56

59

60
67
71

79

80
86
20
91
97

iv

CONTENTS

10

AWK

Alfred Aho, Peter Weinberger, and Brian Kernighan
The Life of Algorithms
Language Design
Unix and Its Culture
The Role of Documentation
Computer Science
Breeding Little Languagdes
Designing a New Language
Legacy Culture
Transformative Technologies
Bits That Change the Universe
Theory and Practice
Waiting for a Breakthrough
Programming by Example

LUA
Luiz Henrique de Figueiredo and Roberto lerusalimschy
The Power of Scripting
Experience
Language Design

HASKELL
Simon Peyton Jones, Paul Hudak, Philip Wadler,
and John Hughes

A Functional Team

Trajectory of Functional Programming
The Haskell Language

Spreading (Functional) Education

Formalism and Evolution

ML

Robin Milner
The Soundness of Theorems
The Theory of Meaning

Beyond Informatics

SQL

Don Chamberlin
A Seminal Paper
The Languagde
Feedback and Evolution
XQuery and XML

101

102
104
106
111
114
116
121
129
132
137
142
149
154

161

162
165
169

177

178
180
187
194
196

203

204
212
218

225

226
229
233
238

11

12

13

14

OBJECTIVE-C

Brad Cox and Tom Love
Engineering Objective-C
Growing a Languade
Education and Training

Project Management and Legacy Software

Objective-C and Other Languagdes
Components, Sand, and Bricks
Quality As an Economic Phenomenon
Education

JAVA

James Gosling
Power or Simplicity
A Matter of Taste
Concurrency
Designing a Languade
Feedback Loop

C#
Anders Hejlsberg
Languade and Design
Growing a Language
C#
The Future of Computer Science

UML

lvar Jacobson, James Rumbaugh, and Grady Booch

Learning and Teaching
The Role of the People
UML

Knowledge

Be Ready for Change
Using UML

Layers and Languages

A Bit of Reusability
Symmetric Relationships
UML

Language Design
Training Developers
Creativity, Refinement, and Patterns

241

242
244
249
251
258
263
269
272

277

278
281
285
287
291

295

296
302
306
311

317

318

CONTENTS v

vi CONTENTS

15

16

17

PERL
Larry Wall
The Language of Revolutions
Language
Community
Evolution and Revolution

POSTSCRIPT

Charles Geschke and John Warnock

Designed to Last
Research and Education
Interfaces to Londevity
Standard Wishes

EIFFEL
Bertrand Meyer

An Inspired Afternoon
Reusability and Genericity
Proofreading Languades
Manading Growth and Evolution

AFTERWORD
CONTRIBUTORS

INDEX

375

376

386
389

395

39
406
410
414

H17

418
425
429
436

441

43

459

Foreword

PROGRAMMING LANGUAGE DESIGN IS A FASCINATING TOPIC. There are so many programmers
who think they can design a programming language better than one they are currently
using; and there are so many researchers who believe they can design a programming lan-
guage better than any that are in current use. Their beliefs are often justified, but few of
their designs ever leave the designer’s bottom drawer. You will not find them represented

in this book.

Programming language design is a serious business. Small errors in a language design can
be conducive to large errors in an actual program written in the language, and even small
errors in programs can have large and extremely costly consequences. The vulnerabilities
of widely used software have repeatedly allowed attack by malware to cause billions of
dollars of damage to the world economy. The safety and security of programming lan-
guages is a recurrent theme of this book.

vii

viii

Programming language design is an unpredictable adventure. Languages designed for uni-
versal application, even when supported and sponsored by vast organisations, end up
sometimes in just a niche market. In contrast, languages designed for limited or local use
can win a broad clientele, sometimes in environments and for applications that their
designers never dreamed of. This book concentrates on languages of the latter kind.

These successful languages share a significant characteristic: each of them is the brainchild
of a single person or a small team of like-minded enthusiasts. Their designers are master-
minds of programming; they have the experience, the vision, the energy, the persistence,
and the sheer genius to drive the language through its initial implementation, through its
evolution in the light of experience, and through its standardisation by usage (de facto)

and by committee (de jure).

In this book the reader will meet this collection of masterminds in person. Each of them
has granted an extended interview, telling the story of his language and the factors that lie
behind its success. The combined role of good decisions and good luck is frankly acknowl-
edged. And finally, the publication of the actual words spoken in the interview gives an
insight into the personality and motivations of the designer, which is as fascinating as the

language design itself.
—Sir Tony Hoare

Sir Tony Hoare, winner of an ACM Turing Award and a Kyoto Award, has been a leader in research
into computing algorithms and programming languages for 50 years. His first academic paper, writ-
terr in 1969, explored the idea of proving the correctness of programs, and suggested that a goal of pro-
gramming language desigin was to make it easier to write correct programs. He is delighted to see the
idea spread gradually among programming language designers.

FOREWORD

Preface

WRITING SOFTWARE IS HARD— AT LEAST, WRITING SOFTWARE THAT STANDS UP UNDER TESTS, TIME,
and different environments is hard. Not only has the software engineering field struggled
to make writing software easier over the past five decades, but languages have been
designed to make it easier. But what makes it hard in the first place?

Most of the books and the papers that claim to address this problem talk about architec-
ture, requirements, and similar topics that focus on the seffware. What if the hard part was
in the writing? To put it another way, what if we saw our jobs as programmers more in

terms of communication—/angiuage—and less in terms of engineering?

Children learn to talk in their first years of life, and we start teaching them how to read
and write when they are five or six years old. I don’t know any great writer who learned
to read and write as an adult. Do you know any great programmer who learned to pro-
gram late in life?

And if children can learn foreign languages much more easily than adults, what does this

tell us about learning to program—an activity involving a new language?

X

Imagine that you are studying a foreign language and you don’t know the name of an
object. You can describe it with the words that you know, hoping someone will under-
stand what you mean. Isn’t this what we do every day with software? We describe the
object we have in our mind with a programming language, hoping the description will be
clear enough to the compiler or interpreter. If something doesn’t work, we bring up the
picture again in our mind and try to understand what we missed or misdescribed.

With these questions in mind, I chose to launch a series of investigations into why a pro-
gramming language is created, how it’s technically developed, how it’s taught and

learned, and how it evolves over time.

Shane and I had the great privilege to let 27 great designers guide us through our journey,

so that we have been able to collect their wisdom and experience for you.

In Masterminds of Programming, you will discover some of the thinking and steps needed to
build a successtul language, what makes it popular, and how to approach the current
problems that its programmers are facing. So if you want to learn more about successful

programming language design, this book surely can help you.

If you are looking for inspiring thoughts regarding software and programming languages,
you will need a highlighter, or maybe two, because I promise that you will find plenty of

them throughout these pages.

—Federico Biancuzzi

Organization of the Material

The chapters in this book are ordered to provide a varied and provocative perspective as

you travel through it. Savor the interviews and return often.

Chapter 1, C++, interviews Bjarne Stroustrup.

Chapter 2, Python, interviews Guido van Rossum.

Chapter 3, APL, interviews Adin D. Falkoff.

Chapter 4, Forth, interviews Charles H. Moore.

Chapter 5, BASIC, interviews Thomas E. Kurtz.

Chapter 6, AWK, interviews Alfred Aho, Peter Weinberger, and Brian Kernighan.
Chapter 7, Lua, interviews Luiz Henrique de Figueiredo and Roberto Ierusalimschy.

Chapter 8, Haskell, interviews Simon Peyton Jones, Paul Hudak, Philip Wadler, and John
Hughes.

Chapter 9, ML, interviews Robin Milner.

Chapter 10, SQL, interviews Don Chamberlin.

PREFACE

Chapter 11, Objective-C, interviews Tom Love and Brad Cox.

Chapter 12, Java, interviews James Gosling.

Chapter 13, C#, interviews Anders Hejlsberg.

Chapter 14, UML, interviews Ivar Jacobson, James Rumbaugh, and Grady Booch.
Chapter 15, Perl, interviews Larry Wall.

Chapter 16, PostScript, interviews Charles Geschke and John Warnock.

Chapter 17, Eiffel, interviews Bertrand Meyer.

Contributors lists the biographies of all the contributors.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, lilenames, and utilities.

Constant width

Indicates the contents of computer files and generally anything found in programs.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page tor this book, where we list errata, examples, and any additional

information. You can access this page at:
http:/fwww.oreilly.com/catalog/9780596515171

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’'Reilly

Network, see our website at:

http:/fwww.oreilly.com

PREFACE xi

Safari Books Online

s When you see a Safari® Books Online icon on the cover of your favorite

(1]

Safa rl technology book, that means the book is available online through the
Books Online O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters, and
find quick answers when you need the most accurate, current information. Try it for free

at fittp://my.safaribooksonline.com.

xii PREFACE

CHAPTER ONE

C++

C++ occupies an interesting space among languages:itis built on the foundation of
C, incorporating object-orientation ideas from Simula; standardized by ISO; and
designed with the mantras “you don’t pay for what you don’t use” and “support
user-defined and built-in types equally well.” Although popularized in the 80s
and 90s for OO and GUI programming, one of its greatest contributions to software
is its pervasive generic programming techniques, exemplified in its Standard Tem-
plateLibrary. Newer languages such as Javaand C# have attempted to replace C++,
butan upcomingrevision of the C++ standard adds new and long-awaited fea-
tures. Bjarne Stroustrup is the creator of the language and still one of its sirongest
advocates.

Design Decisions

Why did you choose to extend an existing language instead of creating a new one?

Bjarne Stroustrup: When I started—in 1979—my purpose was to help programmers
build systems. It still is. To provide genuine help in solving a problem, rather than being
just an academic exercise, a language must be complete for the application domain. That
is, a non-research language exists to solve a problem. The problems I was addressing
related to operating system design, networking, and simulation. I—and my colleagues—
needed a language that could express program organization as could be done in Simula
(that’s what people tend to call object-oriented programming), but also write efficient
low-level code, as could be done in C. No language that could do both existed in 1979, or
[would have used it. I didn’t particularly want to design a new programming language; I
just wanted to help solve a few problems.

Given that, building on an existing language makes a lot of sense. From the base language,
you get a basic syntactic and semantic structure, you get useful libraries, and you become
part of a culture. Had I not built on C, I would have based C++ on some other language.
Why C? I had Dennis Ritchie, Brian Kernighan, and other Unix greats just down (or
across) the hall from me in Bell Labs” Computer Science Research Center, so the question

may seem redundant. But it was a question I took seriously.

In particular, C’s type system was informal and weakly enforced (as Dennis Ritchie said,
“C is a strongly typed, weakly checked language”). The “weakly checked” part worried me
and causes problems for C++ programmers to this day. Also, C wasn’t the widely used lan-
guage it is today. Basing C++ on C was an expression of faith in the model of computation
that underlies C (the “strongly typed” part) and an expression of trust in my colleagues.
The choice was made based on knowledge of most higher-level programming languages
used for systems programming at the time (both as a user and as an implementer). It is
worth remembering that this was a time when most work “close to the hardware” and
requiring serious performance was still done in assembler. Unix was a major breakthrough in
many ways, including its use of C for even the most demanding systems programming tasks.

So, I chose C’s basic model of the machine over better-checked type systems. What I really
wanted as the framework for programs was Simula’s classes, so I mapped those into the C
model of memory and computation. The result was something that was extremely expres-
sive and flexible, yet ran at a speed that challenged assembler without a massive runtime

support system.

Why did you choose to support multiple paradigms?

Bjarne: Because a combination of programming styles often leads to the best code, where
“best” means code that most directly expresses the design, runs faster, is most maintain-
able, etc. When people challenge that statement, they usually do so by either defining their
favorite programming style to include every useful construct (e.g., “generic programming is
simply a form of 00”) or excluding application areas (e.g., “everybody has a 1GHz, 1GB

machine”).

CHAPTER ONE

Java focuses solely on object-oriented programming. Does this make Java code more
complex in some cases where C++ can instead take advantage of ¢eneric programming?

Bjarne: Well, the Java designers—and probably the Java marketers even more so—
emphasized OO to the point where it became absurd. When Java first appeared, claiming
purity and simplicity, [predicted that if it succeeded Java would grow significantly in size
and complexity. It did.

For example, using casts to convert from Object when getting a value out of a container
(e.g., (Apple)c.get(i)) is an absurd consequence of not being able to state what type the
objects in the container is supposed have. It's verbose and inefficient. Now Java has gener-
ics, so it’s just a bit slow. Other examples of increased language complexity (helping the

programmer) are enumerations, reflection, and inner classes.

The simple fact is that complexity will emerge somewhere, if not in the language defini-
tion, then in thousands of applications and libraries. Similarly, Java’s obsession with put-
ting every algorithm (operation) into a class leads to absurdities like classes with no data
consisting exclusively of static functions. There are reasons why math uses f(x) and f(x,y)
rather than x.f(), x.f(y), and (x,y).f()—the latter is an attempt to express the idea of a

“truly object-oriented method” of two arguments and to avoid the inherent asymmetry of
x.F(y).

C++ addresses many of the logical as well as the notational problems with object orienta-
tion through a combination of data abstraction and generic programming techniques. A
classical example is vector<T> where T can be any type that can be copied—including built-
in types, pointers to OO hierarchies, and user-defined types, such as strings and complex
numbers. This is all done without adding runtime overheads, placing restrictions on data
layouts, or having special rules for standard library components. Another example that
does not fit the classical single-dispatch hierarchy model of OO is an operation that
requires access to two classes, such as operator*(Matrix,Vector), which is not naturally a
“method” of either class.

One fundamental difference between C++ and Java is the way pointers are implemented.
In some ways, you could say that Java doesn’t have real pointers. What differences are
there between the two approaches?

Bjarne: Well, of course Java has pointers. In fact, just about everything in Java is implic-
itly a pointer. They just call them references. There are advantages to having pointers
implicit as well as disadvantages. Separately, there are advantages to having true local
objects (as in C++) as well as disadvantages.

C++’s choice to support stack-allocated local variables and true member variables of every
type gives nice uniform semantics, supports the notion of value semantics well, gives com-
pact layout and minimal access costs, and is the basis for C++'s support for general

resource management. That’s major, and Java’s pervasive and implicit use of pointers (aka

references) closes the door to all that.

Consider the layout tradeoff: in C++ a vector<complex>(10) is represented as a handle to an
array of 10 complex numbers on the free store. In all, that’s 25 words: 3 words for the vec-
tor, plus 20 words for the complex numbers, plus a 2-word header for the array on the
free store (heap). The equivalent in Java (for a user-defined container of objects of user-
defined types) would be 56 words: 1 for the reference to the container, plus 3 for the con-
tainer, plus 10 for the references to the objects, plus 20 for the objects, plus 24 for the free
store headers for the 12 independently allocated objects. Obviously, these numbers are
approximate because the free store (heap) overhead is implementation defined in both
languages. However, the conclusion is clear: by making references ubiquitous and implicit,
Java may have simplified the programming model and the garbage collector implementa-
tion, but it has increased the memory overhead dramatically—and increased the memory

access cost (requiring more indirect accesses) and allocation overheads proportionally.

What Java doesn’t have—and good for Java for that—is C and C++’s ability to misuse
pointers through pointer arithmetic. Well-written C++ doesn’t sulffer from that problem
either: people use higher-level abstractions, such as iostreams, containers, and algorithms,
rather than fiddling with pointers. Essentially all arrays and most pointers belong deep in
implementations that most programmers don’t have to see. Unfortunately, there is also

lots of poorly written and unnecessarily low-level C++ around.

There is, however, an important place where pointers—and pointer manipulation—is a
boon: the direct and efficient expression of data structures. Java’s references are lacking
here; for example, you can’t express a swap operation in Java. Another example is simply
the use of pointers for low-level direct access to (real) memory; for every system, some
language has to do that, and often that language is C++.

The “dark side” of having pointers (and C-style arrays) is of course the potential for mis-
use: buffer overruns, pointers into deleted memory, uninitialized pointers, etc. However,
in well-written C++ that is not a major problem. You simply don’t get those problems with
pointers and arrays used within abstractions (such as vector, string, map, etc.). Scoped
resource management takes care of most needs; smart pointers and specialized handles
can be used to deal with most of the rest. People whose experience is primarily C or old-
style C++ find this hard to believe, but scope-based resource management is an immensely
powerful tool and user-defined with suitable operations can address classical problems
with less code than the old insecure hacks. For example, this is the simplest form of the
classical buffer overrun and security problem:

char buf[MAX_BUF];
gets(buf); // Yuck!

Use a standard library string and the problem goes away:

string s;
cin >» s; /! read whitespace separated characters

These are obviously trivial examples, but suitable “strings” and “containers” can be crafted

to meet essentially all needs, and the standard library provides a good set to start with.

4 CHAPTER ONE

What do you mean by “value semantics” and “éeneral resource management”?

Bjarne: “Value semantics” is commonly used to refer to classes where the objects have the
property that when you copy one, you get two independent copies (with the same value).

For example:

X x1 = a;

X x2 = xi; // now x1==x2
x1 = b; // changes x1 but not x2
// now x1l=x2 (provided X(a)!=X(b))

This is of course what we have for usual numeric types, such as ints, doubles, complex
numbers, and mathematical abstractions, such as vectors. This is a most useful notion,
which C++ supports for built-in types and for any user-defined type for which we want it.
This contrast to Java where built-in types such and char and int follow it, but user-delined
types do not, and indeed cannot. As in Simula, all user-defined types in Java have refer-
ence semantics. In C++4, a programmer can support either, as the desired semantics of a
type requires. C# (incompletely) follows C++ in supporting user-defined types with value
semantics.

“General resource management” refers to the popular technique of having a resource (e.g.,
a file handle or a lock) owned by an object. If that object is a scoped variable, the lifetime
of the variable puts a maximum limit on the time the resource is held. Typically, a con-
structor acquires the resource and the destructor releases it. This is often called RAII
(Resource Acquisition Is Initialization) and integrates beautifully with error handling
using exceptions. Obviously, not every resource can be handled in this way, but many

can, and for those, resource management becomes implicit and efficient.

“Close to the hardware” seems to be a guiding principle in designing C++. Is it fair to say
that C++ was designed more bottom-up than many languages, which are designed top-
down, in the sense that they try to provide abstractly rational constructs and force the
compiler to fit these constructs to the available computing environment?

Bjarne: | think top-down and bottom-up are the wrong way to characterize those design
decisions. In the context of C++ and other languages, “close to the hardware” means that
the model of computation is that of the computer—sequences of objects in memory and

operations as defined on objects of fixed size—rather than some mathematical abstraction.
This is true for both C++ and Java, but not for functional languages. C++ differs from Java

in that its underlying machine is the real machine rather than a single abstract machine.

The real problem is how to get from the human conception of problems and solutions to
the machine’s limited world. You can “ignore” the human concerns and end up with
machine code (or the glorified machine code that is bad C code). You can ignore the
machine and come up with a beautiful abstraction that can do anything at extraordinary
cost and/or lack of intellectual rigor. C++ is an attempt to give a very direct access to hard-
ware when you need it (e.g., pointers and arrays) while providing extensive abstraction

mechanisms to allow high-level ideas to be expressed (e.g., class hierarchies and templates).

That said, there has been a consistent concern for runtime and space performance
throughout the development of C++ and its libraries. This pervades both the basic lan-

guage facilities and the abstraction facilities in ways that are not shared by all languages.

Using the Language

How do you debug? Do you have any suggestion for C++ developers?

Bjarne: By introspection. I study the program for so long and poke at it more or less sys-
tematically for so long that T have sufficient understanding to provide an educated guess

where the bug is.

Testing is something else, and so is design to minimize errors. I intensely dislike debugging
and will go a long way to avoid it. If I am the designer of a piece of software, I build it
around interfaces and invariants so that it is hard to get seriously bad code to compile and
run incorrectly. Then, 1 try hard to make it testable. Testing is the systematic search for
errors. It is hard to systematically test badly structured systems, so I again recommend a
clean structure of the code. Testing can be automated and is repeatable in a way that
debugging is not. Having flocks of pigeons randomly peck at the screen to see if they can
break a GUI-based application is no way to ensure quality systems.

Advice? It is hard to give general advice because the best techniques often depend on
what is feasible for a given system in a given development environment. However: iden-
tify key interfaces that can be systematically tested and write test scripts that exercise
those. Automate as much as you can and run those automated tests often. And do keep
regression tests and run them frequently. Make sure that every entry point into the sys-
tem and every output can be systematically tested. Compose your system out of quality

components: monolithic programs are unnecessarily hard to understand and test.

At what level is it necessary to improve the security of software?

Bjarne: First of all: security is a systems issue. No localized or partial remedy will by itself
succeed. Remember, even it all of your code was perfect, I could probably still gain access
to your stored secrets if I could steal your computer or the storage device holding your
backup. Secondly, security is a cost/benefit game: perfect security is probably beyond the
reach for most of us, but I can probably protect my system sufficiently that “bad guys” will
consider their time better spent trying to break into someone else’s system. Actually, T pre-

fer not to keep important secrets online and leave serious security to the experts.

But what about programming languages and programming techniques? There is a danger-
ous tendency to assume that every line of code has to be “secure” (whatever that means),
even assuming that someone with bad intentions messes with some other part of the sys-
tem. This is a most dangerous notion that leaves the code littered with unsystematic tests
guarding against ill-formulated imagined threats. It also makes code ugly, large, and slow.
“Ugly” leaves places for bugs to hide, “large” ensures incomplete testing, and “slow”
encourages the use of shortcuts and dirty tricks that are among the most fertile sources of

security holes.

6 CHAPTER ONE

[think the only permanent solution to security problems is in a simple security model applied
systematically by quality hardware and/or software to selected interfaces. There has to be a
place behind a barrier where code can be written simply, elegantly, and efficiently without
worrying about random pieces of code abusing random pieces of other code. Only then can
we focus on correctness, quality, and serious performance. The idea that anyone can provide
an untrusted callback, plug-in, overrider, whatever, is plain silly. We have to distinguish

between code that defends against fraud, and code that simply is protected against accidents.

I do not think that you can design a programming language that is completely secure and
also useful for real-world systems. Obviously, that depends on the meaning of “secure”
and “system.” You could possibly achieve security in a domain-specific language, but my
main domain of interest is systems programming (in a very broad meaning of that term),
including embedded systems programming. I do think that type safety can and will be
improved over what is offered by C++, but that is only part of the problem: type safety
does not equal security. People who write C++ using lots of unencapsulated arrays, casts,
and unstructured new and delete operations are asking for trouble. They are stuck in an 80s
style of programming. To use C++ well, you have to adopt a style that minimizes type safety

violations and manage resources (including memory) in a simple and systematic way.

Would you recommend C++ for some systems where practitioners are reluctant to use it,
such as system software and embedded applications?

Bjarne: Certainly, [do recommend it and not everybody is reluctant. In fact, I don’t see
much reluctance in those areas beyond the natural reluctance to try something new in
established organizations. Rather, I see steady and significant growth in C++ use. For exam-
ple, I helped write the coding guidelines for the mission-critical software for Lockheed Mar-
tin’s Joint Strike Fighter. That’s an “all C++ plane.” You may not be particularly keen on
military planes, but there is nothing particularly military about the way C++ is used and well
over 100,000 copies of the JSF++ coding rules have been downloaded from my home pages
in less than a year, mostly by nonmilitary embedded systems developers, as far as I can tell.

C++ has been used for embedded systems since 1984, many useful gadgets have been pro-
grammed in C++, and its use appears to be rapidly increasing. Examples are mobile

phones using Symbian or Motorola, the iPods, and GPS systems. I particularly like the use
of C++ on the Mars rovers: the scene analysis and autonomous driving subsystems, much

ol the earth-based communication systems, and the image processing.

People who are convinced that C is necessarily more efficient than C++ might like to have
a look at my paper entitled “Learning Standard C++ as a New Language” [C/C++ Users
Journal, May 1999], which describes a bit of design philosophy and shows the result of a
few simple experiments. Also, the ISO C++ standards committee issued a technical report
on performance that addresses a lot of issues and myths relating to the use of C++ where
performance matters (you can find it online searching for “Technical Report on C++ Per-

formance”).” In particular, that report addresses embedded systems issues.

* hittp:fiwww.open-sitd.org/ITCI fsc22/wq2 1 /docs/TR1801 5. pdf

Kernels like Linux’s or BSD’s are still written in C. Why haven’t they moved to C++7 Is it
something in the OO paradigm?

Bjarne: It’s mostly conservatism and inertia. In addition, GCC was slow to mature. Some
people in the C community seem to maintain an almost willful ignorance based on
decade-old experiences. Other operating systems and much systems programming and
even hard real-time and safety-critical code has been written in C++ for decades. Consider
some examples: Symbian, IBM’s 05/400 and K42, BeOS, and parts of Windows. In gen-
eral, there is a lot of open source C++ (e.g., KDE).

You seem to equate C++ use with OO. C++ is not and was never meant to be just an
object-oriented programming language. I wrote a paper entitled “Why C++ is not just an
Object-Oriented Programming Language” in 1995; it is available online.” The idea was and is
to support multiple programming styles (“paradigms,” if you feel like using long words) and
their combinations. The most relevant other paradigm in the context of high-performance
and close-to-the-hardware use is generic programming (sometimes abbreviated to GP). The
ISO C++ standard library is itself more heavily GP than OO through its framework for
algorithms and containers (the STL). Generic programming in the typical C++ style relying
heavily on templates is widely used where you need both abstraction and performance.

