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PREFACE

Mathematical and computational modeling has become a major driving force in sci-
entific discovery and innovation, covering an increasing range of diverse application
areas in the natural and social sciences, engineering, and the arts. Mathematical
models, methods, and algorithms have been ubiquitous in human activities from the
ancient times till now. The fundamental role they play in human knowledge, as well
as in our well-being, is indisputable, and it continues to grow in its importance.

Significant sources of some of the most urgent and challenging problems the
humanity faces today are coming not only from traditional areas of mathemat-
ics applications in natural and engineering sciences, but also from life, behavioral,
and social sciences. We are witnessing an unprecedented growth of model-based
approaches in practically every domain of human activities. This expands further
interdisciplinary horizons of mathematical and computational modeling, providing
new and strengthening existing links between different disciplines and human activi-
ties. Integrative, holistic approaches and systems—science methodologies are required
in an increasing number of areas of human endeavor. In its turn, such approaches and
methodologies require the development of new state-of-the-art mathematical models
and methods.

Given this wide spectrum of applications of mathematical and computational mod-
eling, we have selected five representative areas, grouped in this book into sections.
These sections contain 12 selective chapters, written by 25 experts in their respec-
tive fields. They open to the reader a broad range of methods and tools important in
many applications across different disciplines. The book provides details on state-
of-the-art achievements in the development of these methods and tools, as well as
their applications. Original results are presented on both fundamental theoretical and
applied developments, with many examples emphasizing interdisciplinary nature of
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xvi PREFACE

mathematical and computational modeling and universality of models in our better
understanding nature, society, and the man-made world.

Aimed at researchers in academia, practitioners, and graduate students, the book
promotes interdisciplinary collaborations required to meet the challenges at the inter-
face of different disciplines on the one hand and mathematical and computational
modeling on the other. It can serve as a reference on theory and applications of math-
ematical and computational modeling in diverse areas within the natural and social
sciences, engineering, and the arts.

I am thankful to many of my colleagues in North America, Europe, Asia, and
Australia whose encouragements were vital for the completion of this project. Special
thanks go to the referees of this volume. Their help and suggestions were invaluable.
Finally, I am very grateful to the John Wiley & Sons editorial team, and in particular,
Susanne Steitz-Filler and Sari Friedman for their highly professional support.

Waterloo, ON, Canada RODERICK MELNIK
August 2014-2015
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1

UNIVERSALITY OF MATHEMATICAL
MODELS IN UNDERSTANDING
NATURE, SOCIETY, AND MAN-MADE
WORLD

RODERICK MELNIK

The MS2Discovery Interdisciplinary Research Institute, M*NeT Laboratory and Department
of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada

1.1 HUMAN KNOWLEDGE, MODELS, AND ALGORITHMS

There are various statistical and mathematical models of the accumulation of human
knowledge. Taking one of them as a starting point, the Anderla model, we would
learn that the amount of human knowledge about 40 years ago was 128 times greater
than in the year A.D. 1. We also know that this has increased drastically over the
last four decades. However, most such models are economics-based and account for
technological developments only, while there is much more in human knowledge
to account for. Human knowledge has always been linked to models. Such models
cover a variety of fields of human endeavor, from the arts to agriculture, from the
description of natural phenomena to the development of new technologies and to
the attempts of better understanding societal issues. From the dawn of human civi-
lization, the development of these models, in one way or another, has always been
connected with the development of mathematics. These two processes, the develop-
ment of models representing the core of human knowledge and the development of
mathematics, have always gone hand in hand with each other. From our knowledge

Mathematical and Computational Modeling: With Applications in Natural and Social Sciences,
Engineering, and the Arts, First Edition. Roderick Melnik.
@© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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in particle physics and spin glasses [4, 6] to life sciences and neuron stars [1, 5, 16],
universality of mathematical models has to be seen from this perspective.

Of course, the history of mathematics goes back much deeper in the dawn of civ-
ilizations than A.p. 1 as mentioned earlier. We know, for example, that as early as
in the 6th-5th millennium B.C., people of the Ancient World, including predynas-
tic Sumerians and Egyptians, reflected their geometric-design-based models on their
artifacts. People at that time started obtaining insights into the phenomena observed in
nature by using quantitative representations, schemes, and figures. Geometry played a
fundamental role in the Ancient World. With civilization settlements and the develop-
ment of agriculture, the role of mathematics in general, and quantitative approaches in
particular, has substantially increased. From the early times of measurements of plots
of lands and of the creation of the lunar calendar, the Sumerians and Babylonians,
among others, were greatly contributing to the development of mathematics. We
know that from those times onward, mathematics has never been developed in iso-
lation from other disciplines. The cross-fertilization between mathematical sciences
and other disciplines is what produces one of the most valuable parts of human knowl-
edge. Indeed, mathematics has a universal language that allows other disciplines to
significantly advance their own fields of knowledge, hence contributing to human
knowledge as a whole. Among other disciplines, the architecture and the arts have
been playing an important role in this process from as far in our history as we can
see. Recall that the summation series was the origin of harmonic design. This tech-
nique was known in the Ancient Egypt at least since the construction of the Chephren
Pyramid of Giza in 2500 BCE (the earliest known is the Pyramid of Djoser, likely
constructed between 2630 BCE and 2611 BCE). The golden ratio and Fibonacci
sequence have deep roots in the arts, including music, as well as in the natural
sciences. Speaking of mathematics, H. Poincare once mentioned that “it is the unex-
pected bringing together of diverse parts of our science which brings progress™ [11].
However, this is largely true with respect to other sciences as well and, more gener-
ally, to all branches of human endeavor. Back to Poincare’s time, it was believed that
mathematics “confines itself at the same time to philosophy and to physics, and it
is for these two neighbors that we work™ [11]. Today, the quantitative analysis as an
essential tool in the mathematics arsenal, along with associated mathematical, statis-
tical, and computational models, advances knowledge in pretty much every domain
of human endeavor. The quantitative-analysis-based models are now rooted firmly
in the application areas that were only recently (by historical account) considered as
non-traditional for conventional mathematics. This includes, but not limited to, life
sciences and medicine, user-centered design and soft engineering, new branches of
arts, business and economics, social, behavioral, and political sciences.

