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Preface: Interdisciplinary
Approaches to Climate Change
Research

Climate change is now widely recognized as the major environmental problem
facing human societies. Its impacts and costs will be large, serious, and unevenly
spread. Owing to the observed increases in temperature, decreases in snow and
ice extent, and increases in sea level, global warming is unequivocal.

The main factor causing climate change and global warming is the increase
of global carbon dioxide emissions. The Fourth Assessment Report (2007) of the
Intergovernmental Panel on Climate Change of the United Nations indicated that
most of the observed warming over the last 50 years is likely to have been due to
the increasing concentrations of greenhouse gases produced by human activities
such as deforestation and burning fossil fuels. This conclusion was made even
stronger by the Fifth Assessment Report released in 2013. The concentration of
carbon dioxide in the atmosphere increased from a preindustrial value of about
280 to 391 ppm in 2011. Continued increases in carbon dioxide emissions will
cause further warming and induce many changes in the global climate system. It
is likely that global warming will exceed 2 °C this century unless global carbon
dioxide emissions are cut by at least 50% of the 1990 levels by 2050, and by
much more thereafter.

In current climate change research, scientists exploit various complicated
techniques in order to squeeze useful information out of the available observa-
tion data, unravel the causes of climate change, identify significant changes in the
climate, interpret the properties of the associated variability, deal with extreme
climate events, and make predictions about the future climate.

This book covers the comprehensive range of mathematical and physical
techniques used widely in climate change research. The main topics include
signal processing, time-frequency analysis, data analysis, statistical diagnosis,
power spectra, autoregressive moving average models, data assimilation, at-
mospheric dynamics, oceanic dynamics, glaciers and sea level rise, and Earth
system modeling. This book is self-contained, assuming only a basic knowledge
of calculus. Much of the latest research is also included. Various theories and
algorithms in this book are used widely not only in climate change research,
but also in geoscience and applied science. This book will be of great value to
researchers and advanced students in a wide range of disciplines. Researchers

xi



xii  Preface: Interdisciplinary Approaches to Climate Change Research

in and students of meteorology, climatology, oceanography, and environmental
science can grasp advanced mathematical and physical methods used in climate
change research and geoscience, and researchers in and students of applied
mathematics, statistics, physics, computer science, and electrical engineering
can learn how to use advanced mathematical and physical methods in climate
change research, geoscience, and applied science.

Please find the companion website at http://booksite.elsevier.com/9780128000663



Chapter 1

Fourier Analysis

Motivated by the study of heat diffusion, Joseph Fourier claimed that any
periodic signals can be represented as a series of harmonically related sinusoids.
Fourier’s idea has a profound impact in geoscience. It took one and a half
centuries to complete the theory of Fourier analysis. The richness of the theory
makes it suitable for a wide range of applications such as climatic time series
analysis, numerical atmospheric and ocean modeling, and climatic data mining.

1.1 FOURIER SERIES AND FOURIER TRANSFORM

Assume that a system of functions {g, (f)},ez, inaclosed interval [a, b] satisfies
J2 len( 2 dr < 00, 1f

b
/ en(p,,(Hdt = { ? (n# m),

(n=m),

and there does not exist a nonzero function f such that

b b
/ O dr < oo, f fOp,(Ndt=0 (neZy),

then this system is said to be an orthonormal basis in the interval [a, b].
For example, the trigonometric system {\/%, ﬁ cos(nt), JL; sin(nd)}pez..
and the exponential system {ﬁem’}ngz are both orthonormal bases in [—m, 7].
Let (1) be a periodic signal with period 2 and be integrable over [—m, 7],
write f € L. In terms of the above orthogonal basis, let ag(f) = %ffﬂf(t) dt
and
T

! f(Hcos(nt)ydt (n € Zy),
g

—IT

an(f)

b (f) ! / i f(Osin(nndr (ne Zy).
T —n

Then ao(f), a,(f), b, (f)(n € Z4) are said to be Fourier coefficients of f. The

series

ao(f)
2

+ ) (an(f) cos(nt) + by (f) sin(nt))
|

Mathematical and Physical Fundamentals of Climate Change
@© 2015 Elsevier Inc. All rights reserved. 1



2 Mathematical and Physical Fundamentals of Climate Change

is said to be the Fourier series of f. The sum

O(f)

Su(fif) := + Z(ak(f) cos(kt) + by (f) sin(ktf))

is said to be the partial sum of the Fourier series of f. It can be rewritten in the
form

Su(fi0) = Y cx(e,

—n

where
e (f) = 1 ] i fine ®dr (ke 7Z)
27 J_,

are also called the Fourier coefficients of f.
It is clear that these Fourier coefficients satisfy

ao(f) = 2C(](f)> ay(f) = C—n(f) + cu(f), bn(f) =i(c_n(f) — C'n(f))-

Letf € Ly,. If f is a real signal, then its Fourier coefficients a, (f) and b, (f)
must be real. The identity

a,(f) cos(nt) + b, (f) sin(nt) = Ay (f) sin(nt 4 0,(f))

shows that the general term in the Fourier series of f is a sine wave with circle
frequency n, amplitude A,, and initial phase 6,. Therefore, the Fourier series of
a real periodic signal is composed of sine waves with different frequencies and
different phases.

Fourier coefficients have the following well-known properties.

Property. Letf, g € Ly, and «, § be complex numbers.

(i) (Linearit)’) cnlaf + Bg) = acy(f) + Bea(g).

(ii) (Translation). Let F(1) = f(t+ @). Then ¢, (F) = el Y en(f).

(iii) (Integration). Let F(#) = f“ (w)du. If f_” (Hdr= 0, then c,(F) =
all) (n £ ).

(iv) (Derivative). If f(f) is continuously differentiable, then ¢, (f") = inc,(f)
(n=£0).

(v) (Convolution). Let the convolution (f * g)(f) = ffn f(t — x)g(x) dx. Then
cn(f x g) = 2men(fealg).

Proof. Here we prove only (v). It is clear that f % g € Ly, and
1 T ) 1 T T ‘
afxg)=-— [ (Frg@e™dt=— ( ft—ug(u) du) e " dr.
27 J_, 27 J_. \J_,

Interchanging the order of integrals, we get

m

cn(f % g) = %[_ ( _rr f— u)c_i"’dr) g(u) du.
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Let v =  — u. Since f(v)e """ is a periodic function with period 27, the integral
in brackets is

b ) . T .
f(f o H)B_”” dt = e—muf f(v)e—mr dv

-7 —T—=u

= e_i””[ Fw)e ™™ dv = 2me, (Fe ™™,
-

Therefore,

T

cn(f ® g) = en(f) gwe ™™ du = 2me,(fea(g).

Throughout this book, the notation f € L(IR) means that f is integrable over
R and the notation f € L[a, b] means that f(7) is integrable over a closed interval
[a, b], and the integral [ = ffooo O

Riemann-Lebesgue Lemma. If f € L(R), then fRf(r)e_j‘“’ df— 0
as || — oo. Especially,

(i) iff € Lla,b), then fabf(t)e_i“"'dt — 0(|w| = o0);
(ii) iff € Lox, thenc,(f) — 0(ln| — o0) and a,(f) — 0, b, (f) — 0(n — o).

The Riemann-Lebesgue lemma (ii) states that Fourier coefficients of f € Lan
tend to zero as n — oQ.

Proof. If f is a simple step function and
c, a<t=b,
0, otherwise,

.f(r)—l

where c is a constant, then

b
/ f(ne @ dr f ce el 4y
R a

and so fRf(r)c_i“” df - 0(Jw| — o0). Similarly, it is easy to prove that for any
step function s(f),

= | (e — i) <2 \g\ (@ # 0),

1w

fs(t)e_i"”dté 0 (lw| — 00).
R

If f is integrable over IR, then, for ¢ > 0, there exists a step function s(¢) such
that

f IF (1) — s(B)] df < e.
R

Since s(¢) is a step function, for the above €, there exists an N such that

f s(he " dr
R

<e¢ (Jw| > N).
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From this and |e ™| < 1, it follows that

] F(ne ' dr
R

i.e.,fRf(t)e_i“” dt — 0(lo| — o).
Especially, if f € L[a, b], take

< 2¢ (Jw| = N),

< f f(t) — s(p)|dr + f s(ne™ dr
R 154

F(H =
0, otherwise.

Hf(r). a<t<b,

Then F € L(R), and so [, F(f)e " df — 0(|w| — o0). From

b
/ F(he ' dr = f f(te ' dr,
R a

it follows that fabf(t)e_i“” dt — 0(lw| — o).

Take a=-m, b=mn, and w=n Then [ f(He™™dt— 0 as
|n| — oo, i.e.,

cn(f) = 0 (In] — o0).
Combining this with a,(f) = c—,(f) + c,(f) and b, (f) = i(c—n(f) — cn (),
we get
an(f) = 0, by(f) = 0 (n— o0).
O
The partial sums of Fourier series can be written in an integral form as

follows.
By the definition of Fourier coefficients,

n

Su(fit) = ch(f)c”‘r = Z (%f”f(u)c_ik“ du.) ekt

—n —n
= fﬂ flw) (L ieik“_”)) du.
- 2 —
Letv=1t— u. Then
w

Sp(finy= | ft—v)Dy(v)dv, (1.1)
where D, (v) = 5= 3" e and is called the Dirichlet kernel.
The Dirichlet kernel possesses the following properties:

(i) D,(—v) = D,(v), i.e., the Dirichlet kernel is an even function.
(i) Dy (v + 27) = Dy(v), i.e., the Dirichlet kernel is a periodic function with
period 2m.
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sin(r+):
(iii) D, (v) = ST This is because
TSy

1 R e—inv _ Gi(nt1)v sin (n + %) v
D,(v) = — ) = — = —
2 — 2r(1 —e'v) 2 sin 5

(iv) ffﬂ D, (v) dv = 1. This is because

. . " . & x "
j;nDn(U)dU:'/;ﬂ E;ell dU_Eg([Helldv)—l.

We will give the Jordan criterion for Fourier series. Its proof needs the
following proposition.
Proposition 1.1. For any real numbers a and b, the following inequality

holds:
b sinu
f du| <
a U

Proof. When | < a < b, by the second mean-value theorem for integrals,
there exists a £(a < £ < b) such that
§
/ sinu du
a

bsinu
du
a U

When 0 < a < b < 1, with use of the inequality | sin u| < |u], it follows that

fbsinu. /‘b
du| <

a u a

Whenl0<a<1<bh,

b sinu sin u b sinu
du| < du
a u a

sl js 4 even function, it can easily prove that for all cases of real

b sinu
——du
a u

If a signal is the difference of two monotone increasing signals in an interval,
then this signal is called a signal of bounded variation in this interval. Almost
all geophysical signals are signals of bounded variation.

Jordan Criterion. Suppose that a signalf € Lo is of bounded variation in
(t—n,t4+n),n > 0. Then the partial sums of the Fourier series of f

< 2.

a

sin u

du < 1.

u

< 3.

Noticing that 2+
numbers a and b

<6.

O
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Sa(fst) — %(}"(Hr 0)+f(t—0) (n— 00) atr

Proof. The assumption that f(f) is of bounded variation in (t — n,t4+ 1)
shows that f(r + 0) and f(fr — Q) exist. By (1.1) and the properties of Dirichlet
kernel, it follows that

d 1
f [f(t— W = S0+ fa 0))}

-7

1
Salf30) — E(f(t +0) +f(r-0))

1 sin (n + %) v
Dp(v)dv = — / Wr(v)—v dv,
T Jo 2sin 3

where ¥, (v) = f(t + v) + f(t — v) — f(t+ 0) — f(t — 0). It is clear that

sin (n+ %) v

1 v 1 1
2sin = sin(nv) + (5 coth 7~ ;) sin(nv) + 3 cos(nv).

Therefore,

1 1 7 1
Salfs ) — S(FE+0) +£(2-0)) = ;]0 Yi(v) = sin(nv) dv

1 [= 1 v 1\

+— Y (v) | = coth — — — ] sin(nv) dv
7 Jo 2 2 v
1 [= 1

+— Y (v) = cos(nv) dv. (1.2)
T Jo 2

Note that ¥4 € L[5, 7]. Here  will be determined, ;(v) ($coth § — 1) €
L[0, ], and ¥,(v) € L[0, 7]. By Riemann-Lebesgue Lemma, it follows that

fﬂ Wrsv) sin(nv)dv - 0 (n — 00),
s

fn Y (v) (l coth v_ l) sin(nv)dv — 0 (n — o0),
0 2 2 v

fﬂ Yr(v)cos(nv)dv — 0 (n — ©0).
0

Combining this with (1.2), we get

3
Sa(fst) — %(f(! +0)+fr—0) — nl[ 1/;,(1))% sin(nv)dv — 0 (n — o0),
’ (1.3)
where i (v) = f(t +v) +f(t — v) — f(t + 0) — f(t — O).
Since v;(v) is of bounded variation in (—n,n) and ¥,(0 + 0) = 0, there

exist two monotone increasing functions A1 (v) and h;(v) satisfying A1 (0 4+ 0) =
h7(0 + 0) = 0 such that
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Y(v) = h(v) — ha(v).

Since 11 (0 4+ 0) = h2(0 + 0) = 0, forany given € > 0, thereisad(0 < § < )
such that

0=mw)<e, 0= =<e (0<v=d).
For the fixed §, by (1.3), there exists an N such that

sm(nv)

1 1
5(f(f+0)+f(170))7f/ hi(v)
T Jo

1 e sin(nv)
+ */ ha(v)
T Jo v

Sa(fs0) —

dv| <e (n>N),

and so

19 sin(nv)
< |— hi(v) dv
m 0 v

1 9 sin(nv)
+ = m dv|+¢ (n=N).
T Jo v

1
Sa(f ) — E(f'(er 0y + f(r—

However, using the second mean-value theorem, there exist £;(0 < & < é) such
that

1 [é sin(nv) 1 4 in(nv) .
— hi(v) dv = —hi(6) dv (i=1,2),
7 Jo v T G v

and by Proposition 1.1,

5 .
lf hi(v) sin(nv) dv| =
0

T v T v

5 .
lh,-(s)f sin () dv‘

]

8 gin v 6e
[ —dv| < — (i=1,2).
ng, b

v
12
<(+|)€ (n=N),
b3

ie., S(f[)~>2(f(l+0)+f([* ))(n — o0) at t. O

€
< —

T

i

Therefore,

1
Sa(fsn) — E(f(t+0) +fr—

In general, let f(1) € L[~ %, 7] be a periodic function with period T. Then
its Fourier series is

[s 0]
2nmt 2nmt
aozm +le (an(f)cos%—&-bn(f) sin ": )

where the Fourier coefficients are
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2 T/2
ao(f) = = f@dr,
T 12
2 12 2nmt
an(f) = = f(0) cos dt (neZy),
T/ 12

and

2 rIs2 . 2nmt
b,,(f):? T/Zf(t)sm T dt (neZy).

An orthogonal basis and an orthogonal series on [—1, 1] used often are stated as
follows.

Denote Legendre polynomials by X, (1)(n =0, 1,...):
1 d*A—1)"
Xn(t)= Z”HTT (H=0,1,...).

Especially, Xo(t) = 1, X1() = t,and X2 (1) = 3 — 1.
By use of Leibnitz’s formula, the Legendre polynomials are

1 arr+ " d e+ nn
X, (0 = ﬁ|(z— D= Gl = )
+---+Cﬁn!(r+1)"},
where C§ = s Let 1= land ¢ = —1. Then

X, (=1, X,(=D)=(=D" (n=0,1,2,...).

Legendre polynomials possess the property:

! 0, ] ,
f X (T)Xm(f)df = l 2 § # "
—1

prEa g n=m.

So Legendre polynomials conform to an orthogonal basis on the interval [—1, 1].
In terms of this orthogonal basis, any signal f of finite energy on [—1, 1] can be
expanded into a Legendre series 280 1,X, (1), where

2n+1
2
The coefficients /,, are called Legendre coefficients.

Now we turn to introduce the concept of the Fourier transform.
Suppose that f € L(R). The integral

1
Iy = f f([)Xn(t) de.
-1

flw) = f fe At (0 € R)
R
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is called the Fourier transform of f. Suppose that? € L(R). The integral

i ] f@e™dw (teR)
2}1’ R

is called the inverse Fourier transform. Suppose that f € L(R) and f € L(R). It
can be proved easily that

1 f Fl@)e dw = £(1).
2w R

Theorem 1.1. Letf € L(R). Then

@) im0 f(@) =0,
(i) [F@) < [ FOlde=:11 I,

(iii) f(w) is continuous uniformly on R.

Proof. The first conclusion is just the Riemann-Lebesgue lemma. It follows
from the definition that

Flw)| = ‘ f fhe i dr| < f r@lde=| £ I .
R R

Since
Flo+m —F) < j{; POl — 114,

with use of the dominated convergence theorem, it follows that for any w € R,
lim [f(w + h) — f(w)| < f 126] (lim le 1 1|) dr =0,
h—0 E h—0

i.e.,f(w) is continuous uniformly on R. O

Fourier transforms have the following properties.
Property. Letf,g € L(R). Then

(i) (Linearity). (af + Bg)" (w) = a?(w) + Bg(w), where o, 8 be constants.
(i) (Dilation). (Dyf)" () = ﬁf(%) (a # 0), where Dyf = f(at) is the dila-
tion operator.
(iii) (Translation). (T, f)" (w) = }"\(a))efi“"’, where T,f = f(¢t — @) is the trans-
lation operator. R
(iv) (Modulation and conjugate). (f(t)ci”")/\ (w) = f(w — a),f(a)) = f(—m).
(v) (Symmetry). Iff € L(R), then f(1) = 21f(—1).
(vi) (Time derivative). If 7 € L(R)(j = 1,...,n), then f) (w) = (iw)"f(w).
(vii) (Convolution in time). Let the convolution (f % g)(t) = _[]R
f(t— u)g(u) du. Then

(f * 8 (@) =f(o) - Z(w),



10 Mathematical and Physical Fundamentals of Climate Change

i.e., the Fourier transform of the convolution of two signals equals the

product of their Fourier transforms.

Proof. These seven properties are derived easily by the definition. We prove

only (ii), (iii), and (vii).
The Fourier transform of D, (f) is

(qu)A(w)=]Rf(m)e‘i‘“’ dr.

If @ > 0, then |a| = a and

ff(ar)e_‘“” dr—[f(u)e_‘( i _ L}‘(‘ﬁ).
a lal” VNa

If a < 0, then |a| = —a and
) ooy du | 1~
jf(ﬂf)e—lwi dr = 7ff(u)e_‘(a)”_ — *—f(—) — 7 (_)
R R a a a ‘a| a
We get (ii).

The Fourier transform of 7,f is

(Tuf) (@) = fR £t — e dr,

Letu =t — «. Then

(Ta‘f)/\(w) — .[D{f(u)e—iw(tl+ﬁ¥) d” — e—iwa -[[;f(u)e—iwu dlrf :?(w)e—iwa.

