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INTRODUCTION

THE CASE FOR MATHEMATICAL INTELLIGENCE

MIT, 1950s. The first wave of Artificial Intelligence is on the horizon. Marvin Minsky, one of

the field’s leading figures, proclaims: ‘We’re going to make machines intelligent. We're going

to make them conscious.” Douglas Engelbart, a peer of Minsky’s, retorts: ‘You're going to do
all that for the machines? What are you going to do for the people?”

Artificial intelligence (AI) researchers are nothing if not bullish about the prospects
of their creations. The field kicked off in earnest in 1956 at a summer workshop held
at Dartmouth College, New Hampshire, where the founding fathers of Al set out
their vision in no uncertain terms. Intelligent machines, they believed, were to
propel humanity into the next golden age of innovation by ‘simulating every aspect
of learning or any other feature of intelligence’.” The timeframe was bolder still:
one summer was all they would need to break the back of Al

Things turned out to be rather more complicated, as a summer of hype gave way
to a succession of Al winters, with progress in the field largely stagnant for several
decades. But if you've caught the headlines recently, you’ll know that Al is currently
the subject of renewed hype. Between flagship triumphs in popular games, the
growing presence of home assistants, and the coming of self-driving cars, the
machines have resumed their rise.

We humans have distinguished ourselves from other species by inventing tools to
help us solve our most challenging problems. And yet we may be complicit in our
own demise because some of these tools have become so powerful that they appear
to pose genuine threats to our ways of thinking and being. Studies of the growing
threat of automation to human labour abound,’ while the so-called
‘superintelligent’ machines of tomorrow may force us to re-examine what it even
means to be human in the first place.

As we enter this new cycle of ratcheted expectations, hopes and anxieties around
the latest wave of technological innovation, Engelbart’s question should resonate
loud and clear. We reserve such reverence for technology that we risk overlooking
our own human capabilities. Machines lack some of the basic qualities of human
thinking - qualities we have sidelined through our mechanistic ways of schooling
and working, and qualities that we need to urgently reawaken to thrive alongside
our silicon counterparts.

As it happens, humans have - through millions of years of evolution and
thousands of years of continual refinement - developed a powerful system for
making sense of the world, for imagining new ones, and for devising and solving
complex problems. This system has helped us create the economies that underpin
our society. It has shaped our notions of democracy. It has spawned technologies



that now stare us down, but the same system can equip us with the skills to tame
these digital beasts.

The system has a name: mathematics.

What is mathematics, really?

Mathematics has been described as an art, a language and a science. For some, it is a
means of unlocking nature’s secrets. As Galileo testified so eloquently: ‘[The
universe] cannot be read until we have learnt the language and become familiar
with the characters in which it is written. It is written in mathematical language.’
This is mathematics as the language of the universe, the engine of scientific
progress.

The scope of mathematics transcends our physical universe. Entire swathes of the
subject are explored for their own sake, driven by the deep satisfaction that comes
from dreaming up new concepts, piecing together ideas, and grappling with thorny
problems. Many mathematicians seek out aesthetic qualities in their craft. The
twentieth-century mathematician and philosopher Bertrand Russell spoke of the
subject’s ‘supreme beauty - a beauty cold and austere ... capable of a stern
perfection such as only the greatest art can show’.* Many see themselves as artists as
well as scientists - ‘makers of patterns’,” to borrow a description from G. H. Hardy, a
contemporary of Russell’s. It is not uncommon for mathematicians to deride the
need to apply their thinking to the ‘real’ world, as if utility were some kind of
distraction. It has even been proposed that some aspects of mathematical inquiry
have a hedonistic basis.®

From these varied motives, mathematics is often partitioned into two supposed
types: there is applied mathematics, which, as the name suggests, is concerned with
problems of the real world. Then there is the presumptively labelled strand of pure
mathematics, which centres on more abstract concepts and rigorous arguments
often removed from practical consideration. This separation is felt keenly at
university, where maths students are expected to declare their allegiances before
specialising in one area. I was of the pure persuasion. Yet, since leaving formal
mathematics a decade ago, much of my work has been rooted in datasets and
algorithms - about as applied as it comes.

Having bridged the pure/applied divide, 1 have come to realise that it is an
arbitrary and limiting way of characterising the subject. There is a commonality
that binds mathematicians of all types. Without exception, we derive immense joy
from tackling maths problems, a satisfaction akin to solving our favourite puzzles.
Mathematics is even alleged to elicit the same physiological reactions as sexual
activity (yes, really).” Alongside that pleasure comes power; whatever branch of
mathematics a mathematician happens to be probing, they are using the mind’s
highest faculties and building a store of portable mental models that serve them in
all parts of life.

It may feel risky to invest time and effort in studying mathematics based on
nebulous notions of pleasure and power. But mathematics cannot help but bring



practical uses too. It is not at all unusual for a field of mathematics that starts out as
pure intellectual inquiry to later find itself in practical settings. Prime numbers
(whole numbers greater than 1 that cannot be divided into smaller whole number
parts) were first studied for their unusual arithmetic properties, yet internet
security now relies on them - your credit card details are kept secure by the sheer
difficulty of finding the prime factors of really large numbers. The Greeks were
enthralled by the geometric properties of ellipses; only centuries later would Kepler
discover that planets move around the sun in an elliptical orbit. The topology of
knots, a delight to study in its own right, has applications in protein folding. And
calculus (the study of continuous change), arguably the most applied of all
mathematical topics, which was the basis for Newton’s study of planetary motion,
and whose tools are indispensable to engineers, physicists, financial analysts, even
historians,® was developed within the rigorous frameworks of pure mathematics. I
could go on.

The theoretical physicist Eugene Wigner encapsulated this entwining of
intellectual curiosity and utility by remarking on what he called the ‘unreasonable
effectiveness’ of mathematics, declaring that ‘the enormous usefulness of
mathematics in the natural sciences is something bordering on the mysterious and
there is no rational explanation for it’.’