[have never seen a program that could be written better in C than in C++. 1 don’t think
such a program could exist. If nothing else, you can write C++ in a style close to that of C.
There is nothing that requires you to go hog-wild with exceptions, class hierarchies, or
templates. A good programmer uses the more advanced features where they help more

directly to express ideas and do so without avoidable overheads.

Why should a programmer move his code from C to C++? What advantages would he
have using C++ as a generic programming language?

Bjarne: You seem to assume that code first was written in C and that the programmer
started out as a C programmer. For many—probably most—C++ programs and C++ pro-
grammers, that has not been the case for quite a while. Unfortunately, the “C first”
approach lingers in many curricula, but it is no longer something to take for granted.

Someone might switch from C to C++ because they found C++’s support for the styles of
programming usually done with C is better than C’s. The C++ type checking is stricter
(you can’t forget to declare a function or its argument types) and there is type-safe nota-
tional support for many common operations, such as object creation (including initializa-
tion) and constants. I have seen people do that and be very happy with the problems they
left behind. Usually, that’s done in combination with the adoption of some C++ libraries
that may or may not be considered object-oriented, such as the standard vector, a GUI

library, or some application-specific library.

* hitp://www.research.att.com/~bs/oopsla. pdf

CHAPTER ONE

Just using a simple user-defined type, such as vector, string, or complex, does not require a
paradigm shift. People can—if they so choose—use those just like the built-in types. Is
someone using std::vector “using ©0”? I would say no. Is someone using a C++ GUI
without actually adding new functionality “using 00”? I'm inclined to say yes, because
their use typically requires the users to understand and use inheritance.

Using C++ as “a generic-programming programming language” gives you the standard
containers and algorithms right out of box (as part of the standard library). That is major
leverage in many applications and a major step up in abstraction from C. Beyond that,
people can start to benefit from libraries, such as Boost, and start to appreciate some of the

functional programming techniques inherent in generic programming.

However, I think the question is slightly misleading. I don’t want to represent C++ as “an

00 language” or “a GP language”; rather, it is a language supporting:

¢ C-style programming
¢ Data abstraction
* Object-oriented programming

* Generic programming

Crucially, it supports programming styles that combines those (“multiparadigm program-
ming” if you must) and does so with a bias toward systems programming.

OOP and Concurrency

The average complexity and size (in number of lines of code) of software seems to grow
year after year. Does OOP scale well to this situation or just make things more
complicated? | have the feeling that the desire to make reusable objects makes things
more complicated and, in the end, it doubles the workload. First, you have to design a
reusable tool. Later, when you need to make a change, you have to write something that
exactly fits the gap left by the old part, and this means restrictions on the solution.

Bjarne: That’s a good description of a serious problem. OO is a powerful set of techniques
that can help, but to be a help, it must be used well and for problems where the tech-
niques have something to offer. A rather serious problem for all code relying on inherit-
ance with statically checked interfaces is that to design a good base class (an interface to
many, yet unknown, classes) we require a lot of foresight and experience. How does the
designer of the base class (abstract class, interface, whatever you choose to call it) know
that it specifies all that is needed for all classes that will be derived from it in the future?
How does the designer know that what is specified can be implemented reasonably by all
classes that will be derived from it in the future? How does the designer of the base class
know that what is specified will not seriously interfere with something that is needed by
some classes that will be derived from it in the future?

In general, we can’t know that. In an environment where we can enforce our design, peo-
ple will adapt—often by writing ugly workarounds. Where no one organization is in

charge, many incompatible interfaces emerge for essentially the same functionality.

Nothing can solve these problems in general, but generic programming seems to be an
answer in many important cases where the OO approach fails. A noteworthy example is
simply containers: we cannot express the notion of being an element well through an
inheritance hierarchy, and we can’t express the notion of being a container well through
an inheritance hierarchy. We can, however, provide effective solutions using generic pro-
gramming. The STL (as found in the C++ standard library) is an example.

Is this problem specific to C++, or does it afflict other programming languages as well?

Bjarne: The problem is common to all languages that rely on statically checked interfaces
to class hierarchies. Examples are C++, Java, and C#, but not dynamically typed lan-
guages, such as Smalltalk and Python. C++ addresses that problem through generic pro-
gramming, where the C++ containers and algorithms in standard library provide a good
example. The key language feature here is templates, providing a late type-checking
model that gives a compile time equivalent to what the dynamically typed languages do at
runtime. Java’s and C#’s recent addition of “generics” are attempts to follow C++'s lead
here, and are often—incorrectly, 1 think—claimed to improve upon templates.

“Refactoring” is especially popular as an attempt to address that problem by the brute
force technique of simply reorganizing the code when it has outlived its initial interface

design.

If this is a problem of OO in ¢eneral, how can we be sure that the advantages of OO are
more valuable than the disadvantages? Maybe the problem that a good OO design is
difficult to achieve is the root of all other problems.

Bjarne: The fact that there is a problem in some or even many cases doesn’t change the
fact that many beautiful, efficient, and maintainable systems have been written in such
languages. Object-oriented design is one of the fundamental ways of designing systems

and statically checked interfaces provide advantages as well as this problem.

There is no one “root of all evil” in software development. Design is hard in many ways.
People tend to underestimate the intellectual and practical difficulties involved in building
a significant system involving software. It is not and will not be reduced to a simple
mechanical “assembly line” process. Creativity, engineering principles, and evolutionary

change are needed to create a satisfactory large system.

Are there links between the OO paradiém and concurrency? Does the current pervasive
need for improved concurrency change the implementation of designs or the nature of
00 designs?

Bjarne: There is a very old link between object-oriented programming and concur-
rency. Simula 67, the programming language that first directly supported object-

oriented programming, also provided a mechanism for expressing concurrent activities.

10 CHAPTER ONE

The first C++ library was a library supporting what today we would call threads. At Bell
Labs, we ran C++ on a six-processor machine in 1988 and we were not alone in such uses.
In the 90s there were at least a couple of dozen experimental C++ dialects and libraries
attacking problems related to distributed and parallel programming. The current excite-
ment about multicores isn’t my first encounter with concurrency. In fact, distributed com-
puting was my Ph.D. topic and I have followed that field ever since.

However, people who first consider concurrency, multicores, etc., often confuse them-
selves by simply underestimating the cost of running an activity on a different processor.
The cost of starting an activity on another processor (core) and for that activity to access
data in the “calling processor’s” memory (either copying or accessing “remotely”) can be
1,000 times (or more) higher than we are used to for a function call. Also, the error possi-
bilities are significantly different as soon as you introduce concurrency. To effectively
exploit the concurrency offered by the hardware, we need to rethink the organization of

our software.

Fortunately, but confusingly, we have decades” worth of research to help us. Basically,
there is so much research that it’s just about impossible to determine what's real, let alone
what’s best. A good place to start looking would be the HOPL-III paper about Emerald.
That language was the first to explore the interaction between language issues and sys-
tems issues, taking cost into account. It is also important to distinguish between data par-
allel programming as has been done for decades—mostly in FORTRAN—for scientific
calculations, and the use of communicating units of “ordinary sequential code” (e.g., pro-
cesses and threads) on many processors. I think that for broad acceptance in this brave
new world of many “cores” and clusters, a programming system must support both kinds
of concurrency, and probably several varieties of each. This is not at all easy, and the
issues go well beyond traditional programming language issues—we will end up looking at

language, systems, and applications issues in combination.

Is C++ ready for concurrency? Obviously we can create libraries to handle everything,
but does the language and standard library need a serious review with concurrency in
mind?

Bjarne: Almost. C++0x will be. To be ready for concurrency, a language first has to have a
precisely specified memory model to allow compiler writers to take advantage of modern

hardware (with deep pipelines, large caches, branch-prediction buffers, static and dynamic
instruction reordering, etc.). Then, we need a few small language extensions: thread-local
storage and atomic data types. Then, we can add support for concurrency as libraries. Nat-
urally, the first new standard library will be a threads library allowing portable program-

ming across systems such as Linux and Windows. We have of course had such libraries for

many years, but not standard ones.

Threads plus some form of locking to avoid data races is just about the worst way to
directly exploit concurrency, but C++ needs that to support existing applications and to
maintain its role as a systems programming language on traditional operating systems.

Prototypes of this library exist—based on many years of active use.

C++

11

12

One key issue for concurrency is how you “package up” a task to be executed concur-
rently with other tasks. In C++, 1 suspect the answer will be “as a function object.” The
object can contain whatever data is needed and be passed around as needed. C++98 han-
dles that well for named operations (named classes from which we instantiate function
objects), and the technique is ubiquitous for parameterization in generic libraries (e.g., the
STL). C++0x makes it easier to write simple “one-off” function objects by providing
“lambda functions” that can be written in expression contexts (e.g., as function argu-

ments) and generates function objects (“closures”) appropriately.

The next steps are more interesting. Immediately post-C++0x, the committee plans for a
technical report on libraries. This will almost certainly provide for thread pools and some
form of work stealing. That is, there will be a standard mechanism for a user to request
relatively small units of work (“tasks”) to be done concurrently without fiddling with
thread creation, cancellation, locking, etc., probably built with function objects as tasks.
Also, there will be facilities for communicating between geographically remote processes

through sockets, iostreams, and so on, rather like boost: :networking.

In my opinion, much of what is interesting about concurrency will appear as multiple

libraries supporting logically distinct concurrency models.

Many modern systems are componentized and spread out over a network; the age of
web applications and mashups may accentuate that trend. Should a language reflect
those aspects of the network?

Bjarne: There are many forms of concurrency. Some are aimed at improving the through-
put or response time of a program on a single computer or cluster, some are aimed at deal-
ing with geographical distribution, and some are below the level usually considered by

programmers (pipelining, caching, etc.).

C++0x will provide a set of facilities and guarantees that saves programmers from the
lowest-level details by providing a “contract” between machine architects and compiler
writers—a “machine model.” It will also provide a threads library providing a basic map-
ping of code to processors. On this basis, other models can be provided by libraries. |
would have liked to see some simpler-to-use, higher-level concurrency models supported
in the C++0x standard library, but that now appears unlikely. Later—hopefully, soon after
C++0x—we will get more libraries specified in a technical report: thread pools and futures,
and a library for I/0 streams over wide area networks (e.g., TCP/IP). These libraries exist,

but not everyone considers them well enough specified for the standard.

Years ago, [hoped that C++0x would address some of C++'s long-standing problems with
distribution by specifying a standard form of marshalling (or serialization), but that didn’t
happen. So, the C++ community will have to keep addressing the higher levels of distrib-
uted computing and distributed application building through nonstandard libraries and/or
frameworks (e.g., CORBA or .NET).

The very first C++ library (really the very first C with classes) library, provided a light-
weight form of concurrency and over the years, hundreds of libraries and frameworks for

CHAPTER ONE

concurrent, parallel, and distributed computing have been built in C++, but the commu-
nity has not been able to agree on standards. I suspect that part of the problem is that it
takes a lot of money to do something major in this field, and that the big players preferred
to spend their money on their own proprietary libraries, frameworks, and languages. That
has not been good for the C++ community as a whole.

Future

Will we ever see C++ 2.0?

Bjarne: That depends on what you mean by “C++ 2.0.” If you mean a new language built
more or less from scratch providing all of the best of C++ but none of what’s bad (for some
definitions of “good” and “bad”), the answer is “I don’t know.” I would like to see a major
new language in the C++ tradition, but I don’t see one on the horizon, so let me concen-
trate on the next ISO C++ standard, nicknamed C++0x.

It will be a “C++ 2.0” to many, because it will supply new language features and new stan-
dard libraries, but it will be almost 100% compatible with C++98. We call it C++0x, hoping
that it'll become C++09. If we are slow—so that that x has to become hexadecimal—I (and
others) will be quite sad and embarrassed.

C++0x will be almost 100% compatible with C++98. We have no particular desire to
break your code. The most significant incompatibilities come from the use of a few new
keywords, such as static_assert, constexpr, and concept. We have tried to minimize impact
by choosing new keywords that are not heavily used. The major improvements are:

» Support for modern machine architectures and concurrency: a machine model, a
thread library, thread local storage and atomic operations, and an asynchronous value

return mechanism (“futures”).

* Better support for generic programming: concepts (a type system for types, combina-
tions of types, and combinations of types and integers) to give better checking of tem-
plate definitions and uses, and better overloading of templates. Type deduction based
on initializers (auto), generalized initializer lists, generalized constant expressions
(constexpr), lambda expressions, and more.

« Many “minor” language extensions, such as static assertions, move semantics,
improved enumerations, a name for the null pointer (nullptr), etc.

e New standard libraries for regular expression matching, hash tables (e.g., unordered_map),
“smart” pointers, etc.

For complete details, see the website of the “C++ Standards Committee.”” For an over-

view, see my online C++0x FAQ.‘L

*http:/iwww.open-std.org/jtcl /sc22/wg2 1/
1 hitp:/twww.research.att.com/~bs/C++0xFAQ. html

C++

13

Please note that when I talk about “not breaking code,” I am referring to the core language
and the standard library. Old code will of course be broken if it uses nonstandard exten-
sions from some compiler provider or antique nonstandard libraries. In my experience,
when people complain about “broken code” or “instability” they are referring to propri-
etary features and libraries. For example, if you change operating systems and didn’t use one
of the portable GUI libraries, you probably have some work to do on the user interface code.

What stops you from creating a major new language?

Bjarne: Some key questions soon emerge:

* What problem would the new language solve?
* Who would it solve problems for?
¢ What dramatically new could be provided (compared to every existing language)?

e Could the new language be effectively deployed (in a world with many well-supported

languages)?

* Would designing a new language simply be a pleasant distraction from the hard work

of helping people build better real-world tools and systems?
So far, I have not been able to answer those questions to my satisfaction.

That doesn’t mean that I think that C++ is the perfect language of its kind. It is not; I'm
convinced that you could design a language about a tenth of the size of C++ (whichever
way you measure size) providing roughly what C++ does. However, there has to be more
to a new language that just doing what an existing language can, but slightly better and

slightly more elegantly.

What do the lessons about the invention, further development, and adoption of your
language say to people developing computer systems today and in the foreseeable
future?

Bjarne: That's a big question: can we learn from history? If so, how? What kind of lessons
can we learn? During the early development of C++, I articulated a set of “rules of
thumb,” which you can find in The Design and Evolution of C++ [Addison-Wesley], and also
discussed in my two HOPL papers. Clearly, any serious language design project needs a set
of principles, and as soon as possible, these principles need to be articulated. That’s actu-
ally a conclusion from the C++ experience: | didn’t articulate C++’s design principles early
enough and didn’t get those principles understood widely enough. As a result, many peo-
ple invented their own rationales for C++'s design; some of those were pretty amazing and
led to much confusion. To this day, some see C++ as little more than a failed attempt to
design something like Smalltalk (no, C++ was not supposed to be “like Smalltalk”; it fol-
lows the Simula model of O0), or as nothing but an attempt to remedy some flaws in C

for writing C-style code (no, C++ was not supposed to be just C with a few tweaks).

The purpose of a (nonexperimental) programming language is to help build good sys-
tems. It follows that notions of system design and language design are closely related.

14 CHAPTER ONE

My definition of “good” in this context is basically “correct, maintainable, and providing
acceptable resource usage.” The obvious missing component is “easy to write,” but for the
kind of systems T think most about, that’s secondary. “RAD development” is not my ideal.
It can be as important to say what is not a primary aim as to state what is. For example, 1
have nothing against rapid development—nobody in their right mind wants to spend
more time than necessary on a project—but Id rather have lack of restrictions on applica-
tion areas and performance. My aim for C++ was and is direct expression of ideas, result-
ing in code that can be efficient in time and space.

C and C++ have provided stability over decades. That has been immensely important to
their industrial users. I have small programs that have been essentially unchanged since
the early 80s. There is a price to pay for such stability, but languages that don’t provide it
are simply unsuitable for large, long-lived projects. Corporate languages and languages
that try to follow trends closely tend to fail miserably here, causing a lot of misery along
the way.

This leads to thinking about how to manage evolution. How much can be changed? What
is the granularity of change? Changing a language every year or so as new releases of a
product are released is too ad hoc and leads to a series of de facto subsets, discarded librar-
ies and language features, and/or massive upgrade efforts. Also, a year is simply not sutfi-
cient gestation period for significant features, so the approach leads to half-baked solutions
and dead ends. On the other hand, the 10-year cycle of 1SO standardized languages, such
as C and C++, is too long and leads to parts of the community (including parts of the com-
mittee) fossilizing.

A successful language develops a community: the community shares techniques, tools,
and libraries. Corporate languages have an inherent advantage here: they can buy market
share with marketing, conferences, and “free” libraries. This investment can pay off in
terms of others adding significantly, making the community larger and more vibrant.
Sun’s efforts with Java showed how amateurish and underfinanced every previous effort
to establish a (more or less) general-purpose language had been. The U.S. Department of
Defense’s efforts to establish Ada as a dominant language was a sharp contrast, as were the

unfinanced efforts by me and my [riends to establish C++.

I can’t say that I approve of some of the Java tactics, such as selling top-down to nonpro-
gramming executives, but it shows what can be done. Noncorporate successes include the
Python and Perl communities. The successes at community building around C++ have
been too few and too limited, given the size of the community. The ACCU conferences are
great, but why haven’t there been a continuous series of huge international C++ confer-
ences since 1986 or so? The Boost libraries are great, but why hasn’t there been a central
repository for C++ libraries since 1986 or so? There are thousands of open source C++
libraries in use. I don’t even know of a comprehensive list of commercial C++ libraries. 1
won't start answering those questions, but will just point out that any new language must
somehow manage the centrifugal forces in a large community, or suffer pretty severe

consequences.

C++

15

A general-purpose language needs the input from and approval of several communities,
such as, industrial programmers, educators, academic researchers, industrial researchers,
and the open source community. These communities are not disjoint, but individual sub-
communities often see themselves as self-sufficient, in possession of knowledge of what is
right and in conflict with other communities that for some reason “don’t get it.” This can
be a significant practical problem. For example, parts of the open source community have
opposed the use of C++ because “it’s a Microsoft language” (it isn’t) or “AT&T owns it” (it
doesn’t), whereas some major industrial players have considered it a problem with C++
that they don’t own it.

This really crucial problem here is that many subcommunities push a limited and paro-
chial view of “what programming really is” and “what is really needed”: “if everybody just
did things the right way, there’d be no problem.” The real problem is to balance the vari-
ous needs to create a larger and more varied community. As people grow and face new
challenges, the generality and flexibility of a language start to matter more than providing

optimal solutions to a limited range of problems.

To get to technical points, I still think that a flexible, extensible, and general static type
system is great. My reading of the C++ experience reinforces that view. I am also very

keen on genuine local variables of user-defined types: the C++ techniques for handling
general resources based on scoped variables have been very effective compared to just

about anything. Constructors and destructors, often used together with RAII, can yield
very elegant and efficient code.

Teaching

You left industry to become an academic. Why?

Bjarne: Actually, T haven’t completely left industry, because I maintain a link to AT&T
Labs as an AT&T fellow, and spend much time each year with industry people. T consider
my connection with industry essential because that’s what keeps my work anchored in

reality.

[went to Texas A&M University as a professor five years ago because (after almost 25
years in “The Labs”) I felt a need for a change and because I thought I had something to
contribute in the area of education. 1 also entertained some rather idealistic ideas about
doing more fundamental research after my years of very practical research and design.

Much computer science research is either too remote from everyday problems (even from
conjectured future everyday problems), or so submerged in such everyday problems that
it becomes little more than technology transter. Obviously, I have nothing against tech-
nology transfer (we badly need it), but there ought to be strong feedback loops from
industrial practice to advanced research. The short planning horizon of many in industry
and the demands of the academic publication/tenure race conspire to divert attention and
effort from some of the most critical problems.

16 CHAPTER ONE

During these years in academia, what did you learn about teaching programming to
beginners?

Bjarne: The most concrete result of my years in academia (in addition to the obligatory
academic papers) is a new textbook for teaching programming to people who have never
programmed before, Programming: Principles and Practice Using C++ [Addison-Wesley].

This is my first book for beginners. Before I went to academia, I simply didn’t know
enough beginners to write such a book. I did, however, feel that too many software devel-
opers were very poorly prepared for their tasks in industry and elsewhere. Now I have
taught (and helped to teach) programming to more than 1,200 beginners and I feel a bit

more certain that my ideas in this area can scale.

A beginner’s book must serve several purposes. Most fundamentally, it must provide a
good foundation for further learning (if successful, it will be the start of a lifelong effort)
and also provide some practical skills. Also, programming—and in general software devel-
opment—is not a purely theoretical skill, nor is it something you can do well without
learning some fundamental concepts. Unfortunately, far too often, teaching fails to main-
tain a balance between theory/principles and practicalities/techniques. Consequently, we
see people who basically despise programming (“mere coding”) and think that software
can be developed from first principles without any practical skills. Conversely, we see peo-
ple who are convinced that “good code” is everything and can be achieved with little more
than a quick look at an online manual and a lot of cutting and pasting; I have met pro-
grammers who considered K&R “too complicated and theoretical.” My opinion is that
both attitudes are far too extreme and lead to poorly structured, inefficient, and unmain-

tainable messes even when they do manage to produce minimally functioning code.

What is your opinion on code examples in textbooks? Should they include error/
exception checking? Should they be complete programs so that they can actually be
compiled and run?

Bjarne: [strongly prefer examples that in as few lines as possible illustrate an idea. Such
program fragments are often incomplete, though I insist that mine will compile and run it
embedded in suitable scaffolding code. Basically, my code presentation style is derived
from K&R. For my new book, all code examples will be available in a compilable form. In
the text, I vary between small fragments embedded in explanatory text and longer, more
complete, sections of code. In key places, I use both techniques for a single example to

allow the reader two looks at critical statements.

Some examples should be complete with error checking and all should reflect designs that
can be checked. In addition to the discussion of errors and error handling scattered
throughout the book, there are separate chapters on error handling and testing. I strongly
prefer examples derived from real-world programs. 1 really dislike artificial cute examples,
such as inheritance trees of animals and obtuse mathematical puzzles. Maybe I should add
a label to my book: “no cute cuddly animals were abused in this book’s examples.”

C++

17

Copyrighted material

CHAPTER TWO

Python

Pythonisa modern, general-purpose, high-levellanguage developed by Guido van
Rossum as a result of his work with the ABC programming languagde. Python’s phi-
losophy is pragmatic; its users often speak of the Zen of Python, strongly preferring
asingle obvious way to accomplish any task. Ports exist for VMs such as Microsoft's
CLR and the JVM, but the primary implementation is CPython, still developed by van
Rossum and other volunteers, who justreleased Python 3.0, abackward-incompatible
rethinking of parts of the language and its core libraries.

19

The Pythonic Way

What differences are there between developing a programming language and developing
a “common” software project?

Guido van Rossum: More than with most software projects, your most important users
are programmers themselves. This gives a language project a high level of “meta” content.
In the dependency tree of software projects, programming languages are pretty much at
the bottom—everything else depends on one or more languages. This also makes it hard
to change a language—an incompatible change affects so many dependents that it’s usu-
ally just not feasible. In other words, all mistakes, once released, are cast in stone. The ulti-
mate example of this is probably C++, which is burdened with compatibility requirements

that effectively require code written maybe 20 years ago to be still valid.

How do you debug a language?

Guido: You don’t. Language design is one area where agile development methodologies
just don’t make sense—unitil the language is stable, [ew people want to use it, and you
won’t find the bugs in the language definition until you have so many users that it’s too

late to change things.

Of course there’s plenty in the implementation that can be debugged like any old program,
but the language design itself pretty much requires careful design up front, because the

cost of bugs is so exorbitant.

How do you decide when a feature should go in a library as an extension or when it
needs to have support from the core language?

Guido: Historically, I've had a pretty good answer for that. One thing I noticed very early
on was that everybody wants their favorite feature added to the language, and most peo-
ple are relatively inexperienced about language design. Everybody is always proposing
“let’s add this to the language,” “let’s have a statement that does X.” In many cases, the
answer is, “Well, you can already do X or something almost like X by writing these two or
three lines of code, and it’s not all that difficult.” You can use a dictionary, or you can
combine a list and a tuple and a regular expression, or write a little metaclass—all of those
things. I may even have had the original version of this answer from Linus, who seems to
have a similar philosophy.

Telling people you can already do that and here is how is a first line of defense. The second
thing is, “Well, that’s a useful thing and we can probably write or you can probably write
your own module or class, and encapsulate that particular bit of abstraction.” Then the
next line of defense is, “OK, this looks so interesting and useful that we’ll actually accept it
as a new addition to the standard library, and it's going to be pure Python.” And then,
finally, there are things that just aren’t easy to do in pure Python and we’ll suggest or rec-
ommend how to turn them into a C extension. The C extensions are the last line of
defense before we have to admit, “Well, yeah, this is so useful and you really cannot do
this, so we’ll have to change the language.”