Recognition of universality of mathematical models in understanding nature, soci-
ety, and man-made world is of ancient origin too. Already Pythagoras taught that in
its deepest sense the reality is mathematical in nature. The origin of quantification of
science goes back at least to the time of Pythagoras’ teaching that numbers provide a
key to the ultimate reality. The Pythagorean tradition is well reflected in the Galileo
statement that “the Book of Nature is written in the language of mathematics.” Today,
we are witnessing the areas of mathematics applications not only growing rapidly in
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more traditional natural and engineering sciences but also in social and behavioral
sciences as well. It should be noted that the term “universality” is also used in the
literature in different, more specific and narrow contexts. For example, in statistical
mechanics, universality is the observation that there are properties for a large class of
systems that are independent of the dynamical details of the system. A pure mathe-
matical definition of a universal property is usually given based on representations of
category theory. Another example is provided by computer science and computabil-
ity theory where the word “universal” is usually applied to a system which is Turing
complete. There is also a universality principle, a system property often modeled by
random matrices. These concepts are useful for corresponding mathematical or sta-
tistical models and are subject of many articles (see, e.g., [2-7, 14, 16] and references
therein). For example, the authors of Ref. [2] discuss universality classes for com-
plex networks with possible applications in social and biological dynamic systems.
A universal scaling limit for a class of Ising-type mathematical models is discussed in
Ref. [6]. The concept of universality of predictions is discussed in Ref. [14] within the
Bayesian framework. Computing universality is a subject of discussions in Ref. [3],
while universality in physical and life sciences are discussed in Refs. [7] and [5],
respectively. Given a brief historical account demonstrating the intrinsic presence of
models in human knowledge from the dawn of civilizations, “universality” here is
understood in a more general, Aristotle’s sense: “To say of what is, that it is not,
or of what is not, that it is, is false; while to say of what is, that it is, and of what
is not, that it is not, is true.” The underlying reason for this universality lies with
the fact that models are inherently linked to algorithms. From the ancient times till
now, human activities and practical applications have stimulated the development
of model-based algorithms. If we note that abstract areas of mathematics are also
based on models, it can be concluded that mathematical algorithms have been at the
heart of the development of mathematics itself. The word “algorithm” was derived
from Al-Khwarizmi (c. 780 — c. 850), a mathematician, astronomer and geographer,
whose name was given to him by the place of his birth (Khwarezm or Chorasmia).
The word indicated a technique with numerals. Such techniques were present in
human activities well before the ninth century, while specific algorithms, mainly stim-
ulated by geometric considerations at that time, were also known. Examples include
algorithms for approximating the area of a given circle (known to Babylonians and
Indians), an algorithm for calculating 7 by inscribing and then circumscribing a poly-
gon around a circle (known to Antiphon and Bryson already in the fifth century B.C.),
Euclid’s algorithm to determine the greatest common divisor of two integers, and
many others. Further development of the subject was closely interwoven with appli-
cations and other disciplines. It led to what in the second part of the twentieth century
was called by E. Wigner as “the unreasonable effectiveness of mathematics in the nat-
ural sciences.” In addition to traditional areas of natural sciences and engineering, the
twentieth century saw an ever increasing role of mathematical models in the life and
environmental sciences too. This development was based on earlier achievements.
Indeed, already during the 300 B.c., Aristotle studied the manner in which species
evolve to fit their environment. His works served as an important stepping stone in the
development of modern evolutionary theories, and his holistic views and teaching that
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revolutionized many branches of mathematics. Game theory and the developments
in control and cybernetics were influenced by the developments in social, behav-
ioral, and life sciences, while the growth of systems science has provided one of the
fundamentals for the development of systems biology where biological systems are
considered in a holistic way [1]. There is a growing understanding that the interac-
tions between different components of a biological system at different scales (e.g.,
from the molecular to the systemic level) are critical. Biological systems provide an
excellent example of coupled systems and multiscale dynamics. A multiscale spa-
tiotemporal character of most systems in nature, science, and engineering is intrinsic,
demonstrating complex interplay of its components, well elucidated in the literature
(e.g., [8,9,13] and references therein). In life sciences, the number of such examples
of multiscale coupled systems and associated problems is growing rapidly in many
different, albeit often interconnected, areas. Some examples are as follows:

* Complex biological networks, genomics, cellular systems biology, and systems
biological approaches in other areas, studies of various organs, their systems,
and functions;

* Brain dynamics, neuroscience and physiology, developmental biology, evolution
and evolutionary dynamics of biological games;

* Immunology problems, epidemiology and infectious diseases, drug develop-
ment, delivery, and resistance;

= Properties, dynamics, and interactions at various length and time scales in
bio-macromolecules, including DNA, RNA, proteins, self-assembly and spatio-
temporal pattern formation in biological systems, phase transitions, and so on.

Many mathematical and computational modeling tools are ubiquitous. They are
universal in a sense that they can be applied in many other areas of human endeavors.
Life sciences have a special place when we look into the future developments of math-
ematical and computational modeling. Indeed, compared to other areas, for example,
those where we study physical or engineering systems, our knowledge of biological
systems is quite limited. One of the reasons behind this is biological system com-
plexity, characterized by the fact that most biological systems require dealing with
multiscale interactions of their highly heterogeneous parts on different time scales.

In these cases in particular, the process of mathematical and computational mod-
eling becomes frequently a driving source for the development of hierarchies of
mathematical models. This helps determine the range of applicability of models.
What is especially important is that based on such hierarchies, mathematical mod-
els can assist in explaining the behavior of a system under different conditions and
the interaction of different system components. Clearly, different models for the same
system can involve a range of mathematical structures and can be formalized with var-
ious mathematical tools such as equation- or inequality-based models, graphs, and
logical and game theoretic models. We know by now that the class of the models
amenable to analytical treatments, while keeping assumptions realistic, is strikingly
small, when compared to the general class of mathematical models that are at the fore-
front of modern science and engineering [10]. As a result, most modern problems are
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treated numerically, in which case the development of efficient algorithms becomes
critical. As soon as such algorithms are implemented on a computer, we can run the
model multiple times under varying conditions, helping us to answer outstanding
questions quicker and more efficiently, providing us an option to improve the model
when necessary. Model-algorithm-implementation is a triad which is at the heart of
mathematical modeling and computational experiment. It is a pervasive, powerful,
theoretical, and practical tool, covering the entire landscape of mathematical applica-
tions [10]. This tool will play an increasingly fundamental role in the future as we can
carry out mathematical modeling and computational experiment even in those cases
when natural experiments are impossible. At the same time, given appropriate valida-
tion and verification procedures, we can provide reliable information more quickly
and with less expense compared to natural experiments. The two-way interactions
between new developments in information technology and mathematical modeling
and computational experiment are continuously increasing predictive capabilities and
research power of mathematical models.

Looking into the future from a modeling perspective, we should also point out
that such predictive capabilities and research power allow us to deal with com-
plex systems that have intrinsically interconnected (coupled) parts, interacting in
nontrivial dynamic manner. In addition to life, behavioral, and social sciences, men-
tioned earlier, such systems arise in many other areas, including, but not limited
to, fusion and energy problems, materials science and chemistry, high energy and
nuclear physics, cosmology and astrophysics, earth, climate, environmental, and
sustainability sciences.

In addition to the development of new models and efficient algorithms, the suc-
cess of predictive mathematical modeling in applications is dependent also on further
advances in information sciences and the development of statistical, probabilistic, and
uncertainty quantification methods. Uncertainty comes from many different sources,
among which we will mention parameters with uncertain values, uncertainty in the
model as a representation of the underlying phenomenon, process, or system, and
uncertainty in collecting/processing/measurements of data for model calibration. The
task of quantifying and mitigating these uncertainties in mathematical models leads
to the development of new statistical/stochastic methods, along with methods for
efficient integration of data and simulation.