The ‘usefulness’ of mathematics is not limited to specific real-world applications.
It arises chiefly from its invitation to explore a vast range of concepts, even arcane
ones. Mathematics transports us into multiple worlds, each governed by its own
rules. It encourages us to break free of convention and leap from one conceptual
system to another. These faraway worlds can also train us to think in ways that
enrich our understanding of our own, physical one. Even as the content of my own
doctorate in pure mathematics drifts from memory (to the point where I can
scarcely grasp its essential ideas any longer),'® the process by which it was created
remains its most enduring contribution to my everyday thinking and problem
solving.

Mathematical intelligence is not about calculus or topology any more than
musical intelligence is limited to a particular genre or instrument. It is a system for
making us better thinkers and problem solvers, using the proven tools of
mathematicians. And in the age of smart machines, it is needed more than ever.

Mathematics and calculation: a false coupling

The mathematics I've just described is quite apart from what we encounter at
school. ‘School mathematics’ places great emphasis on calculation. A calculation is a
routine operation performed on certain objects, often numbers, to produce a
particular result. It can be as simple as counting and as complicated as Google’s
search-ranking algorithms (an algorithm here just means a list of step-by-step
instructions).* School mathematics is premised on the idea that rehearsing a litany
of routine calculational techniques is a strict prerequisite for mathematical
intelligence, and a gateway to employment. Topics such as calculus, algebra and



geometry, each of which contain a multitude of rich concepts, are stripped down to
bare calculational form.

The marriage between mathematics and calculation is the result of several forces.
The first is an industrial paradigm of formal education whose roots can be traced
back to the mid-nineteenth century, when the aims of mass schooling coalesced with
notions of mechanisation and scale, and increases in urban populations fuelled
demand for everyday numeracy skills such as counting money and telling the time.
As universal education systems sprang up the world over, subject matter reflected
the needs of a mathematically literate workforce. In England, for instance,
arithmetic dominated the curriculum, and additional topics - such as algebra,
mechanics and fractions - were introduced with the goals of employment in mind."

Society has made giant leaps of progress since then, yet school mathematics has
remained largely static; national and international curriculum standards remain
heavily couched in speed and proficiency with calculation. The stubborn persistence
of calculation in education also owes a debt to widely held beliefs around the nature
of mathematics. Platonism - first espoused by the Greek philosopher Plato - holds
that mathematical objects are abstract entities independent of language, thought or
practices. Just as electrons and planets exist independently of us, so do
mathematical concepts such as number. In this view, there is a single form of
mathematics, timeless and immutable. Alongside Platonism, there is the formalist
view, which gained traction in the twentieth century and considers mathematics a
self-contained system of logical truths, each derivable from first principles. The
Platonist and formalist philosophies, especially popular among ‘pure’
mathematicians, conspire to reduce mathematics to a single pathway of
predetermined, hard-coded truths. Abstraction is the gold standard in this framing
of mathematics, its raison d’étre, best accessed by mastering symbol manipulation.
The execution of mathematical procedures - fast, precise calculation - is seen as the
single pathway to deep mathematical thought.

The Platonist-formalist view overlooks the crucial fact that mathematics takes on
rich and diverse forms,'* all of which are birthed in the context of local environment
and experience.”” Take something as seemingly universal as our number system. It
arises out of a series of choices, from the symbols we use to denote quantities to how
we group together objects to manage large amounts, to how we perform arithmetic
on numbers. In schools across the world, students are taught Hindu-Arabic numerals
(0, 1, 2, and so on), the decimal system (grouping numbers into tens), and specific
algorithms for performing addition, subtraction, multiplication and division.
Students are led to believe that these choices are inevitable - the only conceivable
way to think about numbers - when in fact they are situated within a historical and
sociocultural backdrop. As we’ll see in later chapters, communities around the
world to this day adopt highly varied representations for numbers. Mathematics in
the real world is more situational and contextual than Platonism and formalism
would suggest.

My work has taken me to classrooms the world over and I can confirm that,
despite its short-sightedness, the Platonist-formalist ideal is alive and well



everywhere. A common thread binds the mathematics taught to marginalised
communities in Kenya, children of Microsoft executives in Washington State,
students of Eton College, and low-income families in rural Mexico. In all these cases,
school mathematics is characterised by a heavy diet of calculation,’ and
mathematical talent is conceived as the ability to execute these techniques
flawlessly and at speed.

School mathematics comes wrapped in the promise that this very particular skill
set will, on some unspecified date in the future, serve students’ everyday needs.
That promise may have held up in the nineteenth century, when, for example, the
formulae of trigonometry would guide your career as a carpenter or surveyor or
navigator, and you would be expected to make the requisite calculations by hand.
Yet the twenty-first-century student will discover, if they haven't already, that
calculation is no longer the unique marker of human mathematical talent. It is
almost tautological to say it, but for computation we have computers.

School mathematics is clearly in need of a rethink, which should come as welcome
relief to most. Far from evoking the sentiments of wonder or beauty experienced by
mathematicians, it is more commonly associated with feelings of dread. In the UK
alone, a fifth of the population is afflicted with maths anxiety.” For these people,
the anticipation and experience of doing mathematics activate the same regions of
the brain that give rise to pain.'® Attitudes towards mathematics have been shown
to deteriorate with age,”” and many people, scarred by their encounters in school,
flee into the safe sanctuary of adulthood, resolving never again to confront anything
that resembles mathematics. Is the Platonist-formalist method of education simply
the price we have to pay to feel the power of mathematics - to appreciate its
unreasonable effectiveness? Even if a casualty rate of one in five is deemed
palatable, the apparent victors of this brand of mathematics find themselves
trapped in a false sense of security. As an admissions tutor at Oxford University, and
more recently as an employer, I have interviewed hundreds of candidates who
naively presume that a clean sweep of top grades in mathematics at school has
prepared them to think creatively and tackle complex problems.