20 CHAPTER TWO

There are other criteria that determine whether it makes more sense to add something to
the language or it makes more sense to add something to the library, because if it has to do
with the semantics of namespaces or that kind of stuff, there’s really nothing you can do
besides changing the language. On the other hand, the extension mechanism was made
powerful enough that there is an amazing amount of stuff you can do from C code that
extends the library and possibly even adds new built-in functionality without actually
changing the language. The parser doesn’t change. The parse tree doesn’t change. The
documentation for the language doesn’t change. All your tools still work, and yet you
have added new functionality to your system.

I suppose there are probably features that you've looked at that you couldn’t implement
in Python other than by changing the language, but you probably rejected them. What
criteria do you use to say this is something that’s Pythonic, this is something that’s not
Pythonic?

Guido: That’s much harder. That is probably, in many cases, more a matter of a gut feel-
ing than anything else. People use the word Pythonic and “that is Pythonic” a lot, but
nobody can give you a watertight definition of what it means for something to be Pythonic

or un-Pythonic.

You have the “Zen of Python,” but beyond that?

Guido: That requires a lot of interpretation, like every good holy book. When I see a good
or a bad proposal, I can tell it it is a good or bad proposal, but it’s really hard to write a set
of rules that will help someone else to distinguish good language change proposals from
bad change proposals.

Sounds almost like it's a matter of taste as much as anything.

Guido: Well, the first thing is always try to say “no,” and see if they go away or lind a way
to get their itch scratched without changing the language. It’s remarkable how often that
works. That’s more of a operational definition of “it’s not necessary to change the language.”

If you keep the language constant, people will still find a way to do what they need to do.
Beyond that it’s often a matter of use cases coming from different areas where there is
nothing application-specific. If something was really cool for the Web, that would not
make it a good feature to add to the language. If something was really good for writing
shorter functions or writing classes that are more maintainable, that might be a good thing
to add to the language. It really needs to transcend application domains in general, and

make things simpler or more elegant.

When you change the language, you affect everyone. There’s no feature that you can hide
so well that most people don’t need to know about. Sooner or later, people will encounter
code written by someone else that uses it, or they’ll encounter some obscure corner case
where they have to learn about it because things don’t work the way they expected.

PYTHON

21

22

Often elegance is also in the eye of the beholder. We had a recent discussion on one of the
Python lists where people were arguing forcefully that using dollar instead of self-dot was

much more elegant. I think their definition of elegance was number of keystrokes.

There’s an argument to make for parsimony there, but very much in the context of
personal taste.

Guido: Elegance and simplicity and generality all are things that, to a large extent, depend
on personal taste, because what seems to cover a larger area for me may not cover enough
for someone else, and vice versa.

How did the Python Enhancement Proposal (PEP) process come about?

Guido: That's a very interesting historical tidbit. I think it was mostly started and champi-
oned by Barry Warsaw, one of the core developers. He and 1 started working together in
‘95, and I think around 2000, he came up with the suggestion that we needed more of a

formal process around language changes.

I tend to be slow in these things. I mean [wasn’t the person who discovered that we really
needed a mailing list. T wasn’t the person who discovered that the mailing list got
unwieldy and we needed a newsgroup. I wasn’t the person to propose that we needed a
website. [was also not the person to propose that we needed a process for discussing
and inventing language changes, and making sure to avoid the occasional mistake
where things had been proposed and quickly accepted without thinking through all of

the consequences.

At the time between 1995 and 2000, Barry, myself, and a few other core developers, Fred
Drake, Ken Manheimer for a while, were all at CNRI, and one of the things that CNRI did
was organize the IETF meetings. CNRI had this little branch that eventually split off that
was a conference organizing bureau, and their only customer was the IETF. They later also
did the Python conferences for a while, actually. Because of that it was a pretty easy boon-
doggle to attend TETF meetings even if they weren’t local. T certainly got a taste of the IETF
process with its RFCs and its meeting groups and stages, and Barry also got a taste of that.
When he proposed to do something similar for Python, that was an easy argument to
make. We consciously decided that we wouldn’t make it quite as heavy-handed as the
IETF RFCs had become by then, because Internet standards, at least some of them, affect
way more industries and people and software than a Python change, but we definitely
modeled it after that. Barry is a genius at coming up with good names, so I am pretty sure
that PEP was his idea.

We were one of the tirst open source projects at the time to have something like this, and
it’s been relatively widely copied. The Tcl/Tk community basically changed the title and
used exactly the same defining document and process, and other projects have done simi-
lar things.

CHAPTER TWO

Do you find that adding a little bit of formalism really helps crystallize the design
decisions around Python enhancements?

Guido: I think it became necessary as the community grew and I wasn’t necessarily able
to judge every proposal on its value by itself. It has really been helpful for me to let other
people argue over various details, and then come with relatively clear-cut conclusions.

Do they lead to a consensus where someone can ask you to weigh in on a single particular
crystallized set of expectations and proposals?

Guido: Yes. It often works in a way where I initially give a PEP a thumb’s up in the sense
that I say, “It looks like we have a problem here. Let’s see if someone figures out what the
right solution is.” Often they come out with a bunch of clear conclusions on how the
problem should be solved and also a bunch of open issues. Sometimes my gut feelings can
help close the open issues. I'm very active in the PEP process when it’s an area that I'm
excited about—if we had to add a new loop control statement, I wouldn’t want that to be

designed by other people. Sometimes I stay relatively far away from it like database APIs.

What creates the need for a new major version?

Guido: It depends on your definition of major. In Python, we generally consider releases
like 2.4, 2.5, and 2.6 “major” events, which only happen every 18-24 months. These are
the only occasions where we can introduce new features. Long ago, releases were done at
the whim of the developers (me, in particular). Early this decade, however, the users
requested some predictability—they objected against features being added or changed in
“minor” revisions (e.g., 1.5.2 added major features compared to 1.5.1), and they wished
the major releases to be supported for a certain minimum amount of time (18 months). So
now we have more or less time-based major releases: we plan the series of dates leading
up to a major release (e.g., when alpha and beta versions and release candidates are
issued) long in advance, based on things like release manager availability, and we urge the

developers to get their changes in well in advance of the final release date.

Features selected for addition to releases are generally agreed upon by the core developers,
after (sometimes long) discussions on the merits of the feature and its precise specification.
This is the PEP process: Python Enhancement Proposal, a document-base process not

unlike the IETF’'s RFC process or the Java world’s JSR process, except that we aren’t quite
as formal, as we have a much smaller community of developers. In case of prolonged dis-
agreement (either on the merits of a feature or on specific details), I may end up breaking
a tie; my tie-breaking algorithm is mostly intuitive, since by the time it is invoked, rational

argument has long gone out of the window.

The most contentious discussions are typically about user-visible language features; library
additions are usually easy (as they don’t harm users who don’t care), and internal
improvements are not really considered features, although they are constrained by pretty
stringent backward compatibility at the C API level.

PYTHON

23

Since the developers are typically the most vocal users, I can’t really tell whether features
are proposed by users or by developers—in general, developers propose features based on
needs they perceived among the users they know. If a user proposes a new feature, it is
rarely a success, since without a thorough understanding of the implementation (and of
language design and implementation in general) it is nearly impossible to properly pro-
pose a new feature. We like to ask users to explain their problems without having a spe-
cific solution in mind, and then the developers will propose solutions and discuss the
merits of different alternatives with the users.

There’s also the concept of a radically major or breakthrough version, like 3.0. Historically,
1.0 was evolutionarily close to 0.9, and 2.0 was also a relatively small step from 1.6. From
now on, with the much larger user base, such versions are rare indeed, and provide the
only occasion for being truly incompatible with previous versions. Major versions are
made backward compatible with previous major versions with a specific mechanism avail-

able for deprecating features slated for removal.

How did you choose to handle numbers as arbitrary precision integers (with all the cool
advantages you get) instead of the old (and super common) approach to pass it to the
hardware?

Guido: I originally inherited this idea from Python’s predecessor, ABC. ABC used arbi-
trary precision rationals, but I didn’t like the rationals that much, so I switched to integers;
for reals, Python uses the standard floating-point representation supported by the hard-

ware (and so did ABC, with some prodding).

Originally Python had two types of integers: the customary 32-bit variety (“int”) and a
separate arbitrary precision variety (“long”). Many languages do this, but the arbitrary
precision variety is relegated to a library, like Bignum in Java and Perl, or GNU MP for C.
In Python, the two have (nearly) always lived side-by-side in the core language, and users
had to choose which one to use by appending an “L” to a number to select the long vari-
ety. Gradually this was considered an annoyance; in Python 2.2, we introduced automatic
conversion to long when the mathematically correct result of an operation on ints could

not be represented as an int (for example, 2**100).

Previously, this would raise an OverflowError exception. There was once a time where the
result would silently be truncated, but I changed it to raising an exception before ever let-
ting others use the language. In early 1990, I wasted an afternoon debugging a short demo
program I'd written implementing an algorithm that made non-obvious use of very large

integers. Such debugging sessions are seminal experiences.

However, there were still certain cases where the two number types behaved slightly dif-
ferent; for example, printing an int in hexadecimal or octal format would produce an
unsigned outcome (e.g., —1 would be printed as FFFFFFFF), while doing the same on the
mathematically equal long would produce a signed outcome (-1, in this case). In Python
3.0, we're taking the radical step of supporting only a single integer type; we're calling it
int, but the implementation is largely that of the old long type.

24 CHAPTER TWO

Why do you call it a radical step?

Guido: Mostly because it's a big deviation from current practice in Python. There was a

lot of discussion about this, and people proposed various alternatives where two (or more)
representations would be used internally, but completely or mostly hidden from end users
(but not from C extension writers). That might perform a bit better, but in the end it was
already a massive amount of work, and having two representations internally would just
increase the effort of getting it right, and make interfacing to it from C code even hairier.
We are now hoping that the performance hit is minor and that we can improve perfor-

mance with other techniques like caching.

How did you adopt the “there should be one—and preferably only one—obvious way
to do it” philosophy?

Guido: This was probably subconscious at first. When Tim Peters wrote the “Zen of
Python” (from which you quote), he made explicit a lot of rules that I had been applying
without being aware of them. That said, this particular rule (while often violated, with my
consent) comes straight from the general desire for elegance in mathematics and com-
puter science. ABC’s authors also applied it, in their desire for a small number of orthogo-
nal types or concepts. The idea of orthogonality is lifted straight from mathematics, where
it refers to the very definition of having one way (or one true way) to express something.
For example, the XYZ coordinates of any point in 3D space are uniquely determined, once
you’ve picked an origin and three basis vectors.

I also like to think that I'm doing most users a favor by not requiring them to choose
between similar alternatives. You can contrast this with Java, where if you need a listlike
data structure, the standard library offers many versions (a linked list, or an array list, and

others), or C, where you have to decide how to implement your own list data type.

What is your take on static versus dynamic typing?

Guido: T wish I could say something simple like “static typing bad, dynamic typing good,”
but it isn’t always that simple. There are ditferent approaches to dynamic typing, from Lisp
to Python, and different approaches to static typing, from C++ to Haskell. Languages like
C++ and Java probably give static typing a bad name because they require you to tell the
compiler the same thing several times over. Languages like Haskell and ML, however, use
type inlerencing, which is quite different, and has some of the same benelits as dynamic
typing, such as more concise expression of ideas in code. However the functional para-
digm seems to be hard to use on its own—things like 1/O or GUI interaction don’t fit well
into that mold, and typically are solved with the help of a bridge to a more traditional lan-

guage, like C, for example.

In some situations the verbosity of Java is considered a plus; it has enabled the creation of
powerful code-browsing tools that can answer questions like “where is this variable
changed?” or “who calls this method?” Dynamic languages make answering such ques-
tions harder, because it’s often hard to find out the type of a method argument without
analyzing every path through the entire codebase. I'm not sure how functional languages

PYTHON

25

like Haskell support such tools; it could well be that you'd have to use essentially the same
technique as for dynamic languages, since that’s what type inferencing does anyway—in

my limited understanding!

Are we moving toward hybrid typing?

Guido: [expect there’s a lot to say for some kind of hybrid. I've noticed that most large
systems written in a statically typed language actually contain a significant subset that is
essentially dynamically typed. For example, GUI widget sets and database APIs for Java

often feel like they are fighting the static typing every step of the way, moving most cor-

rectness checks to runtime.

A hybrid language with functional and dynamic aspects might be quite interesting. I
should add that despite Python’s support for some functional tools like map() and lambda,
Python does not have a functional-language subset: there is no type inferencing, and no
opportunity for parallellization.

Why did you choose to support multiple paradigms?

Guido: I didn’t really; Python supports procedural programming, to some extent, and OO.
These two aren’t so different, and Python’s procedural style is still strongly influenced by
objects (since the fundamental data types are all objects). Python supports a tiny bit of
functional programming—but it doesn’t resemble any real functional language, and it
never will. Functional languages are all about doing as much as possible at compile time—
the “functional” aspect means that the compiler can optimize things under a very strong
guarantee that there are no side effects, unless explicitly declared. Python is about having
the simplest, dumbest compiler imaginable, and the official runtime semantics actively dis-
courage cleverness in the compiler like parallelizing loops or turning recursion into loops.

Python probably has the reputation of supporting functional programming based on the
inclusion of lambda, map, filter, and reduce in the language, but in my eyes these are just
syntactic sugar, and not the fundamental building blocks that they are in functional lan-
guages. The more fundamental property that Python shares with Lisp (not a functional
language either!) is that functions are first-class objects, and can be passed around like any
other object. This, combined with nested scopes and a generally Lisp-like approach to
function state, makes it possible to easily implement concepts that superficially resemble
concepts from functional languages, like currying, map, and reduce. The primitive opera-
tions that are necessary to implement those concepts are built in Python, where in func-
tional languages, those concepts are the primitive operations. You can write reduce() in a

few lines of Python. Not so in a functional language.
When you created the languade, did you consider the type of programmers it might have
attracted?

Guido: Yes, but I probably didn’t have enough imagination. I was thinking of professional
programmers in a Unix or Unix-like environment. Early versions ol the Python tutorial
used a slogan something like “Python bridges the gap between C and shell programming,”

26 CHAPTER TWO

because that was where I was myself, and the people immediately around me. It never
occurred to me that Python would be a good language to embed in applications until peo-

ple started asking about that.

The fact that it was usetul for teaching first principles of programming in a middle school
or college setting or for self-teaching was merely a lucky coincidence, enabled by the
many ABC features that I kept—ABC was aimed specifically at teaching programming to
nonprogramimers.

How do you balance the different needs of a language that should be easy to learn for
novices versus a language that should be powerful enough for experienced programmers
to do useful things? Is that a false dichotomy?

Guido: Balance is the word. There are some well-known traps to avoid, like stuff that is
thought to help novices but annoys experts, and stuff that experts need but confuses novices.
There’s plenty enough space in between to keep both sides happy. Another strategy is to have
ways for experts to do advanced things that novices will never encounter—for example, the
language supports metaclasses, but there’s no reason for novices to know about them.

The Good Programmer

How do you recognize a ¢ood programmer?

Guido: It takes time to recognize a good programmer. For example, it’s really hard to tell
good from bad in a one-hour interview. When you work together with someone though,
on a variety of problems, it usually becomes pretty clear which are the good ones. T hesi-
tate to give specific criteria—I guess in general the good ones show creativity, learn
quickly, and soon start producing code that works and doesn’t need a lot of changes before
it’s ready to be checked in. Note that some folks are good at different aspects of program-
ming than others—some folks are good at algorithms and data structures, others are good
at large-scale integration, or protocol design, or testing, or API design, or user interfaces,
or whatever other aspects of programming exist.

What method would you use to hire programmers?

Guido: Based on my interviewing experience in the past, I don’t think I'd be any good at
hiring in the traditional way—my interview skills are nearly nonexistent on both sides of
the table! I guess what I'd do would be to use some kind of apprentice system where I'd be
working closely with people for quite some time and would eventually get a feeling for
their strengths and weaknesses. Sort of the way an open source project works.

Is there any characteristic that becomes fundamental to evaluate if we are looking for
great Python programmers?

Guido: I'm afraid you are asking this from the perspective of the typical manager who
simply wants to hire a bunch of Python programmers. I really don’t think there’s a simple
answer, and in fact I think it’s probably the wrong question. You don’t want to hire
Python programmers. You want to hire smart, creative, self-motivated people.

PYTHON

27

If you check job ads for programmers, nearly all of them include a line about being able
to work in a team. What is your opinion on the role of the team in programming? Do you
still see space for the brilliant programmer who can’t work with others?

Guido: [am with the job ads in that one aspect. Brilliant programmers who can’t do
teamwork shouldn’t get themselves in the position of being hired into a traditional pro-
gramming position—it will be a disaster [or all involved, and their code will be a night-
mare for whoever inherits it. I actually think it’s a distinct lack of brilliance it you can’t do
teamwork. Nowadays there are ways to learn how to work with other people, and it
you're really so brilliant you should be able to learn teamwork skills easily—it’s really not
as hard as learning how to implement an efficient Fast Fourier Transform, if you set your

mind about it.

Being the designer of Python, what advantages do you see when coding with your
language compared to another skilled developer using Python?

Guido: I don’t know—at this point the language and VM have been touched by so many
people that I'm sometimes surprised at how certain things work in detail myself! If I have
an advantage over other developers, it probably has more to do with having used the lan-
guage longer than anyone than with having written it myself. Over that long period of
time, I have had the opportunity to ponder which operations are faster and which are
slower—for example, I may be aware more than most users that locals are faster than glo-
bals (though others have gone overboard using this, not me!), or that functions and
method calls are expensive (more so than in C or Java), or that the fastest data type is a

tuple.

When it comes to using the standard library and beyond, 1 often feel that others have an
advantage. For example, I write about one web application every few years, and the tech-
nology available changes each time, so I end up writing a “first” web app using a new
framework or approach each time. And I still haven’t had the opportunity to do serious
XML mangling in Python.

It seems that one of the features of Python is its conciseness. How does this affect the
maintainability of the code?

Guido: I've heard of research as well as anecdotal evidence indicating that the error rate
per number of lines of code is pretty consistent, regardless of the programming language
used. So a language like Python where a typical application is just much smaller than, say,
the same amount of functionality written in C++ or Java, would make that application
much more maintainable. Of course, this is likely going to mean that a single programmer is
responsible for more functionality. That’s a separate issue, but it still comes out in favor of
Python: more productivity per programmer probably means fewer programmers on a team,
which means less communication overhead, which according to The Mythical Man-Month
[Frederick P. Brooks; Addison-Wesley Professional] goes up by the square of the team size, if

[remember correctly.

28 CHAPTER TWO

What link do you see between the easiness of prototyping offered by Python and the
effort needed to build a complete application?

Guido: [never meant Python to be a prototyping language. I don’t believe there should
be a clear distinction between prototyping and “production” languages. There are situa-
tions where the best way to write a prototype would be to write a little throwaway C hack.
There are other situations where a prototype can be created using no “programming” at

all—for example, using a spreadsheet or a set of find and grep commands.

The earliest intentions I had for Python were simply for it to be a language to be used in

cases where C was overkill and shell scripts became too cumbersome. That covers a lot of
prototyping, but it also covers a lot of “business logic” (as it’s come to be called these days)
that isn’t particularly greedy in computing resources but requires a lot of code to be writ-
ten. I would say that most Python code is not written as a prototype but simply to get a job
done. In most cases Python is fully up to the job, and there is no need to change much in

order to arrive at the final application.

A common process is that a simple application gradually acquires more tunctionality, and
ends up growing tenfold in complexity, and there is never a precise cutover point from
prototype to final application. For example, the code review application Mondrian that I
started at Google has probably grown tenfold in code size since I first released it, and it is
still all written in Python. Of course, there are also examples where Python did eventually
get replaced by a faster language—for example, the earliest Google crawler/indexer was

(largely) written in Python—but those are the exceptions, not the rule.

How does the inmediacy of Python affect the design process?

Guido: This is often how I work, and, at least for me, in general it works out well! Sure, I
write a lot of code that T throw away, but it’s much less code than T would have written in
any other language, and writing code (without even running it) often helps me tremen-
dously in understanding the details of the problem. Thinking about how to rearrange the
code so that it solves the problem in an optimal fashion often helps me think about the
problem. Of course, this is not to be used as an excuse to avoid using a whiteboard to
sketch out a design or architecture or interaction, or other early design techniques. The
trick is to use the right tool for the job. Sometimes that’s a pencil and a napkin—other

times it’s an Emacs window and a shell prompt.

Do you think that bottom-up program development is more suited to Python?

Guido: I don't see bottom-up versus top-down as religious opposites like vi versus Emacs.
In any software development process, there are times when you work bottom-up, and
other times when you work top-down. Top-down probably means you're dealing with
something that needs to be carefully reviewed and designed belore you can start coding,
while bottom-up probably means that you are building new abstractions on top of existing
ones, for example, creating new APIs. I'm not implying that vou should start coding APIs
without having some kind of design in mind, but often new APIs follow logically from the
available lower-level APIs, and the design work happens while you are actually writing code.

PYTHON

29

When do you think Python programmers appreciate more its dynamic nature?

Guido: The language’s dynamic features are often most useful when you are exploring a

large problem or solution space and you don’t know your way around yet—you can do a

bunch of experiments, each using what you learned from the previous ones, without hav-
ing too much code that locks you into a particular approach. Here it really helps that you

can write very compact code in Python—writing 100 lines of Python to run an experiment
once and then starting over is much more efficient than writing a 1,000-line framework

for experimentation in Java and then finding out it solves the wrong problem!

From a security point of view, what does Python offer to the programmer?

Guido: That depends on the attacks you're worried about. Python has automatic memory
allocation, so Python programs aren’t prone to certain types of bugs that are common in C
and C++ code like bulfer overflows or using deallocated memory, which have been the
bread and butter of many attacks on Microsoft software. Of course the Python runtime
itself is written in C, and indeed vulnerabilities have been found here over the years, and
there are intentional escapes from the confines of the Python runtime, like the ctypes

module that lets one call arbitrary C code.

Does its dynamic nature help or rather the opposite?

Guido: I don’t think the dynamic nature helps or hurts. One could easily design a
dynamic language that has lots of vulnerabilities, or a static language that has none. How-
ever having a runtime, or virtual machine as is now the “hip” term, helps by constraining
access to the raw underlying machine. This is coincidentally one of the reasons that
Python is the first language supported by Google App Engine, the project in which I am

currently participating.

How can a Python programmer check and improve his code security?

Guido: I think Python programmers shouldn’t worry much about security, certainly not
without having a specific attack model in mind. The most important thing to look for is
the same as in all languages: be suspicious of data provided by someone yvou don’t trust
(for a web server, this is every byte of the incoming web request, even the headers). One
specific thing to watch out for is regular expressions—it is easy to write a regular expression
that runs in exponential time, so web applications that implement searches where the end

user types in a regular expression should have some mechanism to limit the running time.

Is there any fundamental concept (¢eneral rule, point of view, mindset, principle) that
you would suggest to be proficient in developing with Python?

Guido: I would say pragmatism. If you get too hung up about theoretical concepts like data
hiding, access control, abstractions, or specifications, you aren’t a real Python programmer,
and you end up wasting time fighting the language, instead of using (and enjoying) it;
you're also likely to use it inefficiently. Python is good if you're an instant gratification

junkie like myself. It works well if you enjoy approaches like extreme programming or

30 CHAPTER TWO

other agile development methods, although even there I would recommend taking every-

thing in moderation.

What do you mean by “fighting the language”?

Guido: That usually means that they're trying to continue their habits that worked well

with a different language.

A lot of the proposals to somehow get rid of explicit self come from people who have
recently switched to Python and still haven’t gotten used to it. It becomes an obsession for
them. Sometimes they come out with a proposal to change the language; other times they
come up with some super-complicated metaclass that somehow makes self implicit. Usu-
ally things like that are super-inefficient or don’t actually work in a multithreaded envi-
ronment or whatever other edge case, or they're so obsessed about having to type those
four characters that they changed the convention from self to s or capital S. People will
turn everything into a class, and turn every access into an accessor method, where that is
really not a wise thing to do in Python; you’ll just have more verbose code that is harder
to debug and runs a lot slower. You know the expression “You can write FORTRAN in any

language?” You can write Java in any language, too.

You spent so much time trying to create (preferably) one obvious way to do things. It
seems like you're of the opinion that doing things that way, the Python way, really lets you
take advantage of Python.

Guido: I'm not sure that I really spend a lot of time making sure that there’s only one
way. The “Zen of Python” is much younger than the language Python, and most defining
characteristics of the language were there long before Tim Peters wrote it down as a form
of poetry. I don’t think he expected it to be quite as widespread and successful when he
wrote it up.

It's a catchy phrase.

Guido: Tim has a way with words. “There’s only one way to do it” is actually in most
cases a white lie. There are many ways to do data structures. You can use tuples and lists.
In many cases, it really doesn’t matter that much whether you use a tuple or a list or
sometimes a dictionary. It turns out usually if you look really carefully, one solution is
objectively better because it works just as well in a number of situations, and there’s one
or two cases where lists just works so much better than tuples when you keep growing

them.

