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Foreword

This is an extraordinary book. The senior author (Elwyn Berlekamp) plays
Go at only the 10-kyu level, and his colleague David Wolfe is rated an ama-
teur shodan, yet they have developed techniques to solve late-stage endgame
problems that stump top-ranking professional players. The problems typ-
ically offer a bewildering choice of similar-looking moves, each worth only
one or two points, but with subtle priority relationships that cannot be ade-
quately described by sente and gote. The solutions come out of combinatorial
game theory, a branch of mathematics that Berlekamp helped develop. A Go
player who masters its techniques can extract a one-point win from positions
where the uninitiated will almost invariably lose or draw.

The theory presented in this book assigns each active area on the board
an abstract value, then shows how to compare these values to select the
optimum move, or add them up to determine the optimum outcome. Some
of the values are familiar numbers or fractions, but most are more bizarre
objects (arrows, stars, trees) quite unlike anything in the existing Go liter-
ature. From these abstractions, the reader will learn that positions seeming
to have the same numerical value can be crucially different, while positions
that appear completely different can be mathematically identical.

It should be emphasized that this book will not help the reader improve
his opening or midgame strategy. Nor does it reveal any tactical secrets;
locally, the tactics are all of the simple kind that a beginner can read out
easily. In terms of practical benefit on the board, the most the reader can
hope for is to get stronger by one point. (Of course, a lot of games are
decided by one point.)

A Go player with an interest in mathematics, however, or a mathemati-
cian interested in Go, will relish this book, because it describes substantial
connections between the two subjects which have hitherto been largely unrec-
ognized. The theory developed is precise, rigorous, intellectually appealing,
and demonstrably successful. As a bonus, there is a novel discussion of the
mathematical rules of Go.

September 1993 James Davies
Tokyo, Japan
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Preface

History of combinatorial game theory and its role in Go

As a typical game of Go approaches its conclusion, the active regions of play
become independent of one another. Play in each region is not affected by
play in the others; although one player may make several successive plays in
the same region while his opponent chooses to play elsewhere. The overall
board position therefore may be regarded as a sum of disjoint partial board
positions.

Combinatorial game theory has long been concerned with such sums of
games. The first nontrivial result was perhaps the solution of the game of
Nim by Bouton at Harvard in 1901. In the 1930s, his work was extended
to a broader class of games by Sprague and Grundy; later, Guy and Smith
[GS56] [Guy89] masterfully exploited this theory to obtain complete, closed-
form solutions to a wide variety of games. Most of their work dealt only
with impertiel games, in which all pieces on the board have the same color
and can be moved by either player. These games have no scores; rather, the
outcome depends only on who got the last move. Nonetheless, the impartial
theory later played a major role in the analysis of Dots and Boxes [BCG82,
pp. 507-550], even though it is a contest over scores.

In the early 1970s, Conway discovered and axiomatized the theory of
combinatorial games, including partisan games, which generalized impartial
games so that players might control pieces or stones of opposite colors. Con-
way also discovered several theorems about the special role of games called
numbers, including the mean value theorem, which provided a new formu-
lation of earlier work by Hanner [Han59] and Milnor [Mil53) on sums of
games with scores. Many results were published in On Numbers and Games
[Con76]; more results plus numerous examples appeared in Winning Ways
[BCG82], a two-volume treatise on which Berlekamp, Conway, and Guy had
collaborated since the late 1960s.

These results made it possible to analyze games in which score deter-
mined the winner, and so it was tempting to apply the theory to Go. Initial
attempts to apply combinatorial game theory to Go endgames in the 1970s

xi



xii PREFACE

failed, partly because certain crucial notions (particularly, chilling and warm-
ing operators) were not yet sufficiently well understood.

By the early 1980s, combinatorial game theory had developed powerful
techniques for handling many other games in which board positions tend
to break up into disjoint active regions. These included Hackenbush, Toads
and Frogs, and Domineering. Here, the theory assigns an abstract value to
each active region. In a simple inactive region, this value coincides with a
numerical count of the score. In an active region, this value embodies the
traditional Go player’s notion of the count, as well as a considerable amount
of additional information about the local situation. Each value depends only
on a local analysis of the relevant partial board position. The value does
not depend on who moves next; it takes all competent sequences of local
play into account. And fortunately, the values of most simple positions all
belong to a relatively small set of common simple values. Each value can
occur in many different positions. So, to analyze the entire board position,
one can compute the mathematical sum of all of the mathematical values
representing the various regions of the board.