Further to supporting theories and increasing our predictive capabilities, mathe-
matical and computational modeling can often suggest sharper natural experiments
and more focused observations, providing in their turn a check to the model accu-
racy. Natural experiments and results of observations may produce large amounts
of data sets that can intelligently be processed only with efficient mathematical
data mining algorithms, and powerful statistical and visualization tools [15]. The
application of these algorithms and tools requires a close collaboration between dif-
ferent disciplines. As a result, observations and experiments, theory and modeling
reinforce each other, leading together to our better understanding of phenomena,
processes, and systems we study, as well as to the necessity of even more close inter-
actions between mathematical modeling, computational analyses, and experimental
approaches.
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1.3 WHAT THIS BOOK IS ABOUT

The rest of the book consists of 4 main sections, containing 11 state-of-the-art chap-
ters on applications of mathematical and computational modeling in natural and
social sciences, engineering, and the arts. These chapters are based on selected invited
contributions from leading specialists from all over the world. Inevitably, given the
vast range of research areas within the field of mathematical and computational mod-
eling, the book such as this can present only selective topics. At the same time, these
selective topics open to the reader a broad spectrum of methods and tools important in
these applications, and ranging from infectious disease dynamics and epidemic mod-
eling to superconductivity and quantum mechanical challenges, from the models for
voting systems to the modeling of musical rhythms. The book provides both theoreti-
cal advances in these areas of applications, as well as some representative examples of
modern problems from these applications. Following this introductory section, each
remaining section with its chapters stands alone as an in-depth research or a survey
within a specific area of application of mathematical and computational modeling. We
highlight the main features of each such chapter within four main remaining sections
of this book.

* Advanced Mathematical and Computational Models in Physics and
Chemistry. This section consists of three chapters.

— This section is opened by a chapter written by I. M. Sigal who addresses the
macroscopic theory of superconductivity. Superconducting vortex states pro-
vide a rich area of research. In the 1950s A. Abrikosov solved the Ginzburg—
Landau (GL) equations in an applied magnetic field for certain values of GL
parameter (later A. Abrikosov received a Nobel Prize for this work). This led
to what is now known as the famous vortex solution, characterized by the fact
that the superconducting order parameter contains a periodic lattice of zeros. In
its turn, this led to studies of a new mixed Abrikosov vortex phase between the
Meissner state and the normal state. The area keeps generating new interesting
results in both theory and application. For example, unconventional vortex pat-
tern formations (e.g., vortex clustering) were recently discovered in multiband
superconductors (e.g., [17] and references therein). Such phenomena, which
are of both fundamental and practical significance, present a subject of many
experimental and theoretical works. Recently, it was shown that at low temper-
atures the vortices form an ordered Abrikosov lattice both in low and in high
fields. The vortices demonstrate distinctive modulated structures at interme-
diate fields depending on the effective intervortex attraction. These and other
discoveries generate an increasing interest to magnetic vortices and Abrikosov
lattices. Chapter by I. M. Sigal reminds us that the celebrated GL equations
form an integral part, namely the Abelian-Higgs component, of the standard
model of particle physics, having fundamental consequences for many areas
of physics, including those beyond the original designation area of the model.
Not only this chapter reviews earlier works on key solutions of the GL model,
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but it presents some interesting recent results. Vortex lattices, their existence,
stability, and dynamics are discussed, demonstrating also that automorphic
functions appear naturally in this context and play an important role.

— A prominent role in physics and chemistry is played by the Hartree-Fock
method which is based on an approximation allowing to determine the wave
function and the energy of a quantum many-body system in a stationary state.
More precisely, the Hartree-Fock theoretical framework is based on the varia-
tional molecular orbital theory, allowing to solve Schrédinger’s equation in
such a way that each electron spatial distribution is described by a single,
one-electron wave function, known as molecular orbital. While in the clas-
sical Hartree-Fock theory the motion of electrons is uncorrelated, correlated
wavefunction methods remedy this drawback. The second chapter in this sec-
tion is devoted to a multireference local correlation framework in quantum
chemistry, focusing on numerical challenges in the Cholesky decomposition
context. The starting point of the discussion, presented by D. K. Krisiloff, J. M.
Dieterich, F. Libisch, and E. A. Carter, is based on the fact that local correlation
methods developed for solving Schridinger’s equation for molecules have a
reduced computational cost compared to their canonical counterparts. Hence,
the authors point out that these methods can be used to model notably larger
chemical systems compared to the canonical algorithms. The authors analyze
in detail local algorithmic blocks of these methods.

— Variational methods are in the center of the last chapter of this section, written
by M. Levy and A. Gonis. The basic premises here lie with the Rayleigh-Ritz
variational principle which, in the context of quantum mechanical appli-
cations, reduces the problem of determining the ground-state energy of a
Hamiltonian system consisting of N interacting electrons to the minimiza-
tion of the energy functional. The authors then move to the main part of their
results, closely connected to a fundamental element of quantum mechanics.
In particular, they provide two alternative proofs of the generalization of the
variational theorem for Hamiltonians of N-electron systems to wavefunctions
of dimensions higher than N. They also discuss possible applications of their
main result.

* Mathematical and Statistical Models in Life Science Applications. This
section consists of two chapters.

— The first chapter deals with mathematical modeling of infectious disease
dynamics, control, and treatment, focusing on a model for the spread of tuber-
culosis (TB). TB is considered to be the second highest cause of infectious
disease-induced mortality after HIV/AIDS. Written by J. Arino and 1. A.
Soliman, this chapter provides a detailed account of a model that incorporates
three strains, namely (1) drug sensitive, (2) emerging multidrug resistant, and
(3) extensively drug-resistant. The authors provide an excellent introduction to
the subject area, followed by the model analysis. In studying the dynamics of
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the model, they characterize parameter regions where backward bifurcation
may occur. They demonstrate the global stability of the disease-free equi-
librium in regions with no backward bifurcation. In conclusion, the authors
discuss possible options for their model improvement and how mathematical
epidemiology contributes to our better understanding of disease transmission
processes and their control.

— Epidemiological modeling requires the development and application of an
integrated approach. The second chapter of this section focuses on these issues
with emphasis on antibiotic resistance. The chapter is written by E. Y. Klein,
J. Chelen, M. D. Makowsky, and P. E. Smaldino. They stress the importance of
integrating human behavior, social networks, and space into infectious disease
modeling. The field of antibiotic resistance is a prime example where this is
particularly critical. The authors point out that the annual economic cost to the
US health care system of antibiotic-resistant infections is estimated to be $21—
$34 billion, and given human health and economics reasons, they set a task of
better understanding how resistant bacterial pathogens evolve and persist in
human populations. They provide a selection of historical achievements and
limitations in mathematical modeling of infectious diseases. This is followed
by a discussion of the integrated approach, the authors advocate for, in address-
ing the multifaceted problem of designing innovative public health strategies
against bacterial pathogens. The interaction of epidemiological, evolutionary,
and behavioral factors, along with cross-disciplinary collaboration in devel-
oping new models and strategies, is becoming crucial for our success in this
important field.

* Mathematical Models and Analysis for Science and Engineering. This

section consists of four chapters.