That comes more actually from the original ABC philosophy that was trying to be very
sparse in the components. ABC actually shared a philosophy with ALGOL-68, which is
now one of the deadest languages around, but was very influential. Certainly where I was
at the time during the 80s, it was very influential because Adriaan van Wijngaarden was
the big guy from ALGOL 68. He was still teaching classes when I went to college. I did one
or two semesters where he was just telling anecdotes from the history of ALGOL 68 if he
felt like it. He had been the director of CWI. Someone else was it by the time I joined.

PYTHON

31

32

There were many people who had been very close with ALGOL 68. I think Lambert
Meertens, the primary author of ABC, was also one of the primary editors of the ALGOL
68 report, which probably means he did a lot of the typesetting, but he may occasionally
also have done quite a lot of the thinking and checking. He was clearly influenced by
ALGOL 68’s philosophy of providing constructs that can be combined in many different
ways to produce all sorts of different data structures or ways of structuring a program.

[t was definitely his influence that said, “We have lists or arrays, and they can contain any
kind of other thing. They can contain numbers or strings, but they can also contain other
arrays and tuples of other things. You can combine all of these things together.” Suddenly
you don’t need a separate concept of a multidimensional array because an array of arrays
solves that for any dimensionality. That philosophy of taking a few key things that cover
different directions of flexibility and allow them to be combined was very much a part of
ABC. I borrowed all of that almost without thinking about it very hard.

While Python tries to give the appearance that you can combine things in very flexible
ways as long as you don’t try to nest statements inside expressions, there is actually a
remarkable number of special cases in the syntax where in some cases a comma means a
separation between parameters, and in other cases the comma means the items of a list,

and in yet another case it means an implicit tuple.

There are a whole bunch of variations in the syntax where certain operators are not
allowed because they would conflict with some surrounding syntax. That is never really a
problem because you can always put an extra pair of parentheses around something when
it doesn’t work. Because of that the syntax, at least from the parser author’s perspective,
has grown quite a bit. Things like list comprehensions and generator expressions are syn-
tactically still not completely unified. In Python 3000, I believe they are. There’s still some

subtle semantic differences, but the syntax at least is the same.

Multiple Pythons

Does the parser get simpler in Python 30007

Guido: Hardly. It didn’t become more complex, but it also didn’t really become simpler.

No more complex I think is a win.

Guido: Yeah.

Why the simplest, dumbest compiler imaginable?

Guido: That was originally a very practical goal, because 1 didn’t have a degree in code
generation. There was just me, and I had to have the byte code generator behind me

before T could do any other interesting work on the language.

CHAPTER TWO

[still believe that having a very simple parser is a good thing; after all, it is just the thing
that turns the text into a tree that represents the structure of the program. If the syntax is
so ambiguous that it takes really advanced parts of technology to figure it out, then
human readers are probably confused half the time as well. It also makes it really hard to
write another parser.

Python is incredibly simple to parse, at least at the syntactic level. At the lexical level, the
analysis is relatively subtle because you have to read the indentation with a little stack that
is embedded in the lexical analyzer, which is a counterexample for the theory of separa-
tion between lexical and grammatical analysis. Nevertheless, that is the right solution. The
funny thing is that I love automatically generated parsers, but I do not believe very
strongly in automatically generated lexical analysis. Python has always had a manually

generated scanner and an automated parser.

People have written many different parsers for Python. Every port of Python to a different
virtual machine, whether Jython or IronPython or PyPy, has its own parser, and it’s no big
deal because the parser is never a very complex piece of the project, because the structure
ol the language is such that you can very easily parse it with the most basic one-token

lookahead recursive descent parser.

What makes parsers slow is actually ambiguities that can only be resolved by looking
ahead until the end of the program. In natural languages there are many examples where
it's impossible to parse a sentence until you’ve read the last word and the arbitrary nesting
in the sentence. Or there are sentences that can only be parsed if you actually know the
person that they are talking about, but that's a completely different situation. For parsing
programming languages, I like my one-token lookahead.

That suggests to me that there may never be macros in Python because you have to
perform another parsing phase then!

Guido: There are ways of embedding the macros in the parser that could probably work.
['m not at all convinced that macros solve any problem that is particularly pressing for
Python, though. On the other hand, since the language is easy to parse, if you come up
with some kind of hygienic set of macros that fit within the language syntax, it might be
very simple to implement micro-evaluation as parse tree manipulations. That’s just not an
area that I'm particularly interested in.

Why did you choose to use strict formatting in source code?

Guido: The choice of indentation for grouping was not a novel concept in Python; I inher-
ited this from ABC, but it also occurred in occam, an older language. I don't know if the
ABC authors got the idea from occam, or invented it independently, or if there was a com-
mon ancestor. The idea may be attributed to Don Knuth, who proposed this as early as
1974.

PYTHON

33

Of course, I could have chosen not to follow ABC’s lead, as I did in other areas (e.g., ABC
used uppercase for language keywords and procedure names, an idea I did not copy), but I
had come to like the feature quite a bit while using ABC, as it seemed to do away with a
certain type of pointless debate common amongst C users at the time, about where to
place the curly braces. I also was well aware that readable code uses indentation voluntar-
ily anyway to indicate grouping, and I had come across subtle bugs in code where the
indentation disagreed with the syntactic grouping using curly braces—the programmer
and any reviewers had assumed that the indentation matched the grouping and therefore
not noticed the bug. Again, a long debugging session taught a valuable lesson.

Strict formatting should produce a cleaner code and probably reduce the differences in
the “layout” of the code of different programmers, but doesn't this sound like forcing a
human being to adapt to the machine, instead of the opposite path?

Guido: Quite the contrary—it helps the human reader more than it helps the machine;
see the previous example. Probably the advantages of this approach are more visible when

maintaining code written by another programmer.

New users are often put off by this initially, although I don’t hear about this so much any
more; perhaps the people teaching Python have learned to anticipate this effect and

counter it effectively.

I would like to ask you about multiple implementations of Python. There are four or five
big implementations, including Stackless and PyPy.

Guido: Stackless, technically, is not a separate implementation. Stackless is often listed as
a separate Python implementation because it is a fork of Python that replaces a pretty

small part of the virtual machine with a different approach.

Basically the byte code dispatch, right?

Guido: Most of the byte code dispatch is very similar. I think the byte codes are the same
and certainly all of the objects are the same. What they do different is when you have a
call from one Python procedure to another procedure: they do that with manipulation of
objects, where they just push a stack of stack frames and the same bit of C code remains in
charge. The way it’s done in C Python is that, at that point, a C function is invoked which
will then eventually invoke a new instance of the virtual machine. It’s not really the
whole virtual machine, but the loop that interprets the byte code. There’s only one of
those loops on the C stack in stackless. In traditional C Python, you can have that same

loop on your C stack many times. That’s the only difference.

PyPy, IronPython, Jython are separate implementations. T don’t know about something
that translates to JavaScript, but I wouldn’t be surprised if someone had gotten quite far
with that at some point. I have heard of experimental things that translate to OCaml and
Lisp and who knows what. There once was something that translated to C code as well.

34 CHAPTER TWO

Mark Hammond and Greg Stein worked on it in the late 90s, but they found out that the
speedup that they could obtain was very, very modest. In the best circumstances, it would
run twice as fast; also, the generated code was so large that you had these enormous bina-

ries, and that became a problem.

Start-up time hurt you there.

Guido: I think the PyPy people are on the right track.

It sounds like you're generally supportive of these implementations.

Guido: I have always been supportive of alternate implementations. From the day that
Jim Hugunin walked in the door with a more or less completed JPython implementation,
I was excited about it. In a sense, it counts as a validation of the language design. It also
means that people can use their favorite language on the platform where otherwise they
wouldn’t have access to it. We still have a way to go there, but it certainly helped me isolate
which features were really features of the language that I cared about, and which features
were features of a particular implementation where I was OK with other implementations
doing things differently. That’s where we ended up on the unfortunately slippery slope of
garbage collection.

That’s always a slippery slope.

Guido: But it’s also necessary. [cannot believe how long we managed to live with pure
reference counting and no way to break cycles. I have always seen reference counting as a
way of doing garbage collection, and not a particularly bad one. There used to be this holy
war between reference counting versus garbage collection, and that always seemed rather
silly to me.

Regarding these implementations again, I think Python is an interesting space because it
has a pretty good specification. Certainly compared to other languages like Tcl, Ruby, and
Perl 5. Was that something that came about because you wanted to standardize the
language and its behavior, or because you were looking at multiple implementations, or
something else?

Guido: It was probably more a side effect of the community process around PEPs and the
multiple implementations. When [originally wrote the first set of documentation, I very
enthusiastically started a language reference manual, which was supposed to be a suffi-

ciently precise specification that someone from Mars or Jupiter could implement the lan-

guage and get the semantics right. I never got anywhere near tulfilling that goal.

ALGOL 68 probably got the closest of any language ever with their highly mathematical
specification. Other languages like C++ and JavaScript have managed with sheer will-
power ol the standardization committee, especially in the case of C++. That’s obviously an
incredibly impressive effort. At the same time, it takes so much manpower to write a spec-
itication that is that precise, that my hope of getting something like that for Python never

really got implemented.

PYTHON

35

What we do have is enough understanding of how the language is supposed to work, and
enough unit tests, and enough people on hand that can answer to implementers of other
versions in finite time. T know that, for example, the IronPython folks have been very
conscientious in trying to run the entire Python test suite, and for every failure deciding if
the test suite was really testing the specific behavior of the C Python implementation or if
they actually had more work to do in their implementation.

The PyPy folks did the same thing, and they went one step further. They have a couple ot
people who are much smarter than I, and who have come up with an edge case probably
prompted by their own thinking about how to generate code and how to analyze code in a
JIT environment. They have actually contributed quite a few tests and disambiguations

and questions when they found out that there was a particular combination of things that
nobody had ever really thought about. That was very helpful. The process of having mul-
tiple implementations of the language has been tremendously helpful for getting the spec-

ification of the language disambiguated.

Do you foresee a time when C Python may not be the primary implementation?

Guido: That’s hard to see. I mean some people foresee a time where .NET rules the world;
other people foresee a time where JVMs rule the world. To me, that all seems like wishful
thinking. At the same time, I don’t know what will happen. There could be a quantum

jump where, even though the computers that we know don‘t actually change, a different

kind of platform suddenly becomes much more prevalent and the rules are different.

Perhaps a shift away from the von Neumann architecture?

Guido: T wasn’t even thinking of that, but that’s certainly also a possibility. T was more
thinking of what if mobile phones become the ubiquitous computing device. Mobile
phones are only a few years behind the curve of the power of regular laptops, which sug-
gests that in a few years, mobile phones, apart from the puny keyboard and screen, will
have enough computing power so that you don’t need a laptop anymore. It may well be
that mobile phones [or whatever platform politics end up all having a JVM or some other
standard environment where C Python is not the best approach and some other Python
implementation would work much better.

There’s certainly also the question of what do we do when we have 64 cores on a chip,
even in a laptop or in a cell phone. I don’t actually know if that should change the pro-
gramming paradigm all that much for most of the things we do. There may be a use for
some languages that let you specify incredibly subtle concurrent processes, but in most
cases the average programmer cannot write correct thread-safe code anyway. Assuming
that somehow the ascent of multiple cores forces them to do that is kind of unrealistic. 1
expect that multiple cores will certainly be useful, but they will be used for coarse-grained
parallelism, which is better anyway, because with the enormous cost difference between
cache hits and cache misses, main memory no longer really serves the function of shared

memory. You want to have your processes as isolated as possible.

36 CHAPTER TWO

How should we deal with concurrency? At what level should this problem be dealt with
or, even better, solved?

Guido: My feeling is that writing single-threaded code is hard enough, and writing multi-
threaded code is way harder—so hard that most people don’t have a hope of getting it
right, and that includes myself. Therefore, I don’t believe that fine-grained synchronization
primitives and shared memory are the solution—instead, I'd much rather see message-
passing solutions get back in style. I'm pretty sure that changing all programming lan-

guages to add synchronization constructs is a bad idea.

I also still don’t believe that trying to remove the GIL from CPython will work. I do believe
that some support for managing multiple processes (as opposed to threads) is a piece of the
puzzle, and for that reason Python 2.6 and 3.0 will have a new standard library module,
multiprocessing, that offers an API similar to that of the threading module for doing

exactly that. As a bonus, it even supports processes running on different hosts!

Expedients and Experience

Is there any tool or feature that you feel is missing when writing software?

Guido: If I could sketch on a computer as easily as I can with pencil and paper, I might be
making more sketches while doing the hard thinking about a design. I fear that I'll have to
wait until the mouse is universally replaced by a pen (or your finger) that lets you draw
on the screen. Personally, I feel terribly handicapped when using any kind of computer-
ized drawing tool, even if I'm pretty good with pencil and paper—perhaps I inherited it
from my father, who was an architect and was always making rough sketches, so I was

always sketching as a teenager.

At the other end of the scale, I suppose I may not even know what I'm missing for spe-
lunking large codebases. Java programmers have IDEs now that provide quick answers to
questions like “where are the callers of this method?” or “where is this variable assigned
to?” Por large Python programs, this would also be useful, but the necessary static analysis
is harder because of Python’s dynamic nature.

How do you test and debug your code?

Guido: Whatever is expedient. T do a lot of testing when I write code, but the testing
method varies per project. When writing your basic pure algorithmic code, unit tests are
usually great, but when writing code that is highly interactive or interfaces to legacy APIs,
[often end up doing a lot of manual testing, assisted by command-line history in the shell
or page-reload in the browser. As an (extreme) example, you can’t very well write a unit
test for a script whose sole purpose is to shut down the current machine; sure, you can
mock out the part that actually does the shut down, but you still have to test that part,
too, or else how do you know that your script actually works?

PYTHON

37

Testing something in different environments is also often hard to automate. Buildbot is
great for large systems, but the overhead to set it up is significant, so for smaller systems
often you just end up doing a lot of manual QA. I've gotten a pretty good intuition for

doing QA, but unfortunately it’s hard to explain.

When should debugging be taught? And how?

Guido: Continuously. You are debugging your entire life. I just “debugged” a problem
with my six-year-old son’s wooden train set where his trains kept getting derailed at a cer-
tain point on the track. Debugging is usually a matter of moving down an abstraction level
or two, and helped by stopping to look carefully, thinking, and (sometimes) using the

right tools.

I don’t think there is a single “right” way of debugging that can be taught at a specific
point, even for a very specific target such as debugging program bugs. There is an incredi-
bly large spectrum of possible causes for program bugs, including simple typos, “thinkos,”
hidden limitations of underlying abstractions, and outright bugs in abstractions or their
implementation. The right approach varies from case to case. Tools come into play mostly
when the required analysis (“looking carefully”) is tedious and repetitive. I note that
Python programmers often need few tools because the search space (the program being
debugged) is so much smaller.

How do you resume programming?

Guido: This is actually an interesting question. I don’t recall ever looking consciously at
how I do this, while T indeed deal with this all the time. Probably the tool T used most for
this is version control: when I come back to a project I do a diff between my workspace
and the repository, and that will tell me the state I'm in.

[f I have a chance, I leave XXX markers in the unfinished code when I know I am about to
be interrupted, telling me about specific subtasks. I sometimes also use something I picked
up from Lambert Meertens some 25 years ago: leave a specific mark in the current source
file at the place of the cursor. The mark I use is “HIRO,” in his honor. It is colloguial Dutch

for “here” and selected for its unlikeliness to ever occur in finished code. :-)

At Google we also have tools integrated with Perforce that help me in an even earlier
stage: when I come in to work, I might execute a command that lists each of the unfin-
ished projects in my workspace, so as to remind me which projects I was working on the
previous day. I also keep a diary in which I occasionally record specific hard-to-remember
strings (like shell commands or URLs) that help me perform specific tasks for the project at
hand—for example, the full URL to a server stats page, or the shell command that rebuilds
the components I'm working on.

What are your suggestions to design an interface or an API?

Guido: Another area where I haven’t spent a lot of conscious thought about the best pro-
cess, even though I've designed tons of interfaces (or APIs). I wish I could just include a
talk by Josh Bloch on the subject here; he talked about designing Java APIs, but most of

38 CHAPTER TWO

what he said would apply to any language. There’s lots of basic advice like picking clear
names (nouns for classes, verbs for methods), avoiding abbreviations, consistency in
naming, providing a small set of simple methods that provide maximal flexibility when
combined, and so on. He is big on keeping the argument lists short: two to three argu-
ments is usually the maximum you can have without creating confusion about the order.
The worst thing is having several consecutive arguments that all have the same type; an

accidental swap can go unnoticed for a long time then.

[have a few personal pet peeves: first of all, and this is specific to dynamic languages,
don’t make the return type of a method depend on the value of one of the arguments; oth-
erwise it may be hard to understand what’s returned if you don’t know the relationship—
maybe the type-determining argument is passed in from a variable whose content you

can’t easily guess while reading the code.

Second, I dislike “flag” arguments that are intended to change the behavior of a method in
some big way. With such APIs the flag is always a constant in actually observed parameter
lists, and the call would be more readable if the API had separate methods: one for each
flag value.

Another pet peeve is to avoid APIs that could create confusion about whether they return
a new object or modify an object in place. This is the reason why in Python the list method
sort() doesn’t return a value: this emphasizes that it modifies the list in place. As an alter-

native, there is the built-in sorted() function, which returns a new, sorted list.

Should application programmers adopt the “less is more” philosophy? How should they
simplify the user interface to provide a shorter learning path?

Guido: When it comes to graphical user interfaces, it seems there’s finally growing sup-
port for my “less is more” position. The Mozilla foundation has hired Aza Raskin, son of
the late Jef Raskin (codesigner of the original Macintosh UI) as a Ul designer. Firefox 3 has
at least one example of a Ul that offers a lot of power without requiring buttons, configu-
ration, preferences or anything: the smart location bar watches what I type, compares it to
things I"’ve browsed to before, and makes useful suggestions. If T ignore the suggestions it
will try to interpret what I type as a URL or, if that fails, as a Google query. Now that’s
smart! And it replaces three or four pieces of functionality that would otherwise require
separate buttons or menu items.

This reflects what Jef and Aza have been saying [or so many years: the keyboard is such a
powerful input device, let’s use it in novel ways instead of forcing users to do everything
with the mouse, the slowest of all input devices. The beauty is that it doesn’t require new
hardware, unlike Sci-Fi solutions proposed by others like virtual reality helmets or eye

movement sensors, not to mention brainwave detectors.

There’s a lot to do of course—for example, Firefox’s Preferences dialog has the dreadful
look and feel of anything coming out of Microsoft, with at least two levels of tabs and
many modal dialogs hidden in obscure places. How am I supposed to remember that in

order to turn off JavaScript I have to go to the Content tab? Are Cookies under the Privacy

PYTHON

39

tab or under Security? Maybe Firefox 4 can replace the Preferences dialog with a “smart”
feature that lets you type keywords so that if I start typing “pass,” it will take me to the

section to configure passwords.

What do the lessons about the invention, further development, and adoption of your
language say to people developing computer systems today and in the forseeable future?

Guido: I have one or two small thoughts about this. I'm not the philosophical kind, so
this is not the kind of question I like or to which I have a prepared response, but here’s
one thing I realized early on that I did right with Python (and which Python’s predecessor,
ABC, didn’t do, to its detriment). A system should be extensible by its users. Moreover, a
large system should be extensible at two (or more) levels.

Since the first time I released Python to the general public, I got requests to modify the

language to support certain kinds of use cases. My lirst response to such requests is always
to suggest writing some Python code to cover their needs and put it in a module for their
own use. This is the first level of extensibility—if the functionality is useful enough, it may

end up in the standard library.

The second level of extensibility is to write an extension module in C (or in C++, or other
languages). Extension modules can do certain things that are not feasible in pure Python
(though the capabilities of pure Python have increased over the years). I would much
rather add a C-level API so that extension modules can muck around in Python’s internal
data structures, than change the language itself, since language changes are held to the
highest possible standard of compatibility, quality, semantic clarity, etc. Also, “forks” in
the language might happen when people “help themselves” by changing the language
implementation in their own copy of the interpreter, which they may distribute to others
as well. Such forks cause all sorts of problems, such as maintenance of the private changes
as the core language also evolves, or merging multiple independently forked versions that
other users might need to combine. Extension modules don’t have these problems; in
practice most functionality needed by extensions is already available in the C API, so

changes to the C API are rarely necessary in order to enable a particular extension.

Another thought is to accept that you don't get everything right the first time. Early on
during development, when you have a small number of early adopters as users, is the time
to fix things drastically as soon as you notice a problem, never mind backward compatibil-
ity. A great anecdote I often like to quote, and which has been confirmed as truthful by
someone who was there at the time, is that Stuart Feldman, the original author of “Make”
in Unix v7, was asked to change the dependence of the Makefile syntax on hard tab char-
acters. His response was something along the lines that he agreed tab was a problem, but
that it was too late to fix since there were already a dozen or so users.

As the user base grows, you need to be more conservative, and at some point absolute
backward compatibility is a necessity. There comes a point where you have accumulated

so many misfeatures that this is no longer feasible. A good strategy to deal with this is

40 CHAPTER TWO

what I'm doing with Python 3.0: announce a break with backward compatibility for one
particular version, use the opportunity to fix as many such issues as possible, and give the

user community a lot of time to deal with the transition.

In Python's case, we're planning to support Python 2.6 and 3.0 alongside each other for a
long time—much longer than the usual support lifetime of older releases. We're also offer-
ing several transitional strategies: an automated source-to-source conversion tool that is
tar from pertfect, combined with optional warnings in version 2.6 about the use of func-
tionality that will change in 3.0 (especially if the conversion tool cannot properly recog-
nize the situation), as well as selective back-porting of certain 3.0 features to 2.6. At the
same time, we're not making 3.0 a total rewrite or a total redesign (unlike Perl 6 or, in the
Python world, Zope 3), thereby minimizing the risk of accidentally dropping essential
functionality.

One trend I've noticed in the past four or five years is much greater corporate adoption of
dynamic languages. First PHP, Ruby in some context, definitely Python in other contexts,
especially Google. That’s interesting to me. | wonder where these people were 20 years
ago when languages like Tcl and Perl, and Python a little bit later, were doing all of these
useful things. Have you seen desire to make these languages more enterprise-friendly,
whatever that means?

Guido: Enterprise-friendly is usually when the really smart people lose interest and the
people of more mediocre skills have to somehow fend for themselves. 1 don’t know if
Python is harder to use for mediocre people. In a sense you would think that there is quite
a bit of damage you cannot do in Python because it’s all interpreted. On the other hand, if
you write something really huge and you don’t use enough unit testing, you may have no
idea what it actually does.

You’ve made the argument that a line of Python, a line of Ruby, a line of Perl, a line of
PHP, may be 10 lines of Java code.

Guido: Often it is. I think that the adoption level in the enterprise world, even though
there are certain packages of functionality that are helptul, is probably just a fear of very
conservative managers. Imagine the people in charge of IT resources for 100,000 people in
a company where IT is not a main product—maybe they are building cars, or doing insur-
ance, or something else, but everything they do is touched by computers. The people in
charge of that infrastructure necessarily have to be very conservative. They will go with
stuft that looks like it has a big name attached, like maybe Sun or Microsoft, because they
know that Sun and Microsoft screw up all the time, but these companies are obliged to

recover from those screwups and fix them, even if it takes five years.

Open source projects traditionally have just not olfered that same peace of mind to the
average CIO. I don’t know exactly if and how and when that will change. It’s possible that
it Microsoft or Sun suddenly supported Python on their respective VMs, programmers in
enterprises would actually discover that they can get higher productivity without any
downsides by using more advanced languages.

PYTHON

41

Copyrighted material

CHAPTER THREE

APL

In the late 1950s, while on the faculty of Harvard University, Kenneth Iverson
devised an extension of mathematical notation for the precise description of algo-
rithms. Then, along with Adin Falkoff and other researchers at IBM, the team grad-
ually turned the notation into a full-fledged programming language called APL. The
language uses an extended character set requiring a specialized keyboard and
appears on the page as strings of sometimes unfamiliar symbols—but the under-
lying consistency of the language makes it easy to learn, and its unmatched array-
processing capabilities make it extraordinarily powerful. lts spiritual descendents,
Jand K, continue APL’s ledacy of concise and powerful algebraic manipulations.

43

Paper and Pencil

I read a paper written by you and Ken lverson, “The Design of APL,” which said that the
first seven or eight years of development happened without any computer involved! This
let you change design aspects without having to worry about legacy issues. How did the
first software implementation influence the evolution of the language?

Adin Falkoff: Yes, the first years of the evolution of APL, when it had no name other
than “Iverson’s notation,” were mainly concerned with paper-and-pencil mathematical
applications, analysis of digital systems, and teaching. To a great extent, we thought of
programming as a branch of mathematics concerned with the discovery and design of
algorithms, and this concept was supported by the symbolic form of the notation. The
attractiveness of the notation as a general programming language became evident after a
while, and was advanced by the efforts of various people (in particular, Herb Hellerman at
IBM) who experimented with machine implementations of significant elements of the
notation, including primitive functions and array operations. Nevertheless, it is true that
throughout this period we had complete freedom to design the language without concern
for “legacy” issues.