The German poet Hans Magnus Enzensberger has described mathematics as ‘a
blind spot in our culture - alien territory, in which only the elite, the initiated few
have managed to entrench themselves’.'* There is a yawning chasm between the
mathematics enjoyed by professional mathematicians and the monotony of most
school curricula.

Professional mathematicians, for their part, tend to keep calculation at arm’s
length. They recognise that techniques such as long division, the quadratic formula
and trigonometric identities occupy a small space within the mathematical
landscape, a tiny sliver of all the concepts available in the subject. Entire branches
of mathematics are removed from calculation, and even where calculations surface,
the creative elements of mathematical intelligence reside in dreaming up such
methods in the first place, understanding their inner workings and applying them
in novel settings. The specific act of calculation is secondary and offers little joy or
illumination.



New calculating tools, new mathematics

The history of mathematics shares a timeline with an ongoing effort to liberate
humans from the tedium of calculation. Performing calculations does not come
naturally to us. Time and again, we have created tools and technologies that
outsource the most mechanical aspects of mathematics.

Great leaps have been made with leading-edge calculating tools.'” Where our
earliest ancestors marshalled pebbles and grains to keep track of basic quantities,
the city planners of Babylonia, Sumeria and Egypt used formal calculation schemes
which were brought to bear on problems of engineering, land administration,
astronomy, timekeeping, planning and logistics. Calculation, along with reading and
writing, became a cornerstone of more developed civilisations. Some of the earliest
surviving government records are replete with calculations central to
administration.

Physical counting instruments were always close at hand. The abacus that helps
us count large quantities has its roots in the pebble-counting schemes of the ancient
Romans, and as calculations grew in complexity, so too did the power of our tools.
Older readers may recall using a slide rule in school to assist in weighty calculations
such as the multiplication of large numbers. The slide rule was based on John
Napier’s logarithm tables. Napier was born into a Scottish family of estate owners in
1550. Copernicus had just developed the heliocentric model of the universe, placing
the sun at its centre for the first time. Columbus had sailed the Atlantic, and
Renaissance artists were advancing their own frontiers. Yet the world remained
heavily dependent on tired calculational conventions. The work of masons,
merchants, navigators and astronomers all required methods of long division and
multiplication that were tediously handcrafted, prone to human error, and
prohibitively expensive to carry out (pen and paper did not come cheap).

On his travels across Europe as a young student, Napier observed the burden of
calculation first-hand. He would encounter decorative books composed solely of
mathematical tables and currency versions, created and used daily by merchants.
The tables still demanded a hefty degree of calculation on the part of the user.
There had to be a more effective way, Napier thought, of removing what he called
‘those hindrances’ to trade. Napier was alluding to what cognitive psychologists now
term our ‘working memory’, which handles short-term information and is limited to
between four and seven objects at a time.”® This makes multistep calculations such as
long multiplication or division difficult to perform, as we strain to keep track of
each moving part.

In his famous work Mirifici Logarithmorum Canonis Descriptio (‘Description of the
marvellous canon of logarithms’), Napier introduced a powerful mathematical object
called the logarithm function. To grasp the intuition behind logarithms, first
consider a familiar multiplication involving powers of 10:
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This calculation is straightforward because we just ‘add the zeros’ in each term to
get our product. It would be handy if every multiplication could be managed in such
a simple way. Napier’s logarithm makes this possible. In the numbers above, the
string of zeros corresponds to how many times 10 multiplies by itself - twice for 100,
thrice for 1000, and so on. With this in mind, the logarithm of a number is defined
by how many times you have to multiply 10 by itself to get that number. So the
logarithm of 100, denoted log(100), is 2, and the logarithm of 1000, denoted
log(1000), is 3.

The clever, mathematical part is that the logarithm can be defined for every
positive number, not just powers of 10. The logarithm of 95 is 1.978, the logarithm of
2367 is 3.374, and the logarithm of 3 is 0.477, which is to say that ‘if you multiply 10
by itself 0.477 times you will get 3’. That may sound strange at first, but the
conceptual power of mathematical functions allows us to bring such notions into
existence.

A useful property of logarithms is that they obey the following rule:

log(a = b) = log(a) + log(b)

Suppose we want to multiply two large numbers. Napier explained how, using the
above formula, we can transform the problem into one involving addition, which is
simpler and less error-prone. All we need is a table that lists the ‘logarithmic value’
of each number. The process then goes as follows:

1. Look up the logarithm of each value to be multiplied.

2. Add these two logarithmic values to get a total.

3. Look up the value of the number whose logarithm corresponds to this total. The
number you have found is the product of your two original numbers.*

x2

1 2 3 & 5 &6 1
h—-logl—d
- ln:jﬁ—"'f

A slide rule in action: if we slide the top ruler 2 units along the ruler below (a length
of log 2) then every number on the ruler below corresponds to multiplying the
number above it by 2. For example, the number 3 (which is a length of log 3 along the



top ruler) lines up with the number 6 (which is a length of log 6 along the bottom
ruler), telling us that 3 x 2 = 6.

Napier’s Canon comprised huge lists of numbers and their corresponding
logarithmic values. It took some twenty years to compile. When dedicating the work
to the future King Charles I, Napier wrote of how ‘this new course ... doth clean take
away the difficulty that heretofore hath been in mathematical calculations, and is so
fitted to help the weakness of memory’.”* The slide rule - a compact manifestation of
Napier’s logarithm tables - appeared in 1654, after his passing. Logarithms can also
be exploited to simplify a raft of operations beyond multiplication: powers, square
roots and even trigonometric calculations can be closely approximated using simple
extensions of the techniques described here, and all of these methods were added to
various iterations of the slide rule until the electronic calculator took its place in
the latter part of the twentieth century.