— The first chapter is devoted to mathematical models in climate modeling,
with a major focus given to examples from climate atmosphere-ocean science
(CAOS). However, it covers potentially a much larger area of applications in
science and engineering. Indeed, as pointed out by the authors of this chapter,
D. Giannakis and A. J. Majda, large-scale data sets generated by dynamical
systems arise in a vast range of disciplines in science and engineering, for
example, fluid dynamics, materials science, astrophysics, earth sciences, to
name just a few. Therefore, the main emphasis of this chapter is on data-
driven methods for dynamical systems, aiming at quantifying predictability
and extracting spatiotemporal patterns. In the context of CAOS, we are deal-
ing with a system of time-dependent coupled nonlinear PDEs. The dynamics
of this system takes place in an infinite-dimensional phase space, where the
corresponding equations of fluid flow and thermodynamics are defined. In this
case, the observed data usually correspond to well-defined physical functions
of that phase space, for example, temperature, pressure, or circulation, mea-
sured over a set of spatial points. Data-driven methods appear to be critical in
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considered a case where there are no political parties, as well as a number of
other possible cases. Their system elects the set of candidates that maximizes
the satisfaction of all voters, where a candidate’s satisfaction score is the sum
of the satisfactions that her/his election would give to all voters, while a voter’s
satisfaction is the fraction of her/his approved candidates who are elected. The
authors demonstrated that SAV and AV may elect disjoint sets of candidates. In
this context, an example of a recent election of the Game Theory Society was
given. In conclusion, the authors explained why the most compelling applica-
tion of their SAV is to party-list systems. This observation has important social
implications because SAV is likely to lead to more informed voting and more
responsive government in parliamentary systems.

— The concluding chapter of this section and the book provides an example of
application of mathematical methods to arts, focusing on music, an art form
whose medium is sound and silence. Ancient civilizations, including Egyp-
tians, Chinese, Indian, Mesopotamians, and Greek, studied mathematics of
sound. The expression of musical scales in terms of the ratios of small integers
goes deep into the human history. Harmony arising out of numbers was sought
in all natural phenomena by the Ancient Greeks, starting from Pythagoras. The
word “harmonikos” was reserved in that time for those skilled in music. Nowa-
days, we use the word “harmonics” indicating waves with frequencies that are
integer multiples of one another. The applications of mathematical methods
from number theory, algebra, and geometry in music are well known, as well
as the incorporation of Fibonacci numbers and the golden ratio in musical com-
positions. The concluding chapter, written by G. T. Toussaint, is devoted to the
field of evolutionary musicology where one concerns with characterizing what
music is, determining its origin and cross-cultural universals. The author notes
that a phylogeny of music may sometimes be correctly constructed from rhyth-
mic features alone. Then, a phylogenetic analysis of a family of rhythms can
be carried out based on dissimilarity matrix that is calculated from all pairs
of rhythms in the family. How do we define musical rhythms? How do we
analyze them? Asking these questions, the author provides a comprehensive
account to what is known in this field, focusing on the mathematical analysis of
musical rhythms. The working horse of the discussion is the well-known clave
son thythm popular in many cultures around the world. The main methodol-
ogy developed for the analysis is based on geometric quantization. Different
types of models are considered and compared, highlighting most important
musicological properties.

1.4 CONCLUDING REMARKS

Mathematical and computational modeling, their methods, and tools are rapidly
becoming a major driving force in scientific discovery and innovation, providing
us with increasingly more reliable predictive capabilities in many areas of human
endeavor. In this section, we have presented a brief historical account and an overview
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of new trends in this field, demonstrating universality of mathematical models. We
highlighted a unique selection of topics, representing part of a vast spectrum of the
interface between mathematics and its applications, that are discussed in detail in
subsequent sections of the book. These topics cover mathematical and computational
models from natural and social sciences, engineering, and the arts.
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MAGNETIC VORTICES, ABRIKOSOV
LATTICES, AND AUTOMORPHIC
FUNCTIONS

ISRAEL MICHAEL SIGAL

Department of Mathematics, University of Toronto, Ontario, Canada

2.1 INTRODUCTION

In this chapter, we present some recent results on the Ginzburg—Landau equations of
superconductivity and review appropriate background. The Ginzburg-Landau equa-
tions describe the key mesoscopic and macroscopic properties of superconductors and
form the basis of the phenomenological theory of superconductivity. They are thought
of to be the result of coarse-graining the Bardeen—Cooper—Schrieffer microscopic
model, and were derived from that model by Gorkov [36]. (Recently, the rigorous
derivation in the case of nondynamic magnetic fields was achieved by Frank et al. [34].)

These equations appear also in particle physics, as the Abelean-Higgs model,
which is the simplest, and arguably most important, ingredient of the standard model
[93]. Geometrically, they are the simplest equations describing the interaction of the
electromagnetic field and a complex field, and can be thought of as the ‘Dirichlet’
problem for a connection of U(1)—principal bundle and a section of associated vector
bundle.

One of the most interesting mathematical and physical phenomena connected with
Ginzburg-Landau equations is the presence of vortices in their solutions. Roughly
speaking, a vortex is a spatially localized structure in the solution, characterized by

Mathematical and Computational Modeling: With Applications in Natural and Social Sciences,
Engineering, and the Arts, First Edition. Roderick Melnik.
@© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.



“9781118853986¢02” — 2015/3/10 — 19:34 — page 22 — #4

22 MAGNETIC VORTICES, ABRIKOSOV LATTICES, AND AUTOMORPHIC FUNCTIONS

One of the analytically interesting aspects of the Ginzburg-Landau theory is the
fact that, because of the gauge transformations, the symmetry group is infinite-
dimensional.

2.2.3 Quantization of flux

Consider first finite energy states (W, A) that have the regularity A7, . (R?) of solutions
to (2.1) (see Ref. [15] for the regularity results). Such states are classified by their
topological degree (the winding number of v at infinity):

deg(W) := degree i’ St 8],
|llj| |x|=R

for R > 1, st. [¥(x)| > > 0 for x : x| = R. (Since ¥ € Hi, (R?) and
[(1—|®|?)?dx < oo, one can show that such an R exists.) For more on the degree
on Sobolev spaces see Ref. [16]. For each such state, we have the quantization of
magnetic flux:

j B(x)dx = 2w deg(V) € 27Z,

R?

which follows from integration by parts (Stokes theorem) and the requirement that
[W(x)| = 1 and [Va¥(x)| — 0 as x| = oc.

For vortex lattices (see below) the energy is infinite, but the flux quantization still
holds for each lattice cell because of gauge-periodic boundary conditions (see below
for details).

2.2.4 Homogeneous solutions

The simplest solutions to the Ginzburg—Landau equations (2.1) are the trivial ones
corresponding to physically homogeneous states:

1. the perfect superconductor solution, (W, A;), where ¥, = 1 and A; = 0 (so the
magnetic field = 0),

2. the normal metal solution, (V,,A,), where W,, = 0 and A, corresponds to a
constant magnetic field.

(Of course, any gauge transformation of one of these solutions has the same
properties.)

We see that the perfect superconductor is a solution only when the magnetic field
B(x) is zero. On the other hand, there is a normal solution for any constant magnetic
field (to be thought of as determined by applied external magnetic field).
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2.2.5 Typeland Type II superconductors

Assuming magnetic fields are weak and consequently neglecting variations of [¥|?,
we see from the second equation in (2.1) that (in our units) the magnetic field varies
on the length scale 1, the penetration depth. Furthermore, if the magnetic field in the
first equation in (2.1) vanishes, then the order parameter varies on the length scale i,
the coherence length.

The two length scales 1/x and 1 coincide at x = 1/+/2. This critical value x =
1/ /2 separates superconductors into two classes with different properties:

K< 1/\/5: Type I superconductors—exhibit first-order (discontinuous, finite size
nucleation) phase transitions from the non-superconducting state to the supercon-
ducting state (essentially, all pure metals);

K>1/ V2 Type II superconductors—exhibit second-order (continuous) phase
transitions and the formation of vortex lattices (dirty metals and alloys).