We get (iii).
By the definition of the Fourier transtorm,

(f *8)" (@) = f (f % g)(De "™ dr = [ (f F(t—u)g(u) du) e i@ gy,
R R \JR

Interchanging the order of integrals, and then letting v = ¢ — u, we get

f (/ f(t— e dr) g(u) du

R R

f (/ Flu)e ivtue dv) g(u) du
R R

ff(v)efi”‘” dv - f ,g)(mr.)o:-:fi“"j du :f(m) g(w).
I3 R

(f * 9" (w)

So we get (vii).

O

The notation f € L?(IR) means that f is a signal of finite energy on R, i.e.,
[ [f(®|? dt < oo. The definition of the Fourier transform of f € L*(R) is based

on the Schwartz space.
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A space consists of the signals f satisfying the following two conditions:

(i) f is infinite-time differentiable on R;
(ii) for any non-negative integers p, g,

9% - 0 (Jf) = 0).

This space is called the Schwartz space. Denote it by f € S.

From the definition of the Schwartz space, it follows that if f € §, then
f € L(R) and f € L*(R). It can be proved easily that if f € S, thenf €S.

On the basis of the Schwartz space, the Fourier transform of f € 12 (R) is
defined as follows.

Definition 1.1. Let f e ? (R). Take arbitrarily f; () € S such that f;(¥) —
S(0)(L*). The Timit of {fn(a)) }in L?(IR) is said to be the Fourier transform of £ (1),
denoted byf(cu) i.e. f,l (w) — f(w)(Lz)

Remark. f,(f) — f(t)(L?) means that [ (f,(t) — f(1)* dt — 0(n — o<).

Similarly, on the basis of Definition 1.1, Fourier transforms for L2 (R) have
the following properties.

Property. Letf,g € L*(R) and o, 8 be constants. Then

(i) (Linearity). (af + Bg)"(w) = aff(w) + Bg(w).
(ii) (Dilation). (D)™ (w) = ‘a‘f(’”) where D,f = f(af) and a # 0 is a con-
stant.
(iii) (Translation). (T,/)" f(a))e_“”“ where T,f = f(1 — ).
(iv) (Modulation). (f(t)e'o”) (w) = f(a) — 05)

(v) f"(m) lm)f(w) f(t) = 27f(—=1), and f(w) = ?(—m).

A linear continuous functional F, which is defined as a linear map from
the Schwartz space to the real axis, is called a generalized distribution on the
Schwartz space. Denote it by F € §’. For any g € S, denote F(g) by (F, g). For
each f € L*(R), we can define a linear continuous functional on the Schwartz
space as follows:

(f.g) = ff(r)g(t)dt forany g € S,
R

which implies that L>(R) C §'.
The operation rules for generalized distributions on the Schwartz space are
as follows:

(i) (Limit). LetF, € 8'(n=1,2,...)and F € §". Forany g € §, define F, —
F(S)Y(n — oo) as

(Fu,8) — (F,g8).
(ii) (Multiplier). Let F € S" and o be a constant. For any g € S, define oF as
(aF.g) = (F,ag).
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(iii) (Derivative). Let F € §’. For any g € S, define the derivative I’ € § as
(F'.g) = —(F.g).

(iv) (Dilation). Let F € §’. Forany g € S, define D,F = F(ar) as

(DJF.g) = (F, %g (%))

where a # 0 is a constant.
(v) (Translation). Let F € §'. For any g € §, define T,F = F(t — a) as

(ToF,g) = (F,g(t+ a)),

where a is a constant.
(vi) (Antiderivative). Let F € §'. For any g € §, define the antiderivative
F~1as

(F'.g) = —(F,[ ¢g(u)du>,

—00

where @, (u) = g(u) — %c““z I]R g(r) dr.

Definition 1.2. Let F € §'.

(i) The Fourier series of I is defined as Z” C”ei'”, where the Fourier coeffi-
cients are

1 . .
Chp=—— {TZJT (Fe_mr)_l - (Fe_lm)_l} »
2m

where _’I'zﬂ is the translation operator and (Fe~"y~1 ig the antiderivative
of Fe ",
(ii) The Fourier transform of F is defined as (F, g) = (F,2) forany g € §S.

Fourier transforms of generalized distributions on the Schwartz space have
the following properties.
Property. Let F € §'. Then

(i) (Derivative). F' (@) = iwF (o).
(ii) (Translation). (T,F)" (@) = e_i“‘”ﬁ(m), where a is a constant and T, F =
F(t— a).
(iii) (Delation). (D )" (w) = lﬁ’(%), where a £ 0 and D, F = F(at).

lal
The Dirac function and the Dirac comb are both important tools in geophys-
ical signal processing. Define the Dirac function é as a generalized distribution
on the Schwartz space which satisfies for any g € S,

(8,8) = g(0).

In general, define &;, as a generalized distribution on the Schwartz space which
satisfies for any g € §,
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(819-8) = g(to) (tp € R).

Clearly, &p = 8. Therefore, &, is the generalization of the Dirac
function 8.

By operation rule (iv) of generalized distributions on a Schwartz space, it
is easy to prove that for any g € §, the first-order generalized derivative of the
Dirac function is

(8'.8) = —(8.¢") = ¢ (0);
and the second-order generalized derivative of the Dirac function is

(8",8) = =188 = (8.8") = £"(0).
In general, the n-order generalized derivative of the Dirac function is
(8", 8) = (=1)"g"(0).

Denote the Fourier transform of &;, by :3;0. By Definition 1.2(ii), the Fourier
transform of §;, satisfies

o~

(81)- &) = (81,.8) =Z(fp) foranyg € S.
Since g € § C L(R), by the definition of the Fourier transform, we have

o) = f (@) do = (0% g).
B

o~

Therefore, (8,),g) = (e_i"o“’,g). This means ‘5,.0 = el Especially, noticing
that 89 = &, we find that the Fourier transform of the Dirac function is equal to
I.

On the other hand, by Definition 1.2(ii), for any g € S,

((e_imw)/\ ,£> = (e_"“w,§> = /D;Zg(w)e_””w dw.

Since g € L(R) and g € L(R), the identity 5 [5 2(w)e™ 0 dw = g(—19) holds.

So
((e—iruw)A ,g) = 2mg(—tp).

From this and the definition {6, g) = g(—1p), it follows that

((e-imw)" , g) .

This means that (e’“““’)/\ = 278_,. Noticing that 8y = 8, we obtain that the
Fourier transform of 1 is equal to 27 6.

Summarizing all the results, we have the following.

Formula 1.1.

(i) 8, = e 0 and (e_i’““’)/\ =278y,
(ii) 5= 1and1=27s.
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Remark. In engineering and geoscience, instead of the rigid definition, one
often uses the following alternative definition for the Dirac function &:

. co, t=0,

(i) 8(n = { 0, t#0,

(ii) [zo(ndr=1,

(iii) [ 8(ng(r)dr = g(0) for any g().

The series Zn S 1s called the Dirac comb which is closely related to
sampling theory. In order to show that it is well defined, we need to prove that
the series Zn 8on 18 cOnvergent.

Let S, be its partial sums and S, = »_." 2 02kr. Clearly, S, are generalized
distributions on the Schwartz space, i.e., S, € §" and forany g € S,

n

(Sn. 8) (Zam, >—Z<azkmg>.

—n

Combining this with the definition {§2k~, g) = g(2km), we get

(S, &) Z g(2km).

—n
Since g € S, the series ), ¢(2nm) converges. So there exists a 8* € S such that
(Sp.g) — (8%, g) or S, — 8*(S) (n— o0),

i.e., the series Y, 82q7 convergesto 8*, and (8%, g) = >, g(2nm) forany g € S.
Secondly, we prove that §* is a 2w -periodic generalized distribution.
By operation rule (v) of generalized distributions on a Schwartz space, for
any g € §,

(T28%.8) = (8%, g(t+2m)) = Y gQn+ l)m) = Y g(2nm) = (8%, g).

This means that §* is a periodic generalized distribution with period 27 .

Third, by Definition 1.2(i), we will find the Fourier series of §*. We only
need to find its Fourier coefficients.

Denote the Fourier coefficients of §* by C,. Since §* € §', by Defini-
tion 1.2(1), forany g € S,

(Cn.g) = —%@ (@*e™) ™! — (*e™) ).
Using operation rule (v) of generalized distributions on a Schwartz space,
we get
(Tax (8%e™™) ™1 — (8% ™™) 7! ) = ((8"e™™) .3 (1),
where 2(¢) = g(t + 27) — g(1). Therefore

1 : o
77((6*e—mr)—l’g(t)>‘

(Cn, g) = .
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Using operation rule (vi) of generalized distributions on a Schwartz space,
we get

t
(Cug) = i(s*ei"’, f D7 () du>,

2 oo

where

1 2
D500 = Fw) — e ]}R 70 dr

Since [, 2(ndr = [ g(t+2m) dr — [, g(1)dr = 0, we get

r I ' 2
/ Dz (u) du = f 2(u)du = f (g(u+2m) — g(u)) du = f g(u) du,
t

—00 -0 —00

1 . 27
(Cn.g) = 7 é*e_””,f gluydu).
T t

Using operation rule (ii) of generalized distributions on a Schwartz space, we

get
B*e—im and _ * —int 2
s glydu) =(8%, e g(u)du },
t t

1 . 427
(Cn.g) = 27 8%, e—mt] g(u)du }.
T '

We have proved (8*,8) =3, gQkm) for any ge S. Noticing that
e "2kT — | we find the right-hand side is

1 ) 427 1 ) 2km 427
o 8*’6—”11-/‘ g(u) du) = — e—lem f g(u)du
!

and so

and so

2 2

& 2km
1 2(k+1)m
= — du,
e zk:f?_kﬂ g(u) du
and so

1 2(k+1)m 1 1
Cpg) = — du= — du={—.g),
(Corg) ZHZIM 2) du hfﬁg(u) u (M g)

k

i.e., Cy = 5= (n € Z). By Definition 1.2(i), the Fourier series of §* is 5 3 e,
Finally, we prove the Fourier series ﬁ n el converges to §%, i.e.,

i .

Tl Do e =8 ().
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Its partial sum is §,(f) = % 'in ¢! This is the Dirichlet kernel D, (7).

Using property (ii) of the Dirichlet kernel, we get
(2k+1)m

(Sn-g) = (Dy,g) = f Dy(ng(Hdi =" f Dy (1)g() dt
R e U

2%k—1)m

D, (Ng( + 2km) df = [ Dy (5) Z g(r + 2km) dr.
k “T - k

By the Jordan criterion for Fourier series, we have
m
Dy glt+2km)dt — Y g(2km) (n— o0),
- k k

and 50 (Sy,g) — > ; g(2km)(n — o0). From this and (8%, g) = Y, g(2km), it
follows that

(Sn.g) = (8%.8) (n— o0).

This means that S,, — §*(S)(n — oc). From this and §* = Zn S2pm. We get

1 .
P - int (SI).
; 2nm b ;e

Taking the Fourier transform on both sides and using Formula 1.1, we get

N
1 SN A 1
(; 52)1:1) = E g (Clm) = E ) 511.

Formula 1.2. The Fourier transform of a Dirac comb is still a Dirac comb,
ie.,

A
1

The Laplace transform is a generalization of the Fourier transform. Since
it can convert differential or integral equations into algebraic equations, the
Laplace transform can be used to solve differential/integral equations with initial
conditions.

Let f € L[0,00]. The Laplace transform of a signal f(r) is defined as

o0
LIf(n] = f f(he™"dt (Res = 0).
0
It is sometimes called the one-sided Laplace transform.
Laplace transforms possess the following properties:

(i) Let f,ge L[0,00] and c¢,d be constants. Then L[cf(r) + dg(H)] =
cL[f(1)] + dL[g(1)].
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(ii) LetfY e L[0,00](j = 1,...,N). Then
L) = =70 = = 0 = S0
—sMr ) + sV LI
(iii) Letf e L[0,00]. Then L [f[;_f(u) du] =1Ll 1.

17

By the definition and properties of Laplace transforms, it follows further that

i —si 1
L[l]:[ e Mdr= -,
0 §

oo
L[e—ﬂl] — ] e—(a+gji‘ dr =
0

e~ar _ e—br
a—b

1
s+a’

;};u&ﬂﬂfLm*m

| 1 1 1
- ab{era_Ser} __(.?Jra)(erb)’

—ar _ p —bt 1
L [ae ¢ ] - {aL{e™") — bL{e"})
a—b a—>b

1 { a b }_ §
N s+a s+b TG+ a)s+b)’

L] = xNe*”dz =

0

Finally, we consider the two-dimensional case. If f(¢1, 2) € L(R2), the two-

dimensional Fourier transform is defined as

A(cul,wz) = (f Iz)e_i(wm-'—mzfﬂ dty dss.
)
R_

The two-dimensional inverse Fourier transform is defined as

1 - ,
(w1t14walz)
Wffmzf(wl,wz)e' @11 e22) deyy dews.
It can be proved that if f € L(R?) and f € L(R?), then

f(t,n) = f [ Flr, @2)e!@111F21) 4oy dey.
R2

(2m)?
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Two-dimensional Fourier transforms have the following similar properties:
(i) (Translation). Let f € LR and @ = (ay,a2) € R2. Then
(11 + ar. & + @) (w1, @) = 1922 F) @)
(i) (Delation). Let f € L(R?) and X be a real constant. Then

w] WZ)

(FAt1, A2) N1, w2) = |)»|2f ( PR

(i) (Convolution). Let f, g € L(R?) and the convolution

(f*g)t,n) = f ]Wf(fl —uy, tp — u2)g(uy, uz) duyduy.
Then

(f * 0" (@1, 02) = fw1,02)Z (@1, ).

1.2 BESSEL'S INEQUALITY AND PARSEVAL'S IDENTITY

Bessel’s inequality and Parseval’s identity are fundamental results of Fourier
series and Fourier transform. Bessel’s inequality is a stepping stone to the more
powerful Parseval’s identity.

Bessel’s Inequality for Fourier Series. Let f € Ly, and ay, by, c, be its
Fourier coefficients. Then

n T
a0 2 2 1 2
(7 + le(ak + bk)) ;] rou
or

n 1 T

D el = — f A

—n 27{ -

Proof. Denote partial sums of the Fourier series of f by S, (f; f). Since

(Sulfs0) — F(0)? = S2(F; 1) — 2 (DS (3 1) + £ (1),

integrating over the interval [—m, ], we get

(Sa(fs0) — f(1)* dt

-

[ﬂ S2(fi0dr—2 f(: VS, (f2 1) dt + nfz(r)dt

-

I —12+[ fz(t)dz.

We compute 1. The partial sums of the Fourier series of f are

Sulf3 1) = “2—0 + 3 (akcos(kr) + by sin(kn).
1
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So

I

m -1

n 2
f_ S%(f: ndr= f (az“ + le(ak cos(kt) + by sin(kr))) dr

Fid 2 e
- f Z—Odtﬁ—f ao (Z(ak cos(kt) + by Sin(kf))) dr

=1 - 1

n 2
+ [ (Z(akcos(kt)+bksin(kt))) dt.

1 ]

By the orthogonality of trigonometric system {1, cos(n?), sin(nf)},cz, . we

obtain that
G2 1
Lh=n (70 + ;mhbi)) .

We compute />. Since

L

2 Hf(t)S,,(f; £)dr = zfnf(:) (%" + ) (ax cos(kt) + by sin(kt))) dr
—IT —7 1

ap f i fdr+2%" (ak i £(0) cos(kydr + by i £(1) sin(kr) dr) ,
o :

- -

by the definition of the Fourier coefficients, we get

ﬂ2 "
bh=2r|2+ 240 ).
oo (F e

Therefore,
T 2 n T
(Sa(fst) — f()2dt = —m (a?” + Y (@} + b,%)) + | fAod. (1.4)
— 1 -

Noticing that ag = 2cq, ax = ¢ + c—k, b = i{cy — c—¢), and

ag+b; = lex+al* +lilcx —col?

= (c—k+ k) (C—k +Ck) + (c—k — ck) (C— — Ck)
= 2(cjCog +cxcy) =2 (|C—k|2 + |Ck|2) ,

the first term on the right-hand side of (1.4):
aZ n n
— (?" + X}:(aﬁ +bf)) — (2c0|2 -+ Xl: 2l + |ck|2))
n
= fZJTZICkIZ-
—n
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From this and (1.4), it follows that

CSalfsn — @) dr= =27 Y el + [ e (1.5)

- —n

Noticing that f_”ﬂ Su(fs0) —f(t))2 dr > 0, we find from (1.4) and (1.5) that
ag z 1 [7
2 2 2
(2 + le(ak+bk)) <= _xf (H)dt

and

n 1 T

Yol =5 Fwd

— 2 J_,

O

Parseval’s Identity for Fourier Series. Ler ' € Ly, and ay, by, c, be its
Fourier coefficients. If the partial sums of its Fourier series Sy(f; 1) tend to f (1)
as n — 0o, then

T (,l2 o0
Piydi=n (2“ + Z(aﬁ + bﬁ))
x 1
and
Frode=2m" |enl.
. .

Parseval’s identity is sometimes called the law of conservation of energy.

Proof. In the proof of Bessel’s inequality, we have obtained (1.4) and (1.5).

Letting n — oo in (1.4) and (1.5), and using the assumption S, (f;?) — f(¢)
(n — oc), we obtain immediately the desired results:

T 2 00
Pdi=n (%U +3 @+ bﬁ))
. 1

and

fﬂ Fodr=21) jel.
. -

g
For a Schwartz space, the original signals and their Fourier transforms have

the following relation.
Theorem 1.2. Iff,g € S, then

1 ~ =
[f(r)g(r) dr = 2—/f(w)‘§(m) dw.
R T Jr
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Proof. Tt follows from g € S that g € L(R) and g € L(R). Thus,

1 .
g = —/ T(w)e' do.
2 i3

Taking the conjugate on both sides, we get

2w

[ f(Og(Hdr = b [ 0 ( j Z(w)e i dw) dr.
R 27 Jg R

Interchanging the order of integrals and using the definition of the Fourier
transform, the right-hand side is

1 [ (0 ( f T(w)e d.:u) dr= / ( f f(pe et dt) Z(@)dw
27 Jr R 27 Jr \Jr

1

= / F@)3(w) do.
2w R

1 _ .
T = — f e do,
R

and so

Therefore,

1 —~ -
ff(l)g(t) dt = — f fl@)g(w) do.
R 2 R

Let f(t) = g(0) in Theorem 1.2. Then the following identity holds.
Parseval’s Identity for a Schwartz Space. [ff € §, then

fwmzdr:i[ (o) do.
R 2r Jr

Theorem 1.2 can be extended from S to L2 (R) as follows.
Theorem 1.3. Iff, g € L*(R), then

1 e -
f R dr= / F()Fw) do.
i3 T JR

Proof. Take arbitrarily f,, € S, g, € S such that f, — f(L?), g, — g(L?) as
n — oco. By Definition 1.1,

Tul@) = flo)(L?),

(@) — Z(o) (L),

and so

1 [~ = 1 [~ =
p f n(@)g, (@) do — — f f(@)g(w) dw.
T JR 2w R
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On the other hand, since f;, € S and g, € §, Theorem 1.2 shows that

] - = —
2— f falw)g, (@) de = / Ja(Dg, (1) dr.
T JR R

Since f, — f and g, — g, the integral on the right-hand side has a limit, i.e., as
n — o0

[fn(f)g,,(t) dr — ff(f)g(t) dr,

R R

and so
1 ~ =
T[.ﬁ:(w)ﬁn(w) do — [f(t)E(t) dr.
T JRr R

Since the limit is unique, we get

1 - =
fR fgndr= 7 fR f(@)3 (@) do.