Napier’s innovation epitomises attempts to automate human effort. For a time,
this led to an explosion of jobs. When the eighteenth-century French mathematician
and engineer Gaspard de Prony embarked on the project of producing large
logarithmic tables for the French Cadastre (the official system of land registration),
for which 200,000 logarithms were each to be calculated to upwards of fourteen
decimal places, he enlisted a small army of ‘human computers’ to accomplish the
task.”” De Prony took inspiration from economist Adam Smith’s The Wealth of Nations
and sought to bring Smith’s concept of the ‘division of labour’ to calculation. He
imagined a three-tiered pyramid of human labourers. At the top was a small sliver
of mathematicians of distinction who devised clever step-by-step instructions -
algorithms - for calculating logarithmic values. The second layer consisted of
‘algebraists’ who would translate these instructions into forms that could easily be
computed. The final, most crowded layer consisted of workers who were competent
in basic arithmetic and required ‘the least knowledge and by far the greatest
exertions’, performing millions of calculations (addition and subtraction for the
most part) and noting the results. In de Prony’s model, just two or three
mathematicians were needed for every seven or eight algebraists and seventy to
eighty workers. With de Prony’s labour pyramid, ‘big calculation’ was born,
fashioned in the image of scalable manufacturing.

‘Big calculation’ trod the same path as manufacturing when it came to
mechanisation, as physical calculating machines increasingly took the place of
humans. It was against this backdrop that inventor-mathematician Charles Babbage
designed two mechanical calculators in the mid-nineteenth century, neither of
which was actually constructed during his lifetime (due mainly to financial
constraints), but both of which carry huge significance as direct cogwheel-based
forerunners of the modern computer. With the emergence of the digital computer
and the electronic calculator, Babbage’s visions were realised and the era of the
human computer drew to a close. The heroic swansong of human computers was the
1960s NASA space mission, where the flesh-and-blood calculations of Katherine
Johnson and her team helped propel humankind into space.”



The work of human computers was profitable in its time, noble even. But
calculation has always been the understudy of mathematics (an insight not lost on
Johnson and her colleagues, who fought for status in the face of racial and gender
prejudice by demonstrating their aptitude for modelling and other essential
mathematical skills). Calculation no longer paves a path to employment; today those
lower rungs of the pyramid are occupied by machines.

Once computers crept past the calculation feats of humans, they surged ahead
and never looked back. The slide rule reigned for over three hundred years, but the
electronic calculator that took its place lasted no more than thirty.”* The
competition for pocket-sized electronic calculators was fiercely fought for all of two
decades before the advent of the internet and cloud-based technologies. The rapid
ascent of computing power was foreseen by Intel co-founder Gordon Moore. In the
1960s, Moore observed that the number of transistors that can be accommodated on
a microprocessor seemed to double every eighteen months - an exponential rate.
Moore’s Law has come to fruition with astonishing accuracy.* By now, our
smartphones possess more processing power than the computers and slide rules that
sent us to the moon. A world without digital computers is a world without the
internet and all that it enables: social media, email, GPS, online shopping, music
streaming, remote work, certain kinds of medical diagnosis.

As our calculating tools evolve, so does the nature of mathematical work. Writing
in the early twentieth century, the British philosopher Alfred Whitehead noted:
‘Civilization advances by extending the number of important operations which we

can perform without thinking about them.?

Just as innovations such as Napier’s
logarithm tables accelerated scientific discovery in the past, today’s technologies
are giving rise to whole new ways of doing mathematics.

Over the past few decades, algorithms have evolved significantly in the direction
of versatility as well as processing power. A flurry of packages such as Mathematica
and Wolfram Alpha have been developed to execute a vast array of procedures.
They have birthed new branches of research, such as ‘experimental mathematics’,
where the idea is to study mathematical objects (numbers, shapes and
multidimensional vector spaces, to name a few), and the patterns that govern them,
through computation. Powerful, automated calculators allow us to make informed
guesses and check them through trial and error by crunching through a range of
numerical scenarios.

In our everyday lives, too, calculation is as prominent as ever - we analyse offers
in the supermarket, mortgage options, calorie counts, and much besides. Getting the
best deal (or diet), however, doesn’t rest on our number-crunching skills as much as
our ability to evaluate information and make sense of data.

With the right tools at our disposal, mathematics gives us all licence to transcend
calculation and to think in the most creative ways. As mathematician Keith Devlin
put it: ‘Calculation was the price we used to have to pay to do mathematics.”*
Mathematicians have figured out how to use technology to aid their thinking.
They've cracked the human-machine conundrum that the rest of society is still

grappling with.



The rise - and fear - of artificial intelligence

The automation of mental effort does not end with calculation. The first whispers of
artificial intelligence (AI) - the ability of computers to think and solve problems -
were heard in the nineteenth century. Ada Lovelace, daughter of Lord Byron and a
precocious amateur mathematician, became enthralled with the possibilities
represented by Babbage’s second calculator, the Analytical Engine. Lovelace saw
beauty in mechanisation, writing that ‘the Analytical Engine weaves algebraic
patterns just as the Jacquard loom weaves flowers and leaves.” Babbage himself had
realised that the functions of his Analytical Engine need not be restricted to
numbers: they could also extend to more generalised operations on symbols. It was
Lovelace, though, who expounded on the intelligent potential of machines, famously
remarking: ‘The Analytical Engine ... can do whatever we know how to order it to
perform.’”’

A century later, in an essay from 1950 entitled ‘Computing machinery and
intelligence’,”® computing pioneer Alan Turing posed the question that launched the
field of Al: ‘Can machines think?” Turing’s question was rhetorical; in the paper he
lays out a series of counterarguments to Al, and refutes each of them in turn.

