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1

Introduction

1.1 The subject matter

What is mathematical linguistics? A classic book on the subject, (Jakobson 1961),
contains papers on a variety of subjects, including a categorial grammar (Lambek
1961), formal syntax (Chomsky 1961, Hiz 1961), logical semantics (Quine 1961,
Curry 1961), phonetics and phonology (Peterson and Harary 1961, Halle 1961),
Markov models (Mandelbrot 1961b), handwriting (Chao 1961, Eden 1961), parsing
(Oettinger 1961, Yngve 1961), glottochronology (Gleason 1961), and the philoso-
phy of language (Putnam 1961), as well as a number of papers that are harder to fit
into our current system of scientific subfields, perhaps because there is a void now
where once there was cybernetics and systems theory (see Heims 1991).

A good way to understand how these seemingly so disparate fields cohere is to
proceed by analogy to mathematical physics. Hamiltonians receive a great deal more
mathematical attention than, say, the study of generalized incomplete Gamma func-
tions, because of their relevance to mechanics, not because the subject is, from a
purely mathematical perspective, necessarily more interesting. Many parts of math-
ematical physics find a natural home in the study of differential equations, but other
parts fit much better in algebra, statistics, and elsewhere. As we shall see, the situa-
tion in mathematical linguistics is quite similar: many parts of the subject would fit
nicely in algebra and logic, but there are many others for which methods belonging
to other fields of mathematics are more appropriate. Ultimately the coherence of the
field, such as it is, depends on the coherence of linguistics.

Because of the enormous impact that the works of Noam Chomsky and Richard
Montague had on the postwar development of the discipline, there is a strong ten-
dency, observable both in introductory texts such as Partee et al. (1990) and in
research monographs such as Kracht (2003), to simply equate mathematical linguis-
tics with formal syntax and semantics. Here we take a broader view, assigning syntax
(Chapter 5) and semantics (Chapter 6) no greater scope than they would receive in
any book that covers linguistics as a whole, and devoting a considerable amount
of space to phonology (Chapter 2), morphology (Chapter 3), phonetics (Chapters 8
and 9), and other areas of traditional linguistics. In particular, we make sure that
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the reader will learn (in Chapter 7) the central mathematical ideas of information
theory and algorithmic complexity that provide the foundations of much of the
contemporary work in mathematical linguistics.

This does not mean, of course, that mathematical linguistics is a discipline
entirely without boundaries. Since almost all social activity ultimately rests on
linguistic communication, there is a great deal of temptation to reduce problems
from other fields of inquiry to purely linguistic problems. Instead of understanding
schizoid behavior, perhaps we should first ponder what the phrase multiple person-
ality means. Mathematics already provides a reasonable notion of ‘multiple’, but
what is ‘personality’, and how can there be more than one per person? Can a proper
understanding of the suffixes -al and -ity be the key? This line of inquiry, predating
the Schoolmen and going back at least to the cheng ming (rectification of names)
doctrine of Confucius, has a clear and convincing rationale (The Analects 13.3, D.C.
Lau transl.):

When names are not correct, what is said will not sound reasonable; when
what is said does not sound reasonable, affairs will not culminate in suc-
cess; when affairs do not culminate in success, rites and music will not
flourish; when rites and music do not flourish, punishments will not fit the
crimes; when punishments do not fit the crimes, the common people will not
know where to put hand and foot. Thus when the gentleman names some-
thing, the name is sure to be usable in speech, and when he says something
this is sure to be practicable. The thing about the gentleman is that he is
anything but casual where speech is concerned.

In reality, linguistics lacks the resolving power to serve as the ultimate arbiter of
truth in the social sciences, just as physics lacks the resolving power to explain
the accidents of biological evolution that made us human. By applying mathemat-
ical techniques we can at least gain some understanding of the limitations of the
enterprise, and this is what this book sets out to do.

1.2 Cumulative knowledge

It is hard to find any aspect of linguistics that is entirely uncontroversial, and to the
mathematician less steeped in the broad tradition of the humanities it may appear
that linguistic controversies are often settled on purely rhetorical grounds. Thus it
may seem advisable, and only fair, to give both sides the full opportunity to express
their views and let the reader be the judge. But such a book would run to thousands of
pages and would be of far more interest to historians of science than to those actually
intending to learn mathematical linguistics. Therefore we will not necessarily accord
equal space to both sides of such controversies; indeed often we will present a single
view and will proceed without even attempting to discuss alternative ways of looking
at the matter.

Since part of our goal is to orient the reader not familiar with linguistics, typi-
cally we will present the majority view in detail and describe the minority view only
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tersely. For example, Chapter 4 introduces the reader to morphology and will rely
heavily on the notion of the morpheme — the excellent book by Anderson (1992)
denying the utility, if not the very existence, of morphemes, will be relegated to foot-
notes. In some cases, when we feel that the minority view is the correct one, the
emphasis will be inverted: for example, Chapter 6, dealing with semantics, is more
informed by the ‘surface compositional’ than the ‘logical form’ view. In other cases,
particularly in Chapter 5, dealing with syntax, we felt that such a bewildering variety
of frameworks is available that the reader is better served by an impartial analysis that
tries to bring out the common core than by in-depth formalization of any particular
strand of research.

In general, our goal is to present linguistics as a cumulative body of knowledge.
In order to find a consistent set of definitions that offer a rational reconstruction
of the main ideas and techniques developed over the course of millennia, it will
often be necessary to take sides in various controversies. There is no pretense here
that mathematical formulation will necessarily endow a particular set of ideas with
greater verity, and often the opposing view could be formalized just as well. This
is particularly evident in those cases where theories diametrically opposed in their
means actually share a common goal such as describing all and only the well-formed
structures (e.g. syllables, words, or sentences) of languages. As a result, we will see
discussions of many ‘minority’ theories, such as case grammar or generative seman-
tics, which are generally believed to have less formal content than their ‘majority’
counterparts.

1.3 Definitions

For the mathematician, definitions are nearly synonymous with abbreviations: we
say ‘triangle’ instead of describing the peculiar arrangement of points and lines that
define it, ‘polynomial’ instead of going into a long discussion about terms, addition,
monomials, multiplication, or the underlying ring of coefficients, and so forth. The
only sanity check required is to exhibit an instance, typically an explicit set-theoretic
construction, to demonstrate that the defined object indeed exists. Quite often, coun-
terfactual objects such as the smallest group K not meeting some description, or
objects whose existence is not known, such as the smallest nontrivial root of { not
on the critical line, will play an important role in (indirect) proofs, and occasionally
we find cases, such as motivic cohomology, where the whole conceptual apparatus is
in doubt. In linguistics, there is rarely any serious doubt about the existence of the
objects of inquiry. When we strive to define ‘word’, we give a mathematical formu-
lation not so much to demonstrate that words exist, for we know perfectly well that
we use words both in spoken and written language, but rather to handle the odd and
unexpected cases. The reader is invited to construct a definition now and to write it
down for comparison with the eventual definition that will emerge only after a rather
complex discussion in Chapter 4.

In this respect, mathematical linguistics is very much like the empirical sciences,
where formulating a definition involves at least three distinct steps: an ostensive
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1.5 Foundations

For the purposes of mathematical linguistics, the classical foundations of mathemat-
ics are quite satisfactory: all objects of interest are sets, typically finite or, rarely,
denumerably infinite. This is not to say that nonclassical metamathematical tools
such as Heyting algebras find no use in mathematical linguistics but simply to assert
that the fundamental issues of this field are not foundational but definitional.

Given the finitistic nature of the subject matter, we will in general use the terms
set, class, and collection interchangeably, drawing explicit cardinality distinctions
only in the rare cases where we step out of the finite domain. Much of the classical
linguistic literature of course predates Cantor, and even the modern literature typi-
cally conceives of infinity in the Gaussian manner of a potential, as opposed to actual,
Cantorian infinity. Because of immediate empirical concerns, denumerable general-
izations of finite objects such as w-words and Biichi automata are rarely used,' and
in fact even the trivial step of generalizing from a fixed constant to arbitrary n is
often viewed with great suspicion.

Aside from the tradition of Indian logic, the study of languages had very little
impact on the foundations of mathematics. Rather, mathematicians realized early
on that natural language is a complex and in many ways unreliable construct and
created their own simplified language of formulas and the mathematical techniques
to investigate it. As we shall see, some of these techniques are general enough to
cover essential facets of natural languages, while others scale much more poorly.

There is an interesting residue of foundational work in the Berry, Richard, Liar,
and other paradoxes, which are often viewed as diagnostic of the vagueness, ambi-
guity, or even ‘paradoxical nature’ of natural language. Since the goal is to develop
a mathematical theory of language, sooner or later we must define English in a for-
mal system. Once this is done, the buck stops there, and questions like “what is the
smallest integer not nameable in ten words?” need to be addressed anew.