An important quantifier of the difference between type I and type II superconduc-
tors is the surface tension. As was observed first in Ref. [35], the surface tension at the
interface between the normal and superconducting phases changes sign from positive
for < 1/v/2 to negative for & > 1//2. In detail, consider a flat interface. Assuming
the material is uniform in the directions orthogonal to the x,-axis, becoming normal as
x; — —o0 and superconducting as x; — oc. The interface between these phases is the
plane {x; = 0}. (By a translation and a rotation, we can always reduce to this case.)
Thus we look for a solution depending only on xy, (W(x),A(x)) = (¢(x ), a(xy)), with
the magnetic field in the direction of x3, the vector potential, a, in the direction of x»,
and with the boundary conditions, 7/(x;) — 0 and curla(x,) — i as x; — —oo and
¥(x)) — 1 and curla(x;) — 0, as x; — oc.

The boundary conditions at x; = —o¢ and x| = oo are consistent with the equa-
tions, if the applied field h satisfies h = x/v/2. However, in our units, i, := x//2
is the thermodynamic critical magnetic field, at which the Gibbs free energies of the
superconducting and normal phases are equal. (As the problem is one-dimensional,
the integration in the functional (2.2) or (2.3) should be taken in the variable x = x
only, with the energy being interpreted as the energy per unit area of the interface
{x; =0}.) Then, by the definition [35], the surface tension is the surplus of the Gibbs
free energy of such a solution compared to the normal (or superconducting) phase at
the applied magnetic field A,

o= J- {gh( (ﬁ'!a) —g;,{_(O,a(.)}dx, (2.7)

where g;(.a) = 5[|V.0 + "T(|ftp|2 — 1)? + (curla — h)?] (see (2.3)) and
curla, = h,. It is shown in Ref. [19] that o > 0, if k < 1/v/2 and oaursiens > O, if
k> 1/V2,witho =0,if k= 1/V2.
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2.2.6 Self-dual case k =1/+/2

In the self-dual case k = 1//2 of (2.1), vortices effectively become noninteract-
ing, and there is a rich multi-vortex solution family. Bogomolnyi [14] found the
topological energy lower bound

E(W,A)|,_yyyz 2 m | deg(¥)] (2.8)

and showed that this bound is saturated (and hence the Ginzburg—Landau equations
are solved) when certain first-order equations are satisfied.

2.2.7 Critical magnetic fields

In superconductivity, there are several critical magnetic fields, two of which (the first
and the second critical magnetic fields) are of special importance:
hey is the tield at which the first vortex enters the superconducting sample and

h> is the field at which a mixed state bifurcates from the normal one.

(The critical field A, is defined by the condition G(W,,A,) = G(¥() A()) where
(W,,A,) is the perfect superconductor solution, defined above, and (¥(1) A(1)) is the
l1-vortex solution, defined below, while A.,, by the condition that the linearization
of the 1.h.s. of (2.1) on the normal state (¥,,A,) has zero eigenvalue. The field A,
depends on Q and is 0 for Q = R?. Its asymptotics, as x — oo, was found rigorously
in [4, 8]. One can show that h = x2.)

For type I superconductors h.; > h.2 and for type Il superconductors /1. < h.. In
the former case, the vortex states have relatively large energies, that is, are metastable,
and therefore are of little importance.

For type Il superconductors, there are two important regimes to consider: (1) aver-
age magnetic fields per unit area, b, are less than but sufficiently close to h.,

0< k(.Z —b« h(.Z (2-9)

and (2) the external (applied) constant magnetic fields, /, are greater than but
sufficiently close to A,

0<h—hy <hg. (2.10)

The reason the first condition involves b, while the second h, is that the first condi-
tion comes from the Ginzburg—Landau equations (which do not involve h), while the
second from the Ginzburg—Landau Gibbs free energy.

One of the differences between the regimes (2.9) and (2.10) is that |llf|2 is small
in the first regime (the bifurcation problem) and large in the second one. If a
superconductor fills in the entire R?, then in the second regime, the average magnetic
field per unit area, b — 0, as h — h,y.
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2.2.8 Time-dependent equations

A number of dynamical versions of the Ginzburg—Landau equations appear in the
literature. Here we list the most commonly studied and physically relevant.

Superconductiviry. In the leading approximation, the evolution of a superconductor
is described by the gradient-flow-type equations for the Ginzburg—Landau energy

: _ 201 2
{yd,,pw_m\lurm (1—[W°)¥, (2.11)

o0, pA = —curl” curl A + Im (WY, V).

Here @ is the scalar (electric) potential, v a complex number, and o a two-tensor, and
Oy s the covariant time derivative dy ¢ (¥, A) = (9, +i®)V,9,A + V). The second
equation is Ampere’s law, curl B = J, with J +Jy + Js, where Jy = —o(0,A+V®)
(using Ohm’s law) is the normal current associated to the electrons not having formed
Cooper pairs, and Jg = Im(¥'V, W), the supercurrent,

These equations are called the time-dependent Ginzburg—Landau equations or the
Gorkov-Eliashberg—Schmidt equations proposed by Schmid [74] and Gorkov and
Eliashberg [37] (earlier versions are proposed by Bardeen and Stephen and Anderson,
Luttinger and Werthamer).

Particle physics. The time-dependent U(1) Higgs model is described by

Orp W = AU + k(1 — W))W

i - (2.12)
0,0,¢A = —curl” curl A + Im(WV, W),

coupled (covariant) wave equations describing the U(1)-gauge Higgs model of ele-
mentary particle physics (written here in the temporal gauge). Equations (2.12) are
sometimes also called the Maxwell-Higgs equations.

For the existence results for these two sets of equations see [17,25].

In what follows, we concentrate on the Gorkov—Eliashberg—Schmidt equations,
(2.11) and, for simplicity of notation, we use the gauge, in which the scalar potential,
&, vanishes, ¢ = 0.

2.3 VORTICES

2.3.1 n-vortex solutions

A model for a vortex is given, for each degree n € Z, by a “radially symmetric” (more
precisely equivariant) solution of the Ginzburg-Landau cquations (2.1) of the form

‘I'[") (j) :fn (r)einﬂ and A(ﬂ) (X) = aﬁ(y)V(na) . (2]3)

where (r.0) are the polar coordinates of x € R>. Note that deg(¥") = n. The
pair (T AM) is called the n-vortex (magnetic or Abrikosov in the case of super-
conductors and Nielsen—Olesen or Nambu string in the particle physics case). For
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superconductors, this is a mixed state with the normal phase residing at the point
where the vortex vanishes. The existence of such solutions of the Ginzburg—Landau
equations was already noticed by Abrikosov [1] and proven in Ref. [11] (For results
on symmetry breaking solutions with finite number of vortices and on pinning of
vortices see Refs. [61,89] and [75], respectively.).

Using self-duality, and consequent reduction to a first-order equations, Taubes [84,
85] has showed that for a given degree n, the family of solutions modulo gauge trans-
formations (moduli space) is 2|n|-dimensional, and the 2|n| parameters describe the
locations of the zeros of the scalar field, that is, the vortex centers. A review of this
theory can be found in the book of Jatfe-Taubes [47].