The most significant early evolution of the language took place in two steps. First was the
writing and publication of “The Formal Description of System 360" [IBM Systems Journal,
1964]. In order to formally describe some of the behavior of this newly designed comput-
ing system, some additions and modifications to the notation described in Iverson’s book
(A Programming Language [Wiley]) were necessary. Second was the design of a type ele-
ment for Selectric-based terminals, which we undertook in anticipation of using the lan-
guage on a machine. This imposed significant restraints arising from the linear nature ot
typewriting, and mechanical requirements of the Selectric mechanism. I believe there is
considerable detail on the influence of these two factors on the evolution of the language in
the paper you refer to, “The Design of APL” [IBM Journal of Research and Development, 1974].

The first comprehensive implementation of the language was, of course, APL\360. It nec-
essarily introduced facilities to write defined functions (i.e., programs)—something taken
for granted when using pencil and paper—and for controlling the environment in which
programs would be executed. The ideas introduced then, including the workspace and
library system, rules for scope of names, and the use of shared variables for communica-
tion with other systems, have persisted without significant change. Programs written for

APLA360 run without modification on the modern APL systems that I am familiar with.

[t is fair to say that the presence of an implementation influenced further evolution of the
language by the strict application of the principle that new ideas must always subsume the
earlier ones, and, of course, by the constant critical examination of how the language was

working for new and different applications.

44 CHAPTER THREE

When you defined the syntax, how did you picture the typical APL programmer?

Adin: We did not direct our thinking about syntax to programmers as such, but rather
conceived the language as being a communication medium for people, which incidentally
should also work for people communicating with machines. We did realize that users
would have to be comfortable with a symbolic language like algebra, but also felt that they
would come to appreciate the power of symbolic representation, as it facilitates formal
manipulation of expressions leading to more effective analysis and synthesis of algorithms.
Specifically, we did not believe a lot of experience or knowledge of mathematics was nec-
essary, and in fact used the APL system for teaching at the elementary and high school

level with some notable success.

As time went on, we found that some of the most skilled and experienced programmers

were attracted to APL, used it, and contributed to its development.

Did the complex syntax limit the diffusion of APL?

Adin: The syntax of APL and its effect on the acceptance of the language is well worth
discussing, although I do not agree with the statement that it is “complex.” APL was based
on mathematical notation and algebraic expressions, regularized by removing anomalous
forms and generalizing accepted notation. For example, it was decided that dyadic func-
tions like addition or multiplication would stand between their two arguments, and
monadic functions would consistently have the function symbols written before the argu-
ment, without exceptions such as are found in traditional math notation, so that absolute
value in APL has one vertical bar before the argument and not bars on both sides, and the
symbol for factorial in APL comes before the argument rather than following it. In this
respect, the syntax of APL was simpler than the syntax of its historical source.

The syntax of APL was also simpler than that of algebraic notation and other program-
ming languages in another very important way: the precedence rule for the evaluation of
expressions in APL is simply that all functions have the same precedence, and the user
does not have to remember whether exponentiation is carried out before multiplication,
or where defined functions fit into the hierarchy. The rule is simply that the rightmost

subexpression is evaluated first.

Hence, I don’t believe that the syntax of APL limited the diffusion of the language,
although the character set, using many nonalphabetic symbols not easily available on

standard keyboards, probably did have such an effect.

How did you decide to use a special character set? How did that character set evolve
over time?

Adin: The character set was defined by the use of conventional mathematical notation,

augmented by a few Greek letters and some visually suggestive symbols like the quad.

APL

45

There was also the practical influence of the linear typewriter limitation, leading to the
invention of some characters that could be produced by overstriking. Later on, as termi-
nals and input devices became more versatile, these composite characters became primi-
tive symbols in their own right, and a few new characters were introduced to
accommodate new facilities, such as the diamond for a statement separator.

Was there a conscious decision to use the limited resources of the time more
productively?

Adin: The character set delinitely was influenced by the desire to optimize the use of the
limited resources available at the time; but the concise, symbolic form was developed and
maintained because of the conviction that it facilitated analysis and formal manipulation
of expressions. Also, the brevity of programs compared to equivalent ones written in other
languages makes it easier to comprehend the logical flow of a program once the effort is
made to read it in the concise APL representation.

I would think people needed a lot of training to learn the language, especially the
character set. Was there a process of natural selection, which meant that APL
programmers were experts at the language? Were they more productive? Did they write
higher-quality code with fewer bugs?

Adin: Learning APL to the point of being able to write programs at the level of FORTRAN,
for example, was actually not difficult or lengthy. Programming in APL was more produc-
tive because of the simplicity of the rules, and the availability of primitive functions for
data manipulation like sorting, or mathematical functions like matrix inversion. These fac-
tors contributed to the conciseness of APL programs, which made them easier to analyze
and debug. Credit for productivity must also be given to the APL implementations, using
workspaces with all their useful properties, and the interactive terminal-based interpretive
systems.

A super-concise form of expression mi¢ht be incredibly useful on devices with a small
screen like PDAs or smartphones! Considering that APL was first coded on big iron such
as IBM System /360, would it be extensible to handle modern projects that need to
manage network connections and multimedia data?

Adin: An implementation of APL on a handheld device would at the very least provide a
very powerful hand calculator; and 1 see no problem with networks and multimedia, as
such applications have been managed in APL systems for a very long time. Tools for man-
aging GUIs are generally available on modern APL systems.

Early on in the development of APL systems, facilities for managing host operating sys-

tems and hardware from within APL functions were introduced, and were utilized by APL
system programmers to manage the performance of APL itself. And commercial APL time-
sharing systems dependent upon networks for their economic viability used APL for man-

aging their networks.

46 CHAPTER THREE

It is true that the first commercially viable APL systems were coded on large machines, but
the earliest implementations, which demonstrated the feasibility of APL systems, were
done on relative small machines, such as the IBM 1620 and the IBM 1130 family, includ-
ing the IBM 1500, which had significant usage in educational applications. There was
even an implementation on an early experimental desktop machine, dubbed “LC” for
“low cost,” that had but a few bytes of memory and a low-capacity disk. The evolution of
IBM APL implementation is described in some detail in the paper “The IBM Family of APL
Systems” [IBM Systems Journal, 1991].

Elementary Principles

When you pursued standardization, was it a deliberate decision?

Adin: We surely started standardization fairly early; in fact 1 think I wrote a paper about
it, and we got to be part of ISO. We always wanted to standardize things and we managed
to a large extent to do that. We discouraged people from fiddling around with the basic

structures of the language, adding arbitrary kind of things that would complicate the syn-

tax, or violate some of the elementary principles we were trying to maintain.

What was your main desire for standardization, compatibility or conceptual purity?

Adin: The desire of standardization is an economic issue. We surely wanted APL to be via-
ble economically, and since a lot of different people were implementing and using it, it

seemed a good idea to have a standard.

Several different vendors had different APL compilers. Without strong standardization,
what happens when you have an extension that works on one system but not on
another?

Adin: That is something worked on rather carefully by the APL standardization commit-

tees, and efforts were made to compromise between extensibility and purity.

You want people to be able to solve problems you haven't anticipated, but you don’t
want them to remove the essential nature of your system. Forty years later, how do you
think the language holds up? Are the design principles you chose still applicable?

Adin: I think so; I really don’t see anything really wrong.

Is that because you spent a lot of time designing it carefully or because you had a very
strong theoretical back¢round with al¢ebra?

Adin: I think we were a couple of reasonably smart people with a beliet in the concepts of

simplicity and practicality, and an unwillingness to compromise that vision.

I found it too much trouble to try to learn and remember all the rules in other languages

so I tried to keep it simple from that standpoint, so that I could use it.

APL

47

Some of our way of thinking shows up in papers, especially the ones jointly authored by
Iverson and me. I myself later wrote a paper that was called “A Note on Pattern Matching:
Where do you find the match to an empty array?”[APL Quote Quad, 1979], which used
some nice reasoning involving small programs and algebraic principles, to obtain the
reported results, which turned out to be consistent and useful. The paper looked at various
possibilities, and found that the one simplest to express works out better than any other.

I found it really fascinating to build a language from a small set of principles and
discovering new ideas built on those principles. That seems like a ood description of
mathematics. What is the role of math in computer science and programming?

Adin: I believe that computer science is a branch of mathematics.

Programming of mathematical computations is obviously part of mathematics, especially
the numerical analysis required to constantly maintain compatibility between discrete dig-

ital operations and the continuity of theoretical analysis.

Some other thoughts that come to mind are: the impetus from math problems that can be
solved only by extensive computations that inspire need for speed; the discipline of logical
thought required for math and carried over to programming of all kinds; the notion of

algorithms, which are a classical mathematical tool; and the various specialized branches of

mathematics, such as topology, that lend themselves to analysis of computational problems.

I have read some other discussions where you and other people sugéested that one of
the interesting applications was using APL to teach programming and mathematics at the
elementary and high school levels.

Adin: We did some of that, particularly at the beginning, and we had a little fun with it.

At that time we only had typewriter terminals and we made some available to some local
private schools. There was one in particular where problem students were supposed to be

taught, and we gave them exercises to do on the typewriter and turned them loose.

The fun part was that we found that some of these students who were supposed to be
resistant to learning broke into the school after hours so they could do more work on it.

They were using typewriter terminals hooked to our time-sharing system.

So they enjoyed that so much they suddenly had to do it even afterward?

Adin: Yes.

You used APL to teach “programming thinking” to nonprogrammers. What made APL
attractive for nonprogrammers?

Adin: In the early days one of the things was you didn’t have all this overhead, you didn’t
have to make declarations before you added two numbers, so if you wanted to add 7 and
5 you just wrote down 7 + 5, instead of saying there is a number called 7 and there is a
number called 5, these are numbers, floating point or not floating point, and the result is a
number and I want to store the result here, so there was a lower barrier in APL to doing
what you wanted.

48 CHAPTER THREE

When someone is learning to program, the initial step toward doing that first thing is very
small. You basically write down what you want to do, and you don’t have to spend time
pleasing a compiler to get it to work.

Adin: That's right.

Easy to start and easy to play with. Does this technique let people become programmers
or increase their programming knowledge?

Adin: The easy accessibility makes it easy to experiment, and if you can experiment and
try out different things, you learn, and so 1 think that is favorable toward the development

of programming skills.

The notation that you chose for APL is different from traditional al¢ebraic notation.

Adin: Well, it’s not that different...the precedence rules are different. They are very sim-

ple: you go from right to left.

Did you find that much easier to teach?

Adin: Yes, because there is only one rule and you don’t have to say that if it's a defined
function, you go this way, and if it’s exponentiation, it has precedence over multiplication,
or stuff like that. You just say, “look at the line of the instructions and take it from right to
left.”

Was this a deliberate design decision to break with familiar notation and precedence in
favor of ¢reater simplicity?

Adin: That's right. Greater simplicity and greater generality.

I think Iverson was mainly responsible for that. He was quite good at algebra and he was
very interested in teaching. One example he liked to use was the representation ol poly-
nomials, which is extremely simple in APL.

When [first saw that notation, even though it was unfamiliar, it did seem conceptually
much simpler overall. How do you recognize simplicity in a design or an implementation?
Is that a matter of good taste or experience, or is there a rigorous process you apply to try
to find optimal simplicity?

Adin: I think to some extent it must be subjective, because it depends somewhat on your

experience and where you come from. I would say the fewer there rules are, the simpler it

is in general.

You started from a small set of axioms and you can build from there, but if you
understand that small set of axioms, you can derive more complexity?

Adin: Well, let’s take this matter of precedence. I think it’s simpler to have the precedence
based on a simple form from right to left, than on a basis of a table that says this function
goes first and that function goes second. T think it is one rule versus an almost limitless

number of rules.

APL

49

You see, in any particular application you set up your own set of variables and functions,
and for a particular application you might find it simpler to write some new rules, but if
you are looking at a general language like APL, you want to start with the fewest possible

number of rules.

To give people designing systems built with the language more opportunity to evolve?
Adin: People who are building applications are in fact building languages; fundamentally,
programming has to do with developing languages suitable for particular applications.
You express the problem in a language specific to its domain.

Adin: But then those objects, notably the nouns and the verbs, the objects and the func-
tions, they have to be defined in something, for example in a general-purpose language
like APL.

So you use APL to define these things, but then you set up your operations to facilitate the

kind of things you want to do in that application.

Is your concern constructing the building blocks people can use to express themselves?

Adin: My concern is giving them the basic building blocks if you like, the fundamental
tools for constructing the building blocks that are suitable and appropriate for what they

are trying to accomplish in the field in which they are working.

It seems to be a concern shared by other language designers; | think of Chuck Moore with
Forth, or John McCarthy with Lisp, and Smalitalk in the early 70s.

Adin: I'm sure that’s the case.

MccCarthy, I know, is a theoretical kind of person and he was concerned with developing a
system to express the lambda calculus effectively, but T don’t think the lambda calculus is

as convenient for most purposes as plain old algebra, from which APL derives.

Suppose | want to design a new programming language. What'’s the best piece of advice
you can give me?

Adin: I guess the best thing I can say is do something that you enjoy, something that
pleases you to work with, something that helps you accomplish something that you would
like to do.

We were always very personal in our approach, and I think most designers are, as I read
what people have to say. They started doing things that they wanted to do, which then

turned out to be useful generally.

50 CHAPTER THREE

When you were designing APL, were you able to see at some point “we are going in the
wrong direction here; we need to scale back this complexity” or “we have several
different solutions; we can unify them into something much simpler”?

Adin: That is approximately right, but there was usually a question of “is this a generali-
zation which subsumes what we already have, and what is the likelihood that it is going to

enable us to do a lot more with very little further complication?”

We paid a lot of attention to end conditions—what happens in a limit when you go from 6
to 5 to 4 down to 0, for example. Thus, in reduction you are applying a function like sum-
mation to a vector, and if you are summing up a vector that has # elements and then »
minus one elements, and so on, what happens when you eventually have no elements?
What’s the sum? It has to be 0 because that’s the identity element.

In the case of multiplication, the multiplication over an empty vector goes to 1, because

that’s the identity element for that function.

You mentioned looking at several different solutions and trying to ¢eneralize and asking
yourself the question of what happens when approaching 0, for example. If you hadn’t
already known that when you do a reduction, you need to end up at the identity element
for when n is 0, you could look at both those cases and say “Here is the aréument we
make: it is 0 when this case and it’s 1 in this case, because it is the identity element.”

Adin: That's right. That's one of the processes we used.

What happens in the special cases is very important, and when you use APL effectively, you
keep applying that criterion to the more elaborate functions that you might be developing

for a particular application. This often leads to unexpected but gratifying simplification.

Do the design techniques you use when creating a language inform the design techniques
people might use when programming in the language?

Adin: Yes, because as I said before, programming is a process of designing languages. 1
think that’s a very fundamental thing, which is not often mentioned in the literature as far
as I know.

Lisp programmers do, but in a lot of the languages that came afterward, especially Algol
and its C derivatives, people don't seem to think this way. Is there a divide between what
is built in the language and what’s not, where everything else is second class?

Adin: Well, what do we mean by second class? In APL the so-called second class follows

the same rules as the first class, and we don’t have any problem there.

You can make the same ar¢ument for almost all of Lisp or Scheme or Smalltalk, but C has
a distinct division between operators and functions, and user-created functions. Is
making that distinction sharp between these entities a design mistake?

Adin: I don't know if I would call it a mistake, but I think it’s simpler to have the same

rules apply to both what’s primitive and not primitive.

APL

51

52

What's the biggest mistake you've made with regard to design or programming? What did
you learn from it?

Adin: When work on APL first began, we consciously avoided making design decisions
that catered to the computer environment. For example, we eschewed the use of declara-
tions, seeing their use as an unnecessary burden on the user when the machine could eas-
ily determine the size and type of a data object from the object itself at the time of its input
or generation. In the course of time, however, as APL became more widely used with

more and more vested interests, hardware factors were increasingly ditficult to avoid.

Perhaps the biggest mistake that I personally made was to underestimate advances in
hardware and become too conservative in system design. In contemplating early imple-
mentation of APL on the PC, for instance, I advocated leaving out recent language exten-
sions to general arrays and complex numbers because these would strain the capacity of
the extant hardware to provide satisfactory performance. Fortunately, I was overruled,
and it was not long before major increases in PC memory and processor speeds made such

powerful extensions completely feasible.

It is hard to think of big mistakes made in programming because one expects to make
errors in the course of writing a program of reasonable complexity. It then depends on the
programming tools how the error grows, when it is discovered, and how much has to be
redone to recover from it. Modularization and ready reuse of idiomatic code fragments, as
follows from the functional programming style fostered by APL, tends to limit the genera-

tion and propagation of errors so they don’t become big mistakes.

As for mistakes in the design of APL itself, our method of development, using consensus
among the designers and implementers as the ultimate deciding factor, and feedback from
users gaining practical experience in a diversity of applications as well as our own use of

the language belore design was frozen, helped us avoid serious errors.

However, one person’s exercise of principle may be another’s idea of a mistake, and even
over long periods of time, differences may not be empirically resolvable. Two things come

to mind.

One is the character set. There was from the earliest times considerable pressure to use
reserved words instead of the abstract symbols chosen to represent primitive functions.
Our position was that we were really dealing with extensions to mathematics, and the
evolution of mathematical notation was clearly in the direction of using symbols, which
tacilitated formal manipulation of expressions. Later on, Ken Iverson, who had an abiding
interest in the teaching of mathematics, chose to limit the character set to ASCII in his fur-
ther work, on the language J, so that J systems could be easily accessible to students and
others without specialized hardware. My own inclination was and is to stick with the sym-
bolic approach; it’s more in keeping with history and ultimately easier to read. Time will
tell if either direction is mistaken, or if it doesn’t really matter.

The second thing that comes to mind as possibly leading to a significant mistake in direc-
tion that may never be decided is the treatment of general arrays, i.e., arrays whose scalar

CHAPTER THREE

elements may themselves have an accessible structure within the language. After APL\360
was established as an IBM product (one of the very first such when IBM unbundled its
software and hardware in 1966 or 1967), we began to look at extensions to more general
arrays and had extensive studies and discussions regarding the theoretical underpinnings.
Ultimately APL systems have been built with rival ways of treating scalar elements and
syntactic consequences. It will be interesting to see how this evolves as the general interest

in parallel programming becomes more commercially important.

Parallelism

What are the implications (for the design of applications) of thinking about data in
collections rather than as individual units?

Adin: This is a rather large subject, as indicated by the spread of “array languages” and the
introduction of array primitives in languages like FORTRAN, but I think there are two sig-
nificant aspects to thinking in terms of collections.

One, of course, is the simplification of the thought process when not bogged down in the
housekeeping details of dealing with individual items. It is closer to our natural way of
thinking to say, for example, how many of the numbers in this collection are equal to
zero, and write a simple expression that produces the desired result, than to start thinking

in terms of a loop in any of its derivative forms.

The second is that possibilities for parallelism are made more evident in programs acting

directly on collections, leading to more efficient utilization of modern hardware.

There’s been some talk in modern programming languages about adding higher-order
features to languages such as C++ or Java—languages where you spend a lot of time
writing the same for() loop over and over again. For example, | have a collection of
things and | want to do something to each one of them. Yet APL solved this problem 40~
45 years ago!

Adin: Well, I don't know how many years ago, but there are sort of two stages there. One
is the use of arrays as primitive, and second stage was the introduction of the operator
called each, which basically applies any arbitrary function to any collection of items. But
there were always some questions like “Do we want to put in primitives for looping specif-
ically?” We decided we didn’t want to do that because it complicated the syntax too much,

and it was easy enough to write the few needed loops in the standard way.

Complicate the syntax for the implementation or for users?

Adin: For both: people have to read it, machines have to read it; the syntax is either sim-

ple or not.

You would put in new kinds of statements, and that’s clearly a complication. Now the
question is “Is the payoff worth it?”, and that’s where the design judgment comes in. And
we always came down on the side that we didn’t want to have new kinds of syntax for
handling loops since we could do it quite conveniently with what we had.

APL

53

You said that APL really has an advantage for parallel programming. I can understand the
use of arrays as the primitive data structure for the language. You also mentioned the use
of shared variables. How do they work?

Adin: A shared variable in APL is a variable that is accessible to more than one processor
at a time. The sharing processors can both be APL processors or one can be of a different
sort. For example, you can have a variable, let’s call it X, and, as far as APL is concerned,
reading and writing X is not different from an ordinary variable. However there might be
another processor, let’s say a file processor, which also has access to X, it being a shared
variable, and whatever value APL might give to X, the file processor uses that value
according to its own interpretation. And similarly, when it gives a value to X, which is
then read by APL, the APL processor similarly applies its own knowledge to it, however it
chooses to interpret that value. And this X is a shared variable.

What we have in APL systems like APL2 of IBM is some protocol for managing access to

this variable so that you don’t run into trouble with ditferent kinds of race conditions.

Is this parallelization you were talking about something the compiler can determine
automatically? Suppose that | want to multiply two arrays and add the value to each
element of an array. This is easy to express in APL, but can the compiler perform implicit
parallelization on that?

Adin: The definition in APL is that it doesn’t matter in what order you do the operations
on the elements of an array; therefore, the compiler or the interpreter or whatever imple-

mentation you have is free to do them simultaneously or in any arbitrary sequence.

Besides enabling simplicity at the language level, it can give implementers tremendous
flexibility to change the way the implementation works, taking advantage of new
hardware, or give you a mechanism to exploit things like automatic parallelization.

Adin: That's right, because according to the definition of the language, which is of course
the definition of what happens when the processor is applied, it doesn’t matter what order

you do them. That was a very deliberate decision.

Was that a unique decision in the history of languages of the time?

Adin: I am not that familiar with the history of languages, but since we were basically the

only serious array-oriented language, it probably was unique.

It's interesting to talk about collections and large data sets, which are clearly
preoccupations of modern programmers. APL preceded the invention of the relational
database. Now we have a lot of data in structures containing different data types, in
relational databases, and in large unstructured collections such as web pages. Can APL
handle these well? Does it offer models that people using more popular languages such
as SQL, PHP, Ruby, and Java can learn from?

Adin: APL arrays can have as elements both scalars, which have no internal structure,
and nonscalars, which may be of any complexity. Nonscalar elements are recursively
structured of other arrays. “Unstructured” collections such as web pages can therefore be

conveniently represented by APL arrays and manipulated by primitive APL functions.

54 CHAPTER THREE

Regarding very large arrays, APL has the facility to treat external files as APL objects. Once
an association has been made between a name in the workspace and an external file,
operations can be applied to the file using APL expressions. It appears to the user as if the
file is within the workspace, even though in actuality it may be many times larger than
the workspace size.

It is very hard to give specific details of what designers of other languages can learn from
APL, and it would be presumptuous of me to go into particulars of the languages you
mention, as [am not an expert in any of them. However, as [read about them in the liter-
ature I see that by and large the principles that guided the design of APL—which we
described, for example, in our 1973 paper “The Design of APL"—have continued to inform

later work in language design.

Of the two overriding principles, simplicity and practicality, the latter seems to have fared bet-
ter; simplicity is a more difficult objective to achieve since there are no practical constraints

on complexity. We strove for simplicity in APL by carefully defining the scope of the prim-
itive operations it would allow, maintaining the abstract nature of APL objects, and resist-
ing the temptation to include special cases represented by the operations of other systems.

An illustration of this is the fact that the concept of a “file” does not appear in APL. We
have arrays that may be treated as files as called for by an application, but there are no
primitive functions specifically designed for file manipulation as such. The practical need
for efficiency in file management, however, early on fostered the development of the
shared-variable paradigm, which itself is a general concept useful in a multitude of appli-
cations where the APL program needs to invoke facilities of another (APL or non-APL)
auxiliary processor.

Later on, an additional facility, using the general concept of namespaces, was designed to
allow APL programs to directly manipulate objects outside of the workspace, including

access to Java fields and methods, extremely large data collections, compiled programs in
other languages, and others. The user interface to both the shared-variable and namespace

facilities rigorously maintains APL syntax and semantics and thereby keeps it simple.

Without going into detail, therefore, it is reasonable to say that the newer languages could
benefit by maintaining a strict adherence to their own primitive concepts, defining each to

be as general as possible within the context of the applications they are addressing.

As for specific characteristics of APL as a model, APL has demonstrated that declarations
are unnecessary, although they may contribute to efficiency of execution in some situa-
tions, and that the number of different data types can be quite small. Newer languages
may benefit by aiming in these directions rather than taking it for granted that the user
has to help out the computer by providing such implementation-related information.

Also, the concept of a pointer is not a primitive in APL, and has never been missed. Of
course, where possible the primitive operations in the language should be defined on col-
lections of data having an abstract internal structure, such as regular arrays, trees, and
others.