We shall begin with the seemingly simpler issue of the first number not name-
able in one word. Since it appears to be one hundred and one, a number already
requiring four words to name, we should systematically investigate the number of
words in number names. There are two main issues to consider: what is a word? (see
Chapter 4); and what is a name? (see Chapter 6). Another formulation of the Berry
paradox invokes the notion of syllables; these are also discussed in Chapter 4. Even-
tually we will deal with the paradoxes in Chapter 6, but our treatment concentrates
on the linguistic, rather than the foundational, issues.

1.6 Mesoscopy
Physicists speak of mesoscopic systems when these contain, say, fifty atoms, too
large to be given a microscopic quantum-mechanical description but too small for the

classical macroscopic properties to dominate the behavior of the system. Linguistic

1 Fora contrary view, see Langendoen and Postal (1984).
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systems are mesoscopic in the same broad sense: they have thousands of rules and
axioms compared with the handful of axioms used in most branches of mathematics.
Group theory explores the implications of five axioms, arithmetic and set theory get
along with five and twelve axioms respectively (not counting members of axiom
schemes separately), and the most complex axiom system in common use, that of
geometry, has less than thirty axioms.

It comes as no surprise that with such a large number of axioms, linguistic sys-
tems are never pursued microscopically to yield implications in the same depth as
group theory or even less well-developed branches of mathematics. What is perhaps
more surprising is that we can get reasonable approximations of the behavior at the
macroscopic level using the statistical techniques pioneered by A. A. Markov (see
Chapters 7 and 8).

Statistical mechanics owes its success largely to the fact that in thermodynamics
only a handful of phenomenological parameters are of interest, and these are rela-
tively easy to link to averages of mechanical quantities. In mathematical linguistics
the averages that matter (e.g. the percentage of words correctly recognized or cor-
rectly translated) are linked only very indirectly to the measurable parameters, of
which there is such a bewildering variety that it requires special techniques to decide
which ones to employ and which ones to leave unmodeled.

Macroscopic techniques, by their very nature, can yield only approximations for
mesoscopic systems. Microscopic techniques, though in principle easy to extend to
the mesoscopic domain, are in practice also prone to all kinds of bugs, ranging from
plain errors of fact (which are hard to avoid once we deal with thousands of axioms)
to more subtle, and often systematic, errors and omissions. Readers may at this point
feel very uncomfortable with the idea that a given system is only 70%, 95%, or even
99.99% correct, After all, isn’t a single contradiction or empirically false prediction
enough to render a theory invalid? Since we need a whole book to develop the tools
needed to address this question, the full answer will have to wait until Chapter 10.

What is clear from the outset is that natural languages offer an unparalleled vari-
ety of complex algebraic structures. The closest examples we can think of are in
crystallographic topology, but the internal complexity of the groups studied there
is a product of pure mathematics, while the internal complexity of the syntactic
semigroups associated to natural languages is more attractive to the applied math-
ematician, as it is something found in vivo. Perhaps the most captivating aspect
of mathematical linguistics is not just the existence of discrete mesoscopic struc-
tures but the fact that these come embedded, in ways we do not fully understand, in
continuous signals (see Chapter 9).

1.7 Further reading

The first works that can, from a modern standpoint, be called mathematical linguis-
tics are Markov’s (1912) extension of the weak law of large numbers (see Theorem
8.2.2) and Thue’s (1914) introduction of string manipulation (see Chapter 2), but
pride of place must go to Panini, whose inventions include not just grammatical
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rules but also a formal metalanguage to describe the rules and a set of principles
governing their interaction. Although the Ashtadhyayr is available on the web in its
entirety, the reader will be at a loss without the modern commentary literature starting
with Béhtlingk (1887, reprinted 1964). For modern accounts of various aspects of
the system see Staal (1962, 1967) Cardona (1965, 1969, 1970, 1976, 1988), and
Kiparsky (1979, 1982a, 2002). Needless to say, Panini did not work in isolation.
Much like Euclid, he built on the inventions of his predecessors, but his work was so
comprehensive that it effectively drove the earlier material out of circulation. While
much of linguistics has aspired to formal rigor throughout the ages (for the Masoretic
tradition, see Aronoff 1985, for medieval syntax see Covington 1984), the continuous
line of development that culminates in contemporary formal grammar begins with
Bloomfield’s (1926) Postulates (see Section 3.1), with the most important milestones
being Harris (1951) and Chomsky (1956, 1959).

Another important line of research, only briefly alluded to above, could be called
mathematical antilinguistics, its goal being the elimination, rather than the explana-
tion, of the peculiarities of natural language from the system. The early history of
the subject is discussed in depth in Eco (1995); the modern mathematical devel-
opments begin with Frege’s (1879) system of Concept Writing (Begriffsschrift),
generally considered the founding paper of mathematical logic. There is no doubt
that many great mathematicians from Leibniz to Russell were extremely critical of
natural language, using it more for counterexamples and cautionary tales than as
a part of objective reality worthy of formal study, but this critical attitude has all
but disappeared with the work of Montague (1970a, 1970b, 1973). Contemporary
developments in model-theoretic semantics or ‘Montague grammar’ are discussed in
Chapter 6.

Major summaries of the state of the art in mathematical linguistics include Jakob-
son (1961), Levelt (1974), Manaster-Ramer (1987), and the subsequent Mathematics
of Language (MOL) conference volumes. We will have many occasions to cite
Kracht’s (2003) indispensable monograph The Mathematics of Language.

The volumes above are generally more suitable for the researcher or advanced
graduate student than for those approaching the subject as undergraduates. To some
extent, the mathematical prerequisites can be learned from the ground up from clas-
sic introductory textbooks such as Gross (1972) or Salomaa (1973). Gruska (1997)
offers a more modern and, from the theoretical computer science perspective, far
more comprehensive introduction. The best elementary introduction to the logical
prerequisites is Gamut (1991). The discrete side of the standard “mathematics for
linguists” curriculum is conveniently summarized by Partee et al. (1990), and the
statistical approach is clearly introduced by Manning and Schiitze (1999). The stan-
dard introduction to pattern recognition is Duda et al. (2000). Variable rules were
introduced in Cedergren and Sankoff (1974) and soon became the standard modeling
method in sociolinguistics — we shall discuss them in Chapter 5.
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The elements

A primary concern of mathematical linguistics is to effectively enumerate those sets
of words, sentences, etc., that play some important linguistic role. Typically, this
is done by means of generating the set in question, a definitional method that we
introduce in Section 2.1 by means of examples and counterexamples that show the
similarities and the differences between the standard mathematical use of the term
‘generate’ and the way it is employed in linguistics.

Because the techniques used in defining sets, functions, relations, etc., are not
always directly useful for evaluating them at a given point, an equally important
concern is to solve the membership problem for the sets, functions, relations, and
other structures of interest. In Section 2.2 we therefore introduce a variety of gram-
mars that can be used to, among other things, create certificates that a particular
element is indeed a member of the set, gets mapped to a particular value, stands in a
prescribed relation to other elements and so on, and compare generative systems to
logical calculi.

Since generative grammar is most familiar to mathematicians and computer sci-
entists as a set of rather loosely collected string-rewriting techniques, in Section 2.3
we give a brief overview of this domain. We put the emphasis on context-sensitive
grammars both because they play an important role in phonology (see Chapter 3) and
morphology (see Chapter 4) and because they provide an essential line of defense
against undecidability in syntax (see Chapter 5).

2.1 Generation

To define a collection of objects, it is often expedient to begin with a fixed set of
primitive elements £ and a fixed collection of rules (we use this term in a broad sense
that does not imply strict procedurality) R that describe permissible arrangements of
the primitive elements as well as of more complex objects. If x, y, z are objects
satisfying a (binary) rule z = r(x. y), we say that z directly generates x and y (in
this order) and use the notation z —, xy. The smallest collection of objects closed
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under direct generation by any r € R and containing all elements of £ is called the
set generated from £ by R.

Very often the simplest or most natural definition yields a superset of the real
objects of interest, which is therefore supplemented by some additional conditions
to narrow it down. In textbooks on algebra, the symmetric group is invariably intro-
duced before the alternating group, and the latter is presented simply as a subgroup
of the former. In logic, closed formulas are typically introduced as a special class of
well-formed formulas. In context-free grammars, the sentential forms produced by
the grammar are kept only if they contain no nonterminals (see Section 2.3), and we
will see many similar examples (e.g. in the handling of agreement; see Section 5.2.3).