However, the practical utility of such a theory depends very much on the
properties of the values which occur. If the local positions are sufficiently
complicated that their values are intractable, then the sum can be very hard
to analyze. Until the late 1980s, it had appeared as though the values which
occur in even simple Go positions were so strange and intractable as to limit
the theory’s usefulness,

In 1984, Robin Pemantle [Pem84] calculated values for many 2 X n and
3 x n Domineering positions. Efforts to understand the properties of these
values led to refined warming and overheating operators, and to a new game
called Blockbusting, which can be viewed as a simplified variation of 2 x n
and 3 x n Domineering. Chilled Blockbusting values are well-understood
numbers, and, in Blockbusting, an appropriate warming operator inverts
chilling.

This book

In 1989, it became clear that chilling reduces many common Go positions
to familiar values, such as numbers, infinitesimals, and switches, and that
chilling can be inverted by an appropriate warming operator. The authors
of this book met and our collaboration began. Much of this book is based
on Wolfe’s dissertation [Wol91].

After chilling, many values which are common in late-stage Go endgames
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urn out to be very tractable, even though these values and their mathemat-
cal properties are not yet well known outside a small community of special-
sts. The values which appear are universal; they apply directly to Winning
ays games and to the ancient Hawaiian game of Konane. They facilitate a
complete, precise, and thoroughly rigorous analysis of sums of Go endgames.

Acknowledgements
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book and suggested so many major improvements that it was substantially
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that others will refine and extend the results presented in this book.
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Chapter 1

Introduction

Since you are reading this book, you are likely to fall into one of three
categories:

¢ A mathematician interested in the applications of mathematics to
games and Go.!

¢ A Go player interested in how mathematics might improve your game.

e A computer scientist interested in how to design or improve Go playing
programs.

Mathematicians will find theorems about Go both subtle and surprising.
Combinatorial game theory provides general methods for analyzing games,
particularly games in which typical positions have separate pieces with lim-
ited interaction. This decomposition into pieces gives group structure, and
this structure can be exploited to precisely analyze Go endgame positions
that don’t yield to the methods of the strongest Go players.

Go players can find quicker ways to improve their game than to read this
book. Many of the positions analyzed do not tend to come up in contexts
which take full advantage of the subtleties of the results. However, there are
some wonderful lessons for the Go player. Sente (the worth of keeping the
initiative), and gote (giving up initiative) are issues which are only vaguely
understood by all but the finest Go players. This is in part because the

! A top-down overview of the rules to Go appears in Appendix A. In this book, Japanese
or American style scoring rules are assumed (i.e., scoring territory minus prisoners). Ex-
tensions of the results to rules which score territory plus stones on the board are discussed
in Appendices A and B. Also, a glossary of terms appears in Appendix F.

1



2 CHAPTER 1. INTRODUCTION

concepts are subtle, but also because the meaning of initiative is, by nature,
vague and amorphous, The game theory does away with these concepts by
providing clearer and more concrete methods, and these in turn will give the
Go player a better understanding of sente and gote. Lastly, the technique of
“playing the difference game” is basic to combinatorial game theory, and does
not seem to exist in traditional Go theory; the Go player is encouraged to
concentrate much of his/her attention on this technique given in Section 3.3.

For the computer scientist, the mathematical theory provides general
and precise methods for simplifying local game trees in the endgame. These
methods take into account the possibility that a player may move several
times in a row in a local position when the opponent chooses to move else-
where. Unfortunately, a virtually complete description of local game trees
is required; the methods are therefore most applicable at a point when the
typical game can be analyzed by brute force. Nonetheless, these methods are
a start in a promising new direction. A good program will require a strong
understanding of how to integrate what is known about nearly separated
positions.

1.1 Why study Go

People want to understand the things that people like to do, and people like
to play games. Perhaps that’s all the justification needed to study games.
But games also provide a concrete, self-contained framework in which to
study mathematical and programming methods. In a game not only are the
rules (and therefore the model) clear, but one measure of success is clear:
How does a human or computer play relative to an experienced player with
established records or ratings? :
Go is particularly attractive to study because:

e Go’s three or four thousand year old history and popularity throughout
the world (particularly in Asia} means there are many experts on whom
theories can be tested and from whom insights can be gained.

e Simple rules shorten the process of designing models, and make the
game susceptible to mathematical analysis.

e Go poses new and more formidable challenges for the sorts of program-
ming methods which have had great success in chess. Go is therefore
an excellent testing ground for new artificial intelligence techniques.
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