APL

55

You are correct in noting that APL preceded the invention of the relational database. Both
Dr. E. F. (Ted) Codd and the APL group were at the IBM T. J. Watson Research Center in
the 1960s, when he was developing the relational database concepts, and I believe that we
had a very strong influence on that work. I recall in particular a heated discussion
between us one afternoon where we demonstrated that simple matrices, rather than com-
plex scalar pointer systems, could be used for representing the relationships among data

entities.

Legacy

' know that lots of design influences in Perl came from APL. Some people say some of the
crypticness of Perl comes from APL. | don’t know if this is a compliment or not.

Adin: Let me give you an example of that kind of compliment. There is a lot of politics
involved in the design and use of programming languages, particularly in a place like IBM
where it is a business. At various times, people tried to set up competitive experiments to
see if APL would do better than, say, PL1 or FORTRAN. The results were always loaded,
because the judges were people on the other side, but there is one comment that I always
remember from some functionary: he said APL can’t be very good because two of the

smartest guys he knew, Iverson and Falkoff, can’t make people believe in it.

What do the lessons about the invention, further development, and adoption of your
language say to people developing computer systems today and in the foreseeable
future?

Adin: Decisions about system design are not purely technical or scientific. Economic and
political considerations have a strong influence, and especially so in situations where there
is potential flexibility in the underlying technicalities, as in the design of languages and

systems.

In the period when APL was taking hold as an important tool being used within IBM in
the mid-1960s, and consideration was being given to making it into a product, we had to
contend with an IBM “language czar,” who decreed that only PL/1 would be supported by
the company in the future—except, of course, for FORTRAN and COBOL, which were
already entrenched in the industry and could not be totally abandoned.

As history has shown, this was an unrealistic position for the company to take and was
bound to fail, but this was not so obvious at the time, considering the dominance of IBM
in the computing industry and the dominance of certain factions within the power struc-
ture of the company.

We had to fight the policy to get the necessary support for APL to survive. The battle took
place on several fronts: as members of the IBM Research Division, we exploited as much
as possible opportunities to give professional talks, seminars, and formal classes so as to
imbed awareness of APL’s unique characteristics in the technical consciousness of the
time; we enlisted—wherever we could find them—people of influence within the com-

pany to countervail against the administrative power structure; we spread and supported

56 CHAPTER THREE

the internal use of our APL\360 system to development and manufacturing locations; we
leveraged important customers’ interest in APL systems to force the availability of APL
outside the company, at least on an experimental basis; and made allies within the ranks
of the marketing division. And we were successful, to the point where APL\360 was
among the very first IBM program products to be marketed after the unbundling of hard-
ware and software in the late 1960s.

A very significant milestone was accomplished on account of the interest that technical
talks and demonstrations had engendered at the NASA Goddard Space Center. In 1966
that facility requested access to our internal APL system in order to experiment with its
use. They were a very important customer, and we were urged by the IBM marketing peo-
ple to comply with their request. However, we demurred, insisting that we would only
agree to do this if we were first enabled to give a weeklong instructional course on site at
the Goddard Space Center.

We obtained this agreement, but then ran into difficulty implementing it: time-sharing
systems like APL\360 at the time required terminals connecting to the central system
through acoustic modems working with specialized telephone “data sets.” These tele-
phone sets were also used on the other end, attached to the central computer, and they
were in short supply. After all the administrative agreements to go ahead with the project
had been reached, we found that neither the New York- nor Washington D.C.-area phone
companies could provide the units needed for the projected classes at the Space Center.

While it was their normal practice to work only with their own equipment, the D.C.
phone company agreed to install any data sets we could somehow provide. But as much as
our IBM communication managers tried to persuade the New York phone company to
find data sets somewhere, they were not able to produce any, although they somehow
conveyed the idea that they would look the other way if we happened to use their equip-

ment already in our possession in ways they could not officially condone.

So we proceeded to disable half of the lines coming into our central computer, and had the
data sets thus freed taken down to the Space Center in an IBM station wagon. They were
then installed off the record by the local phone company and we were able to go ahead
with our course, thus establishing the first off-premises use of the APL\360 system by a
non-IBM entity, getting it out the door despite the support-only-PL/1 policy.

What do you regret most about the language?

Adin: We gave the design of APL our best efforts and worked hard in the political arena to
have it accepted and widely used. Under the circumstances, T don’t find anything to regret
about the language. One possible regret in hindsight is that we did not start sooner and
put greater effort behind the development of an effective compiler, but we can’t know
what this might have cost in tradeoffs, given the extant limitations of resources. Further-
more, there is reason to believe that current interest in parallel programming and the
adoption of APL-like array operations in traditional compiled languages like FORTRAN
will result in the equivalent in due course.

APL

57

How do you define success in terms of your work?

Adin: APL proved to be a very useful tool in the development of many aspects of IBM's
business. It provided a much simplified approach to using computers that allowed
researchers and product developers to apply themselves more efficiently to the substantive
problems they were working on, from theoretical physics to development of flat-screen
displays. It was also used to prototype major business systems such as assembly lines and
warchouses, allowing them to get started quickly and tested before being frozen in imple-

mentations using other programming systems.

We were successful in making APL into a whole line of IBM products, and providing lead-
ership for other computer companies to provide their own APL systems conforming to an

international standard.

APL also found substantial use in academic institutions as a tool and a discipline, thus ful-

filling one of the principal purposes of its development—its use in education.

APL of course was the forerunner of programming languages and systems treating arrays
as primitive data objects and using shared variables for managing simultaneity, and as
such will no doubt have a strong influence on further developments involving parallel
programming. It is very gratifying to see that in the last few months, three separate com-
puter industry consortiums have been established to work in this field.

58 CHAPTER THREE

CHAPTER FOUR

Forth

Forth is a stack-based, concatenative language designed by Chuck Moore in the
1960s. Its main features are the use of a stack to hold data, and words that operate
on the stack, popping arguments and pushing results. The language itself is small
enough that it runs on anything from embedded machines to supercomputers,
and expressive enough to build useful programs out of a few hundred words. Suc-
cessors include Chuck Moore's own colorForth, as well as the Factor programming
language.

59

The Forth Language and Language Desig¢n

How do you define Forth?

Chuck Moore: Forth is a computer language with minimal syntax. It features an explicit
parameter stack that permits efficient subroutine calls. This leads to postfix expressions
(operators follow their arguments) and encourages a highly [actored style of programming
with many short routines sharing parameters on the stack.

I read that the name Forth stands for fourth-¢eneration software. Would you like to tell us
more about it?

Chuck: Forth is derived from “fourth,” which alludes to “fourth-generation computer
language.” As I recall, I skipped a generation. FORTRAN/COBOL were first-generation
languages; Algol/Lisp, second. These languages all emphasized syntax. The more elaborate
the syntax, the more error checking is possible. Yet most errors occur in the syntax. |
determined to minimize syntax in favor of semantics. And indeed, Forth words are loaded
with meaning.

You consider Forth a language toolkit. I can understand that view, given its relatively
simple syntax compared to other languages and the ability to build a vocabulary from
smaller words. Am | missing anything else?

Chuck: No, it’s basically the fact that it's extremely factored. A Forth program consists of

lots of small words, whereas a C program consists of a smaller number of larger words.

By small word, I mean one with a definition typically one line long. The language can be
built up by defining a new word in terms of previous words and you just build up that
hierarchy until you have maybe a thousand words. The challenge there is 1) deciding
which words are useful, and 2) remembering them all. The current application I'm work-
ing on has a thousand words in it. And I've got tools for searching for words, but you can

only search for a word if you remember that it exists and pretty much how it’s spelled.

Now, this leads to a different style of programming, and it takes some time for a program-
mer to get used to doing it that way. I've seen a lot of Forth programs that look very much
like C programs transliterated into Forth, and that isn’t the intent. The intent is to have a
fresh start. The other interesting thing about this toolkit, words that you define this way
are every bit as elficient or significant as words that are predelined in the kernel. There’s
no penalty for doing this.

Does the externally visible structure consisting of many small words derive from Forth’s
implementation?

Chuck: It’s a result of our very efficient subroutine call sequences. There’s no parameter
passing because the language is stack-based. It’s merely a subroutine call and return. The
stack is exposed. The machine language is compiled. A switch to and from a subroutine is
literally one call instruction and one return instruction. Plus you can always reach down

into the equivalent of an assembly language. You can define a word that will execute

60 CHAPTER FOUR

actual machine instructions instead of subroutine calls, so you can be as efficient as any

other language, maybe more efficient than some.

You don’t have the C calling overhead.

Chuck: Right. This gives the programmer a huge amount of flexibility. If you come up
with a clever factoring of a problem, you can not only do it efficiently, you can make it
extraordinarily readable.

On the other hand, if you do it badly, you can end up with code that no one else can read—
code your manager can’t understand, if managers can understand anything. And you can
create a real mess. So it’s a two-edged sword. You can do very well; you can do very badly.

What would you say (or what code would you show) to a developer who uses another
programming language to make him interested in Forth?

Chuck: It is very hard to interest an experienced programmer in Forth. That’s because he
has invested in learning the tools for his language/operating system and has built a library
appropriate for his applications. Telling him that Forth would be smaller, faster, and easier
is not persuasive compared to having to recode everything. A novice programmer, or an
engineer needing to write code, doesn’t face that obstacle and is much more receptive—as
might be the experienced programmer starting a new project with new constraints, as
would be the case with my multicore chips.

You mentioned that a lot of Forth programs you've seen look like C programs. How do
you design a better Forth program?

Chuck: Bottom-up.

First, you presumably have some 1/0 signals that you have to generate, so you generate
them. Then you write some code that controls the generation of those signals. Then you
work your way up until finally you have the highest-level word, and you call it go and
you type go and everything happens.

I have very little faith in systems analysts who work top-down. They decide what the
problem is and then they factor it in such a way that it can be very difficult to implement.

Domain-driven design suggests describing business logic in terms of the customer’s
vocabulary. Is there a connection between building up a vocabulary of words and using
the terms of art from your problem domain?

Chuck: Hopefully the programmer knows the domain before he starts writing. I would
talk to the customer. I would listen to the words he uses and [would try to use those
words so that he can understand what the program’s doing. Forth lends itself to this kind
ol readability because it has postlix notation.

If I was doing a financial application, I'd probably have a word called “percent.” And you
could say something like “2.03 percent”. And the argument’s percent is 2.03 and every-

thing works and reads very naturally.

FORTH

61

62

How can a project started on punch cards still be useful on modern computers in the
Internet era? Forth was designed on/for the IBM 1130 in 1968. That it is the language of
choice for parallel processing in 2007 is surely amazing.

Chuck: It has evolved in the meantime. But Forth is the simplest possible computer lan-
guage. It places no restrictions upon the programmer. He/she can define words that suc-

cinctly capture aspects of a problem in a lean, hierarchical manner.

Do you consider English readability as a ¢oal when you desi¢n programs?

Chuck: At the very highest level, yes, but English is not a good language for description or
functionality. It wasn’t designed for that, but English does have the same characteristic as

Forth in the sense that you can define new words.

You define new words by explaining what they are in previously defined words mostly. In
a natural language, this can be problematic. If you go to a dictionary and check that out,

you find that often the definitions are circular and you don’t get any content.

Does the ability to focus on words instead of the braces and brackets syntax you might
have in C make it easier to apply ¢ood taste to a Forth program?

Chuck: I would hope so. It takes a Forth programmer who cares about the appearance of
things as opposed merely to the functionality. If you can achieve a sequence of words that
tlow together, it’s a good feeling. That’s really why I developed colorForth. I became
annoyed at the syntax that was still present in Forth. For instance, you could limit a com-
ment by having a left parenthesis and a right parenthesis.

I looked at all of those punctuation marks and said, “Hey, maybe there’s a better way.”

The better way was lairly expensive in that every word in the source code had to have a
tag attached to it, but once I swallowed that overhead, it became very pleasant that all of
those funny little symbols went away and were replaced by the color of the word which

was, to me, a much gentler way of indicating functionality.

I get interminable criticism from people who are color blind. They were really annoyed
that T was trying to rule them out of being programmers, but somebody finally came up
with a character set distinction instead of a color distinction, which is a pleasant way of
doing it also.

The key is the four-bit tag in each word, which gives you 16 things that we’re to do, and
the compiler can determine immediately what's intended instead of having to infer it from

context.

Second- and third-generation languages embraced minimalism, for example with meta-
circular bootstrapping implementations. Forth is a great example of minimalism in terms
of language concepts and the amount of hardware support required. Was this a feature of
the times, or was it something you developed over time?

Chuck: No, that was a deliberate design goal to have as small a kernel as possible. Pre-
define as few words as necessary and then let the programmer add words as he sees fit.

CHAPTER FOQUR

The prime reason for that was portability. At the time, there were dozens of minicomput-
ers and then there became dozens of microcomputers. And I personally had to put Forth

on lots of them.

[wanted to make it as easy as possible. What happens really is there might be a kernel with
100 words or so that is just enough to generate a—1I'll call it an operating system, but it’s not

quite—that has another couple hundred words. Then you're ready to do an application.

[would provide the first two stages and then let the application programmers do the third,
and I was usually the application programmer, too. I defined the words I knew were going
to be necessary. The first hundred words would be in machine language probably or
assembler or at least be dealing directly with the particular platform. The second two or
three hundred words would be high-level words, to minimize machine dependence in the
lower, previously defined level. Then the application would be almost completely machine

independent, and it was easy to port things from one minicomputer to another.

Were you able to port things easily abouve that second stage?

Chuck: Absolutely. I would have a text editor, for instance, that I used to edit the source
code. It would usually just transter over without any changes.

Is this the source of the rumor that every time you ran across a new machine, you
immediately started to port Forth to it?

Chuck: Yes. In fact, it was the easiest path to understanding how the machine worked,
what its special features were based on how easy it was to implement the standard pack-

age of Forth words.

How did you invent indirect-threaded code?

Chuck: Indirect-threaded code is a somewhat subtle concept. Each Forth word has an
entry in a dictionary. In direct-threaded code, each entry points to code to be executed
when that word is encountered. Indirect-threaded code points to a location that contains
the address of that code. This allows information besides the address to be accessed—for

instance, the value of a variable.

This was perhaps the most compact representation of words. It has been shown to be
equivalent to both direct-threaded and subroutine-threaded code. Of course these con-
cepts and terminology were unknown in 1970. But it seemed to me the most natural way

to implement a wide variety of kinds of words.

How will Forth influence future computer systems?

Chuck: That has already happened. I've been working on microprocessors optimized for

Forth for 25 years, most recently a multicore chip whose cores are Forth computers.

What does Forth provide? As a simple language, it allows a simple computer: 256 words of
local memory; 2 push-down stacks; 32 instructions; asynchronous operation; casy com-
munication with neighbors. Small and low-power.

FORTH

63

Forth encourages highly factored programs. Such are well-suited to parallel processing, as
required by a multicore chip. Many simple programs encourage thoughtful design of each.

And requiring perhaps only 1% the code that would otherwise be written.

Whenever I hear people boasting of millions of lines of code, I know they have greviously
misunderstood their problem. There are no contemporary problems requiring millions of
lines of code. Instead there are careless programmers, bad managers, or impossible
requirements for compatibility.

Using Forth to program many small computers is an excellent strategy. Other languages
just don’t have the modularity or flexibility. And as computers get smaller and networks

of them are cooperating (smart dust?), this will be the environment of the future.

This sounds like one major idea of Unix: multiple programs, each doing just one thing,
that interact. Is that still the best design today? Instead of multiple programs on one
computer, might we have multiple programs across a network?

Chuck: The notion of multithreaded code, as implemented by Unix and other OSes, was a

precursor to parallel processing. But there are important differences.

A large computer can afford the considerable overhead ordinarily required for multi-
threading. After all, a huge operating system already exists. But for parallel processing,

almost always the more computers, the better.

With fixed resources, more computers mean smaller computers. And small computers

cannot atford the overhead common to large ones.

Small computers will be networked, on chip, between chips and across RF links. A small
computer has small memory. Nowhere is there room for an operating system. The com-
puters must be autonomous, with a self-contained ability to communicate. So communi-
cation must be simple—no elaborate protocol. Software must be compact and efficient. An
ideal application for Forth.

Those systems requiring millions of lines of code will become irrelevant. They are a conse-

quence of large, central computers. Distributed computation needs a different approach.

A language designed to support bulky, syntactical code encourages programmers to write
big programs. They tend to take satisfaction, and be rewarded, for such. There is no pres-

sure to seek compactness.

Although the code generated by a syntactic language might be small, it usually isnt. To
implement the generalities implied by the syntax leads to awkward, inefficient object
code. This is unsuitable for a small computer. A well-designed language has a one-one
correlation between source code and object code. It’s obvious to the programmer what
code will be generated from his source. This provides its own satisfaction, is efficient, and

reduces the need for documentation.

64 CHAPTER FOUR

Forth was designed partly to be compact in both source and binary output, and is
popular among embedded developers for that reason, but programmers in many other
domains have reasons to choose other languages. Are there aspects of the language
design that add only overhead to the source or the output?

Chuck: Forth is indeed compact. One reason is that it has little syntax.

Other languages seem to have deliberately added syntax, which provides redundancy and

offers opportunity for syntax checking and thus error detection.

Forth provides little opportunity for error detection due to its lack of redundancy. This

contributes to more compact source code.

My experience with other languages has been that most errors are in the syntax. Design-
ers seem to create opportunity for programmer error that can be detected by the compiler.

This does not seem productive. It just adds to the hassle of writing correct code.

An example of this is type checking. Assigning types to various numbers allows errors to
be detected. An unintended consequence is that programmers must work to convert

types, and sometimes work to evade type checking in order to do what they want.

Another consequence of syntax is that it must accommodate all intended applications.
This makes it more elaborate. Forth is an extensible language. The programmer can create
structures that are just as efficient as those provided by the compiler. So all capabilities do
not have to be anticipated and provided for.

A characteristic of Forth is its use of postfix operators. This simplifies the compiler and
offers a one-one translation of source code to object code. The programmer’s understand-

ing of his code is enhanced and the resulting compiled code is more compact.

Proponents of many recent programming languages (notably Python and Ruby) cite
readability as a key benefit. Is Forth easy to study and maintain in relation to those? What
can Forth teach other programming languages in terms of readability?

Chuck: Computer languages all claim to be readable. They aren’t. Perhaps it seems so to

one who knows the language, but a novice is always bewildered.

The problem is the arcane, arbitrary, and cryptic syntax. All the parentheses, ampersands,
etc. You try to learn why it’s there and eventually conclude there’s no good reason. But
you still have to follow the rules.

And you can’t speak the language. You’d have to pronounce the punctuation like Victor
Borge.

Forth alleviates this problem by minimizing the syntax. Its cryptic symbols @ and ! are pro-

nounced “fetch” and “store.” They are symbols because they occur so frequently.

FORTH

65

The programmer is encouraged to use natural-language words. These are strung together
without punctuation. With good choice of words, you can construct reasonable sentences.

In fact, poems have been written in Forth.

Another advantage is postlix notation. A phrase like “6 inches” can apply the operator

“inches” to the parameter 6, in a very natural manner. Quite readable.

On the other hand, the programmer’s job is to develop a vocabulary that describes the
problem. This vocabulary can get to be quite large. A reader has to know it to find the pro-

gram readable. And the programmer must work to define helpful words.

All in all, it takes effort to read a program. In any language.

How do you define success in terms of your work?

Chuck: An elegant solution.

One doesn’t write programs in Forth. Forth is the program. One adds words to construct a
vocabulary that addresses the problem. It is obvious when the right words have been

defined, for then you can interactively solve whatever aspect of the problem is relevant.

For example, I might define words that describe a circuit. I'll want to add that circuit to a
chip, display the layout, verify the design rules, run a simulation. The words that do these
things form the application. If they are well chosen and provide a compact, efficient

toolset, then I've been successtul.

Where did you learn to write compilers? Was this something everybody at the time had to
do?

Chuck: well, I went to Stanford around ‘60, and there was a group of grad students writ-
ing an ALGOL compiler—a version for the Burroughs 5500. It was only three or four of
them, I think, but I was impressed out of my mind that three or four guys could sit down

and write a compiler.

I sort of said, “Well, if they can do it, I can do it,” and I just did. It isn’t that hard. There
was a mystique about compilers at the time.

There still is.

Chuck: Yeah, but less so. You get these new languages that pop up from time to time, and
I don’t know if they're interpreted or compiled, but well, hacker-type people are willing to

do it anyway.

The operating system is another concept that is curious. Operating systems are dauntingly
complex and totally unnecessary. It’s a brilliant thing that Bill Gates has done in selling
the world on the notion of operating systems. It’s probably the greatest con game the
world has ever seen.

66 CHAPTER FOUR

An operating system does absolutely nothing for you. As long as you had something—a
subroutine called disk driver, a subroutine called some kind of communication support, in
the modern world, it doesn’t do anything else. In fact, Windows spends a lot of time with
overlays and disk management all stuff like that which are irrelevant. You've got gigabyte
disks; you’ve got megabyte RAMs. The world has changed in a way that renders the oper-
ating system unnecessary.

What about device support?

Chuck: You have a subroutine for each device. That’s a library, not an operating system.

Call the ones you need or load the ones you need.

How do you resume programming after a short hiatus?

Chuck: I don’t find a short coding hiatus at all troublesome. I'm intensely focused on the
problem and dream about it all night. I think that’s a characteristic of Forth: full effort over
a short period of time (days) to solve a problem. It helps that Forth applications are natu-
rally factored into subprojects. Most Forth code is simple and easy to reread. When I do
really tricky things, I comment them well. Good comments help re-enter a problem, but
it’s always necessary to read and understand the code.

What’s the bigéest mistake you’ve made with regard to design or programming? What did
you learn from it?

Chuck: Some 20 years ago 1 wanted to develop a tool to design VLSI chips. 1 didn’t have a
Forth for my new PC, so [thought I'd try a different approach: machine language. Not

assembler language, but actually typing the hex instructions.

[built up the code as I would in Forth, with many simple words that interacted hierarchi-
cally. It worked. I used it for 10 years. But it was difficult to maintain and document.
Eventually I recoded it in Forth and it became smaller and simpler.

My conclusion was that Forth is more efficient than machine language. Partly because of
its interactivity and partly because of its syntax. One nice aspect of Forth code is that num-

bers can be documented by the expression used to calculate them.

Hardware

How should people see the hardware they develop on: as a resource or as a limit? If you
think of hardware as a resource, you might want to optimize the code and exploit every
hardware feature; if you see it as a limit, you are probably going to write code with the
idea that your code will run better on a new and more powerful version of the hardware,
and that’s not a problem because hardware evolves rapidly.

Chuck: A very perceptive observation that software necessarily targets its hardware. Soft-

ware for the PC certainly anticipates faster computers and can afford to be sloppy.

FORTH

67

But for embedded systems, the software expects the system to be stable for the life of the
project. And not a lot of software is migrated from one project to another. So here the
hardware is a constraint, though not a limit. Whereas, for PCs, hardware is resource that

will grow.

The move to parallel processing promises to change this. Applications that cannot exploit
multiple computers will become limited as single computers stop getting faster. Rewriting
legacy software to optimize parallel processing is impractical. And hoping that smart com-
pilers will save the day is just wishful thinking.

What is the root of the concurrency problem?

Chuck: The root of the concurrency problem is speed. A computer must do many things
in an application. These can be done on a single processor with multitasking. Or they can

be done simultaneously with multiple processors.

The latter is much faster and contemporary software needs that speed.

Is the solution in hardware, software, or some combination?

Chuck: It’s not hard to glue multiple processors together. So the hardware exists. If soft-
ware is programmed to take advantage of this the problem is solved. However, if the soft-
ware can be reprogrammed, it can be made so efficient that multiprocessors are not
needed. The problem is to use multiprocessors without changing legacy software. This is

the intelligent compiler approach that has never been achieved.

['m amazed that software written in the 1970s hasn’t/can’t be rewritten. One reason
might be that in those days software was exciting; things being done for the first time;
programmers working 18-hour days for the joy of it. Now programming is a 9-5 job as

part of a team working to a schedule; not much fun.

So they add another layer of software to avoid rewriting the old software. At least that’s

more fun than recoding a stupid word processor.

We have access to a bi¢ computational power in common computers, but how much
actual computing (that is, calculating) are these systems doing? And how much are they
just moving and formatting data?

Chuck: You are right. Most computer activity is moving data, not calculating. Not just
moving data, but compressing, encrypting, scrambling. At high data rates, this must be

done with circuitry so one wonders why a computer is needed at all.

Can we learn something from this? Should we build hardware in a different way?

Don Knuth launched a challenge: check what happens inside a computer during one
second of time. He said that what we would discover could change a lot of things.

Chuck: My computer chips recognize this by having a simple, slow multiply. It isn't used
very often. Passing data between cores and accessing memory are the important features.

68 CHAPTER FOUR

On one hand you have a language that really enables people to develop their own
vocabularies and not necessarily think about the hardware presentation. On the other
hand, you have a very small kernel that’s very much tied to that hardware. It’s interesting
how Forth can bridge the gap between the two. On some of these machines, is it true that
you have no operating system besides your Forth kernel?

Chuck: No, Forth is really standalone. Everything that needs to exist is in the kernel.

But it abstracts away that hardware for people who write programs in Forth.

Chuck: Right.