Generative definitions need to be supported by some notion of eguality among
the defined objects. Typically, the notion of equality we wish to employ will abstract
away from the derivational history of the object, but in some cases we will need a
stronger definition of identity that defines two objects to be the same only if they
were generated the same way. Of particular interest in this regard are derivational
strata. A specific intermediary stage of a derivation (e.g. when a group or rules have
been exhausted or when some well-formedness criterion is met) is often called a
stratum and is endowed with theoretically significant properties, such as availabil-
ity for interfacing with other modules of grammar. Theories that recognize strata
are called multistratal, and those that do not are called monostratal — we shall see
examples of both in Chapter 5.

In mathematical linguistics, the objects of interest are the collection of words
in a language, the collection of sentences, the collection of meanings, etc. Even the
most tame and obviously finite collections of this kind present great definitional dif-
ficulties. Consider, for example, the set of characters (graphemes) used in written
English. Are uppercase and lowercase forms to be kept distinct? How about punctu-
ation, digits, or Zapf dingbats? If there is a new character for the euro currency unit,
as there is a special character for dollar and pound sterling, shall it be included on
account of Ireland having already joined the euro zone or shall we wait until England
follows suit? Before proceeding to words, meanings, and other more subtle objects
of inquiry, we will therefore first refine the notion of a generative definition on some
familiar mathematical objects.

Example 2.1.1 Wang tilings. Let C be a finite set of colors and § be a finite set of
square tiles, each colored on the edges according to some function e : § — C*.
We assume that for each coloring fype we have an infinite supply of tokens colored
with that pattern: these make up the set of primitive elements E. The goal is to tile
the whole plane (or just the first quadrant) laying down the tiles so that their colors
match at the edges. To express this restriction more precisely, we use a rule system
R with four rules 1, s, ¢, w as follows. Let Z be the set of integers, ' be the successor
function “add one” and * be its inverse “subtract one”. For any i, j € Z, we say that
the tile ¥ whose bottom left corner is at (i, j) has a correct neighbor to the north if the
third component of e(u) is the same as the first component of e(v) where v is the tile
at (i, j'). Denoting the ith projection by m;, we can write m3(e(u)) = m(e(v)) for
vat (i, j'). Similarly, the west rule requires m4(e(u)) = my(e(v)) for v at (i’, j), the
east rule requires ma(e(u)) = mq(e(v)) for v at (i’, j), and the south rule requires
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As a matter of fact, it is often tempting to replace natural languages, the true
object of inquiry, by some well-regimented semiformal or fully formal construct used
in mathematics. Certainly, there is nothing wrong with a bit of idealization, especially
with ignoring factors best classified as noise. But a discussion about the English
word triangle cannot rely too much on the geometrical object by this name since this
would create problems where there aren’t any; for example, it is evident that a hunter
circling around a clearing does not require that her path keep the exact same distance
from the center at all times. To say that this amounts to fuzzy definitions or sloppy
language use is to put the cart before the horse: the fact to be explained is not how
a cleaned-up language could be used for communication but how real language is
used.

Exercise 2.1 The Fibonacci numbers are defined by fo = 0. f1 =1, fus1 = fu +
Ju—1. Is this a generative definition? Why?

2.2 Axioms, rules, and constraints

There is an unbroken tradition of argumentation running from the Greek sophists
to the Oxford Union, and the axiomatic method has its historic roots in the efforts
to regulate the permissible methods of debate. As in many other fields of human
activity, ranging from ritual to game playing, regulation will lay bare some essential
features of the activity and thereby make it more enjoyable for those who choose to
participate. Since it is the general experience that almost all statements are debat-
able, to manage argumentation one first needs to postulate a small set of primitive
statements on which the parties agree — those who will not agree are simply excluded
from the debate. As there is remarkable agreement about the validity of certain kinds
of inference, the stage is set for a fully formal, even automatic, method of verifying
whether a given argument indeed leads to the desired conclusion from the agreed
upon premises.

There is an equally venerable tradition of protecting the full meaning and exact
form of sacred texts, both to make sure that mispronunciations and other errors that
may creep in over the centuries do not render them ineffectual and that misinterpre-
tations do not confuse those whose task is to utter them on the right occasion. Even if
we ignore the phonetic issues related to ‘proper’ pronunciation (see Chapter 8), writ-
ing down the texts is far from sufficient for the broader goals of preservation. With
any material of great antiquity, we rarely have a single fully preserved and widely
accepted version — rather, we have several imperfect variants and fragments. What
is needed is not just a frozen description of some texts, say the Vedas, but also a
grammar that defines what constitutes a proper Vedic text. The philological ability
to determine the age of a section and undo subsequent modifications is especially
important because the words of earlier sages are typically accorded greater weight.

In defining the language of a text, a period, or a speech community, we can
propagate grammaticality the same way we propagate truth in an axiomatic system,
by choosing an initial set of grammatical expressions and defining some permissi-
ble combinatorical operations that are guaranteed to preserve grammaticality. Quite
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often, such operations are conceptualized as being composed of a purely combina-
torical step (typically concatenation) followed by some tidying up; e.g., adding a
third-person suffix to the verb when it follows a third-person subject: compare / see
to He sees. In logic, we mark the operators overtly by affixing them to the sequence of
the operands — prefix (Polish), interfix (standard), and postfix (reverse Polish) nota-
tions are all in wide use — and tend not to put a great deal of emphasis on tidying up
(omission of parentheses is typical). In linguistics, there is generally only one oper-
ation considered, concatenation, so no overt marking is necessary, but the tidying up
is viewed as central to the enterprise of obtaining all and only the attested forms.

The same goal of characterizing all and only the grammatical forms can be
accomplished by more indirect means. Rather than starting from a set of fully gram-
matical forms, we can begin with some more abstract inventory, such as the set of
words W, elements of which need not in and of themselves be grammatical, and
rather than propagating grammaticality from the parts to the whole, we perform some
computation along the way to keep score.

Example 2.2.1 Balanced parentheses. We have two atomic expressions, the left and
the right paren, and we assign the values +1 to (" and —1 to ‘)’. We can successively
add new paren symbols on the right as long as the score (overall sum of +1 and —1
values) does not dip below zero: the well-formed (balanced) expressions are simply
those where this WFC is met and the overall score is zero.

Discussion The example is atypical for two reasons: first because linguistic theo-
ries are noncounting (they do not rely on the full power of arithmetic) and second
because it is generally not necessary for a WFC to be met at every stage of the
derivation. Instead of computing the score in 7Z, a better choice is some finite struc-
ture G with well-understood rules of combination, and instead of assigning a single
value to each atomic expression, it gives us much-needed flexibility to make the
assignment disjunctive (taking any one of a set of values). Thus we have a mapping
¢ : W — 29 and consider grammatical only those sequences of words for which
the rules of combination yield a desirable result. Demonstrating that the assigned
elements of G indeed combine in the desired manner constitutes a certificate of
membership according to the grammar defined by c.

Example 2.2.2 Categorial grammar. If G behaves like a free group except that formal
inverses of generators do not cancel from both sides (g - g~! = e is assumed but
g~ ! g = e is not) and we consider only those word sequences w;.ws ...w, for
which there is at least one h; in each c¢(w;) such that iy - ... - h, = go (i.e. the
group-theoretical product of the /; yields a distinguished generator gy), we obtain
a version of bidirectional categorial grammar (Bar-Hillel 1953, Lambek 1958). If
we take G as the free Abelian group, we obtain unidirectional categorial grammar
(Ajdukiewitz 1935). These notions will be developed further in Chapter 5.2.

Example 2.2.3 Unification grammar, By choosing G to be the set of rooted directed
acyclic node-labeled graphs, where the labels are first order variables and constants,
and considering only those word sequences for which the assigned graphs will unify,
we obtain a class of unification grammars.
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Example 2.2.4 Link grammar. By choosing G to satisfy a generalized version of
the (horizontal) tiling rules of Example 2.1.1, we obtain the link grammars of Sleator
and Temperley (1993).

We will investigate a variety of such systems in detail in Chapters 5 and 6, but
here we concentrate on the major differences between truth and grammaticality. First,
note that systems such as those above are naturally set up to define not only one dis-
tinguished set of strings but its cosets as well. For example, in a categorial grammar,
we may inquire not only about those strings of words for which multiplication of
the associated categories yields the distinguished generator but also about those for
which the yield contains another generator or any specific word of G. This corre-
sponds to the fact that e.g. the house of the seven gables is grammatical but only as
a noun phrase and not as a sentence, while the house had seven gables is a gram-
matical sentence but not a grammatical noun phrase. It could be tempting to treat the
cosets in analogy with n-valued logics, but this does not work well since the various
stringsets defined by a grammar may overlap (and will in fact irreducibly overlap in
every case where a primitive element is assigned more than one disjunct by ¢), while
truth values are always uniquely assigned in n-valued logic.