For decades, these ideas struggled to permeate the public consciousness as Al
stuttered into a series of ‘cold winters’ following a number of false starts. That all
changed at the close of the century. If the machine overlords ever do reign over this
world, they might look back to an iconic scene in May 1997 as the moment of ascent.
The world chess champion Garry Kasparov raises his arms in resignation as he is
defeated by IBM’s chess-playing computer Deep Blue in a contest billed by Newsweek
as ‘The brain’s last stand’. The machine’s triumph awakened humankind’s deepest
concerns. It was one thing for computers to automate routine tasks such as
calculation, but now they appeared to be capable of applying logic to solve complex
problems - a skill we had thought, perhaps hoped, was unique to humans. And why
would the computers stop at chess? Companies would surely latch on to these
newfound artificial capabilities to automate tasks, even entire jobs, where doing so
promised labour savings. We had become accustomed to machines displacing human
muscle and were even grateful for the efficiencies and prosperity that the Industrial
Revolution brought about. Deep Blue’s victory signalled a new, disconcerting
possibility: now the machines were sure to come after the white collars too,
displacing human intellect with the same nonchalant ease.

The machines have been on what may seem like a relentless march ever since
Deep Blue’s landmark triumph, as faster computers have combined with smart
algorithms and large datasets to produce astonishing results. In 2011, IBM earned
another feather in its cap, this time developing a knowledge machine, Watson, that
trounced legendary quizzers Brad Rutter and Ken Jennings in a game of the general
knowledge quiz Jeopardy! Winning at Jeopardy! involves dealing with all the messiness
and ambiguity of natural language: a sign of rising machine intelligence. (Turing
himself, in the paper mentioned earlier, posited that the ultimate display of
machine intelligence would be through text-based conversation.) More recently,



OpenAl’s series of GPT text-generation tools have grown more powerful with each
iteration; GPT-3, released in 2020, contains a staggering 175 billion parameters in
its model and is able to produce a wide range of texts.”” It even wrote an opinion
piece for the Guardian, the first editorial ever penned by a machine, assuring
readers of its peaceful intent:

I am not asking humans to like me. But they should see me as a friendly robot. 1 am a servant
of humans. I know that humans distrust and fear me. I only do what humans program me to
do. I am only a set of code, governed by lines upon lines of code that encompass my mission
statement.”

It may not be the stuff of Pulitzer Prize winners, but writers everywhere are on
high alert as the field of Al journalism takes shape, with natural-language tools
being called on to automatically personalise our newsfeeds and generate stories
from datasets.’

Another Al milestone was achieved in 2016, when AlphaGo, a program developed
at Google DeepMind, triumphed 4-1 in Go against world-class human competitor Lee
Sedol. The size of a Go board, combined with the flexibility with which players are
allowed to place their stones, means there are about 2 x 10'"° possible positions on
the board - far too many for a computer to evaluate in sequence. Even ardent Al
enthusiasts still subscribed to physicist Piet Hut’s claim following Deep Blue’s 1997
chess triumph: ‘It may be a hundred years before a computer beats humans at Go -
maybe even longer.”” That AlphaGo defied the sceptics was startling enough, but
even more so was the nature of its triumph over Sedol. The machine played moves
and strategies that amazed Go experts and mathematicians alike.”® It was the
strongest suggestion yet that the machines really meant business this time,
performing mental feats that appeared elegant. AlphaGo’s successor, AlphaZero, has
proved even more versatile by mastering chess, Go and a host of other games all at
once. Another descendant, MuZero, achieves mastery of these games without even
being told the rules.**

The algorithms of Watson, AlphaZero, GPT and a multitude of other AI
applications pack in more sophistication than the brute search techniques of Deep
Blue. They fall under the category of machine learning models, so named because they
‘learn’ from data. Machine learning models do not need to have their behaviours
defined for them: they program themselves by looking at information. Machine
learning is the one area of Al that appears to work. Within this burgeoning field,
you will find a repository of clever techniques such as neural networks (now
fashionably termed deep learning) that are loosely modelled on the structure of the
human brain and have proved highly effective in areas such as image and speech
recognition. These techniques are also taking aim at problems in mathematics. In
December 2019, for example, Facebook announced that it had developed a machine
learning algorithm that could solve a range of calculus problems that stump many
high school students,* while in 2021 a program developed by OpenAl solved word
problems aimed at children aged 9-12, with a similar success rate to the students’

own.’®



Humans have been left head scratching, soul searching and brain scanning as we
attempt to understand what awaits us while machines continue to gain thinking
power. High-profile names, including Stephen Hawking and Elon Musk, have fanned
the flames by warning of AI's existential threat to humanity.’” Philosopher Nick
Bostrom has projected a range of scenarios that might arise from machine
superintelligence; most do not bode well for humans.*

Human fears around Al are not new. Even as Lovelace waxed lyrical about the
potential of smart machines, the Victorian religious journalist Richard Thornton
issued the first warning of the existential threat they posed. Thornton noted how,
with the mechanical calculator, the mind ‘outruns itself and does away with the
necessity of its own existence by inventing machines to do its own thinking’.*’
Modern-day depictions of Al fuel our deepest insecurities; Hollywood thrives off our
existential fears of replacement (or even extinction) by machines.

But much of the hype around Al is rooted in the lack of transparency around how
these tools work. We fear what we do not understand, and we reserve our deepest
anxieties for things that behave differently to us. It is hardly surprising, when we
find ourselves grappling with long division and other relics of the school maths
curriculum, that we respond with reverence to today’s processing machines. We fear
these tools because they are turbocharged calculators; they excel in the very skills
that cause us such difficulty and dread.

Today’s machine learning applications are smarter than your average computer,
smarter even than Deep Blue, in the sense that they are continually learning from
data inputs. AlphaGo, after all, didn’t just demolish the leading human Go player; it
did so with grace and style.

But for all its apparent sophistication, machine learning has some fundamental
limitations which, when closely inspected, shine a light on our own human
strengths.