The n-vortex solution exhibits the length scales discussed above. Indeed, the fol-
lowing asymptotics for the field components of the n-vortex (2.13) were established
in Ref. [68] (see also Ref. [47]):

J(") (x) = H.B,,K| (r) [l 4 0(8_""")1_}'_%
BO(r) = nB,K (r) [1 = £ +0(%)] (2.14)
1= fa(r)| < cem™, [fy(r)] < e,

as r == |x| = oo, where J := Im(¥U(WV,, ") is the n-vortex supercurrent,
B™ = curl A" is the n-vortex magnetic field, 5, > 0 is a constant, and K| is the
modified Bessel function of order 1 of the second kind. The length scale of W is
1/m,. Since K;(r) behaves like ce~"//r for large r, we see that the length scale for
J™ and B™ is 1. (In fact, for x # 0, U\ vanishes as k — c.)

2.3.2 Stability

We say the n-vortex is (orbitally) stable, if for any initial data sufficiently close to
the n-vortex (which includes initial momentum field in the (2.12) case), the solution
remains, for all time, close to an element of the orbit of the n-vortex under the sym-
metry group. Here “close” can be taken to mean close in the “energy space” Sobolev
norm H'.

Similarly, for asymptotic stability, the solution converges, as f — o, to an element
of the symmetry orbit (i.e., to a spatially-translated, gauge-transformed n-vortex).

We spell out the definition of the latter. We define the manifold, obtained by action
of the symmetry group R> x H*(IR?,R) of the vortex on the vortex u") := (W) A",

M(n) — {T!ti.rarlsTF?aug‘:’.u(n) “he Rl, = HE(RQ,R)}‘

Let disty denote the H' —distance to this manifold. We say that the vortex u'™ is
asymptotically stable under H' —perturbations, if there is § > 0 s.t. for any initial
condition g satisfying dist i (g, M ™) < § there exists g(f) := (h(1),y(1)) € R? x
H?(R?,R), s.t. the solution u(¢) of the time-dependent equation ((2.11) or (2.12))
satisfies
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for a first-order operator, F,,, having 2|n| zero-modes that can be calculated semi-
explicitly. These modes can be thought of as arising from independent relative
motions of vortices, and the fact that they are energy-neutral relates to the vanishing
of the vortex interaction at k = 1,/2 [14,92]. Two of the modes arise from translational
symmetry, while careful analysis shows that as x moves above (respectively below)
1/2, the 2|n| — 2 “extra” modes become unstable (respectively stable) directions.

Technically, it is convenient, on the first step, to effectively remove the (infinite-
dimensional subspace of) gauge-symmetry zero modes, by modifying L") to make
it coercive in the gauge directions—this leaves only the two zero modes arising from
translational invariance remaining.

Let C be the operation of taking the complex conjugate. The results in (fiber) block
decomposition of L"), mentioned above is given in the following.

Theorem 2.2 [41] 1. Let H,, := [erwd]4 and define U : X — H, where H =
D.. cz Hm, so that on smooth compactly supported v it acts by the formula

2w

(U)n(r) = I j 3 (6)pule)v(x)d.

where X, (0) are characters of U(1), that is, all homomorphisms U(1) — U(1)
(explicitly we have X (0) = ™) and
J;n . Hm — ei(m+n)f}L3a(1 EB ei(mfn)f)LEad 6 —ie’l("'f] )I?LQ ':.'B iei(m«‘r 1 )n‘)L2

rad rad

acting in the obvious way. Then U extends uniqguely to a unitary operator.

2. Under U the linearized operator around the vortex, K;?, decomposes as

ULy = GBL(H) (2.18)

m

me&

where the operators Ll(f.'] act on Hy, as ng'L(n)Jm.

3. The operators K,(;{ ) have the following properties:

. 0 0 ¢
K — Rk RT where R = ( < 0= . (2.19)
0 0 c 0

Oess (K1) = [min(1, ), 00), (2.20)
for |n|=1and m>2, L — LE") > 0 with no zero-eigenvalue,  (2.21)
L >¢>0 forallk, (2.22)

Lgil) = 0 with non-degenerate zero-mode given by (2.17). (2.23)
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Since by (2.20) and (2.23), L'*"| ;. > > 0 and, by (2.22) and (2.23), L") >
¢’ > 0 for [m| > 2, this theorem implies (2.15).

2.4 VORTEX LATTICES

In this section, we describe briefly recent results on vortex lattice solutions, that is
solutions that display vortices arranged along vertices of a lattice in R2, Since their
discovery by Abrikosov in 1957, solutions have been studied in numerous experimen-
tal and theoretical works (of the more mathematical studies, we mention the articles
of Eilenberger [30] and Lasher [53]).

The rigorous investigation of Abrikosov solutions was carried out by Odeh [58],
soon after their discovery. Odeh has given a detailed sketch of the proof of the bifur-
cation of Abrikosov solutions at the second critical magnetic field. Further details
were provided by Barany, Golubitsky, and Tursky [9], using equivariant bifurcation
theory, and by Taka¢ [83], who obtained results on the zeros of the bifurcating solu-
tions. The proof of existence was completed by Tzneteas and Sigal [89] and extended
further by Tzaneteas and Sigal [90] beyond the cases covered in the works above.

Existence of Abrikosov solutions at low magnetic fields near the first critical
magnetic field was given in Ref. [76].

Moreover, Odeh has also given a detailed sketch of the proof, with details in Ref.
[29], of the existence of Abrikosov solutions using the variational minimization of
the Ginzburg-Landau energy functional reduced to a fundamental cell of the under-
lying lattice. However, this proof provides only very limited information about the
solutions.

Chapman [20] and Almag [6] gave a detailed analysis of extension of Abrikosov
solutions to higher magnetic fluxes per fundamental cells.

Moreover, important and fairly detailed results on asymptotic behavior of solu-
tions, for kK — oo and the applied magnetic fields, h, satisfying h < %log K—+const
(the London limit), were obtained by Aydi and Sandier [8] (see Ref. [71] for ref-
erences to earlier works). Further extensions to the Ginzburg—Landau equations for
anisotropic and high-temperature superconductors can be found in Refs. [4,5].

Among related results, a relation of the Ginzburg—Landau minimization problem,
for a fixed, finite domain and in the regime of the Ginzburg—Landau parameter x — oo
and external magnetic field, to the Abrikosov lattice variational problem was obtained
Ref. [3] (see also Ref. [7]). Dutour [28] (see also Ref. [29]) has found boundaries
between superconducting, normal, and mixed phases. In Ref. [7, 8], the Ginzburg—
Landau energy is connected to the thermodynamic limit of the Abrikosov energy.
The complete proof of the thermodynamic limit of the Abrikosov energy is given in
Ref. [33] and boundary effects on the Abrikosov energy are established in Ref. [32].
The connection between vortex lattice problems and the Ginzburg—Landau functional
is established in the large kappa limit in Ref. [72].

The proof that the triangular lattices minimize the Ginzburg-Landau energy
functional per the fundamental cell was obtained in [89]. The paper used original
Abrikosov ideas and the results of [2,56] on the Abrikosov “constant™.
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The stability of Abrikosov lattices is shown in Ref. [77] for gauge periodic pertur-
bations, that is, perturbations having the same translational lattice symmetry as the
solutions themselves, and in Ref. [78] for local, more precisely, H L perturbations.

Here we describe briefly the existence and stability results and the main ideas
entering into their proofs.