Let g(#) = f(f) in Theorem 1.3. Then the following identity holds.
Parseval’s Identity of the Fourier Transform. Iff € L*(R), then

f P = = [ (@) do.
R 2r JR

In a similar way, for the two-dimensional signal, the following theorem can
be derived.
Theorem 1.4. Iff, g € L>(R?), then

L
(27)?

Let f = g in Theorem 1.4, Then the following identity holds.
Parseval’s Identity. Letf(t),1) € L2(R?). Then

1 ~
ff f (1. 22)* dtydry = —2/ [f (@1, 2)|” dowyde,.
R2 (2m) R2

1.3 GIBBS PHENOMENON

It a function f(#) is defined in a neighborhood of # and f(fo + 0),f(fo — 0) exist
but f(tp + 0) # f(top — 0), then ty is called the first kind of discontinuity of f(1).

Suppose that functions {f;(#)},cz, and f(#) are defined in a neighborhood of
tp and f,(f) — f(f) as n — oc in the neighborhood, and #y is the first kind of
discontinuity of f(r). Without loss of generality, we may assume f(fp — 0) <
f(to+0). If {f,(£)} has a double sublimit lying outside the closed interval
[f(to — 0),f(fo +0)] as t — 1y, n — 00, then we say that for the sequence of
functions {f, (1)} the Gibbs phenomenon occurs at fy.

f S n)gln, n) dndn = /fj(wl,wz)?(wl,wz) dedw;.
R”2 R2
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Example 1.1. Consider a function

”T_I, 0<t<2m,

and @(t+27) =¢(1), and £ =0.
0, t=0,

@) =
Clearly, (1) is continuous in 0 <|ff<m and @0+0)=7,
w0 —-0)=— % and the point 7p = 0 is the first kind of discontinuity of ¢(z). It
is well known that the Fourier series of ¢ (1) is
o0

Z Sil'llikf) ([ c R)_

1

Consider the sequence of partial sums of the Fourier series of ¢(1):

il

Snlest) = Z Sil’liikf) (r e R).

1

Since ¢(7) € Ly, and is of bounded variationin 0 < |f| < =, the Jordan criterion
shows that the sequence of partial sums of its Fourier series converges at fy = ()
and

1
Sulg;0) — 5(@(04-0) +¢(0—-0)) (n— c0).

Since (0 +0) = 5 and ¢(0 — 0) = —F, we get Sy(g;0) — 0(n — o0).
Now we prove Sy (¢; 1) has a double sublimit lying outside the closed interval

—3.5]lasn — oo, — 0.

Note that

n

n —ikv ikv n
] . 1
Xl:cos(ku) = % =5 (Z ek _ 1) = 7D (v) - 3.

1 —n

where Dy, (v) is the Dirichlet kernel. Using property (iii) of the Dirichlet kernel,
the partial sums of the Fourier series of ¢ () can be rewritten as follows:

n

sin(kz) u— i
Sl ) = Z P :Z/ cos(kv)du:[ Zcos(kv)dv
| [ 0
frsin(n+£)v p
= ———dv—
0

2sin g 2

rsin(n+%)v t sin(n+%)u sin(n—F%)v
= f 7(11)_'_‘[ — —
0 v 0 2sin 5 v

dv — 7 (1.6)
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Letu = (n+ %)u. Then the first integral on the right-hand side of (1.6) is

¢t sin (n + %) v (n+'z).f sinu
[l (0,
0 v 0 u

Take t =1, = % where a is any real number. Then,as n — coand t — 0,

- |
fn S0 (”+ E) v ("+4)% sinu ¢ sinu
— dv= —du — dut.
0 v 0 u 0 u

. e . 1 . ) »3
By inequalities | sin (n+ 7) vl <1 and |v— 2sin 35| < ‘ﬂ ,

and sinv >

Zy (0 < v = %), it follows that
T 2
; 1 1 1\ _ | 1, v=2sing
sin{n+3) v zgny — v)| = 00+ v T
v3
T
< | 25| = flvh
P

and so the second integral on the right-hand side of (1.6) is

sm sin (n + %) v T
— dv| < —#.
251n v 24
Taker =1, = % The
o sin (n + %) v sin (n + %) v wal
f — — dv| < 5
0 2sin 5 v 24n

Asn— ocandt— 0,

tn [ sin (n + %) v sin (n + 21) v
f — — dv—= 0
0 2 sin 3 v

fn

It is clear that the last term on the right-hand side of (1. 6) 7 — Oasn — oo

and t — 0.
Therefore, take t = t,, = %, where a is any real number. By (1.6), we have

4 sinu
Sulp, ty) — / ——du=:1(a) (n—> o0, t—0),
0 U

i.e., Sy(g; 1) has double sublimits /(a) as n — oo, — 0. Since « is any real
number, all values of I(a) consist of a closed interval [/(—m), I(;r)], and

T sinu T 7 sinu T
I(m) = du > —, I(—m) = du < ——,
0 u 0 u 2

and so [[(—=7),I(m)] D [~ 7, F].
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Therefore, for the sequence of partial sums {S, (¢; 1)} the Gibbs phenomenon
occurs at fp = 0.

Theorem 1.5. Suppose that f(t) is a 2mw-periodic function of bounded
variation and continuous in a neighborhood of ty, and ty is the first kind of
discontinuity of f(t). Then for the sequence of partial sums of the Fourier series
of f(t) the Gibbs phenomenon occurs at ty.

Proof. Without loss of generality, assume that f(#) is continuous in 0 < |f —
to] < dand f(fg + 0) > f(to — 0). Let ¢(¢) be stated as in Example 1.1, and let

d
8(0 =f(1) = —e(t— ), (1.7)

where d = f(tg +0) — f(tp — 0) > 0. By the assumption, we see that g(¢) is a
2m-periodic function of bounded variation and continuous in 0 < |t — #y| < 8.
According to the Jordan criterion, the partial sums of the Fourier series of g(¢)
converge and

1
Su(8:0) > 580 +0) + g0 =0) (1= 00,0 <[t —1to] <3).

Since (0 +0) = % and ¢(0 —0) = —% (see Example 1.1), it follows from
(1.7) that

d
gltop+0) = f(to+0) — 7

d
gt —0) = f(tU*O)JrE,

and so
1
Sulg;t) — E(f(toJrO) +f—0), 0<t—nl<dé (n—co). (1.8)

Now we prove that S, (f;f) has a double sublimit lying outside the closed
interval [f(ty — 0),f(fo +0)] asn — co,t — Iy.

Denote the partial sums of the Fourier series of ¢(f) by S, (@; ). By (1.7), it
follows that

d
Sp(fi0) = Sp(gs ) + ;Sn(w;tf fo).

Taket—tp=1, = %, where a is any real number. Then

d
Sn(f; Iy +1t,) = Sn(g;fO + 1)+ ;Sn(w;tn)-
By Example .1,
Sn(gp; tﬂ) - I(a) (n - oo’t_> t0)9
where I(a) = [y 0% du. Denote f(19) = 5(f(to + 0) + f(to — 0)). By (1.8),
Sn(g:to + 1) — ftn) (n— 00,1 — ny).
Therefore,

d
Sn(fsto + ty) — f(f) + ;I(a) (n — oo, t— fo),



26 Mathematical and Physical Fundamentals of Climate Change

1.e., Sy(f; H) has double sublimits f(zy) + %I(a) asn — oo, — fy. Since a can
be any real number, all values of f(zy) + ;T‘I(a) consist of the closed interval
[f(t0) + L1(=m),f(to) + L1(7)]. Noticing that () > Z and I(—7) < —%,
we have

d d d d
[f(fo) + —1(—m),f(t) + I(N)] D [f(fo) — = f(to) + :| -
T T 2 2

From f(ty) = %(f(fo +0)+f(to — 0))and d = f(to + 0) — f(tp — 0), it follows
that

d d
[f(fo) + ;H*Tr),f(fo) + Rl(ﬂ)] D [f(to — 0).f(ro +0)].

Therefore, for the sequence of partial sums of the Fourier series of f(7) the Gibbs
phenomenon occurs at #;. |

1.4 POISSON SUMMATION FORMULAS AND SHANNON
SAMPLING THEOREM

We will introduce three important theorems: the Poisson summation formula
in L(IR), the Poisson summation formula in 1 (R), and the Shannon sampling
theorem. In signal processing, the Poisson summation formula leads to the
Shannon sampling theorem and the discrete-time Fourier transform.

To prove the Poisson summation formula in L(R), we first give a relation
between Fourier transforms in L(IR) and Fourier coefficients in L.

Lemma 1.1. Letf € L(R). Then

(i) the series Y, f(t+ 2nw) is absolutely convergent almost everywhere.
Denote its sum by F(f);
(i) F() € Lays
(i) for any integer n,

I ~
cn(F) = gf(n),

where ¢, (F) is the Fourier coefficient of F() and ?(cu) is the Fourier
transform of f ().

Proof. Consider the series 3, f(f + 2n). By the assumption that f € L(R),
we have

2
[ Y flt+2nm) dr
0 n

2n
< Zfo If (¢ + 2n7)| dx

2(n+1)m
>, f F»ldy

2nm

n

f F(ldy < co.
R
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So the series is integrable over [0, 27]. Since
S f+2m) +2mm) = Y fe+ 2+ D) =Y e+ 2nm),
n n n
the series is a 2w -periodic function. Therefore, the series is absolutely conver-
gent almost everywhere. Denote its sum by F(7), i.e.,

F(hH = Zf(r + 2nm) almost everywhere,

n

and so F'(7) is integrable over [0, 277 ] and is a 2w -periodic function, i.e., F € Loy

By the definition of the Fourier coefficients and ¢"?*") = 1, we have
1 2n } 1 2w )
Ww(F) = — F(ne ™ dr= —f 1+ 2km) | e ds
alF) = 5 | Fa ), Zkff(+ )

1 20k+1)m in(u—2k) 1 )
- =in(u=2km) 9, — —inu 4.,
o Z/;kn fue u 7 fRf(u)e u

However, since f € L(R), by the definition of the Fourier transform, we have
f f(u)cfi"“ du :f(n).
R

Therefore, ¢, (F) = %?(n). O

Poisson Summation Formula I. If f € L(R) and f satisfies one of the
following two conditions:

(i) f(n is of bounded variation on R and f(#) := %OC(I—F 0)
+f(t=0)): R

(i) @O <Ki(1+1f)™ and |f(@)] < K2(1 + |w|)™%, where a > 1 and
K, K> are constants,
then

_ 1 ry int
Xn:f(z+2nn) =5 Zn:f(n)e (teR).

Specially,
;f@m‘r) - % ;}‘(m.

Proof. Suppose that f(f) satisfies the first condition. Lemma 1.1 has shown
that the series ), f (¢ + 2n7) is absolutely convergent almost everywhere. Now
we prove that the series Y, f(+ 2nm) is absolutely, uniformly convergent
everywhere on [0, 2].

Take 1y € [0,27x] such that an(f() + 2nm) converges. When
0<r<2m,
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Y+ 2nm)| = | Y [t + 2nm) + [0+ 2nm) — f(to + 2nr)

[n]>N n|>N

IA

Y flto+20m)| + | Y (Fle+ 2nm) — flto + 2n))

n|=N |n|=N

Iy (o) + Ty (0).

Since the series Y f(fo + 2n7) is convergent and is independent of r,

In(tg) > 0 (N — o0)

uniformly on [0, 2xr]. Note that f(f) is a function of bounded variation on R.
Denote its variation by

2(n+1)m
Vn - \/ (f)
2nm
So the total variation is
2n+1)m 50
2Ve=2 1 V O)=V0 <~
n n 2nm —0o0

and so for0 <t < 2m,

Ini < D [f(+2nm) = flto+2nm)| < Y V> 0 (N — o00),
[n]>=N |n|>N

i.e.,?N(t) — O(N — oc) uniformly on [0, 27 ]. Therefore,

Z Jt+2nm) -0 (N— o0)
|n|=N

uniformly on [0, 27], i.e., the series »_ f(t+ 2nm) is absolutely, uniformly
convergent everywhere on [0, 27r]. Denote

F(t) =Y f(t+2nm) (1€ [0,27)),

where F(1) := 3(F(t+0) 4+ F(t—0)) since f(1) := 3(f(t+0) + f(z— 0)).
Then F(#) is an integrable periodic function of bounded variation with period
27 and its total variation on [0, 2] is
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2 2 2
Vi =\ (Zf(:+ Zmr)) =y (\/f(t i 2m))
0 0 n n 0
2(n+1)m 0o
=YV ro]l=\@ <o,
n 2nm —0o

According to the Jordan criterion, the Fourier series of F(f) converges
to F(1), i.e.,

F) = elF)e" (eR),

where ¢, (F') are the Fourier coefficients of F. By Lemma 1.1, we get ¢, (f) =
s—f(n), and so

F(i) = 2i Y fme" (teR).

b s
n

Noticing that F(1) = 3, f(t + 2nm), we have

Xt 2mm) = o~ SFme e w

Let ¢t = 0. Then
1 ~
Zn:f(Znﬂ) = Zn:f(n),

i.e., under condition (i), Poisson summation formula I holds.

Suppose that the function f () satisfies condition (ii). Clearly, f € L(R) and
f e L(R). R

Consider the series an(t—l— 2nm). Since fe L(R) and 2xf(—1) :f(t)
(Property (v) of the Fourier transform), it follows from Theorem 1.1(iii) that
f(t) is uniformly continuous on R. Since |f(#)| < K1(1 + [#)) % (a > 1), the
series Y f(t + 2nm) converges uniformly on R. Denote its sum by F(), i.e.,
F(n = Z”f(t+ 2nm) on R uniformly and F(f) is a continuous 2w -periodic
function.

Denote the Fourier coefficients of F(f) by ¢, (F). Then the Fourier series of
F(1)is ), cn (F)el™. Since f € L(R), by Lemma 1.1(iii), ¢, (F) = ﬁf(n). So
the Fourier series of F(¢) is o= Y, F(n)el™.

By the condition (ii), l?(”)| < K2(1 + |n]) ™ (a = 1). So f(n) — 0
monotonously as n — 0o, By use of the Dirichlet criterion in calculus, it follows
that oL Y, F(me™ = F(5)(r € R), i.e.,

_ 1 7 int
Z”:f(wzm) = Eznjf(n)e (teR).
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Lett = 0. Then
z;ﬂmm>=5%2;ﬂm,

i.e., under condition (ii), Poisson summation formula I holds. O

The derivation of the Poisson summation formula in L?>(R) needs the
following lemma.
Lemma 1.2 (Convolution in Frequency). Suppose that f, g € L*(R). Then

27 (f) M) = Fx ) (@).

i.e., the convolution of Fourier transforms of two functions is equal to 2m times
the Fourier transform of the product of these two functions.

Proof. By f,g € L*>(R), it follows that fg € L(R). So the Fourier transform
of fg is

(fo) M (w) = f f(Hg(ne " dr.
R
Let A(f) = g(1)e®’, and then using Theorem 1.3, we get

— 1 -~ =
(fe)" (@) = /f(t)h(f) dr = 2—[1‘(“)/1(%) du.
R 7 Jr

However, by the definition of the Fourier transform, the factor of the integrand
on the right-side hand

?(u) = [ h(He 1 dr = [ glHelwe—inrdp = / g(e @™ dr = F(w — u).
R R R
Therefore,
1 ~ 1 ~
() () = T f fglw —u)ydu = —(f % 8)(w).
T Jr 2

We get the desired result. a

On the basis of Lemma 1.2 and Poisson summation formula I, we have
Poisson Summation Formula IL If f € L?(R) and f satisfies one of the
following two conditions:

(i) f(a)) is a function of bounded variation on R;
(i) fO <Kt~ F(B > 1) and [f(w)] < Ka|eo| (o > %), where K| and K»
are constants, then

Y o+ 2nm)F =) ([ FOFn+1) dt) e (weR).
n n ]R

Proof. Let

9(©) = [[(@)]> = (@) (o).
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By the assumption f e L*(R) and Definition 1.1, fe L*(R), and so
@ € L(R).

Suppose that f(¢) satisfies the first condition. Then ¢ is a function of bounded
variation on R. Define ¢(w) = %((p(w 4+ 0) + ¢(w — 0)). So g(w) satisfies the
first condition of Poisson summation formula I.

Suppose that f(7) satisfies the second condition. By the assumption f(w)\ <
Kalo| ™ (e > 3), we get [@(w)] < K2|ow|~2*(2a > 1). By using Lemma 1.2,
we get

~ Ly A 1 (&= =
o = (77) = (f*f) (w.
By Propertles (iv) and (v) of the Fourier transform, f(u) = 2nf(—u) and
f(u) f( u) —an(u) and so
@) = 21f(—u) *« f(u) = 27 fuﬁ F@f (w41 d, (1.9)

which can be rewritten in the form

o) =27 ([I [H ) fOfu+nde=I1(u) + Lu).

When |7] < %, we have |lu 4+ t] = |u| — |f] = % From this and the assump-
tion [f(1)] < Kilf) ™ (B > 1), we get

Ju
T

L) < 27 f FOF G+ 1)) dr
It =

IA

1
2nK12[ S
=l le(u + n|#

2/5!(2
Iu\f8

fmﬂ de < K3lul™" (B> 1),

where K3 is a constant.
When |{] > l;—‘ by the assumption |f(1)| < K1|t| P (B > 1), we get

|12 (u)]|

[A

2 f f(Of (u+ )| de
It &

1
2nK%f — ¢
>4 [Hu+ D)

2ﬁK2[ | dr < Kalu~*. B> 1
— u . .
P Jelurap = ”

IA

< 2m

where K4 is a constant,
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Therefore, @(u) < K|u|#(B > 1), where K is a constant. Therefore, ¢
satisfies the second condition of Poisson summation formula I.
Using Poisson summation formula I, we get

1 o~ inw
D @lo+2mm) = 23 P e,
n n

By (1.9), @(n) = 27 lef(Ilj?(n + 1) dt, noticing that p(w) = ff(a))lz, we can
rewrite this equality in the form

S Flw+2mm))> =) ( f FOF(n+1) dt) e,
n n ]R

So Poisson summation formula IT holds. O

The following lemma is used to prove the Shannon sampling theorem.
Lemma 1.3. Let X(w) be the characteristic function of [—m, ], i.e.,

I, lo| = m,
0, |w| > .