Second, the various calculi for propagating truth values by specific rules of infer-
ence can be supported by an appropriately constructed theory of model structures.
In logic, a model will be unique only in degenerate cases: as soon as there is an
infinite model, by the Lowenheim-Skolem theorems we have at least as many non-
isomorphic models as there are cardinalities. In grammar, the opposite holds: as
soon as we fix the period, dialect, style, and possibly other parameters determining
grammaticality, the model is essentially unique.

The fact that up to isomorphism there is only one model structure M gives rise
to two notions peculiar to mathematical linguistics: overgeneration and undergener-
ation. If there is some string wy.w> ... w, ¢ M thatappears in the yield of ¢, we say
that ¢ overgenerates (with respect to M), and if there is a wy.wa ... w, € M that
does not appear in the yield of ¢, we say that ¢ undergenerates. It is quite possible,
indeed typical, for working grammars to have both kinds of errors at the same time.
We will develop quantitative methods to compare the errors of different grammars
in Section 5.4, and note here that neither undergeneration nor overgeneration is a
definitive diagnostic of some fatal problem with the system. In many cases, over-
generation is benign in the sense that the usefulness of a system that e.g. translates
English sentences to French is not at all impaired by the fact that it is also capable
of translating an input that lies outside the confines of fully grammatical English.
In other cases, the aim of the system may be to shed light only on a particular range
of phenomena, say on the system of intransitive verbs, to the exclusion of transi-
tive, ditransitive, etc., verbs. In the tradition of Montague grammar (see Section 6.2),
such systems are explicitly called fragments. Constraint-based theories, which view
the task of characterizing all and only the well-formed structures as one of (rank-
prioritized) intersection of WFCs (see Section 4.2) can have the same under- and
overgeneration problems as rule-based systems, as long as they have too many (too
few) constraints.
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In spite of these major differences, the practice of logic and that of grammar have
a great deal in common. First, both require a systematic ability to analyze sentences
in component parts so that generalizations involving only some part can be stated and
the ability to construct new sentences from ones already seen. Chapter 5 will discuss
such syntactic abilities in detail. We note here that the practice of logic is largely
normative in the sense that constructions outside those explicitly permitted by its
syntax are declared ill-formed, while the practice of linguistics is largely descriptive
in the sense that it takes the range of existing constructions as given and strives to
adjust the grammar so as to match this range.

Second, both logic and grammar are largely driven by an overall consideration
of economy. As the reader will have no doubt noticed, having a separate WFC for
the northern, southern, eastern, and western edges of a tile in Example 2.1.1 is quite
unnecessary: any two orthogonal directions would suffice to narrow down the range
of well-formed tilings. Similarly, in context-free grammars, we often find it sufficient
to deal only with rules that yield only two elements on the right-hand side (Chomsky
normal form), and there has to be some strong reason for departing from the simplest
binary branching structure (see Chapter 5).

From the perspective of linguistics, logical calculi are generation devices, with
the important caveat that in logic the rules of deduction are typically viewed as pos-
sibly having more than one premiss, while in linguistics such rules would generally
be viewed as having only one premiss, namely the conjunction of the logically dis-
tinct premisses, and axiom systems would be viewed as containing a single starting
point (the conjunction of the axioms). The deduction of theorems from the axiom by
brute force enumeration of all proofs is what linguists would call free generation.
The use of a single conjunct premiss instead of multiple premisses may look like a
distinction without a difference, but it has the effect of making generative systems
invertible: for each such system with rules rq, ..., rr we can construct an inverted
system with rules rl_l. cen rk_l that is now an accepting, rather than generating,
device. This is very useful in all those cases where we are interested in characterizing
both production (synthesis, generation) and perception (analysis, parsing) processes
because the simplest hypothesis is that these are governed by the same set of abstract
rules.

Clearly, definition by generation differs from deduction by a strict algorithmic
procedure only in that the choice of the next algorithmic step is generally viewed as
being completely determined by the current step, while in generation the next step
is freely drawn from the set of generative rules. The all-important boundary between
recursive and recursively enumerable (r.e.) is drawn the same way by certificates
(derivation structures), but the systems of interest congregate on different sides of
this boundary. In logic, proving the negation of a statement requires the same kind
of certificate (a proof object rooted in the axioms and terminating in the desired
conclusion) as proving the statement itself — the difficulty is that most calculi are r.e.
but not recursive (decidable). In grammar, proving the ungrammaticality of a form
requires an apparatus very different from proving its grammaticality: for the latter
purpose an ordinary derivation suffices, while for the former we typically need to
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exhaustively survey all forms of similar and lesser complexity, which can be difficult,
even though most grammars are not only r.e. but in fact recursive.

2.3 String rewriting

Given a set of atomic symbols X called the alphabet, the simplest imaginable oper-
ation is that of concatenation, whereby a complex symbol xy is formed from x
and y by writing them in succession. Applying this operation recursively, we obtain
strings of arbitrary [ength. Whenever such a distinction is necessary, the operation
will be denoted by . (dot). The result of the dot operation is viewed as having no inter-
nal punctuation: u.v = uv both for atomic symbols and for more complex strings,
corresponding to the fact that concatenation is by definition associative. To forestall
confusion, we mention here that in later chapters the . will also be used in glosses
to connect a word stem to the complex of morphosyntactic (inflectional) features the
word form carries: for example geese = goose.PL (the plural form of goose is geese)
or Hungarian hdzammal = house. POSSI1SG.INS *with my house’, where POSSISG
refers to the suffix that signifies possession by a first-person singular entity and INS
refers to the instrumental case ending roughly analogous to English with. (The reader
should be forewarned that translation across languages rarely proceeds as smoothly
on a morpheme by morpheme basis as the example may suggest: in many cases mor-
phologically expressed concepts of the source language have no exact equivalent in
the language used for glossing.)

Of special interest is the empty string A, which serves as a two-sided multiplica-
tive unit of concatenation: A.4 = u.A = u. The whole set of strings generated from
¥ by concatenation is denoted by =7 (A-free Kleene closure) or, if the empty string
is included, by X* (Kleene closure). If u.v = w, we say that u (v) is a left (right)
factor of w. If we define the length /(x) of a string x as the number of symbols in x,
counted with multiplicity (the empty word has length 0), / is a homomorphism from
T* to the additive semigroup of nonnegative integers. In particular, the semigroup
of nonnegative integers (with ordinary addition) is isomorphic to the Kleene closure
of a one-symbol alphabet (with concatenation): the latter may be called integers in
base one notation.

Subsets of X* are called stringsets, formal languages, or just languages. In
addition to the standard Boolean operations, we can define the concatenation of
strings and languages U and V as UV = {uv|u € U.v € V}, suppressing the dis-
tinction between a string and a one-member language, writing xU instead of {x}U,
etc. The (A-free) Kleene closure of strings and languages is defined analogously to
the closure of alphabets. For a string w and a language U, we say u € L is a prefix
of w if u is a left factor of w and no smaller left factor of w is in U.

Finite languages have the same distinguished status among all stringsets that
the natural numbers N have among all numbers: they are, after all, all that can
be directly listed without relying on any additional interpretative mechanism. And
as in arithmetic, where the simplest natural superset of the integers includes not
only finite decimal fractions but some infinite ones as well, the simplest natural
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to Type 0, Chomsky (1956) demonstrated that each type is properly contained in
the next lower one. These proofs, together with examples of context-free but not
regular, context-sensitive but not context-free, and recursive but not context-sensitive
languages, are omitted here, as they are discussed in many excellent textbooks of
formal language theory such as Salomaa (1973) or Harrison (1978). To get a better
feel for CSLs, we note the following results:

Theorem 2.3.3 (Karp 1972) The membership problem for CSLs is PSPACE-
complete.

Theorem 2.3.4 (Szelepcsényi 1987, Immerman 1988) The complement of a CSL is
a CSL.

Exercise 2.5 Construct three CSGs that generate the language F of Fibonacci num-
bers in base one, the language F> of Fibonacci numbers in base two, and the language
Fio of Fibonacci numbers in base ten. Solve the membership problem for 117467.

Exercise 2.6 Call a set of natural numbers k-regular if their base k representations
are a regular language over the alphabet of k digits, It is easy to see that a 1-regular
language is 2-regular (3-regular) and that the converse is not true. Prove that a set
that is both 2-regular and 3-regular is also 1-regular.