2.4.1 Abrikosov lattices

In 1957, A. Abrikosov [1] discovered a class of solutions, (¥, A), to (2.1), presently
known as Abrikosov lattice vortex states (or just Abrikosov lattices), whose physi-
cal characteristics, density of Cooper pairs, |¥|*, the magnetic field, curlA, and the
supercurrent, Jg = Im(‘i’VA ), are double-periodic w.r.t a lattice £. (This set of states
is invariant under the symmetries of the previous subsection.)

For Abrikosov states, for (¥, A), the magnetic flux, j‘g curlA, through a funda-
mental lattice cell, €2, is quantized,

1
— l curlA = deg W = n, (2.24)
2T
Q

for some integer n. Indeed, the periodicity of n, = |¥|? and J = Im(¥V,¥) implies
that Vi — A, where ¥ = |¥|e'#, is periodic, provided ¥ # 0 on d5). This, together
with Stokes’s theorem, Jﬂ curlA = §,, A = §,, Vi and the single-valuedness of W,
implies that In curlA = 27n for some integer n. Using the reflection symmetry of the
problem, one can easily check that we can always assume n > 0.

Equation (2.24) implies the relation between the average magnetic flux, b, per

lattice cell, b = 1//Q)| [, curlA, and the area, |2/, of a fundamental cell
2mn
b= —-. (2.25)
it

Finally, it is clear that the gauge, translation, and rotation symmetries of the
Ginzburg-Landau equations map lattice states to lattice states. In the case of the
gauge and translation symmetries, the lattice with respect to which the solution is
gauge-periodic does not change, whereas with the rotation symmetry, the lattice is
rotated as well. The magnetic flux per cell of solutions is also preserved under the
action of these symmetries.

2.4.2 Existence of Abrikosov lattices

We assume always that the coordinate origin is placed at one of the vertices of the
lattice £. Recall that we identify R? with C, via the map (x;, x2) — x; + ix;. We can
choose a basis in £ so that £ = r(Z+7Z), where 7 € C, Im7 > 0, and r > 0, with
bases giving the same lattice related by elements of the modular group SL(2,7Z) (see
Appendix 2.A for details). Hence, it suffices to consider 7 in the fundamental domain,
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FIGURE 2.1 Half of the fundamental domain IT"/SL(2,7Z).

11" /SL(2,Z), of SL(2,Z) acting on the Poincaré half-plane [T* := {7 € C :Im7 > 0}
(see Fig. 2.1).

Due to the quantization relation (2.25), the parameters 7, b, and n determine the
lattice £ up to a rotation and a translation. As the equations (2.1) are invariant under
rotations and translations, solutions corresponding to translated and rotated lattices
are related by symmetry transformations and therefore can be considered equivalent,
with equivalence classes determined by triples w = (7, b, n), specifying the underlying
lattice has shape 7, the average magnetic flux per lattice cell b, and the number n
of quanta of magnetic flux per lattice cell. With this in mind, we will say that an
Abrikosov lattice state (W, A) is of type w = (7,b,n), if it belongs to the equivalence
class determined by w = (7,b,n).

Let 3(7) be the Abrikosov “constant,” defined in (2.33) below. The following
critical value of the Ginzburg—Landau parameter « plays an important role in what
follows

Ke(T) 1= % (1 - ﬁ) (2.26)

Recall that the value of the second critical magnetic field at which the normal material
undergoes the transition to the superconducting state is that h.o = k2.

For the case n = 1 of one quantum of flux per unit cell, the following result
establishes the existence of nontrivial lattice solutions near the normal metal
solution:
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Theorem 2.3 [9,29,58,90] Fix a lattice shape T and let b satisfy
k2 —b| < K2[(262 = 1)B(T) +1] (2.27)
(uniformly in the parameters T and b) and
either k > k(7). K >bor k< Ke(T), K> <b. (2.28)

Then for w = (1,b,1)
* there exists a smooth Abrikosov lattice solution u,, = (V,,A,) of type w.

Remark. For x > 1/ /2 and the triangular and square lattices the theorem was
proven in Refs. [9,29,58,89], and in the case stated in Refs. [89,90].

Let £, be the lattice specified by a triple w = (7,b,n) and let €2, denote its ele-
mentary cell. Define the average energy, E(7) := ﬁ&gw (u,,), per lattice cell, of
the Abrikosov lattice solution, u,,, w = (7,5, 1), found in Theorem 2.3.

Theorem 2.4 [90] Let x > 1/\/5 and let b satisfy b < 2 and (2.27). Then for a
Jixed b,

* Ep(7) has the global minimum in T at the hexagonal (equilateral triangular)
lattice, T = &™/3,

(Due to a calculation error, Abrikosov concluded that the lattice that gives the
minimum energy is the square lattice. The error was corrected by Kleiner et al. [51],
who showed that it is in fact the triangular lattice that minimizes the energy.)

Now, we formulate the existence result for low magnetic fields, those near the first
critical magnetic field h.;: Let £, be a lattice specified by a triple w = (7,b,n) and
let 2., denote its elementary cell. We have the following.

Theorem 2.5 [76] Letk#1/ V2 and fix a lattice shape \ and n # 0. Then there is

by = bo(k) (~ (k —1/v/2)?) > 0 such that for b < by, there exists an odd solution
Abrikosov lattice solution n,, = (V,,,A,) of (2.1), s.1.

uy,(x) = u (x—a) +0(e™") on Q,+a, Ya € L, (2.29)

where u™ := (B, AM) is the n-vortex, p=b""/2, and ¢ > 0, in the sense of the
local Sobolev norm of any index.

In the next two subsections, we present a discussion of some key general notions.
After this, we outline the proofs of the results above.
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where g; satisfies (2.31). By (2.32), it can be taken to be
b
g(x) = ES‘ Ax+cy, (2.36)

where b is the average magnetic flux, b = 1/|Q [, curlA (satisfying (2.25) so that
bs A\t € 2wZ), and c¢; satisfies

Cspt — Cs— Cr — %bs ANt €2rnl. (2.37)

The linearized problem. We expect that as the average flux b decreases below
her = K2, avortex lattice solution emerges from the normal material solution (W, A,,),
where ¥, = 0 and A,, is a magnetic potential, with the constant magnetic field b.
Note that (0,,A,) = (0,A%) satisfies (2.35), if we take the gauge A® = (—b/2)Jx.
Linearizing (2.1) at (0,A”) leads to the linearized problem

(—Ap = K)o =0, (2.38)
with ¢(x) satisfying
dx+s)=eP(x), Vse L. (2.39)

(The second equation in (2.1) leads to curla = 0 which gives, modulo gauge trans-
formation, @ = 0.) We show that this problem has n linearly independent solutions,
provided b|(2| = 27n and b = K> = h,,.

Denote by L” the operator —A s, defined on the lattice cell 2 with the lattice
boundary conditions in (2.39), is self-adjoint, has a purely discrete spectrum, and
evidently satisfies L” > 0. We have the following well-known result

Proposition 2.1 The operator L is self-adjoint, with the purely discrete spectrum
given by the spectrum explicitly as

o(I) = {(2k+1)b:k=0,1,2,...,}, (2.40)

and each eigenvalue is of the same multiplicity.
If b|Q2| = 27, then this multiplicity is n and, in particular, we have

dime Null(LP — b) = n.