The Lisp Machine did something similar, but never really was popular. Forth quietly has
done that job.

Chuck: well, Lisp did not address I/0. In fact, C did not address 1/O and because it didn't,
it needed an operating system. Forth addressed /O from the very beginning. I don't
believe in the most common denominator. I think that if you go to a new machine, the
only reason it’s a new machine is because it’s different in some way and you want to take
advantage of those differences. So, you want to be there at the input-output level so you

can do that.

Kernighan and Ritchie might argue for C that they wanted a least common factor to make
porting easier. Yet you found it easier to port if you didn’t take that approach.

Chuck: I would have standard ways of doing that. I would have a word—1 think it was
fetchp maybe—that would fetch 8 bits from a port. That would be defined differently on
different computers, but it would be the same function at the stack.

In one sense then, Forth is equivalent to C plus the standard 1/0 library.

Chuck: Yeah, but I worked with the Standard FORTRAN Library in the carly days, and it
was awful. Tt just had the wrong words. It was extremely expensive and bulky. It was so
easy to define half a dozen instructions to perform in I/0 operation that you didn’t need

the overhead of a predefined protocol.

Did you find yourself working around that a lot?

Chuck: In FORTRAN, yeah. When you're dealing with, say, Windows, there’s nothing
you can do. They won't let you have access to the [/0. T have stayed away from Windows
most deliberately, but even without Windows, the Pentium was the most difficult

machine to put Forth on.

It had too many instructions. And it had too many hardware features like the lookaside
buffers and the different kinds of caching you really couldn’t ignore. You had to wade
your way through, and the initialization code necessary to get Forth running was the most
difficult and the most bulky.

Even if it only had to be executed once, I spent most of my time trying to figure out how to

do it correctly. We had Forth running standalone on a Pentium, so it was worth the trouble.

FORTH

69

The process extended over 10 years probably, partly chasing the changes in the hardware

Intel was making.

You mentioned that Forth really supporis asynchronous operation. In what sense do you
mean asynchronous operation?

Chuck: Well, there’s several senses. Forth has always had a multiprogramming ability, a

multithreading ability called Cooperative.

We had a word called pause. If you had a task and it came to a place where it didn't have
anything to do immediately, it would say pause. A round-robin scheduler would assign the

computer to the next task in the loop.

It you didn’t say pause, you could monopolize the computer completely, but that would
never be the case, because this was a dedicated computer. It was running a single applica-

tion and all the tasks were friendly.

I guess that was in the old days when all of the tasks were friendly. That’s one kind of
asynchronism that these tasks could run, do their own thing without ever having to syn-
chronize. One of the features, again, of Forth is that that word pause could be buried in
lower-level words. Every time you tried to read or write disk, the word pause would be
executed for you, because the disk team knew that it was going to have to wait for the

operation to complete.

In the new chips, the new multicore chips that I'm developing, we're taking that same
philosophy. Each computer is running independently and if you have a task on your com-
puter, and another task on the neighbor, they're both running simultaneously but they're
communicating with each other. That's the equivalent of what the tasks would've been

doing in a threaded computer.

Forth just factors very nicely into those independent tasks. In fact, in the case of the multi-
core computer, I can use not exactly the same programs, but I can factor the programs in
the same way to make them run in parallel.

When you had the cooperative multithreading, did each thread of execution have its own
stack, and you switched beiween them?

Chuck: When you did a task switch, sometimes all you needed to do, depending on the
computer, was save the word on top of the stack and then switch the stack pointer. Some-
times you actually had to copy out the stack and load the new one, but in that case, |

would make it a point to have a very shallow stack.

Did you deliberately limit the stack depth?

Chuck: Yes. Initially, the stacks were arbitrarily long. The first chip I designed had a stack
that was 256 deep because I thought that was small. One of the chips I designed had a
stack 4 deep. I've settled now on about 8 or 10 as a good stack depth, so my minimalism
has gotten stricter over time.

70 CHAPTER FOUR

I would’ve expected it to go the other way.

Chuck: Well, in my VLSI design application, I do have a case where I'm recursively fol-
lowing traces across the chip, in which case, I have to set the stack depths to about 4,000.
To do that might require a ditferent kind of stack, a software-implemented stack. But, in

fact, on the Pentium it can be a hardware stack.

Application Design

You brought up the idea that Forth is an ideal language for many small computers
networked together—smart dust, for example. For which kinds of applications do you
think these small computers are the most appropriate?

Chuck: Communication certainly, sensing certainly. But I'm just beginning to learn how

independent computers can cooperate to achieve a greater task.

The multicore computers we have are brutally small. They have 64 words of memory.
Well, to put it differently, they have 128 words of memory: 64 RAM, 64 ROM. Each word
can hold up to four instructions. You might end up with 512 instructions in a given com-
puter, period, so the task has to be rather simple. Now how do you take a task like the
TCP/IP stack and factor it amongst several of these computers in such a way that you can
perform the operation without any computer needing more than 512 instructions? That’s
a beautiful design problem, and one that I'm just approaching now.

I think that’s true of almost all applications. It’s much easier to do an application if it’s bro-
ken up into independent pieces as it is trying to do it in serial on a single processor. 1 think
that's true of video generation. Certainly I think it’s true of compressing and uncompress-
ing images. But I'm just learning how to do that. We’ve got other people here in the com-

pany that are also learning and having a good time at it.

Is there any field of endeavor where this is not appropriate?

Chuck: Legacy software, certainly. I'm really worried about legacy software, but as soon
as you're willing to rethink a problem, I think it is more natural to think of it this way. 1
think it corresponds more closely to the way we think the brain works with Minsky’s
independent agents. An agent to me is a small core. It may be that consciousness arises in

the communication between these, not in the operation of any one of them.

Legacy software is an unappreciated but serious problem. It will only get worse—not only
in banking but in aerospace and other technical industries. The problem is the millions of
lines of code. Those could be recoded, say in thousands of lines of Forth. There’s no point
in machine translation, which would only make the code bigger. But there’s no way that
code could be validated. The cost and risk would be horrendous. Legacy code may be the

downfall of our civilization.

FORTH

71

72

It sounds like you're betting that in the next 10 to 20 years we'll see more and more
software arise from the loose joining of many small parts.

Chuck: Oh, yes. I'm certain that's the case. RE communication is so nice. They talk about
micro agents inside your body that are fixing things and sensing things, and these agents
can only communicate via RF or maybe acoustic.

They can’t do much. They're only a few molecules. So this has got to be how the world
goes. It’s the way our human society is organized. We have six and half billion indepen-
dent agents out there cooperating.

Choosing words poorly can lead to poorly designed, poorly maintainable applications.
Does building a larger application out of dozens or hundreds of small words lead to
jaréon? How do you avoid that?

Chuck: Well, you really can’t. T find myself picking words badly. If you do that, you can
confuse yourself. I know in one application, I had this word—I forget what it was now—
but I had defined and then I had modified it, and it ended up meaning the opposite of
what it said.

It was like you had a word called right that makes things go to the left. That was hideously
confusing. I fought it for a while and finally renamed the word because it was just impos-
sible to understand the program with that word throwing so much noise into your cogni-
tion. I like to use English words, not abbreviations. I like to spell them out. On the other
hand, I like them to be short. You run out of short meaningful English words after a while
and you’ve got to do something else. I hate prefixes—a crude way to try to create
namespaces so you can use the same old words over and over. They just look to me like a

cop out. It's an easy way to distinguish words, but you should’ve been smarter.

Very often Forth applications will have distinct vocabularies where you can reuse words.
In this context, the word does this; in that context, it does something else. In the case of
my VLSI design, all of this idealism failed. I needed at least a thousand words, and they're
not English words; they’re signal names or something, and I quickly had to revert to defi-
nitions and weirdly spelled words and prefixes and all of that stuff. It isn’t all that read-
able. But on the other hand, it’s full of words like nand and nor and xor for the various gates

that are involved. Where possible, I use the words.

Now, I see other people writing Forth; I don’t want to pretend to be the only Forth pro-
grammer. Some of them do a very good job of coming up with names for things; others do
a very bad job. Some come up with a very readable syntax, and others don’t think that
that’s important. Some come up with very short definitions of words, and some have
words that are a page long. There are no rules; there’s only stylistic conventions.

Also, the key difference between Forth and C and Prolog and ALGOL and FORTRAN, the
conventional languages tried to anticipate all possible structures and syntax and build it
into the language in the first place. That has led to some very clumsy languages. I think C
is a clumsy language with its brackets and braces and colons and semicolons and all of
that. Forth eliminated all of that.

CHAPTER FOQUR

I didn’t have to solve the general problem. I just had to provide a tool that someone else
could use to solve whatever problem they encountered. The ability to do anything and not

the ability to do everything.

Should microprocessors include source code so that they can be fixed even decades
later?

Chuck: You're right, including the source with microcomputers will document them
nicely. Forth is compact, which facilitates that. But the next step is to include the com-
piler and editor so that the microcomputer code can be examined and changed without
involving another computer/operating system that may have been lost. colorForth is my
attempt to do that. A few K of source and/or object code is all that’s required. That can

easily be stored on flash memory and be usable in the far future.

What is the link between the design of a language and the design of a software written
with that language?

Chuck: A language determines its use. This is true of human-human languages. Witness
the difference between Romance (French, Italian), Western (English, German, Russian)
and Eastern (Arabic, Chinese) languages. They affect their cultures and their worldview.
They affect what is said and how it’s said. Of these, English is particularly terse and

increasingly popular.

So too with human-computer languages. The first languages (COBOL, FORTRAN) were
too verbose, Later languages (Algol, C) had excessive syntax. These languages necessarily
led to large, clumsy descriptions of algorithms. They could express anything, but do it
badly.

Forth addresses these issues. It is relatively syntax-free. It encourages compact, efficient
descriptions. It minimizes the need for comments, which tend to be inaccurate and distract

attention from the code itself.

Forth also has a simple, efficient subroutine call. In C, a subroutine call requires expensive
setup and recovery. This discourages its use. And encourages elaborate parameter sets that

amortize the cost of the call, but lead to large, complex subroutines.

Efficiency allows Forth applications to be very highly factored, into many, small subroutines.
And they typically are. My personal style is one-line definitions—hundreds of small sub-
routines. In such a case, the names assigned this code become important, both as a
mnemonic device and as a way to achieve readability. Readable code requires less
documentation.

The lack of syntax allows Forth a corresponding lack of discipline. This, to me, allows indi-
vidual creativity and some very pleasant code. Others view it as a disadvantage, fearing
management loss of control and lack of standardization. I think that’s more of a manage-

ment failure than the fault of the language.

FORTH

73

You said “Most errors are in syntax.” How do you avoid the other types of errors in Forth
programs, such as logic errors, maintainability errors, and bad style decisions?

Chuck: wWell, the major error in Forth has to do with stack management. Typically, you
leave something on the stack inadvertently and it’ll trip you up later. We have a stack com-
ment associated with words, which is very important. It tells you what is on the stack upon

entry and what is on the stack upon exit. But that’s only a comment. You can’t trust it.
Some people did actually execute those and use them to do verification and stack behavior.

Basically, the solution is in the factoring. If you have a word whose definition is one line
long, you can read through it thinking how the stack acts and conclude at the end that it’s
correct. You can test it and see if it works the way you thought it did, but even so, you're
going to get caught up in stack errors. The words dup and drop are ubiquitous and have to
be used correctly. The ability to execute words out of context just by putting their input
parameters and looking at their output parameters is hugely important. Again, when
you're working bottom-up, you know that all of the words you’ve already defined work
correctly because you tested them.

Also, there are only a few conditionals in Forth. There’s an if-else-then construction, a
begin-while construct. My philosophy, which I regularly try to teach, is that you minimize
the number of conditionals in your program. Rather than having a word that tests some-
thing and either does this or that, you have two words: one that does this and one that

does that, and you use the right one.

Now it doesn’t work in C because the calling sequences are so expensive that they tend to
have parameters that let the same routine do different things based upon the way it’s

called. That’s what leads to all of the bugs and complications in legacy software.

In trying to work around deficiencies of the implementation?

Chuck: Yeah. Loops are unavoidable. Loops can be very, very nice. But a Forth loop, at

least a colorForth loop, is a very simple one with a single entry and a single exit.

What advice would you give a novice to make programming more pleasant and effective?

Chuck: Well, surely not to your surprise, [would say you should learn to write Forth
code. Even if you aren’t going to be writing Forth code professionally, exposure to it will
teach you some of these lessons and give you a better perspective on whatever language
you use. If [were writing a C program, | have written almost none, but I would write it in
the style of Forth with a lot of simple subroutines. Even if there were a cost involved

there, I think it would be worth it in maintainability.

The other thing is keep it simple. The inevitable trend in designing an aircraft or in writing
an application, even a word processor, is to add features and add features and add features
until the cost becomes unsupportable. It would be better to have half a dozen word pro-
cessors that would focus on different markets. Using Word to compose an email is silly;

74 CHAPTER FOUR

99% of all of the facilities available are unnecessary. You ought to have an email editor.

There used to be such, but the trend seems to be away from that. It’s not clear to me why.

Keep it simple. If you're encountering an application, if you're on part of a design team,
try to persuade other people to keep it simple. Don’t anticipate. Don’t solve a problem that
you think might occur in the future. Solve the problem you’ve got. Anticipating is very
inefficient. You can anticipate 10 things happening, of which only one will, so you've
wasted a lot of effort.

How do you recognize simplicity?

Chuck: There’s I think a budding science of complexity, and one of their tenets is how to
measure complexity. The description that I like, and [don’t know if there’s any other one,
is that the shortest description or if you have two concepts, the one with the shorter
description is the simpler. If you can come up with a shorter definition of something, you
come up with a simpler definition.

But that fails in a subtle way that any kind of description depends on the context. If you
can write a very short subroutine in C, you might say this is very simple, but you're rely-
ing upon the existence of the C compiler and the operating system and the computer
that’s going to execute it all. So really, you don’t have a simple thing; you have a pretty

complex thing when you consider the wider context.

[think it’s like beauty. You can’t define it, but you can recognize it when you see it—
simple is small.
How does teamwork affect programming?

Chuck: Teamwork—much overrated. The first job of a team is to partition the problem
into relatively independent parts. Assign each part to an individual. The team leader is

responsible for seeing that the parts come together.

Sometimes two people can work together. Talking about a problem can clarify it. But too
much communication becomes an end in itself. Group thinking does not facilitate creativ-
ity. And when several people work together, inevitably one does the work.

Is this valid for every type of project? If you have to write something as feature-rich as
OpenOffice.org... it sounds pretty complex, no?

Chuck: Something like OpenOffice.org would be factored into subprojects, each pro-
grammed by an individual with enough communication to assure compatibility.

How do you recognize a good programmer?

Chuck: A good programmer writes good code quickly. Good code is correct, compact, and

readable. “Quickly” means hours to days.

A bad programmer will want to talk about the problem, will waste time planning instead
of writing, and will make a career out of writing and debugging the code.

FORTH

75

What is your opinion of compilers? Do you think they mask the real skills of
programmers?

Chuck: Compilers are probably the worst code ever written. They are written by someone
who has never written a compiler before and will never do so again.

The more elaborate the language, the more complex, bug-ridden, and unusable is the
compiler. But a simple compiler for a simple language is an essential tool—if only for

documentation.

More important than the compiler is the editor. The wide variety of editors allows each
programmer to select his own, to the great detriment of collaborative efforts. This fosters
the cottage industry of translating from one to another.

Another failing of compiler writers is the compulsion to use every special character on the
keyboard. Thus keyboards can never become smaller and simpler. And source code
becomes impenetrable.

But the skills of a programmer are independent of these tools. He can quickly master their

foibles and produce good code.

How should software be documented?

Chuck: I value comments much less than others do. Several reasons:
e If comments are terse, they are often cryptic. Then you have to guess what they mean.

e If comments are verbose, they overwhelm the code they’re embedded in and trying to

explain. It’s hard to find and relate code to comment.

* Comments are often badly written. Programmers aren’t known for their literary skills,
especially if English is not their native language. Jargon and grammatical errors often

make them unreadable.

* Most importantly, comments are often inaccurate. Code may change without com-
ments being updated. Although code may be critically reviewed, comments rarely are.
An inaccurate comment causes more trouble than no comment. The reader must judge

whether the comment or the code is correct.

Comments are often misguided. They should explain the purpose of the code, not the
code itself. To paraphrase the code is unhelpful. And if it is inaccurate, downright mislead-
ing. Comments should explain why the code is present, what it is intended to accomplish,

and any tricks employed in accomplishing it.

colorForth factors comments into a shadow block. This removes them from the code itself,
making that code more readable. Yet they are instantly available for reading or updating.

It also limits the size of comments to the size of the code.

76 CHAPTER FOUR

Comments do not substitute for proper documentation. A document must be written that
explains in prose the code module of interest. It should expand greatly the comments and

concentrate on literate and complete explanation.

Of course, this is rarely done, is often unaffordable, and is easily lost since it is separate

from the code.

Quoting from hitp://www.colorforth.com/HOPL.html:

“The issue of patenting Forth was discussed at length. But since software patents were
controversial and might involue the Supreme Court, NRAO declined to pursue the matter.
Whereupon, rights reverted to me. | don’t think ideas should be patentable. Hindsight
agrees that Forth’s only chance lay in the public domain. Where it has flourished.”

Software patents are still controversial today. Is your opinion about patents still the
same?

Chuck: I've never been in favor of software patents. It’s too much like patenting an idea.
And patenting a language/protocol is especially disturbing. A language will only be suc-

cessful if it’s used. Anything that discourages use is foolish.

Do you think that patenting a technology prevents or limits its diffusion?

Chuck: It is difficult to market software, which is easy to copy. Companies go to great
lengths to protect their product, sometimes making it unusable in the process. My answer
to that problem is to sell hardware and give away the software. Hardware is difficult to

copy and becomes more valuable as software is developed for it.

Patents are one way of addressing these issues. They have proven a wondertul boon to
innovation. But there’s a delicate balance required to discourage frivolous patents and
maintain consistency with prior art/patents. And there are huge costs associated with
granting and enforcing them. Recent proposals to reform patent law threaten to freeze out
the individual inventor in favor of large companies. Which would be tragic.

FORTH

77

Copyrighted material

CHAPTER FIVE

BASIC

In 1963, Thomas Kurtz and John Kemeny invented BASIC, a general-purpose lan-
guage intended to teach beginners to program as well as to allow experienced
users to write useful programs. Their original doals included abstracting away
details of the hardware. The language spread widely after the introduction of
microcomputers in the 70s; many personal computers included custom variants.
Though the language has moved beyond line numbers and GOTO statements
through Microsoft's Visual Basic and Kurtz's BASIC, multiple generations of pro-
grammers learned the joy of programming from a language that encouraged exper-
imentation and rewarded curiosity.

79

The Goals Behind BASIC

What is the best way to learn to program?

Tom Kurtz: Beginning programmers should not have to wade through manuals. Most
manuals are far too wordy to retain the attention of new students. Simple coding assign-

ments and easy access Lo easy-to-use implementations are required, and many examples.

Some educators prefer to teach a language in which programmers need to develop a lot
of experience before applying it. You have chosen instead to create a language that any
level of programmer can use quickly, where they can improve their knowledge by
experience.

Tom: Yes. Once you have learned to program, new computer languages are easy to learn.
The first is the hardest. Unless a language is particularly obtuse, the new language will be
but a short step from the languages already known. An analogy with spoken languages
(which are much more difficult to learn): once you learn your first Romance language, the
second is much simpler. First of all, the grammar is similar, there are many words the
same, and the syntax is fairly simple (i.e., whether the verb is in the middle, as in English,
or at the end).

The simpler the first language, the more easily the average student will learn it.

Did this evolutionary approach guide your decision to create BASIC?

Tom: When we were deciding to develop BASIC (John Kemeny and I back in 1962 or so),
[considered attempting to develop simplified subsets of either FORTRAN or Algol. It didn‘t
work. Most programming languages contain obscure grammatical rules that act as a bar-

rier for the beginning student. We tried to remove all such from BASIC.
Several of the considerations that went into the design of BASIC were:

* One line, one statement.

We couldn’t use a period to end a statement, as JOSS did (I believe.) And the Algol
convention of a semicolon made no sense to us, as did the FORTRAN Continuation (C).
* Line numbers are GOTO targets.
We had to have line numbers since this was long before the days of WYSIWYG. Invent-
ing a new concept of “statement label” didn’t seem like a good idea to us. (Later, when
creating and editing programs became easier, we allowed the user to not use line numbers,
as long as he didn"t use GOTO statements; by that time, BASIC was fully structured.)
¢ All arithmetic is floating point.
One of the most difficult concepts for a beginner to learn is why the distinction
between type integer and type floating. Almost all the programming languages at the
time bowed to the architecture of the most computer hardware, which included float-
ing point for engineering calculations and integer for efficiency.

80 CHAPTER FIVE

In handling all arithmetic in floating point, we protected the user from numeric typing.
We did have to do some complicated stuff internally when an integer value was
required (as in an array subscript) and the user provided a noninteger (as in 3.1). We
simply rounded in such cases.
We had similar problems with the difference between binary and decimal fractions. As
in the statement:

FOR I = 1 TO 2 STEP 0.1
The decimal fraction 0.1 is an infinite repeating binary fraction. We had to use a fuzz

factor to determine the completion of the loop.

(Some of these binary-decimal considerations were not included in the original BASIC,

but were handled in the much more recent True BASIC.)
A number is a number (is a number).

No form requirements when entering a number in the code or in data statements. And
the PRINT statement produced answers in a default format. The FORMAT statement, or
its equivalent in other languages, is quite difficult to learn. And the beginning user

might wonder why would he have to learn it—he just wanted to get a simple answer!

Reasonable defaults.

If there are any complications for the “more advanced” user, they should not be visible to

the beginner. Admittedly, there were not many “advanced” features in the original

BASIC, but that idea was, and is, important.

The correctness of our approach was borne out by that fact that it took about an hour to teach

freshmen how to write simple programs in BASIC. Our training started out with four one-

hour lectures, then was reduced to three, then two, and finally to a couple of videotapes.

[once determined that an introductory computer science course could be taught using a

version of BASIC (not the original one, but one that included structured programming

constructs). The only thing you could not do was to introduce the student to the ideas of

pointers and allocated storage!

Another point: in the early days running a program required several steps: Compiling.

Linking and loading. Execution. We decided in BASIC that all runs would combine these

steps so that the user wouldn’t even be aware of them.

At that time in the history of computing, most languages required a multiple-pass com-

piler, which might consume too much valuable computer time. Thus, we compiled once,

and executed many times. But small student programs were compiled and executed once

only. It did require us to develop a single-pass compiler, and go directly to execution if the

compilation stage was without errors.

Also, in reporting errors to the student, we stopped after five errors. I can recall FORTRAN

error printouts many pages in length detailing a/l the syntax errors in a program, usually

from omitting but one key punctuation at the beginning.

BASIC

81

82

I've seen a BASIC manual from 1964. The subtitle is “the elementary algebraic language
designed for the Dartmouth Time Sharing system.” What'’s an al¢ebraic language?

Tom: Well, we were both mathematicians, so naturally there are certain things in the lan-
guage that look mathematical, for example raising numbers to power and things of this
sort, and then the functions that we added were mathematical, like sine and cosine,
because we were thinking of students doing calculus using BASIC programs. So there was
obviously a bias for numerical calculations in contrast to other languages that were devel-

oped at the time such as COBOL, which had a different focus.

What we did was look at FORTRAN at the time. Access to FORTRAN on any of the big IBM
computers was through the medium of 80-column punch cards. We were introducing a

computer in our campus through the use of teletype machines, which were used as input to
computers because they were compatible with phone lines, and we wanted the phone lines
to connect the terminals in various places on the campus to the central computer. So all that
was done using machinery designed originally for communication purposes such as teletype

communication, store and forward messages, and so on. So we did away with punch cards.

Second thing we wanted to do was to get away from the requirements that punch cards
imposed on users, which was that things had to be in certain columns on the card, and so
we wanted to be something more or less free form that somebody could type on a teletype
keyboard, which is just a standard “qwerty” keyboard, by the way, but only with upper-

case letters.

That’s how the form of the language appeared, something that was easy to type, in fact
originally it was space-independent. If you put spaces or you didn’t put spaces in what you
were typing it didn’t make any difference, because the language was designed originally so
that whatever you typed was always interpreted by the computer correctly, even if there
were spaces or no spaces. The reason for that was that some people, especially faculty

members, couldn’t type very well.

Space insensitivity made its way into some of the early personal computer versions ot
BASIC, and that led to some quite funny anomalies about the interpretation of what the
person typed.

At Dartmouth there was no ambiguity at all. Only in much later years were spaces required

as the language evolved; the ending of a variable name had to be either a space or symbol.

One critic of BASIC said that it is a language designed to teach; as soon as you start writing
big programs, they become chaotic. What do you think?

Tom: This is a statement by somebody who hasn’t followed the development of BASIC
over the years. It’s not a baby language. With True BASIC I personally wrote 10,000- and
20,000-line programs, and it expands quite well, and I could write 30,000- or 40,000-line
programs and there wouldn’t be any problem, and it wouldn’t cause the runtime to

become inefficient, either.