2.4 Further reading

Given that induction is as old as mathematics itself (the key idea going back at least
to Euclid’s proof that there are infinitely many primes) and that recursion can be
traced back at least to Fibonacci’s (1202) Liber Abaci, it is somewhat surprising that
the closely related notion of generation is far more recent: the first systematic use
is in von Dyck (1882) for free groups. See Chandler and Magnus (1982 Ch. 1.7)
for some fascinating speculation why the notion did not arise earlier within group
theory. The kernel membership problem is known as the word problem in this setting
(Dehn 1912). The use of freely generated pure formula models in logic was pioneered
by Herbrand (1930); Wang tilings were introduced by Wang (1960). Theorem 2.1.1
was proven by Berger (1966), who demonstrated the undecidability by encoding the
halting problem in tiles. For a discussion, see Gruska (1997 Sec. 6.4.3). The notion
that linguistic structures are noncounting goes back at least to Chomsky (1965:55).
From Panini to the neogrammarians of the 19th century, linguists were generally
eager to set up the system so as to cover related styles, dialects, and historical stages
of the same language by minor variants of the same theory. In our terms this would
mean that e.g. British English and American English or Old English and Modern
English would come out as models of a single ‘abstract English’. This is one point
where current practice (starting with de Saussure) differs markedly from the tra-
ditional approach. Since grammars are intended as abstract theories of the native
speaker’s competence, they cannot rely on data that are not observable by the ordi-
nary language learner. In particular, they are restricted to a single temporal slice,
called the synchronic view by de Saussure, as opposed to a view encompassing dif-
ferent historical stages (called the diachronic view). Since the lack of cross-dialectal
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or historical data is never an impediment in the process of children acquiring their
native language (children are capable of constructing their internal grammar with-
out access to such data), by today’s standards it would raise serious methodological
problems for the grammarian to rely on facts outside the normal range of input avail-
able to children. (De Saussure actually arrived at the synchrony/diachrony distinction
based on somewhat different considerations.) The neogrammarians amassed a great
deal of knowledge about sound change, the historical process whereby words change
their pronunciation over the centuries, but some of their main tenets, in particular the
exceptionlessness of sound change laws, have been found not to hold universally (see
in particular Wang 1969, Wang and Cheng 1977, Labov 1981, 1994).

Abstract string manipulation begins with Thue (1914, reprinted in Nagell 1977),
who came to the notion from combinatorial group theory. For Thue, rewriting is
symmetrical: if AXB can be rewritten as AYB the latter can also be rewritten as
the former. This is how Harris (1957) defined transformations. The direct precursors
of the modern generative grammars and transformations that were introduced by
Chomsky (1956, 1959) are semi-Thue systems, where rewriting need not necessarily
work in both directions. The basic facts about regular languages, finite automata, and
Kleene’s theorem are covered in most textbooks about formal language theory or the
foundations of computer science, see e.g. Salomaa (1973) or Gruska (1997). We will
develop the connection between these notions and semigroup theory along the lines
of Eilenberg (1974) in Chapter 5. Context-free grammars and languages are also well
covered in computer science textbooks such as Gruska (1997), for more details on
context-sensitivity, see Section 10 of Salomaa (1973). Theorem 2.3.1 was discovered
in (McCawley 1968), for a rigorous proof see Peters and Ritchie (1973), and for a
modern discussion, see Oehrle (2000),

Some generalizations of the basic finite state notions that are of particular interest
to phonologists, namely regular relations, and finite k-automata, will be discussed in
Chapter 3. Other generalizations, which are also relevant to syntax, involve weighted
(probabilistic) languages, automata, and transducers — these are covered in Sec-
tions 5.4 and 5.5. Conspiracies were first pointed out by Kisseberth (1970) — we
return to this matter in Section 4.3. The founding papers on categorial grammars
are Ajdukiewicz (1935) and Lambek (1958). Unification grammars are discussed in
Shieber (1986, 1992).
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Phonology

The fundamental unit of linguistics is the sign, which, as a first approximation, can be
defined as a conventional pairing of sound and meaning. By conventional we mean
both that signs are handed down from generation to generation with little modifica-
tion and that the pairings are almost entirely arbitrary, just as in bridge, where there
is no particular reason for a bid of two clubs in response to one no trump to be con-
strued as an inquiry about the partner’s major suits. One of the earliest debates in
linguistics, dramatized in Plato’s Cratylus, concerns the arbitrariness of signs. One
school maintained that for every idea there is a true sound that expresses it best,
something that makes a great deal of sense for onomatopoeic words (describing e.g.
the calls of various animals) but is hard to generalize outside this limited domain.
Ultimately the other school prevailed (see Lyons 1968 Sec. 1.2 for a discussion) at
least as far as the word-level pairing of sound and meaning is concerned.

It is desirable to build up the theory of sounds without reference to the theory of
meanings both because the set of atomic units of sound promises to be considerably
simpler than the set of atomic units of meanings and because sounds as linguistic
units appear to possess clear physical correlates (acoustic waveforms; see Chapter 8),
while meanings, for the most part, appear to lack any direct physical embodiment.
There is at least one standard system of communication, Morse code, that gets by
with only two units, dot (short beep) and dash (long beep) or possibly three, (if we
count pause/silence as a separate unit; see Ex. 7.7). To be sure, Morse code is para-
sitic on written language, which has a considerably larger alphabet, but the enormous
success of the alphabetic mode of writing itself indicates clearly that it is possible to
analyze speech sounds into a few dozen atomic units, while efforts to do the same
with meaning (such as Wilkins 1668) could never claim similar success.

There is no need to postulate the existence of some alphabetic system for
transcribing sounds, let alone a meaning decomposition of some given kind. In Sec-
tion 3.1 we will start with easily observable entities called utterances, which are
defined as maximal pause-free stretches of speech, and describe the concatenative
building blocks of sound structure called phonemes. For each natural language L
these will act as a convenient set of atomic symbols Py that can be manipulated by
context-sensitive string-rewriting techniques, giving us what is called the segmental
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phonology of the language. This is not to say that the set of words Wp, viewed as a
formal language over Py, will be context-sensitive (Type 1) in the sense of formal
language theory. On the contrary, we have good reasons to believe that W is in fact
regular (Type 3).

To go beyond segments, in Section 3.2 we introduce some subatomic compo-
nents called distinctive features and the formal linguistic mechanisms required to
handle them. To a limited extent, distinctive features pertaining to tone and stress are
already useful in describing the suprasegmental phonology of languages. To get a full
understanding of suprasegmentals in Section 3.3 we introduce multitiered data struc-
tures more complex than strings, composed of autosegments. Two generalizations of
regular languages motivated by phonological considerations, regular transducers and
regular k-languages, are introduced in Section 3.4. The notions of prosodic hierarchy
and optimality, being equally relevant for phonology and morphology, are deferred
to Chapter 4.

3.1 Phonemes

We are investigating the very complex interpretation relation that obtains between
certain structured kinds of sounds and certain structured kinds of meanings; our
eventual goal is to define it in a generative fashion. At the very least, we must
have some notion of identity that tells us whether two signs sound the same and/or
mean the same. The key idea is that we actually have access to more information,
namely, whether two utterances are partially similar in form and/or meaning. To use
Bloomfield’s original examples:

A needy stranger at the door says I'm hungry. A child who has eaten and
merely wants to put off going to bed says I'm hungry. Linguistics considers
only those vocal features which are alike in the two utterances . .. Similarly,
Put the book away and The book is interesting are partly alike (the book).

That the same utterance can carry different meanings at different times is a fact
we shall not explore until we introduce disambiguation in Chapter 6 — the only bur-
den we now place on the theory of meanings is that it be capable of (i) distinguishing
meaningful from meaningless and (ii) determining whether the meanings of two
utterances share some aspect. Our expectations of the observational theory of sound
are similarly modest: we assume we are capable of (i’) distinguishing pauses from
speech and (ii’) determining whether the sounds of two utterances share some aspect.

We should emphasize at the outset that the theory developed on this basis does not
rely on our ability to exercise these capabilities to the extreme. We have not formally
defined what constitutes a pause or silence, though it is evident that observationally
such phenomena correspond to very low acoustic energy when integrated over a
period of noticeable duration, say 20 milliseconds. But it is not necessary to be able
to decide whether a 19.2 millisecond stretch that contains exactly 1.001 times the
physiological minimum of audible sound energy constitutes a pause or not. If this
stretch is indeed a pause we can always produce another instance, one that will have a
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significantly larger duration, say 2000 milliseconds, and containing only one-tenth of
the previous energy. This will show quite unambiguously that we had two utterances
in the first place. If it was not a pause, but rather a functional part of sound formation
such as a stop closure, the new ‘utterances’ with the artificially interposed pause will
be deemed ill-formed by native speakers of the language. Similarly, we need not
worry a great deal whether Colorless green ideas sleep furiously is meaningful, or
what it exactly means. The techniques described here are robust enough to perform
well on the basis of ordinary data without requiring us to make ad hoc decisions in
the edge cases. The reason for this robustness comes from the fact that when viewed
as a probabilistic ensemble, the edge cases have very little weight (see Chapter 8 for
further discussion).