Proof: The self-adjointness is standard. Spectral information about L can be
obtained by introducing the complexified covariant derivatives (harmonic oscillator
annihilation and creation operators), ds» and 3, = —0u», with

_ 1 1
BA” = (va)] +f(va)2 = 8_\-[ +13\3 -+ bel +4- Efbrz (2.41)
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One can verify that these operators satisfy the following relations:

L. [Ops, 03] = 2curlA? = 2b;
2. —AAI’ —b= 5;;,(‘11.?».

As for the harmonic oscillator (see e.g., Ref. [42]), this gives the spectrum explicitly
(2.40). This proves the first part of the theorem.
For the second part, a simple calculation gives the following operator equation

B 2y = B o2 .
ei("""z_"l)ﬂ,-lare_5("“"3_"2) — 8.\'1 +!8_‘-2.

This immediately proves that ¥ € Nulldy if and only if £(x) = e inm -‘g’t’:{x)
satisfies d, £ +1i0,,£ = 0.

We identify R* with C, via the map (x},x;) — x| + ix,. We can choose a basis
in L sothat L =r(Z+7Z), where 7 € C, Im7 > 0, and r > 0. By the quantization

condition (2.25), r:= 4/ 1:21?:.5' Define z = %(x. +ix;) and

h

0(2) = et =g (). (242)

By the above, the function # is entire and, due to the periodicity conditions on ¢,
satisfies

O(z+1)=10(z),
0(z+7) = e e "h(z).

Hence @ is the theta function. By the first relation, 6 has the absolutely convergent
Fourier expansion

Bz)= Y ™ (2.44)

with the coefficients satisfying ¢y, = M7 27T 0 which means such functions are
determined by ¢y, ...,c,—; and therefore form an n-dimensional vector space. This
proves Proposition 2.1.

This also gives the form of the leading approximation (2.42)—(2.44) to the true
solution.

The nonlinear problem. Now let n = 1. Once the linearized map is well understood,
it is possible to construct solutions, u,,, w = (7, b, 1), of the Ginzburg-Landau equa-
tions for a given lattice shape parameter 7, and the average magnetic flux b near /.2,
via a Lyapunov—Schmidt reduction.
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Comments on the proof of Theorem 2.4 The relation between the Abrikosov func-
tion and the average energy, Ep(7) := W&!w (u,,), of this solution is given by the
following result (see Ref. [89]).

ﬁ, the minimizers, Ty, of T — Eu(T) are related
to the minimizer, 7., of B(7), as 7, — 7. = O(u'/?). In particular, 7, — 7. as b — K>,

Proposition 2.2 In the case k >

This result was already found (non-rigorously) by Abrikosov [1]. Thus the problem
of minimization of the energy per the lattice cell is reduced to finding the minima of
(3(7) as a function of the lattice shape parameter 7.

Using symmetries of 8(7), one can also show (see Ref. [78] and remark after
Theorem 2.8) that 3(7) has critical points at the points T = ¢™/? and 7 = ¢™"/%. How-
ever, to determine minimizers of 3(7) requires a rather delicate analysis, which gives
the following.

Theorem 2.6 [2,57]  The function B(7) has exactly two critical points, T = em/3
and T = e™/2_ The first is minimum, while the second is a maximum.

Hence the second part of Theorem 2.4 follows.

Comments on the proof of Theorem 2.5. The idea here is to reduce solving (2.1) for
(W, A) on the space R to solving it for (1/,a) on the fundamental cell £, satisfying
the boundary conditions

P(x+s) = e W(x),

alx+s) = a(x) +Vgs(x),

(v-Va)(x+s) = e'%:(%) (- Va)(x), (2.45)
curla(x+s) = curla(x),

x€Q/0,Qand s = w, [w;.

induced by the periodicity condition (2.35). Here d;£2/»Q2 = the left/bottom bound-
ary of , {w;,w>} is a basis in £ and v(x) is the normal to the boundary at x.

To this end we show that given a continuously differentiable function (v,a) on
the fundamental cell €2, satisfying the boundary conditions (2.45), with g, satisfying
(2.31), we can lift it to a continuous and continuously differentiable function (U, A)
on the space R?, satisfying the gauge-periodicity conditions (2.35). Indeed, we define
forany o € L,

U(x) =p(x—a)e®™ A(x) =a(x—a)+ VP, (x), xe Q+a, (2.46)

where @, (x) is a real, possibly multi-valued, function to be determined. (Of course,
we can add to it any £—periodic function.) We define

D, (x) i =ga(x—0a), forxe Q+a. (2.47)
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Lemma. Assume functions (1, a) on ) are twice differentiable, up to the bound-
ary, and obey the boundary conditions (2.45) and the Ginzburg-Landau equations
(2.1). Then the functions (¥, A), constructed in (2.46) and (2.47), are smooth
in R? and satisfy the periodicity conditions (2.35) and the Ginzburg—Landau
equations (2.1).

Proof: If (1),a) satisfies the Ginzburg-Landau equations (2.1) in (), then U =
(W, A), constructed in (2.46) and (2.47), has the following properties

(1) (W, A) is twice differentiable and satisfies (2.1) in R? /(U,c £ S,09), where S, :
X— X+

(2) (W, A) is continuous with continuous derivatives (V4 ¥ and curlA) in R? and
satisfies the gauge-periodicity conditions (2.35) in R2.

Indeed, the periodicity condition (2.35) applied to the cells 2+« — w; and 2 4« and
the continuity condition on the common boundary of the cells 2+« —w; and Q2+«
imply that ®, (x) should satisfy the following two conditions:

B, (x) =P, (x—w;) + g, (x—w;), mod 27, x € Q+av, (2.48)
D, (x) =P, . (x)+gu(x—a), mod 27, x € AN +av, (2.49)

where i = 1,2, and, recall, {w,w>} is a basis in £ and 9,£2/0x(1 is the left/bottom
boundary of (2.

To show that (2.47) satisfies the conditions (2.48) and (2.49), we note that, due
to (2.31), we have g,(x — @) = go—w, (x — ) + g, (x —w;), mod 27, x € 1+ a,
and g, (x — ) = ga—u, (x —a +w;) + g, (x — a), mod 27, x € §;Q+ «, which are
equivalent to (2.48) and (2.49), with (2.47).

The second pair of conditions in (2.45) implies that V 4 W and curl A are continuous
across the cell boundaries.

By (1) and (2), the derivatives A, ¥ and curl® A are continuous, up to the boundary,
in S,09), for every ¢t € L. By (2.1), they are equal in R?/(U,c,S,09) to functions
continuous in R? satisfying there the periodicity condition (2.35). Hence, they are
also continuous and satisfy the periodicity condition (2.35) in R?, By iteration of the
above argument (i.e., elliptic regularity), ¥, A are smooth functions obeying (2.35)
and (2.1).

Now, we use the n—vortex (‘I'("),A(”)), placed in the center of the fundamental
cell €2, to construct an approximate solution (1)*PP* a®PP') to (2.1) in €2, satisfying
(2.45), and use it and the Lyapunov—Schmidt splitting technique to show that there is
a true solution (v,a) nearby sharing the same properties. After that, we use Lemma
2.4.5 above to lift (1/,a) to a solution (¥, A) on the space R?, satisfying the gauge-

periodicity conditions (2.35).