X(w) = {

sin(t—n)

Then the inverse Fourier transform of X(w)e ™" (n € Z) is equal fo T

ie.,

(X(w)e_i"“’)v(t) — w (n e 7).
(t—n)

Proof. It is clear that X(w)e ™ € L(R), and its inverse Fourier transform

(X(cu)e*i"“’)v(t) — L./(X(m)efinw)eitmdw
2 R

_ b X()el ™M dg.
2w R

Since X(w) = 1(Jw| < ) and X(w) = 0(|ew| > 7), we get

im(r— —imz(r—
(X(w)e ™)V (1) = 1 fﬂ R 1 emi=n _ gmimlr=n)

2 ), T2 i(t—n)
_ sin 7 (t — n)
- a(t—n)

O

__ Shannon Sampling Theorem. Let f € L2(R) and its Fourier transform
f(w) = 0(|@| = m). Then the interpolation formula

m(t— n) (LZ)

sin
f(f)=;f(n) =

holds, and the series Zf(n)% converges uniformly to a continuous
n

Sfunction g (1) in every closed interval on R and g(t) = f(t) almost everywhere.
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Proof. From f(w) = 0(|w| > ), it follows that f € L2(R) and [ € L(R).
Take a 2n-peri02ic function f,(@) such that f,(w) :f(m)(\m| < ). Then
Jp(w) € Ly and f(w) = fp(w)X(w), where X(w) is the characteristic function
of [—m,m].

We expand f, (@) into the Fourier series

fol@) =" cnlfp)e™ (L2, (1.10)

n

where ¢, (fp) are Fourier coefficients and

T

1 .
Cn (fp) = E fp(w)e—mm dw (neZ).

By f(w) = fy()(Jw| < ) and the assumption () = 0(|w| = 7). and (1) =
27f(—1t) (property of the Fourier transtorm), it follows that

cnlfp) = % ./;H?(w)e—inw do = %fﬂ{}‘\(a))e—inwdw

1=
= 2—f(n) =f(-n) (neZ). (1.11)
T

Combining this with (1.9), we get
folw) =" fl=me" (L),
Noticing that f (@) = fp(@)X (@), we get
T@) =Y f=mX(@e"™ =Y f(mX(w)e "

Taking the inverse Fourier transform on both sides, we get

0 =" X (@e™) (0 (L.
n
By Lemma 1.3, we get an interpolation formula:

M (12). (1.12)

_ sin(
f(t)—zn:f(n) e

From this, the Riesz theorem shows that the series an(n)%:)”” converges
to f(#) almost everywhere.

On the other hand, for Fourier series (1.10), by using Bessel’s inequality,
we get

1 i
Y lealfp)? < = [ Wl do.
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By (1.11), ea(fp) = f(=n)(n € Z), the left-hand side is
Y e P =Y f=mP =Y i)
By fo() = f(@)(|o| < 7) and f(@) = 0(|@| > ), the right-hand side is

" 1 7o ~
fo@Pdo = — [ [flw)]*do= fR (@) do.

2 - 27 J_,

Therefore,
2 1 ["" 2
En fim]” = o le(m)l de.

From f € L2(R), it follows that Z” [f(m)]* < co. So the series Y, [f(n)]?

sin(w (1—n))
w(t—n) — II
formly in every closed interval on ]R
According to Cauchy’s principle of convergence in calculus, for e > 0, there

isan N > 0 such that when M > m > N,

Yo rwr<e Y

m<|k|<M m<|k|<M

mer(tfn) |2
w(t—n)

converges. Since , the series ), | converges uni-

sinm(r — k) 2
—_—| <€
w(t—k)

hold simultaneously in every closed interval on R. By using Cauchy’s inequality,
we have

2

o )w’@) <[ ¥ vwr|| X

m=lk|=M mz|kj=M m=|k|<M

sin(m (t — k)) 2
7(t— k)

Therefore, for the abovee > 0and N > 0, when M > m > N,

Z f()smn(t k)

m=|k|=M =k

in every closed interval on R. According to Cauchy’s principle of convergence,
the series

Zf(") sinm(t—n)
- w(t— n)

converges uniformly in every closed interval on R to a continuous function,
denoted by g(7). By (1.12), we get g(r) = f(#) almost everywhere. 4
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1.5 DISCRETE FOURIER TRANSFORM

Discrete Fourier transforms are used in discrete signal or discrete time series.
The discrete Fourier transform is defined as follows.

Given an N-point time series x = (xg, X[,...,XN—1), the discrete Fourier
transform of x is defined as

an “inF k=0.1.....N—1).

In this definition, x, is called the sample, N is called the number of samples,
Aw = ZT” is called the sampling frequency interval, wy = % is called the
discrete frequency, Xy is called the frequency coefficient, and {IXHZ}EO,__,NA is
called the Fourier power spectrum of x. In detail, the discrete Fourier transform

gives a system of equations as follows:

1 1
Xo = Nzxn = N(XU"‘XI +ax2+ - av-i),

N-1

1 1

N—

. 777(’\/ J
Xyt = Z

0

1 _j2N—lim AW =D 2w 12n
=N xp + xie Y+ aze A R v VA | .

It can also be rewritten in the matrix form X = %Fx, where

Xo X0
X X
X = . X =
Xv-1 XN-1
and
| | 1 ]
2 -4 2N
1 C_IT C_IT RN c_l N
F= _ (efm “K,")
. . . . . k.n=0,1,....N—1
2(N—D)m A(N—1) C2N=1)2a
1 emi" W el L et

2N

—inZZ -z - —i
X = —ane N = —(xUerle N +xe NV 4.4 xy_je N
N 5 N

).
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If all x, are real, the discrete Fourier transform possesses the property of
symmetry:
Xy_x=Xx (k=0,1,...,N—1).
In fact, by the definition of the discrete Fourier transform,

N—1
g ZZW—R)
XNk = ﬁ Zx.'ze .

. L 2m(N—k) » Inmk
Since e in=/—y— _ . i(2mn— ) — emT we get
N—-1
¥ 1 in 21k
N—k = — Z Xp€ N
N
0

On the other hand, since x, are real, it follows by the definition that

N-1

Z Tk 1 Z L2k
.X e ”l_v_ — N ,‘,‘nelnT .
0

Therefore, Xy_x = Xx(k=0,1,....,N = 1).

Given N frequency coefficients {Xi}r=0.. ~n—1. the inverse discrete Fourier
transform is defined as

N-1
=Y X =0, ,N-1).
0
In detail, the inverse discrete Fourier transform gives the system of equations as
follows:
N—1
X0 = ZXkZX()-FX] + X+ -+ Xy,
0

N—-1
ikln’ i27r -l4:r SUN-Dm
X, = ZX[(C T =Xo+ X'V +Xpe'V ...+ Xy_1e' ™ F
0
N-1 ,
]kZ(N I ,\LJ 4N-1) LAN—1)27
AN = Zxke —X()+X[e +Xze N 4+ 4+ Xy ¥
0

It can also be written in the matrix form x = FX, where

X0 Xo
X1 X

XN -1 Xn-1
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and
1 1 1 1
2 4 j2riN-1)
1 e'w e'N ... €7 N .
—_— IT.
F — — (elﬂ N ) ,
. . . . . k.n=0.1,..N—1
(Nl AMN=Dx (N=127
1 e w e'” W L. elT N

If all X, are real, the inverse discrete Fourier transform possesses the property
of symmetry:

Nk =Xxr (k=0,1,....N—=1).

In fact, the definition of the inverse discrete Fourier transform shows that

. 2(N— n
k= Zx .
. 2w(N—F)

. . 2wk .2k
Since e TR = elZTeTINT — e_”’T, we have

_nl\
XN_g = ZX —in

On the other hand, since X, are real, it follows by the definition that

- c o 2k
_ 2 o 2n
X = E X, " " = X,e VW

Therefore, xy_x = X, (k=0,1,...,N—=1).
Similarly, we consider the two-dimensional case. Given a two-dimensional
discrete M x N-point time series,

X0,0 X010 o XON-1
X1,0 X1,1 e XIN-
x= ,
AM—-10 AM-1,1 -~ AM—1N-1

the rwo-dimensional discrete Fourier transform of x is defined as

M—1 fN—1

2l —im 2k

Xey = me i Pl
m 0 \n=0

(k:O,.‘.,M— 1‘,]:0,...,N—]).

In this definition, x,,, is called the sample and X;, are called the frequency
coefficient. The two-dimensional discrete Fourier transform is a transform from
an M x N-point time series to M X N frequency coefficients.
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Conversely, given M x N frequency coefficients:

Xoo0  Xo1 - Xon—1,
X0 X1 oo XiN-1,
Xpm-1,0 Xy-11 -+ Xp—1n-1

The two-dimensional inverse discrete Fourier transform of {X;} is defined as

M—-1 /N—-1

“.2nn iklmn

Xman = § E Xype' et
k=0 =0

(m:(),l:"'aM_l;nzoala"')N_l)-

The two-dimensional inverse discrete Fourier transform is a transform from
M x N frequency coefficients to an M x N-point time series.

1.6 FAST FOURIER TRANSFORM

The fast Fourier transform is not a new transform, but is a fast algorithm for
computing discrete Fourier transform. It is based on the halving trick. This
trick halves a given 2N-point time series into two N-point time subseries, and
then discrete Fourier transforms of these two N-point time subseries are used to
compute the discrete Fourier transform of the given 2N-point time series.
Given a 2N-point time series z = (z9,21....,22nN—1), its discrete Fourier

transform is

2N—-1 ok

Z ze "N (k=0,...,2N — ).

We use the halving trick to halve the 2N frequency coefficients {Z}.
First, we compute the first half: Zy, Z,...,Zy_1. We decompose the 2N-
point time series z into two N-point time series x and y as follows:
x = (20,22,24, ..., 22N—-2) =i (X0, X1, X2 ..., XN—1),
y = (21,23,25 ... 22n-1) = (Yo, Y1, Y2, -« IN—1)s

1.e., x consists of even samples of {z,} and y consists of odd samples of {z,}. So

§ i2n 2z E 2n4-1) 258
Zk Zane€ el nss ZN 2271+le]( n+ )g,v
2N 5

1 . 2k "m(
= = Y xe T +—Zyn iCn+D3¥ (k=0,....N—1),
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) . 2k o amk
where x, = z2, and y, = z2n41. Since e 7TV = ¢ l"_W'e i% , we get

N—1
1 . g2k

1 -
- E(Xk+e—‘w*'yk) k=0,...,N—1),

where
X = lz e T (k=0,... .N—1)
N n LI )
0
2wk
Yy = EZ%; —inSy (k:O”N_l)
0
Clearly, they are just discrete Fourier transforms of x = (xp, x1,...,xy—1) and

¥ = (Y0, ¥1,.--,YN—1), respectively.
Second, we compute the second half: Zy, Zn+1, ..., Zoy—1. Note that

1 P
Zk:_Zchimgﬁl; (k=N,....,2N—1).

Taking the substitution k = j + N, we get

2N -1

1 g N .
Z,+N:ﬁ;zne T (j=0,...,N— 1.

We decompose Z; y into two sums according to even samples and odd samples
as follows:
N—1

. 2XU+J\) 277(]+N)
2n+1
ZiyN = ZNE Z2nt T + § 2n+1€ —i@nt) =y

G=0,....,N—1).
Noticing that

efinh({%m _ eﬂn‘%eﬂ”mz _ efmzi‘:f
- - El
. 2 (j+N) . bl . . 2mj i
e—1(2n+1) IV — e—1(2n+l)ﬁe—m(2n+lj — e_mTe_l v,
we get
N-1 2 | N—1
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Noticing that x, = z3, and y, = 72,41, and replacing j by k, we get

1 -2k ! . 2k
7 — I LL S e IR
KN = oN ZU " N ZO In

= (X —e Ty (k=0,...N—1),

where X; and Y are stated as above.
Summarizing the above procedure, we see that for the given 2N-point time
series z = (20,21, .. ., ZoN—1), its discrete Fourier transform is
2N—1 -
Z ze "F  (k=0.....2N— 1),

Halving these frequency coefficients Zg(k = 0,...,2N — 1), we obtain a pair of
frequency coefficients:

Zi = %(XkJre_iTT‘kYk) k=0,....,N—=1),
Zin = %(X,{_e*i”w"yk) k=0,....N—1),
where
N 2k
X, = EZ e " ¥ (k=0,...,N—1),
N- Jrk
Y, = N D e T (k=0,....N—1),

are discrete Fourier transforms of two N-point time subseries x and y which
consist of even samples and odd samples of z, respectively.

Now we explain the procedure of the fast Fourier transform.

Given a 2N-point time series z = (zo,Z1,.--» Zpnv_1), its discrete Fourier
transform is

2N
i 2k
Zp = 2N Y ze™F  (k=0,1,....2Y = 1),
0
Halving these frequency coefficients Zx(k = 0,1, ..., 2V — 1), we obtain a pair
of frequency coefficients:
1 _j2mk N—1
Zkzi(XkJre MY (k=0,..., 270 — 1),
! - N—1
ZpioN-1 = Z(Xk—e MY k=0,...,277 = 1),
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where Xg (k=0,....2Y" "~ 1yand ¥; (k=0,...,2Y"1 — 1) are the discrete
Fourier transforms of two 2V~ !-point time subseries x and y which consist of
even samples and odd samples of z, respectively.

Again, halving Xg, Yi(k=0,...,2Y"1 — 1), we obtain two pairs of fre-
quency coefficients:

1 , s 27k , _
Xe = (X +e NTXY) (k=0,...,2N 27— 1),

2k

1, s , B
Xk+2N—2 = E(Xk_e l:f"*l}(‘,’() (k:O,,__,zN 2 1,

and
1 _i 2wk
Ve = SF+e7FTY) (k=0,...,277 =),
1, —i—% 1 N-2
Yk+2N—2 = 5(_Yk—e 2= Yk) (k:(},...,2 —1),
where X;, X/ and Y., ¥/ (k=0,..., 2N=2 _ 1) are the discrete Fourier trans-

forms of two 2¥~2-point time subseries which consist of even samples and odd
samples of x and y, respectively.

If the above procedure is continued again and again, the fast Fourier trans-
form algorithm terminates at the one-point time subseries.

For this fast algorithm, the total number of multiplication operations is equal
to N2V=1, Let 2 = M. Then the total number of multiplication operations is
equal to %(logz M)M. For the original discrete Fourier transform algorithm,
the total number of multiplication operations is equal to 22V = M?. So the fast
Fourier transform has better computationally efficiency than the discrete Fourier
transform.

Zero padding is another trick. It can be used to decrease the frequency
interval. The zero padding trick is as follows.

Given an N-point time series x = (xg,X1,...,Xy—1), the discrete Fourier
transform of x is

R, o 2wk
X = — Zx,,e*“'?r (k=0,1,...,N=1).
0

The sampling frequency interval Aw = ZT”, where N is the number of samples.

From this, we see that the sampling frequency interval is controlled by the
number of samples of the time series.
Let M > N. We define a new M-point time series as follows:

xnew = (_X(),X],...,XN_],0,0,...,0).
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The discrete Fourier transform of the new M-point time series is
new 1 —in 3Tk
X = o 3 eI (k=0,1,...,M—1).
0

Note that x, = 0(n = N,...,M — 1), and the discrete Fourier transform of the
new M-point time series is

1 2
X = o 3w H k=0, M= 1),
0

The new sampling frequency interval Ae"™% = ZWT By M = N, we see that

27 2
Aw™ = — <« — = Aw.

M N

This means that when the zero padding trick is used, the sampling frequency
interval decreases.

1.7 HEISENBERG UNCERTAINTY PRINCIPLE

The Heisenberg uncertainty principle is the fundament of time-frequency anal-
ysis in Chapter 2. This principle is related to the temporal variance and the
frequency variance of signals of finite energy.

Heisenberg Uncertainty Principle. Iff € L*(R), then

(f 2l dr) (f wzl?(w)ﬁdw) > % LFId.
R R

In particular, the necessary and sufficient condition that the sign of equality

holds is f(t) = Ce_’2/4“, where C is a constant and a > 0.
Proof. By the assumption f € L?(R) and Definition 1.1, it is clear that f €
[2(R). When

[tzlf(tﬂzdr:oo or fwzﬁ(wnzdw:oo
R R
the conclusion holds clearly. Therefore, we may assume that

f tz{f(t)|2dt < 00, f a)ﬂ?(a))l2 dw < oc.
R R’

Based on this assumption and noticing that

2
(wamdr) < [ e [+ utrore < .

it follows that f € L(R). Similarly,f € L(R).
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Note that

Re(ff (Of () < [F(OF (0] = [t (0f (1)),

and using Cauchy’s inequality, we get

2 2
B
< ([R i (OF (o) r)
2 ’ 2
< (erzlf(IN dr) (fR 0] dr).

Using Parseval’s equality and f’(w) = (iw)f(w) (Property (vi) of the Fourier
transform), we find the integral in the second set of brackets on the right-hand

fR Re(tf (0f (1)) dt

side is
,z_LfA, 2 _sz/v 2
fR[f(m dr = o RV(m)| dw_zn Ra) If (@)|? do.
Therefore,
2
U Re(tf (n0f' (1)) di| < i(f tzlf(r)|2dt) ([ wzf(_w)ﬁdw). (1.13)
R 2r \Jr R

Letf(#) = u(#) 4 iv(¢), where u and v are real functions. Then u(7r) = Ref (#) and
v(f) = Imf (), and

f1( = u' @+,

drm”  d 200 — , /
= &(u (0 + v2(0) = 2w (1) + v(HV' (D),
and so
Re(tf ()f7 (1)) = Re(t(u(r) +iv(t) (' (1) — iv' (1))}
2
= ' (1 + v (1) = %dvé?‘ :

Integrating both sides over R, we get

= _ tdif@)?
fRRe(gf(r)f (z))dtff]RE % dr.

Using integration by parts and noticing that lim,_ (rU‘(r)lz) — 0 and
lim,— a0 (r[f(—r) \2) — 0, we obtain for the right-hand side

rdif@PF s T
fRE e = lim (S + SrnP?)

1 N R
*EAU(UI dr = 2Hf||2-
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So
— |
f Re(f(Of (1) dr = 2 I f 13,
R

and so
2

—_ 1
‘ f Re(f(nf (0)dr) =2 11 f 15 .
R

Combining this with (1.13), we get the desired result:

([ tzlfzdt) (f w21?<w)|2dw) >Zrs. (1.14)
R I’ 2

Now we give the necessary and sufficient condition that the sign of equality
of (1.14) holds. According to the line of the proof of the inequality (1.14),
we need to prove only that the necessary and sufficient condition that the

equalities
2 2
([ i (0f (0 dr)
R

(/ tzlf(f)|2dt) ([ U”(r)|2dr) (1.15)
R R

hold is f(f) = Ce~"/*, where C is a constant and a > 0.
If the first sign of equality holds, then

[ Re(F(OF (D) dt = [, [t (Of (Nldr or

‘ [R Re(if (1)f' (1)) dt

— [ Re(f (f () dt = [, lif ()f (1)] di.
From £Re(tf (1) (1) < |tf (O)f (£)], it follows that
Re(tf (0f (1) = [f ()f (0] or  Re(tf ()f' (1)) = —|if (0f (D],
and so
f@Of (1) =0 or fOf (1) <0.