The domain of the interpretation relation [ is the set of forms F, and the
codomain is the set of meanings M, so we have I C F x M . In addition, we have two
overlap relations, O C F x I"and Oy C M x M, that determine partial similarity
of form and meaning respectively. O is traditionally divided into segmental and
suprasegmental overlaps. We will discuss mostly segmental overlap here and defer
suprasegmentals such as tone and stress to Section 3.3 and Section 4.1, respectively.
Since speech happens in time, we can define two forms « and B as segmentally
overlapping if their temporal supports as intervals on the real line can be made to
overlap, as in the the book example above. In the segmental domain at least, we
therefore have a better notion than mere overlap: we have a partial ordering defined
by the usual notion of interval containment. In addition to O, we will therefore use
sub- and superset relations (denoted by C . D) as well as intersection, union, and
complementation operations in the expected fashion, and we have

aNp P #0 = aO0pp 3.1

In the domain of 7, we find obviously complex forms such as a full epic poem
and some that are atomic in the sense that

VxCra:x&dom(l) (3.2)

These are called minimum forms. A form that can stand alone as an utterance is a
[free form; the rest (e.g. forms like ity or al as in electricity, electrical), which cannot
normally appear between pauses, are called bound forms.

Typically, utterances are full phrases or sentences, but when circumstances are
right, e.g. because a preceding question sets up the appropriate context, forms much
smaller than sentences can stand alone as complete utterances. Bloomfield (1926)
defines a word as a minimum free form. For example, electrical is a word because it
is a free form (can appear e.g. as answer to the question What kind of engine is in this
car?) and it cannot be decomposed further into free forms (electric would be free but
al is bound). We will have reason to revise this definition in Chapter 4, but for now
we can provisionally adopt it here because in defining phonemes it is sufficient to
restrict ourselves to free forms.

For the rest of this section, we will only consider the set of words W C F, and
we are in the happy position of being able to ignore the meanings of words entirely.
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the existence of phonetic alphabets can be derived from postulates rooted in these
limitations.

3.2 Natural classes and distinctive features

Isolating the atomic segmental units is a significant step toward characterizing the
phonological system of a language. Using the phonemic alphabet P, we can write
every word as a string w € P*, and by adding just one extra symbol # to denote
the pause between words, we can write all utterances as strings over P U {#}. Since
in actual connected speech pauses between words need not be manifest, we need an
interpretative convention that # can be phonetically realized either as silence or as
the empty string (zero realization). Silence, of course, is distinctly audible and has
positive duration (usually 20 milliseconds or longer), while A cannot be heard and
has zero duration.

In fact, similar interpretative conventions are required throughout the alphabet,
e.g. to take care of the fact that in English word-initial ¢ is aspirated (released with a
puff of air similar in effect to /1 but much shorter), while in many other positions ¢ is
unaspirated (released without an audible puff of air): compare fon to stun. The task of
relating the abstract units of the alphabet to their audible manifestations is a complex
one, and we defer the details to Chapter 9. We note here that the interpretation process
is by no means trivial, and there are many unassailable cases, such as aspirated vs.
unaspirated ¢ and silenceful vs. empty #, where we permit two or more alternative
realizations for the same segment. (Here and in what follows we reserve the term
segment for alphabetic units; i.e. strings of length one.)

Since A can be one of the alternatives, an interesting technical possibility is to
permit cases where it is the only choice: i.e. to declare elements of a phonemic
alphabet that never get realized. The use of such abstract or diacritic elements
(anubandha) is already pivotal in Panini’s system and remains characteristic of
phonology to this day. This is our first example of the linguistic distinction between
underlying (abstract) and surface (concrete) forms — we will see many others later.

Because in most cases alternative realizations of a symbol are governed by the
symbols in its immediate neighborhood, the mathematical tool of choice for dealing
with most of segmental phonology is string rewriting by means of context-sensitive
rules. Here a word of caution is in order: from the fact that context-sensitive rules
are used it does not follow that the generated stringset over P, or over a larger alpha-
bet O that includes abstract elements as well, will be context-sensitive. We defer
this issue to Section 3.4, and for now emphasize only the convenience of context-
sensitive rules, which offer an easy and well-understood mechanism to express the
phonological regularities or sound laws that have been discovered over the centuries.

Example 3.2.1 Final devoicing in Russian. The nominative form of Russian nouns
can be predicted from their dative forms by removing the dative suffix v and inspect-
ing the final consonant: if it is b or p, the final consonant of the nominative form will
be p. This could be expressed in a phonological rule of final b devoicing: b — p/_#.
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When it is evident that the change is caused by some piece of the environment where
the rule applies, we speak of the piece triggering the change; here the trigger is the
final #.

Remarkably, we find that a similar rule links d to 7, g to k, and in fact any voiced
obstruent to its voiceless counterpart. The phenomenon that the structural descrip-
tion and/or the structural change in rules extends to some disjunction of segments
is extremely pervasive. Those sets of segments that frequently appear together in
rules (either as triggers or as undergoers) are called natural classes; for example, the
class { p.t. k} of unvoiced stops and the class {b. d, g} of voiced stops are both nat-
ural, while the class { p, . d} is not. Phonologists would be truly astonished to find a
language where some rule or regularity affects p, #, and d but no other segment.

The linguist has no control over the phonemic alphabet of a language: P is com-
puted as the result of a specific (oracle-based, but otherwise deterministic) algorithm.
Since the set N C 2% of natural classes is also externally given by the phonological
patterning of the language, over the millennia a great deal of effort has been devoted
to the problem of properly characterizing it, both in order to shed some light on the
structure of P and to help simplify the statement of rules.

So far, we have treated P as an unordered set of alphabetic symbols. In the Ashta-
dhyayt, Panini arranges elements of P in a linear sequence (the Sivasitras) with
some abstract (phonetically unrealized) symbols (anubandha) interspersed. Simpli-
fying his treatment somewhat (for a fuller discussion, see Staal 1962), natural classes
(pratydhdra) are defined in his 1.1.71 as those subintervals of the Sivasiitras that
end in some anubandha. If there are k symbols in P, in principle there could be
as many as 2% natural classes. However, the Paninian method will generate at most
k(k 4+ 1)/2 subintervals (or even fewer, if diacritics are used more sparingly), which
is in accordance with the following postulate.

Postulate 3.2.1 In any language, the number of natural classes is small.

We do not exactly spell out what ‘small” means here. Certainly it has to be polyno-
mial, rather than exponential, in the size of P. The European tradition reserves names
for many important natural classes such as the apicals, aspirates, bilabials, conso-
nants, continuants, dentals, fricatives, glides, labiodentals, linguals, liquids, nasals,
obstruents, sibilants, stops, spirants, unaspirates, velars, vowels, etc. — all told, there
could be a few hundred, but certainly not a few thousand, such classes. As these
names suggest, the reason why a certain class of sounds is natural can often be found
in sharing some aspects of production (e.g. all sounds crucially involving a constric-
tion at the lips are labials, and all sounds involving turbulent airflow are fricatives),
but often the justification is far more complex and indirect. In some cases, the mat-
ter of whether a particular class is natural is heavily debated. For a particularly hard
chestnut, the ruki class; see Section 9.2, Collinge’s (1985) discussion of Pedersen’s
law I, and the references cited therein.

For the mathematician, the first question to ask about the set of natural classes N
is neither its size nor its exact membership but rather its algebraic structure: under
what operations is N closed? To the extent that Panini is right, the structure is not
fully Boolean: the complement of an interval typically will not be expressible as a
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single interval, but the intersection of two intervals (pratyahdara) will again be an
interval. We state this as the following postulate.

Postulate 3.2.2 In any language, the set of natural classes is closed under intersection.

This postulate makes N a meet semilattice, and it is clear that the structure is not
closed under complementation since single segments are natural classes but their
complements are not. The standard way of weakening the Boolean structure is to
consider meet semilattices of linear subspaces. We embed P in a hypercube so that
natural classes correspond to hyperplanes parallel to the axes. The basis vectors that
give rise to the hypercube are called distinctive features and are generally assumed
to be binary; a typical example is the voiced/unvoiced distinction that is defined by
the presence/absence of periodic vocal fold movements. It is debatable whether the
field underlying this vector space construct should be IR or GF(2). We take the second
option and use GF(2), but we will have reason to return to the notion of real-valued
features in Chapters 8 and 9. Thus, we define a feature assignment as an injective
mapping C from the set Q of segments into the linear space GF(2,n).

This is a special case of a general situation familiar from universal algebra: if A4;
are algebras of the same signature and A = [] A; is their direct product, we say that
asubalgebra B of A is a subdirect product of the A; if all its projections on the com-
ponents A; are surjective. A classic theorem of Birkhoff asserts that every algebra
can be represented as a subdirect product of subdirectly irreducible algebras. Here the
algebras are simply finite sets, and as the only subdirectly irreducible sets have one
or two members (and one-member sets obviously cannot contribute to a product),
we obtain distinctive feature representations (also called feature decompositions)
for any set for free.