The implementation of the language is separate from the design of the language.

CHAPTER FIVE

The design of the language is what the user has to type to get his work done. Once you
allow the possibility of libraries, then you can do anything you want. Then it’s a question
of the implementation of the language whether it supports programs of infinitely large
size, and True BASIC does.

This is different from other versions of BASIC. For example Microsoft BASIC and Visual
Basic, that is based on it, have some limitations. Other versions of BASIC that have been
tloating around had other limitations, but those are in the implementation, not in the
design of the language.

Which features of True BASIC made it possible for you to write large programs?

Tom: There’'s only one, the encapsulation, the module. We call our encapsulating struc-
tures modules.

That was actually standardized by the BASIC Committee, believe it or not, before they
went out of business. That happened in the early days of True BASIC. That feature was
added to the language standard, and that was about 1990 or so, 1991.

Modern computers have lots of memory and very fast chips and so there’s no problem
implementing that kind of stuff.

Even though you're back to two passes now in the compiler.

Tom: The linker is also written in True BASIC. It's actually a crude version of True BASIC, or
a simplified version of True BASIC. That’s compiled into this B code, like the Pascal P code.

To actually do the linking, you execute those B code instructions and there’s a very fast
interpreter that executes B code instructions. True BASIC, like the original BASIC, is com-
piled. The original BASIC was compiled into direct machine instructions, in one stage. In
True BASIC we compile into B code, and the B code is very simple, so the execution of B

code by a very fast C written loop, as it is now, was originally written for the DOS platforms.

That’s very fast. It’s not as fast as a language designed for speed, but it’s pretty darn fast. As
[said, there are two-address instructions in the B code, and so it’s very fast.

In the early days, interpretation didn’t slow things down because we had to do floating
point in software. We insisted that True BASIC and original Dartmouth BASIC always
dealt with double-precision numbers, so that 99% of the users didn’t have to worry about
the precision. Now, of course, we use the IEEE standard that’s provided automatically by

all chips.

Do you think that the only difference between a language designed to teach and one
designed to build professional software is that the first is easier to learn?

Tom: No, it’s just the way that things developed. C came at an appropriate time and gave
access to the hardware. Now the current object-oriented languages that are around, what
they are teaching and what the protessionals are doing, are derivatives of that environ-
ment, and so those languages are very hard to learn.

BASIC

83

It means that people who use these derivative languages and are professionally trained
and are members of programming teams can put together much more sophisticated appli-
cations, such those used to do movies, sounds, and things of this sort. It is just much easier
to do that with an object-oriented language like Objective-C, but if that’s not your goal,
and you just want to write a large application program, you could use True BASIC, which
comes from Dartmouth BASIC.

What is the final éoal of making a programming language easier to use? Will we ever be
able to build a language so simple that every computer user could write his own
programs?

Tom: No, a lot of the stuff we based on BASIC at Dartmouth can now be handled by other
applications such as spreadsheets. You can do quite complicated calculations with spread-
sheets. Furthermore, some of the mathematical applications we had in mind can now be

done using libraries of programs put out by professional societies.

The details of the programming language don’t really matter because you can learn new
languages in one day. It is easy to learn a new language if there is proper documentation.
[just don’t see what is the need of any new language alleged to be the perfect language.
Without a specific field in mind, you can’t have a good language; it’s a self-contradicting
idea! It’s like asking what is the best spoken and written language around the world? Is it
[talian? English? Or what is it? Could you define one? No, because all written and spoken
languages derive from how life is in that place where the language is used, so there is no

such thing as the perfect language. There is no perfect programming language, either.

Did you always intend that people would write a hundred very small programs and then
call themselves programmers?

Tom: That was our purpose, but the odd thing about it is, as the language grew, without
getting too complex, it became possible to write 10,000-line programs. That’s because we
kept things very simple. The whole idea, and you see, the trick in time sharing is that the
turnaround time is so quick, you don’t worry about optimizing the program. You worry
about optimizing person time.

I had an experience when I was writing a program for the MIT computer several years
before we invented BASIC. That was using a symbolic assembly program, SAP, for the
IBM 704. I tried to write this program and I tried to do everything that made sense, and I
used sense lights to optimize it, so I didn’t repeat calculations that weren’t necessary. I did
everything. Well, the damn thing didn’t work and it took me a month to find out that it

didn’t work, because I went down every two weeks. The turnaround time was two weeks.

[used I don’t know how many minutes or hours of computer time in the process. Then
the next year when FORTRAN came out, I switched and wrote a FORTRAN program and 1
think I used five minutes of computer time, all told.

The whole business of optimizing and coding is absolutely wrong. You don’t do that. You
optimize only if you have to and you do it later. Higher-level languages optimize com-
puter time automatically because you make fewer errors.

84 CHAPTER FIVE

That’s a point I hear infrequently.

Tom: Computer scientists are kind of stupid in that respect. When we’re computer pro-
grammers we're concentrating on the intricate little fascinating details of programming and
we don’t take a broad engineering point of view about trying to optimize the total system.

You try to optimize the bits and bytes.

At any rate, that's just an editorial comment. I'm not sure 1 could back it up.

Did the evolution of the hardware influence the evolution of the language?

Tom: No, because we thought the language was a protection from knowing about the
hardware. When we designed BASIC we made it hardware-independent; there is nothing

in the language or in the features that came in later that reflects the hardware.

This is not true with some of the early personal computer versions of BASIC, which were
based only in a loose sense on what we did at Dartmouth. For example, in one personal
computer version of BASIC they had a way to set or interrogate the content of a certain
memory location. In our own BASIC at Dartmouth, we never had that. So of course those
personal computer BASICs were terribly dependent on the hardware capabilities, and the
design of those personal computer languages reflected the hardware that was available to
them.

If you were talking to people who did Microsoft BASIC, they would say yes, the features
of the language were influenced by the hardware, but this didn't happen at Dartmouth
with the original BASIC.

You chose to perform all arithmetic as floating point to make things easier for the user.
What is your opinion on the way modern programming languages handle numbers?
Should we move to an exact form of representation using arbitrary-precision numbers,
where you consider them as a sort of “array of digits”?

Tom: There are lots of ways to represent numbers. It is true that most languages at that
time, and modern languages as well, reflect the availability of the type of number repre-

sentations that are available on today’s hardware.

For example, if you program in C today, there are number types that correspond to the
numeric representation available on hardware, such as single-precision floating point,
double-precision floating point, single-precision integer, double-precision integer, etc.
Those are all aspects of the C language because it was designed to get at the hardware, so
they have to provide access to whatever the number representations are in the computer.
Now, what numbers can be represented in computers? Well, in a fixed-length number of
binary digits, binary bits—with which most computers work—are at least a finite number

of decimal digits, you have a limitation on the type and numbers you can represent, and
that’s well known to lead to certain types of rounding errors.

BASIC

85

Some languages provide access to an unlimited precision, like 300 decimal digits, for
example, but they do that with software by representing very large numbers as potentially

infinite arrays of digits, but that’s all done by a software and consequently is very slow.

Our approach in BASIC was simply to say a number is a number, “3” is a number but also
“1.5” is a number. We haven’t bothered our students with that distinction; whatever they
put as a number, we tried our best to represent that number in the floating-point hard-
ware that was available on the machine.

One thing to say about that is when we were first considering which computers to get (of
course we ended up with the GE computer in 1964), we insisted that the computer had
floating-point hardware because we didn’t want to mess around with having to do soft-
ware arithmetic, and so that’s how we represented the numbers. Of course there is a cer-

tain imprecision in that, but that’s what you have to live with.

Were the GOTO and the GOSUB statements just a choice given the hardware at the time?
Should modern programming languages provide them as well?

Tom: I don’t think the hardware was the issue; it’s irrelevant.

Some structured languages required it, but that was in the old days, 20 or 30 years ago, so
[don’t really think that’s an issue.

The thing was important at the time because that was how people wrote programs for
computers in machine language and assembly language. When we did BASIC the idea of
structured programming had not yet surfaced; also, we patterned BASIC after FORTRAN,
and FORTRAN had the GOTO statement.

During the evolution of BASIC, what criteria did you use when considering new features
to add to the language?

Tom: Well, whatever was needed at the time—nothing very theoretical.

For example, one of the things we did after BASIC saw the light of day in early 1964 was
to add the ability to handle nonnumerical information, strings of character information.
We allowed character strings so that when people were writing programs such as to play
games, they could type “yes” or “no” instead of “1” or “0”. In the original BASIC, “1”
meant “yes,” and “0” meant “no,” but very soon we added the ability to handle strings of

characters. And that was just because it was needed.

Compiler Design

When you wrote the first version of BASIC, you were able to write a single-pass compiler
while everyone else was doing a multipass compiler. How did you do that?

Tom: It's very simple, if the design of the language is relatively simple. A lot of languages
are simple in that respect. Everything was known, and the only thing we had to put off to
what we call the pass and a half was filling in for forward transfers. That was the only

thing that really prevented a complete single-pass compiler.

86 CHAPTER FIVE

In the first hundred lines of a program you have a GOTO to something in the first
thousand lines. It’s a linking stage then.

Tom: That’s what we did. It was the equivalent of the linking list. Now, we didn’t actually
use a linked list structure in the assembly language of the computer we were working
with, but it was basically that. It might have been a little table that was set up with

addresses that are filled in later.

Were you able to parse and generate code at the same point then?

Tom: Yes. The other part about it was that the language was deliberately made simple for
the first go-round so that a single-pass parsing was possible. In other words, variable
names are very limited. A letter or a letter followed by a digit, and array names, one- and
two-dimensional arrays were always single letters followed by a left parenthesis. The pars-
ing was trivial. There was no table lookup and furthermore, what we did was to adopt a
simple strategy that a single letter, or a single letter followed by a digit, gives you what, 26
times 11 variable names. We preallocated space, tixed space for the locations for the val-
ues of those variables, if and when they had values.

We didn’t even use a symbol table.

Did you require variable declarations?

Tom: No, absolutely not. In fact, arrays always were single letters followed by left paren-
thesis, so that was in fact the declaration. Let me see if | can remember this correctly. If
you used an array, like you used a(3), then it was automatically an array from, oh, let’s
see, I think it was 0 to 10. Automatic default declarations, in other words, and starting at 0
because, being mathematicians, when you represent the coefficients of a polynomial, the
first one has a 0 subscript.

Did you find that simple to implement?

Tom: Trivial to implement. In fact, there are a lot of things in compiler writing that are
not too hard at all. Even later on when a more advanced version of BASIC was floating

around that used a symbol table lookup, but that’s not so hard, either.

It’s the optimizations that hurt.

Tom: We didn’t worry about optimization, because 99% of all the programs that were
being written by students and by faculty members at that time were little teeny, little triv-

ial things. It didn’t make any sense to optimize.

You've said that polymorphism implies runtime interpretation.

Tom: I believe that’s true, but nobody has challenged me on that statement because [
haven’t discussed it. Polymorphism means that you write a certain program and it behaves
differently depending on the data that it operates on. Now, if you don’t pull that in as a
source program, then at execution time that piece of program doesn’t know what it’s

doing until it actually starts executing, that’s runtime interpretation. Am I wrong on that?

BASIC

87

Consider Smalltalk, where ar¢uably you have the source available. If you make really late
binding decisions, does that count as runtime binding?

Tom: That's a tricky question. There’s early binding, late binding, and runtime binding.
[t’s really tricky, and I imagine you can figure out ways of getting around this.

For example, suppose you're writing a sorting routine. If you're sorting numbers, the
comparison between which number is less and so on is obvious. If you're sorting character
strings, then it’s less obvious, because you don’t know whether you want ASCII sorting or

whether you want dictionary ordering or whether you want some other ordering.

If you’re writing a sorting routine, you know which one you want, so that’s how you
make your comparison. If you're writing a general purpose sorting routine, then you have
to call a subroutine or do something like that to determine whether item A is less than
item B, whatever that is. If you're trying to sort keys to records or something, then you
have to know the ordering of whatever it is you're sorting. They may be different kinds ol
things. Sometimes they may be character strings, but think of what the possibilities are.
When you write the sorting algorithm, you don’t know any of that stutf, which means it has

to be put in later. If it’s done at runtime, of course, then it’s runtime interpretation.

That can be done efficiently, don’t get me wrong, because you can have a little program, a
subroutine, and then all the person has to do is, in the subroutine, to write the rules for

ordering the elements that he’s sorting. But it isn’t automatic.

You don’t et polymorphism for free. You have to write the polymorphic variants.

Tom: Somebody has to worry about it.

The other thing that the object-oriented people talk about is inheritance. That’s only
important if you have data typing in your language. I've read the introductions to a num-
ber of object-oriented books, and they talk about a guy writing a circle routine. Somebody
else might use it for some other purpose, but that’s extremely rare. The problem that I've
always felt about stuff like that is that if you want to write a routine that’s general-purpose
enough that other people might want to use it, then you’ve got to document the hell out
ol it, and you have to make it available. I mean there’s a whole raft of considerations.

You're almost writing a complete application with documentation.

For the kind of programs I do, that’s overrated. I don’t know what happens in the industry.
That’s another matter.

Would you call that idea of cheap and easy code reuse premature generalization?

Tom: It's an idea that may have relevance in the programming profession, but it does not
have relevance to the wider group of amateurs who might write programs. As a matter of
fact, most people don’t write programs these days. Much of what we used to write pro-
grams for is now done by an application that you can buy or you can put it into a spread-
sheet, or whatever. Having nonprolessional programmers, people in other fields, write
programs is not done very much anymore,

88 CHAPTER FIVE

One of the things that bothers me about the education of programming primarily in second-
ary schools, where they have an advanced placement in computer science, is that it’s much

too complicated. T don’t know what languages they teach these days, 1 haven’t looked at it.

[once looked at how [would structure a first college course in computer science using
BASIC. It could do practically everything I'd ever want to do in a beginning computer sci-
ence course except deal with pointers and allocated storage. That's sort of a complexity. If
you use Pascal for the language, you may have to get into pointers and allocated storage
when people don’t even know what a computer program is, but that’s neither here nor

there. I never pushed my views. I'm one against many.

People are starting to believe that you don’t have to deal with allocated memory and
pointers much anymore unless you're writing virtual machines. Those who write
compilers do, but that’s our job.

Tom: Let the compiler do it; you don’t have to do it.

We got portability in True BASIC. A couple of young men who were really brilliant did the
design. I just was with the company and did application programming. They designed an
intermediate language that was in the fashion of the P code of Pascal. Instead of being two
address, it was three address, because it turned out that practically all instructions in
BASIC are three address, LET A = 3. That’s three things, the opcode and the two addresses.
Then they built a compiler using BASIC itself, and built a very crude support to actually
compile that compiler. The compiler itself is written in True BASIC, and it runs on any

machine for which there is a True BASIC engine, which we call the interpreter.

The language is interpreted at the execution level, not at the scanning level. So there’s
three stages in the execution of the program. The first is the compiler stage, the second is
the linking/loading stage, and the third is the execution. But the user doesn’t know that.
The user just types run or hits run or something and bang, it happens.

The compiled code is also machine-independent. It can transport that across boundaries.

It’s really quite a sophisticated language environment. We were on multiple platforms, four
or five different platforms for a while, but most platforms lived a short time and died, of

course. Now there’s only two major platforms or three major platforms left: Unix, Microsoft,
and, for us, Apple—an interesting platform because Dartmouth was always an Apple school.

Doing the porting to those platforms turned out to be a dog. The windowing support and
the gadgets and the buttons and all that kind of stulf, they all do it dilferently, and you
have to get down to the detail of how they do it. Sometimes they do it at a very low level,

so you have to build all that stuff up yourself.

The old, original Mac, it had a Mac toolbox. For a while, we used a layering software, XVT
out of Boulder, Colorado, which claimed to target Windows and also the classic Mac. We
were able to get some mileage out of that. Before the company went defunct, the pro-
grammer put out a version for Windows; it goes directly to the Windows application

environment.

BASIC

89

The trouble with those is that when we have a single programmer doing all of that stuff, it
takes a while, and new versions of the operating system come out and you run across new
bugs and have to track them down. It was almost impossible for a small outfit like we
were. At one point we had three programmers, then down to two, and then down to one.
That’s really just too much for one programmer to handle.

The underlying code, now that it’s largely C, contains tons of #ifdefs in it.

Language and Programming Practice

What is the link between the design of a language and the design of a software written
with that language?

Tom: Very tight. Most languages were designed with specific types of soltware in mind. A

prime example was APT, a language for controlling Automatic Programmed Tools.

You added the REM statement for comments in the early days. Has your opinion on
comments and software documentation changed over the years?

Tom: No, it’s a kind of self-defense mechanism. When I write programs in True BASIC, 1
do add comments to remind me whatever I was thinking when I wrote the code. So I
think that comments play a role, and the role is ditferent depending on what kind of pro-
grams you are writing, whether you work in a group or no other people read your code. 1
believe in comments but only insofar as they are necessary.

Do you have any suggestions for people writing software in teams?

Tom: No, because we have never done it. All the software we have done in our environ-
ment has been solo work. In True BASIC we had maybe two or three people writing code,
but they were really working on completely separate projects. I just don’t have any expe-

rience working in teams.

You had a time-sharing machine, so you suggested that users should plan their session at
the teletype before sitting there. The motto was: typing is no substitute for thinking. Is this
true today?

Tom: I think probably that thinking does take place. When a major company is going to

develop a new software product, they do a lot of thinking before it, so I think that’s done.

One of the things 1 do personally is not thinking too much ahead but just start writing the
program. Then 1 will discover that it is not quite working out, so T will scrap the whole
thing and start over. That’s the equivalent to thinking. T usually start coding just to see

what the problems are going to be, and then throw that version away.

It is important to think about what you are doing—very important. I am not sure, but I
think Richard Hamming stated that “typing is no substitute for thinking.” Those are the
early days of computing and very few people knew how to do it, so there was a lot of
advice like that floating around.

90 CHAPTER FIVE

What is the best way to learn a new programming language?

Tom: Once one knows how to program, and knows the concepts (i.e., how storage is allo-
cated), learning a new language is straightforward it one has access to a reference manual,

and a decent implementation (i.e., compiler). I've done it many times.
Attending a class is pretty much a waste of time.

Any programmer worth her salt will know many languages in her professional lifetime.
(I probably have used more than 20 in mine.) The way to learn new languages is to read
the manual. With few exceptions, most programming languages are similar in structure
and in the way they operate, so new languages are fairly easy to learn, if there is a reason-

able manual available.

Once you get over the jargon hurdle (what does polymorphism mean?), things are really

fairly simple.

One problem with today’s programming style is that there are no manuals—just interface
building tools. They are designed so that programmers don’t have to type, letter by letter,
many of the instructions, but behave like the engineers” CAD and CAM tools. To old-time
programmers like me, that is anathema—TI want to type all the code, letter by letter.

There have been attempts in the past to simplify the typing (for poor typists or students) by

providing macros (such as a single keystroke for the keyword LET), but they never caught on.

[am now attempting to learn a language that is supposedly “object-oriented.” No refer-
ence manual exists, at least that I have found. The manuals that are available develop
what appear to be almost trivial examples, and spend perhaps 90% of the space pointing
out how OOP is such a superior “religion.” I have friends who took a C++ course, and it
was a disaster from a pedagogical point of view. My opinion is that OOP is one of the great
frauds perpetrated on the community. All languages were originally designed for a certain
class of users—FORTRAN for extended numerical computations, etc. OOP was designed so
that its clients could claim superior wisdom for being on the “inside.” The truth of the
matter is that the single most important aspect of OOP is an approach devised decades ago:
encapsulation of subroutines and data. All the rest is frosting.

Language Design

Do you think Microsoft’s current Visual Basic is a full-fledg¢ed object-oriented language, and if
so, do you approve of this aspect of it (¢iven your dismissal of the object-oriented paradigm)?

Tom: I don’t know. With a few simple experiments, I found Visual Basic relatively easy to
use. I doubt that anyone outside of Microsoft would define VB as an OOL. As a matter of
fact, True BASIC is just as much object-oriented as VB, perhaps more so. True BASIC
included modules, which are collections of subroutines and data; they provide the single
most important feature of OOP, namely, data encapsulation. (True BASIC does not have
inherited types, since it doesn’t have user-defined types, other than array dimensions.
Hardly any language has polymorphism, which, in fact, implies runtime interpretation.)

BASIC

91

One of the things that I've asked many of these designers of languages and systems is to
what degree they like this notion of a mathematical formalism. Take Scheme, which
expresses the lambda calculus very effectively. You have six primitives and everything is
just beautifully built on top of that. That seems like the mathematician approach.

Tom: Yeah, that’s very interesting. That’s an interesting mathematical problem, but if
you're designing a computer language, you don’t have to do that stuff, because every
computer language that I've ever seen is much simpler than that. Even FORTRAN. Algol is

simple; it uses recursive definitions, but that’s fairly simple and straightforward.

[never studied the theory of programming languages, so I can’t make any more com-
ments than that.

Do you consider the people who will use a languagde and the biggest problems they're
going to have to solve?

Tom: Yeah. The biggest problem for the people that we were designing for was remem-
bering the language from week to week, but they only wrote one program every two
weeks. We also wanted a programming language and a system environment that we could
teach in a matter of a couple of hours, so you don’t have to take a course.

That’s how ! and a lot of my peers learned to program. We had Microsoft BASIC on the
PCs of the early 80s—the Commodore 64 and the Apple I1. They were line BASICs with
subroutines, but not much else.

Tom: There are oddities floating around. They actually had some tricky stutf to it. For
example, T used Apple Soft BASIC. I don’t know if Microsoft did it or whether somebody
else did it, but all of those were copied from Dartmouth BASIC startup. They introduced
the idea of a multicharacter variable name, but they didn’t parse it correctly. If you hap-
pened to have a keyword buried inside your multiple-character variable name, it would
throw the thing off.

Was this because of whitespace insensitivity?

Tom: No, because they claimed to have multicharacter variable names, but they didn’t.
They faked it. If you had a multiple-character variable name which was, let’s say, TOT,
they would recognize the TO as a keyword. It was a marketing gimmick. Those languages,
little features were designed for the market. They thought that multiple-character variable
names would be a good gimmick. People that used the language managed to get around

that by not using multiple characters very much.

That’s not a process that’s discoverable reading the manual.

Tom: The errors in it are not, no.

How did whitespace insensitivity come about?

Tom: The only thing I know about it was published, and the reason for space insensitivity
is partly because John Kemeny was a poor typist. I don’t know if that was really the rea-

son. We codesigned the language, but a feature like that is something that he did.

94 CHAPTER FIVE

You made this comment in the context of the discussion about the student who wrote a
PL/1 compiler, and the first time he ran it, it worked.

Tom: That’s Phil Koch, and he’s an Apple fellow. He’s retired from Apple now, living in
Maine. He was an astonishing programmer. It took him a long time and he read code
religiously.

If there is one lesson youd like people to learn from your vast and varied experiences
over the years, what is that?

Tom: Make it easy for your users to use your software.

You can say user friendly if you want, but part of that is that the industry has defined user
friendly to be, in my view, condescending. The real issue on user friendliness is to have
reasonable defaults in whatever application you're doing, so the person who’s just come
to it fresh doesn’t have to learn about all of the variations and degrees of freedom that are
possible. He or she can just sit down and start to do it. Then if they want to do something

different, make it relatively easy to get at that.

In order to do that, you have to have some sort of an idea of what your user base is going

to be.

I've used Microsoft Word frequently, but by my standards, it’s not user friendly at all.
Then Microsoft came out with that Bob thing about 10 years ago, and that was the wrong

idea. They didn’t understand what user friendly really means.

Some applications, I think, are user friendly, but the big thing now is website design. Peo-
ple that design websites, sometimes they do a good job and sometimes they don’t do a
good job. If you go to a website and you can’t figure out what to do to get more informa-
tion, that’s a lousy design.

That stuff’s hard to teach.

Ben Shniederman, a specialist in human factors in computer science at the University of
Maryland, actually did some studies” that suggested that what we had chosen in BASIC for
our structures for DO, LOOP, and IF were easier in the sense of user friendliness than
some of the other structures that were using the other languages, like the semicolon in
Algol or Pascal to end a sentence.

People normally don’t use semicolons to end sentences, so that’s something that you have
to learn specifically. 1 remember in FORTRAN, for example, there were places where a

comma is needed and places where a comma isn’t needed. As a result, there was a bug in
a program down at the space station in Florida where they lost a rocket because there was
a missing comma. I think Ed Tufte actually documented that. Try to stay away from stuff

that’s possibly ambiguous.

* Shneiderman, B. “When children learn programming: Antecedents, concepts, and outcomes,” The
Computing Teacher, volume 5: 14-17 (1985).

BASIC

929

[keep saying to the world at large, Kemeny and I failed because we didn’t make other
people’s computers user friendly, but we did a good job with our own students because for
20 or so years, our students were going out and getting very cushy jobs in the industry
because they knew how to do things.

That is a good type of success to have.

Tom: If you're a teacher, that’s really the main thing.

100 CHAPTER FIVE