If the second sign of equality holds, then |7 ()| = 2alf"(1)|(a > 0), and so
(1) = 2af’(£)e'?". Multiplying both sides by f'(1), we get

7Of (1) = 2alf (07",

If these two signs of equality hold simultaneously, i.e., (1.15) holds, then the
results

f@Of () =0 or #(Of (1) <0,
f(OF (1) = 2alf (1)
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hold simultaneously. So ¢ ” = 41, and so
if() = 2af'(t) or f(t) = =2af (0.

Solving these two equations, we obtain that f(f) = Cet/4a orf(1) = Ce="/4a,
Noticing that el /4a ¢ L*(R), we obtain finally that the necessary and sufficient
condition that the sign of equality of (1.14) holds is f () = Ce"’z/d'“, where C is
aconstantand a > 0. O

1.8 CASE STUDY: ARCTIC OSCILLATION INDICES

The Arctic Oscillation (AO) is a key aspect of climate variability in the Northern
Hemisphere (see Figure 1.1). The AO indices are defined as the leading empirical
orthogonal function of Northern Hemisphere sea level pressure anomalies
poleward of 20°N and are characterized by an exchange of atmospheric mass
between the Arctic and middle latitudes (Thompson and Wallace, 1998). We
research the Fourier power spectrum of AO indices (December to February
1851-1997) with the help of the discrete Fourier transform (see Figure 1.2). The
highest peak in the Fourier power spectrum occurs with a period of about 2.2
years.

-2.5 ‘ ’
1850 1900 1950 2000

Year

FIGURE 1.1 AO indices.



46 Mathematical and Physical Fundamentals of Climate Change

0.018 T T T

0.016 - b

0.014 7

o © o

=) o o o

=) =] o ey

& ® = o
T

Fourier power spectrum

0.004

0.002

2 2.5 3 3.5 4 4.5 5
Period (years)

FIGURE 1.2  Fourier power spectrum of AQ indices.

In Chapter 7, using the statistical significant test, we will do further research
on it.

PROBLEMS

1.1 Letf be a 2w -periodic signal and () = |#|(t € [—m, x]). Find its Fourier
series and Parseval’s equality.
1.2 Show that the Legendre polynomials X,,(£)(n = 0, 1,...) satisfy f_ll X,%(I)

_ 2
di = 2n+1°

3 Find the Fourier transform of the Gaussian function f(#) = e_’zfz.

.4 Given a four-point time series x = (i, 1, —i, 1 + i), find its discrete Fourier
transform.

1.5 Compute the one-sided Laplace transform of fe

1.6 Let 7= (11, ). Find the two-dimensional Fourier transform of ¢~ 11%/2,

1.7 The North Atlantic Oscillation (NAQO) index is based on the surface sea

level pressure difference between the Subtropical (Azores) High and the

Subpolar Low. Download the monthly mean NAO index from http://www.

cpe.ncep.noaa.gov/products/precip/CWlink/pna/new.nao.shtml and then

research the Fourier power spectrum of the NAO index.

=2t
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Chapter 2

Time-Frequency Analysis

The Fourier transform of a signal can provide only global frequency information.
While a time-frequency distribution of a signal can provide information about
how the frequency content of the signal evolves with time. This is performed by
mapping a one-dimensional time domain signal into a two-dimensional time-
frequency representation of the signal. A lot of techniques have been developed
to extract local time-frequency information. In this chapter, we introduce basic
concepts and theory in time-frequency analysis, including windowed Fourier
transform, wavelet transform, multiresolution analysis, wavelet basis, Hilbert
transform, instantaneous frequency, Wigner-Ville distribution, and empirical
mode decomposition.

2.1 WINDOWED FOURIER TRANSFORM

In order to compute the Fourier transform of a signal, we must have full
knowledge of this signal in the whole time domain. However, in practice, since
one does not know the information of the signal in the past or in the future, the
Fourier transform alone is quite inadequate.

The windowed Fourier transform of f € L?(R) is defined as

(Gof) (@) = fR e L (1) go (2 — b) d1,

where g, (1) is the Gaussian function g, () = zjﬁe_(’Z/“) (¢ > 0). Since

[(Ggf)(w) db:fe'”‘"f(r) dr[ ga(t—b) db:fj‘(r)e‘i’wdrzf(w),
R R R R

the windowed Fourier transform is a nice tool to extract local-frequency infor-
mation from a signal.
In general, the windowed Fourier transform is defined as

(Sef) (@) = [Refi’“’f(f)w(f— b)dr=: (f, Wp.0), (2.1)

where W (#) is a window function and Wy, () = e"OW(t — b).
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The main window functions are as follows:

Rectangular window X[f,',.é](t)?
Hamming window (0.54 +0.46 cos(2nt})x[_L l](t);
2

, . 182
Gaussian window e 181",

Hanning window Cosz(.m‘)xl_l_ %J(z‘);
Blackman window (0.42 + 0.5 cos(277) + 0.08 Cos(4zrl))x[7é N

)

[Z T TR \C RN

where x[_;'g(t) is the characteristic function on [—%, %].

From (2.1), we see that the windowed Fourier transform (S,f)(e) is the
Fourier transform of f(£)W (¢t — b), i.e.

(Suf (@) = (FOW(t = b)" ().

Let | W |2= (fR |W(0)|* dr)”z. Define the center #* and the radius Ay of a
window function W as follows:

1
f* = mf I|W(1‘)|2 df,
R

1 2 > \'?
Aw = t— 1w d .
VWL ([R( FrIw) [)

So the windowed Fourier transform gives local-time information of f in the time
window:

[F+b— Ay, 1"+ b+ Ayl
On the other hand, by (2.1) and Theorem 1.3, it follows that

| ~ ~
(Spf)(w) = oy fs Who).
b4

So the windowed Fourier transform also gives local-frequency information of f
in the frequency window:

[0* + o — Ag, 0" + o+ Ay,

where @* and Ay are the center and the radius of W, respectively. Furthermore,
the windowed Fourier transform possesses a time-frequency window:

[+ b—Aw. 0" +b+ Ayl x [0"+ @ — Aj, 0" + o+ Ayl

with window area 4Aw Ag. If W is the Gaussian function go, then Ay = /o
and Ay = ﬁ So the window area 4 Aw Ay = 2. The Heisenberg uncertainty
principle in Section 1.7 shows that it is not possible to construct a window
function W such that the window area is less than 2.

Therefore, the windowed Fourier transform with a Gabor function has the
smallest time-frequency window.
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Theorem 2.1. Let the window function W satisfy | W |l2= 1. Then, for any
fohe LA(R),

-/‘j];z(Sbf)(a))(Sbh)(w) dwdb = 2n(f, h).
Proof. Forany f,h € L*(R), by Theorem 1.3, it follows that
f(Shf)(m)(Sbh)(m) dow = 271'/ (Spf)Y (1) (Sph)Y (1) dt,
R R

where £V is the inverse Fourier transform of &. Since

(Sef)¥ () (Sp)¥ (1) = fF(ORDW (2 — )|,

it follows that
,[R(Sbf) (@) (Sph) (w) dw = 27 ‘/;Rf(t)F(ENW(E - b)|2 dr.

Integrating on both sides over R with respect to b, we get

f [ (Suf ) (@) (Sph) () dwdb = 27 f F(Oh(1) ( f |W(f—b)|2db) dr.
R2 R R
By [ IW(t—b)[*db =] W ||3= 1, we get the desired result. O

Taking h = g4 (- — 1) in Theorem 2.1, where g, (¢) is the Gaussian function
ga(l) = dﬁe_(ﬁ/%‘)(cx > (), and then letting o« — 0+, we derived the fol-

lowing theorem immediately.
Theorem 2.2. Under the conditions of Theorem 2.1, we have

f= L [f e (Spf) (@)W (x — b) dewdb.
2 R2

The formula in Theorem 2.2 is called the reconstruction formula of the
windowed Fourier transform.

2.2  WAVELET TRANSFORM

The wavelet transform possesses the ability to construct a time-frequency rep-
resentation of a signal that offers very good time and frequency localization, so
wavelet transforms can analyze localized intermittent periodicity of geophysical
time series very well.

A wavelet is a function ¥ € L?(R) with zero-average f]R ¥ (f)dt = 0. The
wavelet transform of f € L2(B) is defined as

1 — —b
(Wyf)(b,a) = ——ff(f)lﬁ([—) dt = (f,¥pa) (@a#0,beR),
Vlal Jr a 02)
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where a is called the dilation parameter, b is called the translation parameter,
1 1—b
and ¥p 4 (1) = Talw (T) .
From Theorem 1.3, it follows that (f, Vp4) = %(f, Yp.q), and so

I ~ ~
(Wyf)(b,a) = E(f’ Vba) (a>0,beR),

where lﬁb.a is the Fourier transform of v, , and

-~ 1 —ir (f - b) —ibw
palw) = — | e ' —— ) di = ]ale " ¥ (aw).
1‘,’!,(«( ) Tfll jﬂ; %) a |al Y ( )

The wavelet transform (W, f) (b, a) possesses the time-frequency window

: : R
[b+at” —|a|Ay,b+at” +lalAy]l X | — — —, —+ — |,
a lal * a la|

where * and w* are the centers of ¥ and ¥, respectively, and Ay and A 75 are
the radii of ¢ and ;E, respectively. This time-frequency window automatically
narrows when detecting high-frequency information (i.e., small |a|) and widens
when detecting low-frequency information (i.e., large |a|). Similarly to the
Fourier power spectrum, the wavelet power spectrum of a signal f is defined
as the square of the modulus of the wavelet transform of the signal, i.e.,
Wyt (b, a) .

To reconstruct the signals from their wavelet transform, we need to assume
only that wavelet v satisfies the admissibility condition:

¥ ()]

]

v = dw < oc. (2.3)
A wavelet ¥ with an admissibility condition is called a basic wavelet.
If [z ¥ (1) df = 0 and for some constant K and € > 0,

Yy =K (reR),

(1 + [2)1e

then v is a basic wavelet.
Theorem 2.3. Let { be a basic wavelet. Then any signal f € L*(R) satisfies

(,)_L/[ (Wof) (b @) (Q)d—“db
f - Cv,k Rz \lff »a |a|‘¢, a a2 .

The formula in Theorem 2.3 is called the reconstruction formula of the
wavelet transform.

Proof. Denote the integral on the right-hand side by A(r). Let v, (f) =
. Then

1 da
A1) = cwfR(fR(Wﬁﬂf)“”“Wﬂ("b)db) =

1 1
ﬁ‘/f(ﬁ)
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The integral in brackets can be represented by a convolution:

fR(W-,zrf)(b,a)llfa(f = b)db = (Wyf)(-,a) * ) (1),
and so
w0 = o [(Wanta v
()_C_gb ]R w) (s a) * Y )a—z-

However, by (2.2),

1 —[{t—b ~
(Wyf)(b,a) = ﬁfmﬂr)w (a) df = (f x ¥a) (b)),

where Ja(r) = \/ﬁa(%) Therefore,

MI),L[( Va) w)(r)d—“
_CwR(f*a*a 2

Taking the Fourier transform on both sides, using the convolution property in
frequency, we get

~ 1 -~ = ~ d
Mw) = C—[f(w)\/\alw(aw)\/\alw(ﬂw)—j
U JR a

NONEIk . NONEIOE
= a= dut.
C‘,,r, R’ a C¢ 3 ‘Hl

o 2
Note that Cy = [ Y™ dy. Then

[ue]

He) =f().
Taking the inverse Fourier transform on both sides, we get the desired result:
Mo = f(0). O
Let
K(bo.b,a0,a) = (¥pa, ¥bgay),
where Y 4 (1) = L (%) A wavelet transform is a redundant representation

Vlal

whose redundancy is characterized by the reproducing equation:

1 d
(Wyf)(bo,ag) = / f K (b, by, a,ap)(Wyf)(b,a) —(21 db,
Cw RZ a

where K (b, b, ag, a) is called the reproducing kernel. It measures the correlation
of two wavelets ¥, and ¥y, 4,. The reproducing equation can be derived
directly by Theorem 2.3 and the definition of the wavelet transform.
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Example 2.1. In geoscience, the Morlet wavelet and the Mexican hat
wavelet are often used. Morlet wavelets consist of a plane wave modulated by a
Gaussian function:

YM() = 21Dt =(/2),

When 8 > 06, the value of its Fourier transform at the origin approximates
to 0, i.e., the Morlet wavelet has zero mean and is localized in both time and
frequency space. The Mexican hat wavelet is

1 2
Heon —(2/2)
H=——=x(l—-1re ,
v PR 5)(
where I'(f) is the Gamma function.
To measure the degree of uncertainty of a random signal, the continuous
wavelet entropy is defined as

S(t) = —f P(a,b)log P(a,b)da,
0

[Wyf(ba)*

where P(a,b) = T Wyf s

maximal.

Theorem 2.3 shows a signal is reconstructed by all the values of wavelet
transform Wy f(b,a)(a # 0,7 € R). Since the wavelet transform provides re-
dundant information, a signal may be reconstructed by discretizing the wavelet
transform. If a wavelet yr satisfies the stability condition

ASY [WQ ") B (weR),

The wavelet entropy of a white noise is

where @ is the Fourier transform of 1, then the half-discrete values
Wyf(b,27")(b € R,m € Z) can reconstruct the signal f. Such a wavelet ¥
is called a dyadic wavelet.

Takinga = 27" and b = 27"n in ¥4 (1) = ﬁw(%), we get

Uma(t) = 224 (2"t — n),

where m is the dilation parameter and n is the translation parameter.

For any signal f € L2(R), the discrete values Wy f(27™"n, 27"y (m,n € Z)
can reconstruct the signal if and only if the wavelet Y satisfies the frame
condition:

AN Ama) > <BIfI*.

The family {1 }m.nez i called a wavelet frame with upper bound A and lower
bound B. If A = B = 1, then it is called the Parseval wavelet frame.

If {Y¥m.n}mnez 1s an orthonormal basis, then {¥,; n}m.nez 18 called a wavelet
basis and ¥ is called an orthonormal wavelet.
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2.3 MULTIRESOLUTION ANALYSES AND WAVELET BASES

All orthonormal wavelets can be characterized by their Fourier transforms as
follows.

A wavelet ¢ € L% (R) is an orthonormal wavelet if and only if ¥ satisfies the
following equations:

lviP=1. Y Q") =1 (@ck)
m
and for each odd integer &,

Y T )T @+ 241) =0 (@ € R).

m=0

However, orthonormal wavelets cannot be constructed easily by this characteri-
zation.

2.3.1 Multiresolution Analyses

To construct orthonormal wavelets, multiresolution analysis is the most impor-
tant method.

A sequence of closed subspaces {Vi}mez of L*(R) is a multiresolution
analysis if

(i) Vi C Vi1 (m e Z),
(ii) f € Vpifandonlyif f(2:) € Vipp1  (m € Z);
(i) UV = L*(R);
m
(iv) [V = {0};
m
(v) there exists a function ¢ € Vy such that {¢(f — n)},ez is an orthonormal
basis of Vj.
Here the function ¢ is called a scaling function and Vj is called the center
space.
Proposition 2.1. Let ¢ € Lz(R). Then {@(t — n)lnyez is an orthonormal
system if and only if

Y @w+2mmP =1 (weR).

n

Proof. We know that {¢(f — n)},cz is an orthonormal system if and only if
f - q 1, n=0,
eng(t—n)dr =
R 0, n##0.

However, by Theorem 1.3, it follows that



56 Mathematical and Physical Fundamentals of Climate Change

1 5 1 2(k+ 1) 5
T -~ nw q., — -~ inw 4
thw(wn " do = Ek fﬂm 17(e)[ 2™ deo

f @@t — n)dr
R
1 2w )
N - 2k l]’lwd
h;fo [§(w + 2kn) %™ do

1 27 5
= — E |@(ew + 2km) |7 dw.
2w 0 k

Denote g(w) = Y |@(w + 2kx)|>. Then

2n
[ QD(I)E(I— ?’i') dt = L/ g(w)einm do.
R 27 Jo

Therefore, {¢(- — n)},ez is an orthonormal system if and only if

1 o ina I, n=0,
EL glw)e dw_[()’ n 0.
that is, the Fourier coefficients of g(w) vanishat n # 0 and equal 1 at n = (. So

glw)=1,i.e.

> P+ 2km))* = 1.
k
0

By Proposition 2.1 and (v), it follows that {@(f — n)},ez must satisfy
Zn l@(w + 2nﬂ')|2 = 1. Since ¢ € Vy and %go(%) € V_1 C Vy, we expand
%go(%) in terms of the orthonormal basis {@(f — n)},ez as follows:

%q) (é) = Z catp(t — n).

This equation is called the bi-scale equation and {c,},cz are called bi-scale
coefficients. Taking the Fourier transform on both sides of the bi-scale equation,
we get

PQw) = P@) Y cne " = Glw)H(w),
n
where H(w) =3, cne 1 s called the transfer function associated with the
scaling function ¢. It is clear that H(w) is a 27 -periodic function.
Theorem 2.4. Let H(w) be the transfer function associated with the scaling
Junction @. Then

H@)P?+ |Ho+mPF=1 (wel0,2r1]).
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Proof. Since ¢(2w) = @(w)H (w), it is clear that
?Qw + 2nm) = @lw + na)H(w + nw).

Since ¢ is a scaling function, by Proposition 2.1, 3" [@(w + 2nm)|? = 1, and
SO

Y Qo +2mm)P =1, Y [@le++2nm) = 1.
n n

Since H(w) is a 2m-periodic function, H(w + 2im) = H(w)(l € Z). Therefore,

1 = Z 1§20 + 2nm)|* = Z [§(e + nm) |} | H(w + n)|?
n

n

= 3 [0 + 2%4m) P |H(w + 2km) |
k

+ 3 @@+ Qk+ Dm) P H(w + 2k + D)
k

|H(@)* Y 1@+ 2k0) > + [Hlo +m)* Y 1@ + 7 + 2k7)|?
k k

= |H(w)* + [H(w + 1)
We get Theorem 2.4, o

Since ¢ is the scaling function, by (v), {¢(# — n)},ez is an orthonormal basis
of Vy. Let

Gun(®) = 2"20(2"t —n)  (m,n € Z).

Then {@m.n(f)}rez is the orthonormal basis of V.

To construct an orthonormal wavelet by using a multiresolution analysis
{Vin}mez, we consider the orthogonal complement space Wy of the center space
Vo in Vi, i.e.