Since any set, not just phonological segments, could be defined as vectors (also
called bundles) of features, to give feature decomposition some content that is
specific to phonology we must go a step further and link natural classes to this
decomposition. This is achieved by defining as natural classes those sets of seg-
ments that can be expressed by fewer features than their individual members (see
Halle 1964:328). To further simplify the use of natural classes, we assume a theory
of markedness (Chomsky and Halle 1968 Ch. IX) that supplies those features that
are predictable from the values already given (see Section 7.3). For example, high
+syl
~+high
features that define this class, such as [—low] or [+voice], are predictable values

vowels will be written as [ }, requiring only two features, because the other

already given.

In addition to using pratyahara, Panini employs a variety of other devices, most
notably the concept of ‘homogeneity’ (savarnya), as a means of cross-classification
(see Cardona 1965). This device enables him to treat quality distinctions in vowels
separately from length, nasality, and tone distinctions, as well as to treat place of
articulation distinctions in consonants separately from nasality, voicing, and aspira-
tion contrasts. Another subsidiary concept, that of antara ‘nearness’, is required to
handle the details of mappings between natural classes. Since Paninian rules always
map classes onto classes, the image of a segment under a rule is decided by P1.1.50
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sthane 'ntaratamah ‘in replacement, the nearest’. The modern equivalent of P1.1.50
is the convention that features unchanged by a rule need not be explicitly mentioned,
so that the Russian final devoicing rule that we began with may simply be stated as
[+obstruent] — [—voice] / _#.

For very much the same empirical reasons that forced Panini to introduce addi-
tional devices like savarnya, the contemporary theory of features also relaxes the
requirement of full orthogonality. One place where the standard (Chomsky and Halle
1968) theory of distinctive features shows some signs of strain is the treatment of
vowel height. Phonologists and phoneticians are in broad agreement that vowels
come in three varieties, high, mid, and low, which form an interval structure: we
often have reason to group high and mid vowels together or to group mid and low
vowels together, but we never see a reason to group high and low vowels together to
the exclusion of mid vowels. The solution adopted in the standard theory is to use
two binary features, [+ high] and [4 low], and to declare the conjunction [+high,
+low] ill-formed.

Similar issues arise in many other corners of the system; e.g. in the treatment of
place of articulation features. Depending on where the major constriction that deter-
mines the type of a consonant occurs, we distinguish several places of articulation,
such as bilabial, labiodental, dental, alveolar, postalveolar, retroflex, palatar, velar,
pharyngeal, epiglottal, and glottal, moving back from the lips to the glottis inside
the vocal tract. No single language has phonemes at every point of articulation, but
many show five-, or six-way contrasts. For example, Korean distinguishes bilabial,
dental, alveolar, velar, and glottal, and the difference is noted in the basic letter shape
(O, v, —. —, and O, respectively). Generally, there is more than one consonant per
point of articulation; for example, English has alveolars n, ¢, d. s, z, [. Consonants
sharing the same place of articulation are said to be homorganic and they form a nat-
ural class (as can be seen e.g. from rules of nasal assimilation that replace e.g. input
by imput).

Since the major classes (labial, coronal, dorsal, radical, laryngeal) show a five-
way contrast, the natural way to deal with the situation would be the use of one
GF(5)-valued feature rather than three (or more) underutilized GF(2) values, but for
reasons to be discussed presently this is not a very attractive solution. What the sys-
tem really needs to express is the fact that some features tend to occur together in
rules to the exclusion of others, a situation somewhat akin to that observed among
the segments. The first idea that leaps to mind would be to utilize the same solu-
tion, using features of features (metafeatures) to express natural classes of features.
The Cartesian product operation that is used in the feature decomposition (subdi-
rect product form) of P is associative, and therefore it makes no difference whether
we perform the feature decomposition twice in a metafeature setup, or just once at
the segment level. Also, the inherent ordering of places of articulation (for conso-
nants) or height (for vowels) is very hard to cenvey by features, be they 2-valued
or n-valued, without recourse to arithmetic notions, something we would very much
like to avoid as it would make the system overly expressive.

The solution now widely accepted in phonology (Clements 1985, McCarthy
1988) is to arrange the features in a tree structure, using intermediate class nodes
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SUPRALARYNGEAL

nasal cont lateral FLACE approx

LABIAL CORONAL DORSAL RAD

distr round distr anterior back  high low

Fig. 3.1. Feature geometry tree. Rules that required the special principle of savarnya can be
stated using the supralaryngeal class node

to express the grouping together of some features to the exclusion of others (see
Fig. 3.1). This solution, now permanently (mis)named feature geometry, is in
fact a generalization of both the pratyahara and the standard feature decomposi-
tion methods. The linear intervals of the Paninian model are replaced by generalized
(lattice-theoretic) intervals in the subsumption lattice of the tree, and the Cartesian
product appearing in the feature decomposition corresponds to the special case where
the feature geometry tree is a star (one distinguished root node, all other nodes being
leaves).

Discussion The segmental inventories P developed in Section 3.1 are clearly differ-
ent from language to language. As far as natural classes and feature decomposition
are concerned, many phonologists look for a single universal inventory of features
arranged in a universally fixed geometry such as the one depicted in Fig. 3.1. Since
the cross-linguistic identity of features such as [nasal] is anchored in their phonetic
(acoustic and articulatory) properties rather than in some combinatorial subtleties of
their intralanguage phonological patterning, this search can lead to a single object,
unique up to isomorphism, that will, much like Mendeleyev’s periodic table, encode
a large number of regularities in a compact format.

Among other useful distinctions, Chomsky and Halle (1968) introduce the notion
of formal vs. substantive universals. Using this terminology, meet semilattices are a
formal, and a unique feature geometry tree such as the one in Fig. 3.1 would be a sub-
stantive, universal. To the extent that phonological research succeeds in identifying a
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Each tier N has its own tier alphabet Ty, and we can assume without loss of gener-
ality that the alphabets of different tiers are disjoint except for a distinguished blank
symbol G (purposely kept distinct from the pause symbol #) that is adjoined to every
tier alphabet. Two tiers bearing identical names can only be distinguished by inspect-
ing their contents. We define a tier containing a string fof; ... [, starting at position
k by a mapping that maps k on to, kK + lonty,..., k + n on t,, and everything else
on G. Abstracting away from the starting position, we have the following definition.

Definition 3.3.2 A tier N containing a string tof; . . .1, over the alphabet Ty U* G is
defined as the class of mappings Fj that take kK + i into #; for 0 </ < n and to G if
i is outside this range. Unless noted otherwise, this class will be represented by the
mapping Fy. Strings containing any number of successive G symbols are treated as
equivalent to those strings that contain only a single G at the same position. G-free
strings on a given tier are called melodies.

Between strings on the same tier and within the individual strings, temporal
ordering is encoded by their usual left-to-right ordering. The temporal ordering of
strings on different tiers is encoded by association relations.

Definition 3.3.3 An association relation between two tiers N and M containing
the strings n = ngny...ng and m = mqgniy ...my is a subset of {0.1,..., k} x
{10.1,..., [}. An element that is not in the domain or range of the association relation
is called floating.

Note that the association relation, being an abstract pattern of synchrony between
the tiers, is one step removed from the content of the tiers: association is defined on
the domain of the representative mappings, while content also involves their range.
By Definition 3.3.3, there are 2K association relations possible between two strings
of length k and [. Of these relations, the no crossing constraint (NCC; see Goldsmith
1976) rules out as ill-formed all relations that contain pairs (7, v) and (J, u) such that
0<i<j<kand0 <u < v </ are both true. We define the span of an element
x with respect to some association relation A as those elements y for which (x, y) is
in A. Rolling the definitions above into one, we have the following definition.

Definition 3.3.4 A bistring is an ordered triple (f, g, A), where f and g are
strings not containing G, and A4 is a well-formed association relation over two tiers
containing f and g.

In the general case, we have several tiers arranged in a tree structure called the
geometry of the representation (see Section 3.2). Association relations are permitted
only among those tiers that are connected by an edge of this tree, so if there are k
tiers there will be k — 1 relations. Thus, in the general case, we define a k-string as
a (2k — 1)-tuple (sq,..., Sgy A1aenn, Ag—1), where the s; are strings and the A; are
association relations.

Theorem 3.3.1 The number of well-formed association relations over two tiers, each
containing a string of length n. is asymptotically (6 + 4+/2)".