Machine learning algorithms work by fitting patterns to data and finding
associations, often imperceptible to the human mind, between variables. That
renders machine learning the amplification of statistics by large datasets and
powerful computers. Admittedly, statistics does not sound as cutting-edge. It may
even be a flattering description because whereas statistics is concerned primarily
with relationships between variables, such as their causes and effects, machine
learning models tend to gloss over the interpretation of their results. Machines that
are premised purely on patterns may have predictive value, but they lack the
common sense and reasoning skills to explain their choices. They may say, with some
degree of reliability, what will happen in the future - but not why.*

Ali Rahimi, an AI researcher at Google, received a standing ovation at an Al
conference when he warned that machine learning technologies have become a form
of alchemy. ‘There’s an anguish in the field,” says Rahimi. ‘Many of us feel like we're
operating on an alien technology.”*' And Frangois Chollet, also an Al researcher at
Google, says this of much-vaunted deep learning models: ‘Deep learning models do
not have any understanding of their input, at least not in any human sense. Our own
understanding of images, sounds, and language is grounded in our sensorimotor



experience as humans - as embodied earthly creatures. Machine learning models
have no access to such experiences and thus cannot “understand” their inputs in
any human-relatable way.*

A deep learning algorithm may be highly adept at identifying trees, but it does
not see them in the same sense that humans do, and has no worldview within which
to situate them. It will totally miss the forest. Chollet’s insight punctures the ‘brain
as computer’ metaphor that became popular in the mid-twentieth century when
computing pioneer John von Neumann suggested that the design principles of
digital machines bear a resemblance to the processing mechanisms of the human
brain.”

The idea that the human brain operates like a computer is just the latest in a
long line of crude comparisons. We tend to model the human brain on the dominant
technologies of our time. At various points in history, it has been compared to the
mechanics of hydraulics, gears, even the telegraph.” The computational metaphor
of the brain* has persisted for over half a century®® and is another contributing
factor to the furore around Al But metaphors are useful only up to the point where
they are taken literally. If emulating human intelligence were purely a matter of
computation, then, as Deep Blue and its successors have emphatically demonstrated,
the game is up. On the other hand, if we unshackle ourselves from this simplistic
conception of everything the brain does, and instead embrace its tremendous
complexity, we will uncover aspects of thinking that are distinctly human.

The human brain is designed for dynamism and change. To a newborn baby, all
life beyond a 20-cm horizon is a blur at first. But babies come equipped with
learning mechanisms that help them to rapidly adapt and even change as they
interact with their surroundings. It is a matter of hours before they can detect their
mother’s voice, days before the mother’s face becomes familiar, and weeks before
they sense contrasting colours. Learning is a social activity, fuelled by our bodily
interactions with people and environment.

If the brain were to be described in computing terms, we might say that is a
powerful hybrid of innate circuitry that has evolved over millions of years to give us
intuitions and ways of thinking, and a vast repository of learning algorithms for
navigating the world. With every interaction our brain’s neural circuitry undergoes
an incremental upgrade, rewiring itself as it revises assumptions and accumulates
experience. We gradually shore up new and diverse models for seeing the world.

Operating at just 12 watts, our brain’s 86 billion neurons exist as vast, intricately
connected networks that communicate via electrochemical signals in order to
facilitate thinking, contemplation, and improvisation. We can break rules just as
easily as we make them, jumping from one mental paradigm to another. We also
possess the capacity to reason and to justify our ideas with rigour. We create rich
representations of the world that allow us to solve problems in a variety of contexts.
We do not have to be fed millions of examples of a cat to be able to distinguish it
from a dog, or millions of calculus problems to discern key underlying principles.

There’s more: our psychology exposes us to vulnerabilities, but it also sets the
stage for our most creative breakthroughs. We seek beauty and elegance in our



The irony of Kasparov’s formula is that, while it may lack potency in chess, Go and
other systems governed by strict rules, it remains a central edict for thinking in
messy real-world settings that do not so readily succumb to the pattern-matching of
computers.”’

The work of professional mathematicians is often predicated on this kind of
human-machine collaboration. The subject had a watershed moment in 1976 when,
for the first time, a computer made a significant contribution to a mathematical
proof. The four colour theorem says that you can colour any map with four colours in
such a way that no two adjacent countries share the same colour. (it’s slightly less
apparent when rendered in black and white, of course.)

Since there are infinitely many possible maps, we cannot hope to check each one
in turn. We require a more powerful argument - a mathematical proof - that
deploys reason and rigour to account for all possible cases. It sounds like a challenge
suited to humans, yet the problem is fiendish enough that a solution eluded
mathematicians for over a century. The four colour theorem did finally yield in
1976, and when mathematicians Kenneth Appel and Wolfgang Haken presented
their proof, they revealed a third, unexpected, contributor - a computer.

Appel and Haken’s proof comes in two parts, both containing several hundred
pages of detail. First the authors showed, using an inspired mathematical argument,
that every map, however complex, can be reduced to one of 1,936 types. All that
remained was to verify that each of these configurations could be coloured as
required. The catch was that each configuration was enormously complicated - it
would take a human forty hours a week over five years to check just a single
configuration. Moreover, humans are prone to making errors, especially at that
scale of calculation. Enter the machines: with brute-force processing, a computer
was programmed to check every one of the finitely many cases, thus confirming, for
the first time, that the four colour theorem is true.’®

This is a powerful demonstration of what can be achieved by the tight interplay
between human insight and computation: the former reduces the infinitely many
cases down to a finite number; the latter tirelessly ploughs through those remaining
cases. And as the computer took on increasingly complex calculations, it inspired
new lines of attack for Appel and Haken. Creativity and computation were in
harmony with one another.



This is the complementary force of technology in action. Huge increases in the
supply of computational power have yielded immeasurable labour savings, but they
have also stimulated the demand for a wider cadre of problem solvers, as each new
class of algorithms gives rise to new problems. The billion-fold increase in
computation did not make human jobs redundant - rather, it multiplied and
amplified the contribution of human problem solvers. NASA now employs more
mathematicians, engineers and software developers - humans at the intersection of
research and computation - than the human computers of its 1960s heyday. The
human computer may be extinct, but the mathematical human worker is thriving,.