Vi = Vo D w,

where €D represents the orthogonal sum. The following theorem gives a con-
struction method for the orthonormal wavelet.

Theorem 2.5. Suppose that for a multiresolution analysis, ¢ is the scaling
function, H is the transfer function, and {c,) ez are bi-scale coefficients. Let
satisfy V() = VZi (%) 7] (%) where [:’(cu) =e “H(w+ n), ie.,

Yt = =23 (=1)"C1_n @2t —n),

Then {yr(t — n)}nez is an orthonormal basis of Wy and (22 (2 — 1) Ymones
is an orthonormal basis ofL2 (R), i.e., ¥ is an orthonormal wavelet.
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Theorem 2.5 is called the existence theorem of orthonormal wavelets.
As an example, let

1, te [0, 11,

0, otherwise.

Ni(t) = [
Define
1
Ni(H) = (Ng—1 * N1)(1) = f Nie1(t—x)dx (k= 2)
0

and call Ny (1) the k-order cardinal B-spline. Its Fourier transform is

—iw \ K . k
o= (1) o (02

A direct computation shows that

sin® w dzk—l(cotw)
2k— 1)  dew*-!

Z Nk Qe + 21) |
/

=: F(Qw).

Especially, Fi(w) = | and F2(w) = 3 sin? 5+ cos? 5. Let g satisfy the con-
dition

Pulw) = o) - (Sm(mm)ke‘i“‘w/ma @),

(3, Nl + 2m)2) 7\ 02

Then ¢y is a scaling function. By Theorem 2.5, the corresponding orthonormal
wavelet Y (f) satisfies

~ (4 k w2 o2k @ (Fi((@/2) +7) 1/2
‘Jfk(w)—(jw) e sin 4(W) )

The wavelet vy is called the Battle-Lemarié wavelet of order k.

A function f is called a compactly supported function if there exists
a ¢ > 0 such that f(f) = 0(|f| > ¢). Daubechies constructed a lot of com-
pactly supported orthonormal wavelets and applied them widely in signal
processing.

For any N € Zy, Daubechies constructed a rational function P(z) =
ZIEK,_IH cpZ" with real-valued coefficients ¢, € R such that

N-1 o2k
P(1) =1, |Peioy? = k ( 7) ’
(1 [P(e™)] E CNir (Sin 3
0
where C)), = m Denote the filter

2N—-1

1 —iw
HB(C!)) = (%) P(e _1“’) — Z Iy, NE —mwl

n=0
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On the basis of {h,n}a=0.. 2~—1. the scaling function (pg can be obtained
numerically by the bi-scale equation:

2N—-1

1
590,'3(0 = 2;, ha g (2t — n),
n=

and qaﬁ is compactly supported. By Theorem 2.5, the corresponding orthonormal
wavelet 1s

1
YR ==2 Y (=D"hianey 2t —n).
n=2-2N

It is compactly supported. The wavelet y’fﬁ(t) is called the Daubechies wavelet.
Let ¥ be an orthonormal wavelet and ¥, ,, (1) = 2’"/21//(2’”t —n)(m,n € 7).
Then any f € L*(R) can be expanded into a wavelet series:

F=Y dunt¥mn (LP(R),

where the coefficients are
dpn = (o ¥mn) = ff(t) Ynp(ndt (mn e Z)
R

and d,, , are called wavelet coefficients, and Parseval’s identity Zm n Iaf,f,,,!ﬂl2 =
| f H% holds. Notice that the coefficient formula can be written as

—(t=2"n
dpn = 2" fR O (2—,,,) dr.

Therefore, when we regard v as a basic wavelet, the wavelet coefficients are just
the values of wavelet transform at @ = 27" and b = 27" n. If ¢ is the scaling
function corresponding to v, then any f € L>(R) can also be expanded into
another wavelet series:

FO =3 cnplt=m+ 3> dunWua® (LPR),

n m=0 n

where

cn = (fop) = []Rf(f)a(f—ﬂ) dz (n e Z),

dpn = (fs ¥mn) = \[Rf(r)am,n(t) dt (m,neZ).

Forany f € L?>(R), since L*(R) = (U nez Vi the projection of f on space V,,

Projy [ — f (m — 00),



60 Mathematical and Physical Fundamentals of Climate Change

that is, f ~ Projy, f when m is sufficiently large. Denote the orthogonal comple-
ment space of Vy, in Vi1 by Wy, ie, Vi1 = Vi, @@ Wy, So

ProijHf = Projvmf + Proijf,

where Projy, f and Projy, f are the low-frequency part and the high-frequency
part of the projection Projy, . f, respectively. Note that

Pma(t) = 22027t —n) (m,ne L),
Uty = 222"t —n)  (m.n € 7).

Since {@mn}nez and {Yym nlnez are orthonormal bases of V), and W, respec-
tively,

Z Cm+1n Pmtln = Z Conn Pmn + Z dimn 1,b‘m,n (meZ), (2.4)
n n n

where ¢y = (f, @m.n) and dyn = (f, ¥m,n). This formula is called the decom-
position formula.
Replacing m by m — 1 in (2.4), we get

E Cmn Pmn = E Cm—10 Pm—1n + E dm—1.0 Ym—1n-
n n n

and then substituting it into the first term on the right-hand side of (2.4), we get

Z Cm+1,n Pm+1,n = (Z Cm—1,n Pm—1n Z dm—l.n 1:bam—l.n) + Z dm.n Wi,
n n

n n

Continuing this procedure [ times, when m is sufficiently large, we have

m
f ~ Z Cm+1.n0 Pm+1.n = Z Cm—ln Pm—in + Z Z dj,n 'ﬂ!,/ff,n-
n n

j=m—l n

In application, one often uses such a decomposition.

2.3.2 Discrete Wavelet Transform

To avoid computing each coefficient ¢y p, dipp(n € Z) in (2.4), by using
integrals,

Cmn = ff(f)@m,n(f) dr (neZ),
R

dm,n = f.f(r)am,n(t) dr (" S Z),
R

the discrete wavelet transform provides a fast algorithm that can compute
coefficients {¢y.n} and {dy, »} with the help of {¢py1n}nez-
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Now we introduce the discrete wavelet transform.
Let ¢ be a scaling function and i be the corresponding orthonormal wavelet,
and

Cmn = (fa Qom,n), dm,n = (f, Wm,n)a
where

Pman(®) = 2"29Q2"t —n) (m,n € Z),

Vi, (1)

222"t —n)  (m,ne 7).

From the bi-scale equation and Theorem 2.5, it follows that

@)= pryp(2t = k),
k

v =) qp2t— k), (2.5)
k

where pp = 2¢; and g = (—1)*12¢,_1, and ¢ is the bi-scale coefficient.
Since {@m+1.1}ez and {¥my1,4}iez are an orthonormal basis of Vi1 and Wy,
respectively, and @ € Vin C Vi1, Yimn € Win C Vg1,

Z(Qﬁm,m Pont 1L,DPm+ 11,
i

1/fm.n = Z(‘pm,ns §0m+lJ)(Pm+lJ-
I

©@m,n

By (2.5), it follows that

m.ns Pm :\/Ef - _z_fdzi—n,

(@m.n> Pm+1.0) Rw(u mp(2u — 1) du ﬁm 2

Vs 1) = V2 f U — mPQu— I du = ——gi_an.
N 3 R \/2

Therefore,

1
Pman — ﬁzl:;’)l—ZnWm+l,[,

1
",lf"m,n = EXIIQI—ZnWm+M-

Noticing that ¢, , = (f, @m.n) and dyyy = (f, Yiu.n), we find
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1
Cmn = —= Z[)I—chm—i-l,ia
V25

1
dm.n - E Zl: G1=2n Cm+1,-

These formulas are called the discrete wavelet transform.
Since the union of {@y nlnez and {Y, n}nez 1s an orthonormal basis of V4|

and Pm+1n € Vm+ls

Pm+1n = Z((ﬂm+1.n,§0m,[) Pmi + Z(Wm+1,ns 1ﬁm,:’) Tffm,ls
! !

and so

(f, @m-}-l,n) = Z (§9m+|,n, (Pm,l) (fe (Pm,[) + Z ((Pm+ 1.ns lb'm,[) (f, ll-’fm.l),
! [

that is, the inverse discrete wavelet transform is

: (
Cm+lan = —F= Zﬁ;,_zt Cml + Z [y dm,[) .
\/5 1 !

2.3.3 Biorthogonal Wavelets, Bivariate Wavelets,
and Wavelet Packet

Biorthogonal wavelets are a kind of wavelet that are used often. Their construc-
tions depend on the concept of the Riesz basis. Let {g,} be a basis for L*(R).
and for any sequence c,,(z,,I |c‘n|2 < 00 ) there exists B > A > ( such that

2 2 2
AD enl <10 cagn 132 B leal,
n n n

then {g,} 1s called a Riesz basis for L* (R).

Let v, ¥ € LX(R). If their integral translations and dyadic dilations satisfy
(Y. Vr’m’ w) = 8m m"sn ' and both {Wm n}m nez and {l"fm n)mnez are Riesz bases
of LZ(R) then {y, T,"I} is called a pair of biorthogonal wavelets, where 8 =
Ok # 1), 80 = L(k = ).

If {y, ¢} is a pair of biorthogonal wavelets, then, for f € L2(R), the recon-
struction formula holds:

f= ZUWWM—ZUWan

m,n

Symmetric or antisymmetric compactly supported spline biorthogonal
wavelets are applied widely. The construction method is as follows. First, a
pair of trigonometric polynomials H(w) and H(w) are defined as
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- p
H(w) = e H€@/2) (cos %) L(w),

H(w) = e €@/ (cos —) L(w),

where ¢ = 0 for even numbers p and p, and ¢ =1 for odd numbers p
and p, and

L(Cosw)z(cosw) Z ik sin* 2, (q = %(P"‘];)) .

Next, the bi-scale coefficients {h,} and {h”} are computed using

r

H(Cf)) — Zhneiinm,

=

';l" efincu
" .

ﬁ(a)) =

L=

)

~

For example, let p = 2, p = 4, and L(w) = 1. Then
hy=h_=0, h =h_;=035355 ho=1
and
ho=0.9944, h_y=h; =04198, Ty =hy = —0.1767,

~ ~

B3 =hy = —0.0662, h_y = hs=0.0331.

From this, with use of bi-scale equations,

P
p(t) = Y 2hp2t—n),
-P

P
P = D 20§t —n),
—P

the scaling functions () and @(¢) can be sg]ved numerically. Finally, the
corresponding biorthogonal wavelets ¥ (f) and v (f) are obtained.
If ¢ is a scaling function and v is the corresponding wavelet, define

v V() = et)v(n),
v @) = vitDen),
v = YY)



64 Mathematical and Physical Fundamentals of Climate Change

Denote v,ff,(,ﬂ,(r) = 2% K (27t — n), wherem € Z,n € Z? and k = 1,2, 3. Then

{ IE!I,BI’ t(?lz,g’i’ .'$13..21}(m.ﬂ)EZ3
forms an orthonormal basis of L2 (R?). Such a basis is called a bivariate wavelet
basis.

A multiresolution analysis can generate not only an orthogonal basis but
also a library of functions, called a wavelet packet, from which infinitely many
wavelet packet bases can be constructed. The Heisenberg uncertainty principle
considers only the minimal area of time-frequency windows and does not
mention their shapes. For a wavelet basis, the shape of the time-frequency
window has been predetermined by the choice of the wavelet function. However,
in a wavelet packet, the time-frequency windows are rectangular with arbitrary
aspect ratios.

For a multiresolution analysis, let ¢(f) be the scaling function, (@) be the
transfer function, and v be the corresponding wavelet. Define o = ¢, ;11 = 1,

and
Hoy(w) = H(%) 1 (%) .

a1 (@) = (T4 7)u(3) (=010,

The sequence {j;}—p,1,... is called the wavelet packet determined by the scale
function @, where / is called the modulation parameter. The integral translations
and dyadic dilations of all wavelet packet functions,

M[,m,.’l:z%,l“t'i(zm[_n) (1201]7"';m1neZ)1

are called the dictionary. The choice of the modulation parameter / and the
dilation parameter m, and the translation parameter n can give a lot of orthonomal
bases. These orthonomal bases are called wavelet packet bases. A signal f can
be expanded into an orthogonal series with respect to a wavelet packet basis of
order k(0 < k < jo) as follows:

oo 281

FO=Pif + 3> ckmnbtaipn @1 —n),

j=jo m=0_n

where Pjf is the projection of f on the space Vj;, and cjrmn = (f, ok,
2=kt —n)).

Recently, great advances in wavelet analysis have resulted from the study of
Parseval wavelet frames (see Section 2.2).

The Parseval wavelet frame has now become an alternative to the wavelet
basis and it is anticipated that Parseval wavelet frames will soon be applied
in the analysis of geophysical processes. For any signal f of finite energy, if
{VYm.ntmnez is a Parseval wavelet frame, then
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f = de,nVI’m.n’ where dm,n = (f, 11lffm,.'1)~

m,n

This is similar to the orthogonal expansion of a signal with respect to a wavelet
basis. However, Parseval wavelet frames {{;,}mnez may not be orthogonal
or linear independent. Their construction is easier than that of wavelet bases.
It is well known that a univariate wavelet basis is generated by one func-
tion, and a bivariate wavelet basis is generated by three functions. However,
the number of functions generating a Parseval wavelet frame may be arbi-
trary. Their construction method is based on the following unitary extension
principle.

Let a function ¢ satisfy @(w) = P(%) @ (%). where P is a trigonometric
polynomial. One constructs r trigonometric polynomials {Q;};—1...., such that

.....

mmﬂw+n+§:gwﬁyw+n_[éif?
l b - 2

and then defines {¥;}j=1,., as

o-0(2)5(2)

The integral translations and dyadic dilations of these functions form a Parseval
wavelet frame.

2.4 HILBERT TRANSFORM, ANALYTICAL SIGNAL, AND
INSTANTANEOUS FREQUENCY

For a function f(#) (¢ € R), if the Cauchy principal value

1 i 1 '
pvt [ L) ar =~ im A2
TJrI—T Tes0/ygme I— T

exists, then it is called the Hilbert transform of f(t), denoted byf(t), ie.

Foy=pvt [ LT g
I

RI—T
Hilbert transforms have the following properties:

(i) (Linearity). Let I = af] + Bf>, where o, f are constants. Then F= afl +

Bf>.
(ii) LTranslation). Let F(f) = f(t— «). Then the Hilbert transform F =

Fit—a).

In fact,

Foy =pvr [ =2 ar —po [ T —Fi—o.

t—t TJrl—o—u
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(iii) (Dilation). Let F(#) = f(x1), where A is a real number. Then the Hilbert
transform

F(1) = f(1r) sgnh,

where sgni = 1(A > 0) and sgnA = —1(k < 0), and sgn0 = 0.

For A > 0,
F(t)=pyv.— f(“) r= vt [ LY gu = F = Four sani.,
T Jpt—71 T JgAt—u
and for A < 0,
Py = pv~ [ 120
TJrpt—T
= v [T qu = Fou = Fou sgni.
T Jr AM—u

The following theorem shows that the Hilbert transform of a harmonic wave
is also a harmonic wave.

Theorem 2.6. Letf (1) be a periodic signal with period 2. Then its Hilbert
transform is

= [ [”f(f-l-r)—f(!—f)d (2.6)

f = -5 lim tan(t/2)

27 =0/,

Especially, if f(f) = cost, then [(f) = sin t; if () = sint, then f(f) = — cos'.
Proof. The Hilbert transform of f is

~ 1 f@ 1 CEEDT g (7)
f = p.v.;]RI_ dr = lim pv—Z[ dr

N—oo 1 N (2k—1)m r—T

. Su+ 2km)
= 1 —
Ni»moop\ Zt—(u-l—an)

From f(u 4 2km) = f(u), it follows that

| Q)
f() = lim p.wv. Z TE—y

-

1 1
p.V.; f(bl) ( lim E (1‘,,,)_2]@1—) du.

By using the known formula gzl = limy— oo 3 7=, we find the right-
hand side is equal to ‘
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1 [ f(u) ([‘E f )f(rr)
pv.— —du = —— lim
2m J_, tan((t — u)/2) 27T =0 tan(t/2)

I T+ —flt—1)
= —— lim d
2w e=0J, tan(t/2)

So we get (2.6).
If f(f) = cost, from (2.6), it follows that

1 . f” cos(t+ 1) —cos(t— 1)
m dr

——1
2m =0/, tan(z/2)

f

2 . T 2 T .
= —sint cos” —dr = sint.
a 0 2

If f(t) = sint, then f(f) = —cos(t + 5), and so f(t) = —sin(f + 5) = —cos 1,
|

By Theorem 2.6 and the properties of the Hilbert transform, if a signal f(f)
is a trigonometric polynomial and

N
F(0) =) (cy cos(nt) + dy sin(nr)),
then its Hilbert transform is aloso a trigonometric polynomial and
T =Y (cy sin(nt) — dy cos(nr)).
If a signal f € L, can be expanded into a Fourier series,

FO =Y enlPe™ = () + Zlmn () cos(nt) + by(f) sin(n)),

n

then its Hilbert transform satisfies

F0y =" —ica(f) sgnne™ = " (an(f) sin(nr) — by(f) cos(nt)),
n 1

where the series on the right-hand side is called the conjugate Fourier series. So

Cn(f};) = —icy(f)sgnn (n € Z),

FO+TF0 =co)+ Y 2" (z=e".
|

From this, we get the following theorem.

Theorem 2.7. Letf € Ly, ana’? be its Hilbert transform, and c, (f), cy (3;) be
their Fourier coefficients. Then c, (F) = —icy(f)sgnn(n € Z) andf(t) + if(t) =
cof) + 27 2en(f) 2 (z = &),
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From Theorem 2.7, we see that for a real-valued periodic signal f, adding the
Hilbert transform f as the imaginary part, we obtain an analytic function in the
unit disk f (2) = co(f) + 27" 2c (N 2" (Iz] < 1).

For a nonperiodic signal of finite energy, replacing Fourier coefficients
by Fourier transforms, we obtain a result similar to Theorem 2.7, as
follows.