Proof Let us denote the number of well-formed association relations with n symbols
on the top tier and k symbols on the bottom tier by f(n. k). By symmetry, f(n,k) =
f(k.n),and obviously f(n,1) = f(1,n) = 2". By enumerating relations according
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to the pair (i, j) such that no i’ < i is in the span of any j" and no j” > j isin the
span of i, we get

k+1
fn+Lk+1D) =Y fn.i2*' 4 fnk+1) (3.3)
i=1

From (3.3) we can derive the following recursion:
fn+ 1 k+1)=2f(n+ 1,k)+2f(n,k+1)—2f(n,k) (3.4)

For the first few values of a, = f(n,n), we can use (3.4) to calculate forward:
ay, = 2,a; = 12, a3 = 104, ag = 1008, as = 10272, ag = 107712, and so on.
Using (3.4) we can also calculate backward and define f(0,n) = f(n,0)tobe 1 so
as to preserve the recursion. The generating function

F(z,w) = Z fi. )z w’ (3.5)

i,j=0
will therefore satisfy the equation

Z w

F(z. — 1—z 1—w 3.6
(z.w) 1—-2z—-2w+2zw (3.6)

If we substitute w = /z and consider the integral

L/ F(z.r/z)dz 3.7)
c

2mi z

this will yield the constant term Y oo, f(n,n)t" by Cauchy’s formula. Therefore,
in order to get the generating function

o0
d(t) =Y an" (3.8)
/=0
we have to evaluate
1— 2z _ 1z
L[ 1-z 1—t/z - (3'9)
2ni Jo z(1 =22 —2t/z + 21)
which yields
dity=1+ 2 (3.10)
V1=12t + 412 o

d(t) will thus have its first singularity when /1 — 12t + 412 vanishes at tp = (3 —
V/8)/2, yielding

an 2 (6 + 44/2)" (3.11)

the desired asymptotics. B
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The base 2 logarithm of this number, n - 3.543, measures how many bits we
need to encode a bistring of length n. Note that this number grows linearly in the
length of the bistring, while the number of (possibly ill-formed) association relations
was 2"2, with the base 2 log growing quadratically. Association relations in general
are depicted as bipartite graphs (pairs in the relation are called association lines) and
encoded as two-dimensional arrays (the incidence matrix of the graph). However, the
linear growth of information content suggests that well-formed association relations
should be encoded as one-dimensional arrays or strings. Before turning to this matter
in Section 3.4, let us first consider two particularly well-behaved classes of bistrings.
A bistring is fully associated if there are no floating elements and proper if the span
of any element on one tier will form a single substring on the other tier (Levin 1985).
Proper relations are well-formed but not necessarily fully associated.

Let us define g(i, j) as the number of association relations containing no unas-
sociated (floating) elements and define b, as g(n, n). By counting arguments similar
to those used above, we get the recursion

g+ 1k+)=gn+1.k)+gnk+1)+ g(n.k) (3.12)

Using this recursion, the first few values of b, can be computed as 1, 3, 13, 63, 321,
1683, 8989, and so on. Using (3.12) we can calculate backward and define g(0,0)
to be 1 and g(i.0) = g(0,i) to be 0 (for i > 0) so as to preserve the recursion. The
generating function

o0
G(z.w) = Z g(z'.j)szj (3.13)
i,j=0
will therefore satisfy the equation
l—z—w zw
G(z.w) = - =1+ (3.14)
l—z—w-—zw l—z—w-—zw

Again we substitute w = ¢ /z and consider the integral

L[ 6G.1/2),, (3.15)
c

2mi z

p

which will yield the constant term Z:O:() g(n,n)t" by Cauchy’s formula. Therefore,
in order to get the generating function

o0
e(t) =Y but" (3.16)
i=0

we have to evaluate

Ll i dz=1- - f I (3.17)
— - Zz=1l-— _— .
2ri Jez z(l—z—t/z—1) 2ri Je (z— pHz —¢q)



38 3 Phonology

which yields
t
e(t) =14+ — (3.18)
©) V1 — 61+ 12
Notice that 5
t
e(2t) =1+ = d(1) (3.19)
V1—6-2t +(21)2
and thus
oo o0
D ba ) = at” (3.20)
i=0 i=0

Since the functions d(¢) and e(¢) are analytic in a disk of radius 1/10, the coefficients
of their Taylor series are uniquely determined, and we can conclude that

b,2" = a, (3.21)

meaning that fully associated bistrings over n points are only an exponentially van-
ishing fraction of all well-formed bistrings. In terms of information content, the result
means that fully associated bistrings of length n can be encoded using exactly one
bit less per unit length than arbitrary well-formed bistrings.
Exercise 3.3* Find a ‘bijective’ proof establishing (3.21) by direct combinatorial
methods.

Now, for proper representations, denoting their number by si(n, k), the generating
function H = H(z,w) will satisfy a functional equation

H—zH —wH —2zwH + zw?H + z?wH — 2?w?*H = r(z,w) (3.22)

where r(z, w) is rational. Using the same diagonalizing substitution w = ¢/z, we
have to evaluate

1 f s(z,t) y
2ri e z(l—z—1/z =2t +12)z 41z —12)

(3.23)

Again, the denominator is quadratic in z, and the radius of convergence is determined
by the roots of the discriminant

(2420 = 1) =4t — D2 —1) = 1* + 1062 =8¢ + 1 (3.24)

The reciprocal of the smallest root of this equation, approximately 6.445, gives the
base for the asymptotics for ¢,, the number of proper bistrings over n points. By
taking the base 2 logarithm, we have the following theorem.

Theorem 3.3.2 The information content of a fully associated (proper) well-formed
bistring is 2.543 (2.688) bits per unit length.

Exercise 3.4 Count the number of well-formed (fully associated, proper) k-strings
of length n assuming each tier alphabet has only one element besides G.
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Sets of well-formed (fully associated, proper) bistrings will be called well-
formed (fully associated, proper) bilanguages. These can undergo the usual set-
theoretic operations of intersection, union, and complementation (relative to the
‘universal set’ of well-formed, fully associated, resp. proper bistrings). Reversal
(mirror image) is defined by reversing the constituent strings together with the asso-
ciation relation. The concatenation of bistrings is defined by concatenating both the
strings and the relations:

Definition 3.3.5 Given two bistrings (f,h, A) and (k,/, B) on tiers N and M,
their concatenation (fk,hl, AB) is constructed via the tier-alphabet functions
Fo. Hy. K|z|, and Lg| as follows. FKy(i) = F(i) for 0 < i < |f|, K|z(i) for
|f] <1 <|f|+|k|.G otherwise. HLo(j) = H(j)for0 < j < |k|, Ljg(j) for
|k| < j < |f|+|k|. G otherwise. Finally, AB = AU{(i +|f|. j +|k|)|(i. j) € B}.

Notice that the concatenation of two connected bistrings will not be connected
(as a bipartite graph). This is remedied by the following definition.

Definition 3.3.6 Given two bistrings as in 3.3.5, their ¢-catenation (h-catenation)
is defined as (fk,hl, AtB) (fk.hl. AbB), where AtB = AB U {(|f| — 1. |k|)}
(AbB = AB U {(|f].[k| - D}).

Using phonological terminology, in ¢-catenation the last element of the rop tier
of the first bistring is spread on the first element of the bottom tier of the second
bistring, and in h-catenation the last element of the bottom tier of the first string is
spread on the first element of the top tier of the second bistring.

The only autosegmental operation that is not the straightforward generalization
of some well-known string operation is that of alignment. Given two bistrings x =
(f.g.A)and y = (g, h, B), their alignment z = x || y is defined to be (f. h.C),
where C is the relation composition of 4 and B. In other words, the pair (i, k) will
be in C iff there is some j such that (7, j) is in A and (j, k) is in B. Now we are in
a position to define projections. These involve some subset S of the tier alphabet T.
A projector Pgs(h)of astring g = hohy ... h,, with respect to a set S is the bistring
(h,h,Idg), where (i, j) is in Idg iff i = j and h; is in §. The normal bistring
I(h) corresponding to a string /1 is simply its projector with respect to the full alpha-
bet: I(h) = Pr(h). A projection of a string with respect to some subalphabet §
can now be defined as the alignment of the corresponding normal bistring with the
projector.

The alignment of well-formed bistrings is not necessarily well-formed, as the
following example shows. Let f = ab, g = ¢, h = de, and suppose that the follow-
ing associations hold: (0,0) and (1,0) in x; (0,0) and (0, 1) in y. By definition, C
should contain (0, 0), (0. 1), (1,0), and (1, 1) and will thus violate the No Crossing
Constraint. Note also that a projector, as defined here, will not necessarily be proper.
In order to capture the phonologically relevant sense of properness, it is useful to rel-
ativize the definition above to ‘P-bearing units’ (Clements and Ford 1979). We will
say that a bistring ( f. i, A) is proper with respect to a subset S of the tier alphabet
T underlying the string &, iff (f, 1, A) || Ps(h) is proper.