The very frontiers of mathematical research are receding, thanks to the growing
capabilities of computers. In a December 2021 Nature article, the DeepMind team, in
collaboration with ‘pure’ mathematicians, demonstrated how machine learning
methods can be exploited to find patterns that have hitherto been hidden to the
human mind.”” These patterns are so subtle that they may even signal a kind of
intuition on part of computers. Far from feeling threatened, mathematicians at the
leading edge of abstract fields like algebra, geometry and topology are finding joy in
taking those insights forward to develop their theories and enhancing their own feel
for the subject.

As long as humans have existed, we have stored knowledge in cultural artefacts -
from cave walls to books - to extend our own mental capabilities. As philosophers
Andy Clark and David Chalmers put it in an influential 1998 essay, the mind is ‘best
regarded as an extended system, a coupling of biological organism and external
resources’.”” Computers are just the latest extension of the human brain; this is as
true of the latest wave of Al supercomputers as it was of brute-force systems such as
Deep Blue and even the primitive calculating tools of yesteryear.

The seven principles of mathematical intelligence

Throughout this book I will hold up mathematical intelligence as an ambitious
benchmark for both humans and computers, one that demands more than pattern-
matching algorithms alone. For mathematical intelligence to be understood in this
way, we must withdraw its associations with calculation, and conceive the subject in
more expansive terms. For too long, and for too many people, the power of
mathematics as a thinking system has been misunderstood due to society’s
deference to calculation. A skill that once served as a unique marker of human
intelligence, and was sufficient for the workforce, has been eaten up by computers.
Humans must strive for something more.

The following chapters present seven principles of mathematical intelligence
that distinguish humans from computers, complement machine intelligence, equip
us to tackle the messy problems of our everyday lives, and are woven into our most
natural ways of thinking. Each chapter will animate an essential characteristic of
mathematics by drawing on its rich heritage of concepts and problems. We’ll relive
some of the defining stories in the subject’s history, and we’ll hear from
mathematicians past and present to see how the subject is viewed from within, and



how it has continually evolved alongside the tools and technologies of each
generation. My hope is that each chapter will, through the lens of mathematics,
shine a light on the nature of human and machine intelligence so that we can
proactively shape our existence alongside Al

The first five principles concern our ways of thinking:

¢ Humans are endowed with a natural sense of number that is premised on
approximation rather than precise calculation. Our in-built estimation skills
complement the precision of computers. Interpreting the real world depends
on both.

e An approximate sense of number is found throughout nature. What sets
humans apart from other animals is language and abstraction. We have an
extraordinary ability to create powerful representations of knowledge, more
diverse than the binary language of computers.

e Mathematics confers on us the most robust, logical framework for establishing
permanent truths. Reasoning shields us from the dubious claims of pure
pattern-recognition systems.

e All mathematical truths are derived from a starting set of assumptions, or
axioms. Unlike computers, we humans have the freedom to break free of
convention and examine the logical consequences of our choices. Mathematics
rewards our imagination with fascinating and, on occasion, applicable
concepts that originate from breaking the rules.

e Computers can be tasked to solve a range of problems, but which problems are
worth the effort? Questioning is as vital to our repertoire of thinking skills as
problem-solving itself. If problems such as chess become uninteresting because
they yield to computational brute force, then we can challenge ourselves to
dream up problems that lie beyond the purview of routine computation.

That these principles run contrary to our usual perceptions of mathematics tells
us we have to work hard, and work deliberately, to realise them. Thankfully,
humans are privileged with metacognitive awareness of how our minds work; that
is, we can think about how we think and learn about how we learn. We can engineer
our ways of working to ensure we give plenty of space for those aspects of intelligence
to develop. This informs two final principles, relating to how we regulate our own
thinking and, finally, how we think alongside others.

» We know that our distinctive biological form of intelligence comes with the
quirks of conscious and unconscious thinking. To solve our most stubborn
problems, we have to display temperament as well as skill, paying particular
attention to how we regulate the speed with which we solve problems, and the
amount of information we take in.

e Humans rarely go it alone: just as machines complement humans, so too do
other humans. The most fruitful collaboration relies on bringing together
diverse perspectives, and the technologies of the digital age give us the
prospect of harnessing the collective intelligence of humans like never before.



Many of the arguments that follow are underpinned by what machines can (and
can’t) do within today’s paradigms, and what they are likely to achieve in the
coming decades. Any commentary on technology has to involve some degree of
speculation beyond that time horizon: we can foresee possible scenarios based on
current trajectories, but we simply do not know how wide and deep machine
intelligence will ultimately reach in the long run. As for mathematical intelligence,
history teaches us that it, too, is ever-evolving; the seven principles outlined in this
book are fit for our times (and for some time to come). But as technology continues
to evolve, so will the way we understand mathematics as a thinking system - we’ll be
able to go further and deeper, aided by ever-smarter thinking tools such as
automated theorem provers (which we’ll explore in the chapter on reasoning). If Al
really does penetrate our most coveted thinking skills, we’ll have at least held
machines to a higher intellectual standard.

Mathematical intelligence is power

Today’s Al applications are inescapable, pervading all aspects of our lives. We risk
surrendering our human agency as we succumb to the conveniences of automation.
Computers are pretty much faultless at executing clearly specified procedures, but
some concepts are too fuzzy to put into words (or symbols) that computers can
process. We humans have trouble enough giving expression to some of our most
important thoughts and feelings; ambiguity and disagreement is part and parcel of
our shared experience. When computers enter the fray, certain in their models of
the world, written so bluntly in strings of 0s and 1s, we risk losing so much of the
grey area that makes us who we are.