Theorem 2.8. Let f € L>(R) and f be its Hilbert transform. Then their
Fourier transforms satisfy

flw) = ) sgno.
Proof. Denote

1
- 0<d=1<n<oo,
N
K&,n([) - ( 0, otherwise,
and
N 1 J—u
Fon(t) = _[ du.
T Js<|ul<n u

From these two representation, it follows that

~ 1 1
Jan(D) = —ff(f— u) Ks () du = —(f = K ) (1).
T Jr T

By the convolution property of the Fourier transform, we get

= | | P
Soq(w) = ;(f * K5 )" () = ;f(w)Ka,n(w)- 2.7
With use of the Euler formula, e "' — e/¥ = —2isin v, the Fourier transform of

K,s,,? is

R 1 ) -4 n efira)
Ksp(w) = / —e " dr = (f +[ ) dr
a<lt<n 1 - s !

n c—i!m _ eit‘m N0 ¢inu
= / —dt = —21[ du.
s 4 s M

By the formula fooo % du = %, we deduce that for > 0,

Lo . " sinu [ sinu .
lim Kj,(w) = lim [ =2i du ) = =2i du = —mi.
3—0 8 0

8—0 @ u u
n—00 n—00

Similarly, for @ < 0, we can deduce that lim ;. Eg,,,(a)) = mi. Therefore,
n— oo

lim Kj,(w) = —7isgnw.
-0

n—00
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From this and

~ 1 [ f(0) o~
Fo =ps [ I ar = tim Tpoo,
wlrimT

by (2.7), we get

=~ ~ IA -~ P
fl@) = lim fy, (@) = lim (f(w)Kg,,,(w)) = —if(w) sgnw.
§—0 §—0 T

n—oo n—+0Q

From Theorem 2.8, it follows that

2?(&)), w >0,

0, w<0 Fla).

F@) +if (@) = f(@) + (o) sgnw = {
So
fO+ifm=F" @,

where FY (¢) is the inverse Fourier transform of F(w). This implies thatf(r) =
Im FY (p). N
_ Corollary 2.1. Let f € L*(R) and f be the Hilbert transform of f. Then
7 = —f (0. ~
Proof. Let ¢(f) = f(1). Then, by Theorem 2.8, we have
) . = . s -~
p(w) = —1p(w) sgnew = —if (w) sgnw = (—isgnw)f(w) = —f(w),

and so £(1) = (1) = —f(0). 0
Bedrosian studied the Hilbert transform of products of two signals as follows.
Bedrosian Identity. Let f,g € L>(R) and the Fourier transforms of f, g

sarisj‘ny(a)) = 0(w € R\ (—a,a)) and g(w) = 0(w € [—a,al) for some a > Q.

Then fg = f 2.
Proof. By the assumption and the convolution property in frequency, it
follows that

~ 1 ~ 1 a_
o) = 5= F D) = 5 f Fg(w — u du.
T 2 J_,

By Theorem 2.8,}; = —isgn a)fg(a)), and so

~ 1 o~ .
fe(n) = Tf(*ngnw)fg(w)e”w dw
T JR

- (2;17)2 fm(‘“g“‘“)e"‘” " T — u) dudo
- (2%)2[_”?(11) (-/;Kg(v)(—isgn(u+ v))e“(‘“”)du) du.
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Consider sgn(u# + v). Note that —a<u <a. If v=a,then u+v > 0,v = 0,
andsosgn(u + v) = sgnv. Ifv < —a,thenu +v < 0,v < 0, and so sgn(u + v)
= sgnv. Note that g(e) = 0(@ € [—a, a]). The integral in brackets is equal to

—a o0 .
(f +/ )E(v)(—i sgn(u 4 v))e’ ) dy

— 00 a

= —if Z(v) sgnvel ") dy = —j / 2(v) sgnve V) du,
R\[—a.a] R
Therefore,
- 1 a_ R . . N
fe(t) = Wj flue™ du/{gg(v)(—wgn vie dv = f(Hz ().
—a
a

A signal of finite energy is called an analytic signal if its Fourier transform
is zero for negative frequency.

Proposition 2.2. Let f € L*(R) and? be the Hilbert transform of f. Then
Jfo () = f(t) +if (?) is an analytic signal.
~ —~
Proof. By Theorem 2.8: f = —if(w) sgnw, it follows that

(@), w=0,

/f;(a)) :f(w) + i_?(a)) :.’};(ﬂ)) +./};(0))58n“’ = { 0. w < 0.

that is, f, (f) is an analytic signal. |

Complex analysis shows that f, () =f(1) + 1}; (f) can be extended to an
analytic function f, (z) on the upper-half plane. Denote f, (f) = ADe?? Then

(F)* + FnH'2,

6(1) = tan”! (f(f))
S

where A(f) and 6 (r) are called the modulus and argument of f, (1), respectively.
Definition 2.1. Letf € L?(R) be a real signal and

fa(®) = F(0) + if (1) = A@E®D (A1) = 0).

Then 0'(1) is called the instantancous frequency of f(1).

Example 2.2. Let f(1) = a(t) cos(wot + @), where a(r) € L2 (R)and a(t) >
0, wp > 0, and @(w) =0 (Jo| > wp). Then the instantaneous frequency of
f is ().

Let g(#) = cos(wot + ¢). By Theorem 2.6 and properties of the Hilbert
transform, it follows that

A(1)

2() = sin(wgt + @) sgn wp = sin(wpt + @) (wp > 0).
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Noticing that @(w) = 0(|w| > wp) and suppg(w) = {wp, —wp}, by the
Bedrosian identity, we find that

F(t) = a(HZ (1) = a(r) sin(wot + ¢).
Therefore,

fu(t) = f() +if (1) = a(n)(cos(wot + @) + isin(wor + @) = a(n)el %),

By Definition 2.1, the instantaneous frequency is wog.
Let a signal f be the sum of two cosine waves with the same amplitude:

f(t) = acos(wit) + acos(warf) (w1 > w2 > 0).

Then its Hilbert transform is

~

f() = asin(wif)sgn o) + asin{waf)sgn wy = asin(w1?) + asin(wa!).

Then the corresponding analytic signal is
1 =f(t i~ ) =a eia)lt eiwzf — 2acos Mei((w|+wg)f/2).
Ja () = (1) +1f (1) = a(e™ + ™) 5

By Definition 2.1, the instantaneous frequency is %(wl + w3). This does not
reveal that the signal includes two cosine waves with frequency e and ws,
respectively, so the Hilbert transform can deal only with narrow-band signals

2.5 WIGNER-VILLE DISTRIBUTION AND COHEN’S CLASS

The windowed Fourier transform and the wavelet transform analyze the time-
frequency structure by using a window function, while the Wigner-Ville
distribution analyzes the time-frequency structure by translations. The Wigner-
Ville distribution is defined as

T\ 7 T —itw 2
Wy f (u, ) = f(u+ —)f(u— —)e dr  (f € [2(R)).
E 2 2
Iff(n) = e'”  then Wyf(u, @) = lﬂé(w — b), where § is the Dirac function.
The Wigner-Ville distribution possesses the following properties:

(i) (Phase translation). If () = el® g(1), then Wyf(u, w) = Wyg(u, w).
(ii) (Time translation). If f(1) = g(¢ — uq), then Wyf (u, w) = Wyg(u — up, o).
(i) (Frequency translation). If f(f) = e g(r), then Wyf(u w) = Wy
g(u,  — wyp).
(iv) (Scale dilation). If f(1) = }f g (4). then Wyf(u, w) = Wyf (4, sw).

The Wigner-Ville distribution can localize the time-frequency structure of the
signal f. In the Wigner-Ville distribution, time and frequency have a symmetrical
role, i.e., the following proposition holds.

Proposition 2.3. Wyf (1, ®) = % fR?(a) + 5)f (0 — %)ei”‘ dr.
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Proof. Denote

w@) =f(u+ %) eI p(r)=f (u _ %) .

By Theorem 1.3, the Wigner-Ville distribution is
1 ~ =
W) = [ ez dr = - [ e do.
i3 27 Jr
Letu + 5 = t. Then
P(w) = /f (u + z) e it gt g,
R 2
=2 f f(e  HUm0Ere) qp — 7 (20  2£)eHHE+e)
R

and

= TN itw 4 — AT Qinw
g(w)—fRf(u—E)e dr = 2 (= 2w)e?

Using the substitution £ + 2w = 5, we have

Wyf(u,§) = ;/R?(z(w+5))?(—2w)e2i“(5+2‘”)dw

= o [R5 D) F (s 1) emar

W

From Proposition 2.3 and the definition of the Wigner-Ville distribution, we
get the following proposition.
Proposition 2.4. (i) Ifsuppf(u) = [uo — p,uo + i), then supp Wyf (-, w)
C [uo — p, uo + pl (@ € R).
(ii) If supp f(@) = [wo — 1, wo + 1], then supp Wyf(u, ) C [wo — 1, wo + 1]
(u € R).
Proof. Let g(t) = f(—t). The Wigner-Ville distribution is written in the form

TH2u\_[t—2u\ i,
i [ (252 (52 o
R

Since supp f =[uwo— p,up+ p] and suppg = [—uo— p,—up+ pl, it
follows that

T+ 2u
SUPPf( ) = [2(up — u) — 240, 2(uo — u) + 2],

2

T—2u
supp g ( ) = [—2(uo — u) — 200, —2(up — u) + 2p].
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Therefore, Wyf (-, @) # 0 only if these two intervals overlap. This is equivalent
to |up — u| < u. So we get (i). Similarly, by Proposition 2.3, we can get (ii). [

Since the Fourier transform of a Gaussian function is still a Gaussian func-
tion, a direct computation shows that the Wigner-Ville distribution of Gaussian

. 2/942) . . . .
function f(f) = (o2m)~ (/DU /227) is a bivariate Gaussian function,

2

1 P
Wt () = —e~ 1T e Wyt ) = [F))P )P,
T
For a signal £ (), we know that f,, () = f(t) + if () = A(De’ D (A1) = 0) is

an analytic signal and 0'(r) is the instantaneous frequency of f(r). The formula
fR oWy fy(u, w) de
Sz Wfa (1, @) do
gives an equivalent definition of the instantaneous frequency computed by
the Wigner-Ville distribution. This shows that the instantaneous frequency is
the average frequency. Moreover, the Wigner-Ville distribution is a unitary

transform which can imply the energy conservation property.
Theorem 2.9. Forf, g € [*(R),

0'(u) =

2
[f(t)g(t) dy] = Lj Wy f(u, 0)Wvg(u, w) du dw.
R 21‘[ R2

Proof. Note that

A

/f Wyf (u, o)Wy g(u, ) dudw |
[t 76 (o)
(o D)o o) anao

By Formula 1.1, the Fourier transform of 1 is 278, we get

f e ) Gy — 278(7 + 7).
R

Moreover, we have

zx[f u+ u——)(fRB(r-i-t')g(u—%)E(u+%’) dr’) dr du
2:1][ u+ ufi)g(uf%)g(uir%) dr du

Lett=u+ (r/2)and s = u — (t/2). Then

A

2

A=2n / fR JOF ($)g()g(n drds = 2 /R F(Og(p dr
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Proposition 2.5. The Wigner-Ville distribution satisfies
~ 1
[ Wyf(u, ) du = [f(w)|> and — f Wy f (u, w) dw = |f (u)]*.
R 2m Jgr

Proof. Let g, (u) = (Wyf)(u,®). Note that g,(0) = fR go(w)e™ % du =
fR gw(u) du. Then

f(WVf)(u,w)du=fgw(u)dw=§w(0)~
R R

By Proposition 2.3, the Fourier transform of g, is 2, (1) :f(m + '2—')?((» — %).
Therefore,

f (Wyf) (u, @) du = [f(w)]*.
R
Similarly, let h,(w) = Wvf(u, w). Then
j Wy f (1, ) do = f hy(w) do = Ty (0).
R R

By the definition of the Wigner-Ville distribution, the Fourier transform f, (t) =
27f(u + 5)f (u — 5). Therefore,

f Wyf (u, @) do = 27 |f ()%
# O

However, the Wigner-Ville distribution may take negative values. For exam-
ple, let f = x;—7.7]. Since f is a real even function,

Lf(% +u)f(% — u) e iTedr

= 2/ flt +u)f(t —ue 2" dr
R

(W) (u, w)

and f(r + u)f (t — u) = [T+, 7—u) (T), and its Fourier transform
T—|u|
/ efilmdl,
—T+|u|
C—iw(T—\uD _ ciw(T—|uU 2 sin((T _ \MD({))
—iw - w '

Note that (Wyf)(u, w) = 0(|u| = %) Then

(f(x +u)f (x — )" (w)

2sin(2(T — |u))w)
X

w —

1
EWVf(”‘ w) = (f(r + wf(t —u)" 2w) =

[
v~

](u).

Clearly, Wyf(u,w) takes negative values. A Gaussian function is the only
function whose Wigner-Ville distribution remains positive.
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To obtain a positive energy distribution, one needs to average the Wigner-
Ville distribution and introduce the Cohen’s class distributions as follows

Kf(u,w) := f va(u’, ok —u',w— ') du' do’,
]RZ

where k(u,v) is a smooth kernel function. The windowed Fourier transform

belongs to Cohen’s class distributions, and the corresponding smooth kernel is

1
k(u, w) = EWvg(M,w),

where g(f) is a window function.

2.6 EMPIRICAL MODE DECOMPOSITIONS

Spline functions play a key role in the empirical mode decomposition (EMD)
algorithm. If f is a polynomial of degree k — 1 on each interval [x,, x,41]1(n € Z)
and f is a k — 2-order continuously differentiable function on R, then f is called
a spline function of degree k(k > 2) with knots {x,},ez.

Let a function f on R have local maximal values on {&,}:

Ao <o <A <oy <
Define the upper envelope M(f) of f as follows:

(i) M) (an) = flon)(n € Z),
(ii) M(f) is a 3-order spline function with knots {a)}.

Let a function f on R have local minimal values on {8,}:

< Baa<fPo<Pr<Br<---

Define the lower envelope m(f) of f as follows:

D m()(Bn) =f(Bn)(n € Z);

(ii) m(f) is 3-order spline function with knots {$,}.

The local mean of a function f on R is defined as

1
VN = E(M(f)(!) + m(f) (D).

For example, f(7) = 3sin(2¢ + 7) attains the maximal values on a, = %

((2n + %)JT — 7)(n € Z) and attains the minimal values on f, = %((Qn -
%)Tf — I)(n € Z), and attains the crossing zeros on y, = %(mr — F)n e Z).
Clearly,

< Va1 < Bn < Vo <0y < Voutl < Buyl <0

So f(#) has the upper envelope M(f)(f) = 3 and the lower envelope m(f)(#) =
—3, and its local mean V(f)(f) = 0.
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A function f is called an intrinsic mode function (IMF) if it satisfies the
following conditions:

(i) The number of extrema and the number of crossing zeros are equal or differ
at most by one.
(ii) Its local mean is zero.

Empirical mode decomposition is used to decompose a signal f into several
IMFs. If a discrete signal f(f) has more than one oscillatory mode, then it can be
decomposed into a sum of several IMFs and a monotonic signal as follows:

(i) Take the upper envelope M(f) and lower envelope m(f) of f(£).

(ii) Compute the mean V(f)(r) = %(M(f)(r) + m(f) (1)) and the residual r(f) =
fO = VD).

(iii) Let r(f) be the new signal. Follow this procedure until the local mean of
r(1) is equal to zero.

(iv) Once we have the zero-mean r(#), it is designated as the first IMF, ¢ (7).

(v) Denote fi (1) = f(f) — c1(f). We start from fi(f). Repeating the procedure
from (i) to (iv), we get the second IMF, c2 ().

(vi) Continuing this procedure, we get ¢1(#),c2(1), ..., cn ().

This process is stopped when the residual r,(#) is a monotonic function.
The procedure from (i) to (vi) gives an empirical mode decomposition of the

signal f (1) as follows:
n

F@ =Y erlt) + (o),

1

where each ¢k () is an IMF and r, () 1s monotonic.
Let ¢ (1) be the Hilbert transform of ¢ (1):

Then Z(f) := ci(f) + ick (1) = Ag(e®%D is an analytic signal, where

Ar(t) = (cF () + TN, 6(1) = arctan (Ck(f)) ,
ck (1)

Denote by w(?) the instantaneous frequency of ¢, (7). Then the instantaneous
frequency wy (1) = 6,(r). This process is also called the Hilbert-Huang trans-
Sform.

PROBLEMS

2.1 Letf(r) = e ", Compute its Gabor transform (Ggf) ().
2.2 Compare the time-frequency window of the windowed Fourier transform
with that of the wavelet transform.
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2.3 Download the monthly mean North Atlantic Oscillation index from http://
www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/new.nao.shtml and
then research the wavelet power spectrum of the North Atlantic Oscillation
index at different scales.

2.4 Let x(x) be a Haar wavelet, i.c.

1

—1,05f<§

x@W =411, %<t<l,

0, otherwise.

Prove {22 (2™ — n)}mnez is a wavelet basis of L2(R).
2.5 Given a multiresolution analysis {Vi},

V= {f € I2R), fl@)=0, |o|=2"7},

try to find the scaling function and the corresponding orthonormal wavelet.
2.6 Let H(w) be the filter of a scaling function and

H(w) = Z ape”ine,

Prove that
(W) X, am=3,dn41 =1
(ii) annanfﬂc = { 9’ if g,k © Z’
5, k=0.
2.7 Perform empirical mode decomposition of local temperature data and
analyze when significant warming occurs.
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Chapter 3

Filter Design

The purpose of filtering is to extract the information of geophysical signals for a
given frequency band or restore the original signal details as much as possible by
removing the unwanted noise produced by measurement imperfections. A lot of
filters have been proposed, each of which has its own advantages and limitations.
Implementation of these filters is easy, fast, and cost-effective by using a linear
time-invariant system. In this chapter, we first focus on continuous linear time-
invariant systems and the corresponding analog filters, including Butterworth
filters, Chebeshev filters, and elliptic filters. Then we turn to discrete linear time-
invariant systems, finite impulse response (FIR) filters, infinite impulse response
(ITR) filters, and conjugate mirror filters.

3.1 CONTINUOUS LINEAR TIME-INVARIANT SYSTEMS

Linear time-invariant systems play a key role in the construction of filters. To
explain this concept, we use the notation y(f) = T[x(#)] to represent a system,
where x(7) is the input to the system and y(#) is the output from the system.

If, for arbitrary constants a and b,

Tlax (1) + Bx2(®)] = oT[x1(D] + BTx2(D)],
then the system y(f) = T[x(#)] is called a linear system. If, for x, (1) — x(1) (LY,
Tlxp(] = Tlx(0] (e R),

then the system y(r) = T[x(#)] is continuous.

Let y(#) = T[x(#)] be a linear system and t be a constant. If y(r— 1) =
T[x(t — 7)] for any 7, then this linear system is called a linear time-invariant
System.

In order to study linear time-invariant systems, we first define convolution.

Let g() € L2(R) and x(f) € L*(R) be two continuous signals. The convolu-
tion of g(¢) and x(7) is

(gxx)() = f gt—wxu)du (teR).
R
It has the following properties:

(g*(cx+dy)) =clgxx)(0) +d(g*y)() (eR),
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(g*xx0)(H) = (xxg)0), (gxxxy)O = (gx0)*y@® ek,

where g(f), x(f), and () are continuous signals and ¢ and d are constants.
Proposition 3.1. Lef g € L? (R). A system y(f) = T[x(#)] determined by the
convolution

¥ = (gxx)(1) = / gt—wx(u)du (xe L*R))
R

is a linear time-invariant system and is continuous. Here g is often called a filter.
Proof. Take y|(f) = T[x;(f)] and y2(f) = T[x2(#)]. For any two constants «
and §8, it is clear that

ay (D) + By2() = aT[x(D] + BT[x2(D)].