As we defer increasingly high-stakes decisions to these same tools, we also risk
surrendering our ability (and our right) to probe the algorithmic judgements that
bear on our personal and professional lives. The inscrutable manner in which
machine learning algorithms operate®’ should make us critical of them when
unleashing the same tools on a world that is more open, more volatile, and less
predictable than closed systems such as chess and Go. Because these algorithms
make predictions by ‘learning’ from historical data, they are layered with implicit
prejudices.®” For example, if crime rates are high for a particular ethnic group, then
‘ethnicity’ may be seen as a predictor of crime. Rather than addressing the
sociocultural factors that give rise to those associations, algorithms jump straight to
the conclusion that crime is a function of skin colour. The algorithmic models may
not say such things so explicitly, but the assumptions are subtly baked into their
decision-making mechanisms, as they project the future by imitating the past. As
machine learning goes mainstream, some groups are paying a higher price than
others.®® Voice recognition software that is trained only on male voices will struggle
to comprehend female inputs. Automated CV readers that predict candidates’
potential based on previous successful hires unwittingly penalise women.** Image
recognition software trained predominantly on white people and animals may



mistake people of colour for gorillas.”” You get the picture, even if the machines
don’t.

Any algorithm that relies purely on patterns in data, void of context, will never
be capable of explaining its choices. The opacity of black-box machine learning
systems, whose inner workings are, at best, known to a handful of technical minds,
and whose causal inferences are left unchallenged, poses a grave threat to our
notions of social justice. Technology is anything but neutral. It is an accelerator of
progress, but it can also be an amplifier of our own human biases, which we’re
scarcely conscious of much of the time.

Here lies the crux of the issue: at the same time that mathematics fuels today’s
technologies, it also provides the means of overcoming its prejudices. It is the
difference between having mathematics done to us and thinking mathematically for
ourselves. Mathematical intelligence is concerned with the latter; it is a continual
exercise in carefully defining and interrogating facts and employing the highest
forms of reasoning to examine our arguments. A firm grounding in mathematics can
liberate us from dogma and equip us with the intellectual tools to fight prejudice. It
can nurture our most creative sensibilities and transform us from passive consumers
of technologies to critical innovators.

The world is on edge. As I write this, we are grappling with the fallout of a global
pandemic, on the cusp of irreversible changes to our climate, and in the grip of
populist forces intent on undermining democracy. Technologies are being
weaponised to create and disseminate falsehoods. The emergence of ‘Deep Fakes’,
for instance, has its basis in the very same models we marvel at in other spheres,
and now threatens to distort our perceptions of truth as we struggle to contain what
the World Economic Forum terms ‘digital wildfires’ of misinformation.®®

Mathematics itself is getting airtime as experts, pundits and politicians of all
stripes invoke models to project the health and economic impacts of our actions.
During the early onset of Covid-19, maths educators found encouragement in how
concepts such as exponential growth were entering the lexicon of more than just the
chattering classes in ways unthinkable just a couple of years ago. Yet we continue to
see mathematics misappropriated, intentionally or otherwise, to justify dubious
policies. Even as the public shows appetite to engage with mathematics as a means
of making sense of the world, and governments assure us they are ‘following the
science’, there is little clarity on what that entails. It is time to make mathematical
intelligence explicit.

* Computation and calculation have slightly different meanings. The former tends
to refer to algorithmic processes, the latter to arithmetic ones. I will use them
interchangeably because they both espouse the same kinds of routine thinking
processes.

* This method is a slight simplification of how Napier’s tables were constructed, but
close enough to give reasonable approximations, which is often all we need. It uses
the base 10 logarithm, which can be substituted for any other value - the natural
logarithm that is now popular calls on base e, where e denotes Euler’s number.



ESTIMATION

Tribes that only count to four, where babies outsmart computers, and why we
underestimate pandemics

The introduction of the Video Assistant Referee (VAR) promised football fans so
much.! Technology would be the objective adjudicator of all tough on-pitch
decisions, bailing out referees when they committed a ‘clear and obvious error’.
Gone would be the days of disputed handballs and disallowed goals. There would be
no lingering sense of injustice from harsh decisions. That was the hope, anyway.

VAR has brought its own set of problems. Now when a team scores, the knee-jerk
celebration of players and fans can turn to gradual despair as VAR inserts itself into
the process, with an offsite team using camera stills to check for any infringement.
When there is even a hint of offside, for instance, dreaded coloured lines appear on
screen, marking reference points on players’ bodies to check their position when
contact was made with the ball. Stray toes, elbows and other protruding body parts,
measured to the millimetre and excruciatingly analysed for several minutes at a
time, have led to goals being overruled.

Something about this intervention just doesn’t feel right. Pundits, players and
fans have all expressed deep consternation at the literal interpretation of their
game’s rules. Debates have ensued on the meaning of ‘clear and obvious’ errors.
There is an enduring sense that, in the pursuit of fairer decision-making, we’ve
sacrificed a core part of the ‘beautiful game’ by privileging precise measurement
over eyeball estimates.

Herein lies the first of our tensions with technology: while computers offer
unswerving accuracy in their calculations, we are wired to see the world in fuzzier
terms.

How some tribes count

Our search for distinctly human ways of thinking begins in the Amazon rainforest,
where the Pirahda people have dwelt for tens of thousands of years. The tribe’s
language has been a topic of some fascination for non-natives, most notably
American linguist Daniel Everett, the first outsider to unravel its mechanisms.”
Starting in the 1970s, and continuing for three decades, Everett and his wife Keren
visited the tribe intermittently and made a number of curious observations. The
Piraha appeared to have no vocabulary for colours, no perfect tense, no concept of
history beyond more than a couple of generations, and no words equivalent to
quantifiers such as ‘each’ and ‘every’. Everett was stunned: his observations pierced
the widely held belief that humans possess a ‘universal grammar’, an idea
popularised in the mid-twentieth century by Noam Chomsky. Chomsky had