On the other hand, by the assumption

i@ =(g*x)( = .[Rg(t—u)xl(u)du,

ya(t) = (g xx2) (1) = ng(f— u) x2(u) du,

it follows that

ay1(f) + By2 (1) chRg(f* u)n(u)du+ﬁ[]Rg(I*u)xz(u)du

]]Rg(ti u) (aexy(u) + Bxo(u)) du
Tlaxi () + Bxa(0)].

Therefore,

Tlax1 () + Bx2(0] = aT[x1(0] + BT[x2(1)],

i.e., the system T is a linear system.
Let x, () — x(2) (L?). By the Schwarz inequality,

ITTxa ()] = Tlx(D]] ng(I — ) (xp () — x(u)) du

1/2
( f lg(t — w)|* du f b (1) — x(u)]? du)
R R
1/2 1/2
( [ |g<u)2du) ( [ |x,,<u)—x(u)|2du)
R R

-0 (n— o).

[A

So Tlx, ()] — T[x(0)](t € R), i.e., the system is continuous.
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By the assumption and g * x = x * g, it follows that
vy =(g*xx)(t) = (xxg)(1) = f x(t — u)g(u) du,
R

and so, for any 7,
yitr—1)= f x(t—1—wg du=T[x(r—1)],
R

i.e., the system y(#) = T[x(#)] determined by the convolution is a time-invariant
system. O

For a continuous linear time-invariant system, the inverse proposition of
Proposition 3.1 holds.

Proposition 3.2. Ifa linear time-invariant system T is continuous, then there
exists a filter g (t) such that the input x(f) and the output y(t) of the system satisfy

(1) = f gt — w)x(u) du = (g * x)(1). (3.1)
R
Proof. Since the system is a linearly continuous system, from

x() =< 8(t — u), x(u) >= [ 8(t — u)x(u) du,
R

where & is the Dirac function, it follows that
T[x()] = / T8 (t — u)]x(u) du.
it

Let g(r) = T[8(1)]. Since T is a time-invariant system, T[8(t — u)] = g(t — u),
and so

¥ = fR gt — w)x(u) du,
O

Propositions 3.1 and 3.2 state that a continuous system 7T is a linear time-
invariant system if and only if T can be represented by a convolution form,
ie., y(©) = T[x(9)] = (g * x) (1), where the filter g is the response of the Dirac
impulse, i.e., g(r) = T[5(1)].

A linear time-invariant system 7' is causal if the output y(7) depends only on
the input x(u) (u < t). Proposition 3.2 shows that T is causal if and only if the
filter g(u) = 0 (4 < 0). A linear time-invariant system 7T is stable if any bounded
input produces a bounded output. By (3.1), we have

[y(O] < sup [x(w)] | |g(u)| du.
ueR R

So T is stable if and only if f]R |g(u)| du < oo. Suppose that T is a continuous

linear time-invariant system with the filter g. For complex exponent ¢!, the
output of the system T is
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T[ei%] = f g(u) I dy = [ g e du=cM3(Q),  (32)
R R

s0 g(2) is called the frequency response of the system T. If T is regarded as a lin-
ear continuous operator, then each e'* is the eigenfunction of T corresponding
to the eigenvalue g(£2).

Now we introduce an ideal low-pass filter g4(7) which passes low-frequency
signals and completely eliminates all high-frequency information.

Let

17 |Cl)| E QCa

Gi(w) = X-q.0q(@) = { 0, lo| > Q&

and the filter gq(#) be the inverse Fourier transform of Gy(w), i.e.,

1 [ . elffle _ o7t oin(1Q2.)
= — 1(u.'d — — c )
84() 2 _/;Qu © ot 2mit Tt

Define a linear time-invariant system 7 by y(f) = T[x(f)] = (gq * x)(#). Taking
Fourier transforms on both sides, by the convolution property of the Fourier
transform, we get

X(U)), ‘wl E QCa

Y(w) = Ga(w)X(w) = { 0 @] > Qe

where X(w) and Y(w) are Fourier transforms of the input x(f) and the output
v(#), respectively. This equality states that the frequency spectrum of low-
frequency waves remains invariant, while that of high-frequency waves vanishes.
Therefore, gq(?) is called an ideal low-pass filter and eier[_ngc](a)) is the
frequency response. However, the continuous linear time-invariant system with
an ideal low-pass filter is not stable, and this implies that bounded input does
not imply bounded output, moreover, it is also not causal, so it cannot be used
in practice.

3.2 ANALOG FILTERS

Three classical analog filters are follows:

(i) Butterworth filter. A Butterworth filter gy(7) is a filter whose Laplace
transform Gy (s) satisfies
1 Q2N

Gy(iQ)|* = = , 3.3

where €2, is the width of the passband, N is an integer, and N is the order
of the filter.

When Q = Q., |Gp(iQ)|* = % When N is increasing, |Gy (i€2)| ap-
proximates to an ideal low-pass filter. It does not have a zero. Its poles
sp are determined as follows.
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From Q% 4+ @2V =0, it follows that Q*¥ = —Q2", and so @ =
1)
(—I)ﬁﬂc. Since (—l)ﬁ has 2N values, {e 2 }k=o0....2n—1. Therefore,

2N

: 2 Qc
|Gu(iQ)|” = W (2 eR),
(€2 — sx)
(2k+1)m
where s = el Q.. Let s = i2. Then
QZN ( ])NQZN
2N I(Q_S) 2N I(S—ISk)
These poles {isk}k:(),_,_‘zgv,l are symmetric about the origin. Let pi, ..., pN
lie in the left-half plane. Then the other poles are —p1,..., —py. So
2N N NN
Q . Q. (=DM

o I(Q k) MY —po TV +p0)

Noticing that 1Gp (i) 12 = Gp(i2)Gy(—i2) for a real filter gb(r), we know
that

S‘ZN
Gp(s) = ———
HT(S — Px)
Taking the inverse Laplace transform, we have gy (1) = LY (Gy(s)).
Chebeshev filter. The Chebyshev polynomial of order N is defined as
cos(N#), @ =cos"'x (x]<D),
Tn(x) = .
cosh(Nt), t=cosh™'x (x| > 1).

Especially,
Tox) =1, Ti(x)=ux

From this and the recurrence formula Ty (x) = 2x T, (x) — Ty—1 (x), it
follows that

Ta(x) = 2% — 1, T3(x) = 4x° — 3x, .. ..

A type T Chebyshev filter gl(s) is a filter whose Laplace transform
satisfies

G = ———5
|G 18] 1 +e2TH(Q/Q)

where N is the order of the filter and 0 < € < 1. The larger € is, the larger
the ripple is. Since all zeros of Chebyshev polynomials Ty (x) liein [—1, 17,

when0 < Q < Q,,

s GLGQ)
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When @ > Q, \Gi (i£2) \2 increases monotonically as £2 increases.
We compute the bandwidth £24, which is defined as |G(1: (i22)]% = % It

is clear that |G!(iQ4)|* = ] is equivalent to €273 (Qa/Qc) = 1. If Q4 <
Qc, then TZ(QA/QC) < 1, and so € > 1. This is contrary to 0 < ¢ < 1.
Therefore, Qa > Q, ie., —“ > 1. From this and Ty (224 /2:) = ,We get

Q 1
cosh[Ncosh_'( A)]_.
Q. €

| |
QA = Qccosh (ﬁ cosh™! 2) .

Therefore,

The poles of |G (i2)|? are
Pk = Ok + iTk,

where ox = —S2sinh ¢ sin % and 7 = Q. cosh ¢ cos (Zki.\,l)”, and

¢ = gsinh~! L This implies that each pole pi of the type I Cheby-

shev filter hcs on the ellipse Z = —I— = = 1, where a = Q.sinh ¢ and b =
Q2 cosh ¢. Similarly to the Butterworth filter, with the help of these poles,
we can obtain the type I Chebyshev filter gl (z) and its Laplace transform
Glis).

The type II Chebeshev filter g%(t) is a filter whose Laplace transform
G2 (s) satisfies

1
1G2(i2) > = > (0<ec<),
T;’(Qr/-Qc)
[ +e2 ( T?v(ﬂl/n)‘)

It is clear that it decredses monotenically in the passband and |G(0)| = 1,

and G(i2.) = TooT and it has equiripple in 2 > Q..
G2 (i) |2 has 2N zeros zy = m("* l,....2N) and 2N
poles px = ox + it (k= 1,..., 2N), where
. Qo . 2Bk
k= —S5—>> k= ——>S5 >
O‘E + B 0‘1% + By
and
_ . . (2k—)m
ax = — sinh& sin 57—

o (2k—1D)m
Bk = coshécos S

£ = Nsmh l(eTN(ﬂ—z)).

Similarly to the Butterworth filter, with the help of these poles and zeros,
we can obtain the type I Chebyshev filter g%(t) and its Laplace transform
Gi(s).
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(iii) Elliptic filter. An elliptic filter g.(7) is a filter whose Laplace transform
Ge(s) satisfies

G Q)P = ————,
GV = e

where Jy (£2) is the Jacobian ellipse function of order N. The elliptic filter
allows equiripple for both the passband and the stopband.

3.3 DISCRETE LINEAR TIME-INVARIANT SYSTEMS

A discrete signal comes from sampling or discretization of a continuous
signal. A discrete signal is also called a digital signal. If the input and output
signals of a system are both discrete signals, then the system is called a discrete
system.

3.3.1 Discrete Signals

A one-dimensional discrefe signal is a sequence {x(n)},ez. For example, the unit

step signal is
") I, n>0,
= 0, n<0.

The rectangular signal is

1, 0<n<N-1,

0, otherwise.

ry(n) = l

An exponential signal is expressed by e(n) = a"u(n), where a is a real constant.
The two-dimensional unit step signal is

I, n1=0,n =0,

0, otherwise.

u(ng, n2) = {

The two-dimensional exponential signal is {a"'b"?}, ,,cz, where a and b
are real constants. The two-dimensional sinusoidal sequence is {A cos(njw] +
61) cos(nmawz + 02)}n myez-

Now we discuss frequency domain representations of discrete signals.

The Fourier transform of a one-dimensional discrete signal {x(n)},ez is
defined as

F[x(n)] = X(ei“’) — Zx(k) efikm‘
k

If the series on the right-hand side is absolutely convergent, i.e., Zk |x(k)| < oo,
then the Fourier transform X (e'”) is a periodic continuous function with period
2m. The inverse Fourier transform is defined as
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FH(X(e")) == {x(n)},
where x(n) = % f_:( X (') el dg.

For example, the Fourier transform of the rectangular sequence {ry (n)} is

Nl | — e”iNe _i-1w sin(Nw/2)

Flry(m] = Z e " = [ _e-io ¢ i sin(w/2) °
0

. . o N "
and the inverse Fourier transform F~! (e 2 %) = {rv(n)}.

Fourier transforms of discrete signals have the following properties.
Property. Let {x(n)},ecz and {y(n)},ez be two discrete signals and ¢ and d
be two constants. Then

(i) Flex(n) +dy(m)] = cFlx(n)] +dFlyn)];
(i) FLO+y)(m] = Flx(mFy(n)].

The Fourier transform of a two-dimensional discrete signal {x(n1, #2) }4, n,eZ
is defined as

Flx(nim)] = X(e1, e2) = 37 ) " x(ny mp) e 711 o722,

n n

If 3", 3, [x(n1,n2)| < oo, then the Fourier transform X (e'!, ¢'*2) is a con-
tinuous function of @y, w2 and

X(ei“)', eiwg) — X(ei(_a)l-l-zkﬂ)’ ei(w2+21ﬂ)) (k, | e Z).
The inverse Fourier transform is defined as
F7UX (e, e2)] = (x(n1,m)),

where x(ny,n;) = ﬁfir f_”n X(e'®1, el®2) el ei"222 4oy dews.

3.3.2 Discrete Convolution

Let & = {h(n)}yez and x = {x(n)}nez be two infinite discrete signals. The
discrete convolution of h(n) and x(n) is defined as

(h*x)(k) = Zh(k —n)x(n) (ke Z).

If h={h(m)}n=0,. N,—1 and x = {x(n)}n=0,. N,—1 are two finite signals with
lengths Nj, and N, respectively, then the length of discrete convolution A x
is Ny + N — 1.
The discrete convolution has the following properties:
(h (cx 4+ dy)) (k) = ch* x)(k) + d(h*y)(k) (ke Z),

(h*x)(k) = (xx h)(k), (h* (xxy)(k) = ((h*x)xy)(k) (keZ),



Filter Design Chapter | 3 87

where h = {h(n)},ez. x = {x(1)},ez, and y = {v(n)},cz are discrete signals and
¢ and d are constants.

Leth = {h(n1,n2)}n, mez and x = {x(n1,n2)}n,, n,ez be the two-dimensional
discrete signals. Then the convolution of #(n, n2) and x(n1, ny) is defined as

(h*x)(ny,n) = Z Zh(m —my,ny — ma)x(my,my) (ny, no € Z).

m) mp

The following convolution properties also hold in the two-dimensional case:
(h*(cx+dy))(ny,n2) = cthxx)(ny,n) +dh*y)(ny,n2) (ny, np € Z),

(hxx)(np,nm2) = (xxh)(ny,n2), (hx(xxy)(n,n) = ((h*xx)xy)(n,n)
(ny, np € Z).

3.3.3 Discrete System

To define discrete time-invariant systems, we use the notation y(n) =
T[x(n)] (n € Z) to represent a discrete system, where {x(n)},cz is the input
sequence and {y(n)},ez is the output sequence.

If, for arbitrary constants & and g,

Tlaxi(n) + pxa(n)] = oT[x1(n)] + pTx2(m)]  (n € Z),

then the system y(n) = T[x(n)] (n € Z) is called a discrete linear system.
Let y(n) = T[x(n)] (n € Z) be a discrete linear system. If

yin—k)=Tlx(n— k)] (ke Z),

then the system y(n) = T[x(n)] (n € Z) is called a discrete time-invariant sys-
tem.
The sequence {8(n)},cz, where 8(n) = 0 (n # 0) and §(0) = 1, is called the
unit impulse. The unit impulse response h(n) = T[8(n)] (n € Z) is called the
filter of the system 7.

Proposition 3.3. Any discrete linear time-invariant system y(n) =
T[x(n)] (n € Z) can be represented by the discrete convolution of the input
and the unit impulse response, i.e., y(n) = (h*x)(n)(n € Z).

Proof. Note thaté(n) = 0 (n # 0) and §(0) = 1. Any input {x(n)},c7 can be
represented by

x(n) = Y x(k)dn—k (nel).
k
The system 7 is a linear system, so

y(n) = Tlem] = _ x(KT[8(n — k).

k
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Note that h(n) = T[8(n)]. Since the system T is time invariant, we get
h(n — k) = T[8(n — k)], and so

yn) =Y x(k)h(n — k) = (h*x)(n).
k
O

For a linear time-invariant system y(n) = (h % x)(n) (n € Z), if the output
v(n) depends only on the input x(k) (k < n), then this system is called causal.

Proposition 3.4. A system y(n) = (h*x)(n) (n € Z) is causal if and only if
h(n) =0(n < 0).

Proof. Assume that h(n) = 0 (n < 0). Then h(n — k) = 0 (k > n), and so

y(n) = x(k)hin — k).

k=<n

Therefore, the output y(n) depends only on the input x(k) (k < n), i.e., the system
is causal.

Assume that the system is causal. If h(—/) # 0 for some [ € Z, we take
x(k) =0k #n+1)and x(n + 1) # 0, then

y(n) = x(koh(n — k) = x(n+ Dh(=1) # 0,
k

so the output y(n) cannot be determined by the input x(k) (k < n). This is
contrary to the assumption. Hence, h(n) = 0 (n < 0). O

If a linear time-invariant system is such that any bounded input products a
bounded output, then this system is called a stable system.
Proposition 3.5. A linear time-invariant system

y(n) = (h*x)(n) (n € Z)

is stable if and only if 3", |h(n)| < oc.
Proof. Assume that ), [h(n)| =M < oo.If |x(n)| < A (n € Z), then

> x(koh(n — k)

k

ly(m)| =

<AY |hn—k| =AY |hm)| < AM,
k n
and so the system is stable.
Assume that 3, |h(n)| = oc. Take

h(—n)
xm) = { iy MEm # 0

0, h(—n) = 0.
Then

(O =

> x(k)h(—k)
k

= Y |h(=k=)_|hk)] = oo,
k

h(—k)£0
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and so the output is unbounded. This is contrary to the assumption. Hence
Yo lh(n)| < oo. O

For a linear time-invariant system with the unit impulse response h, we
consider the frequency response. If the input is a complex exponent sequence
with frequency w: x(n) = "' (n € Z), then its output response is

y(n) = (h*x)(n) = Z h(k)el 0w — eine fr(eie) (3.4)
k

where H(el®) = Zkh(k)c_i"“". The function H(e™) is called the frequency
response of the system. It is clear that H(e'”) is a 2m-periodic function.
If the system is stable, then Z" |h(n)| < oco. So H(ei‘“) exists and is
continuous, and is the Fourier transform of the filter 4. The inverse Fourier
transform is

1 7 .
hin) = — H(e") e dw.
2

-
Now consider the two-dimensional case. For a two-dimensional linear sys-
tem y(n1,n2) = T[x(ny,n2)]. Noticing that

L m=nm=0,
8(m,m) = [ 0, nyorny #0,

we can represent the input x by
x(nima) =) Y x(k D8y — k,na — D),
ko

SO
y(nrny) = 33 x(k, ) T[5(ny — k,my — D).
k !

Let & be the response of the two-dimensional unit impulse 8, i.e.,
hiny, nz) = T[8(ny,nz)].

The unit impulse response A is also called the filter of the system. If T is a time-
invariant system, then

TI8(n — k,na — D] = hiny — k,na — 1),
and so
ynno) = 3N xtk Dhiny — kony =) = (hxx)(nn2), (3.5
ko1

i.e., any two-dimensional linear time-invariant system y(ny,n2) = T[x(n1,n2)]
can be represented by the two-dimensional discrete convolution of the input
and the filter. If the filter /# of a two-dimensional discrete time-invariant system
satisfies an an |h(ny, n2)| < oc, then the system is called a stable system.
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If the output y(#n, n2) depends only on the input x(k, /) (k < nj, { < n3), then the
system is causal. Similarly, a two-dimensional time-invariant system is causal
if and only if its filter A(ry,n2) = 0 (1 < 0,n3 < 0).

3.3.4 Ideal Digital Filters

For a discrete linear time-invariant system, let A be the filter and H(el®) =
>, h(n) e™@ be its frequency response.

Case 1. If H(e'”) = 0 (Jwe| < || < ), then the filter & is called a low-pass
filter. Let
Zy(n) e—inw’
n

X(eia)) — Zx(n)e—iﬂw'

n

Y(eia))

Then, by the property of the Fourier transform of discrete signals,
Y(eim) — H(Eim)X(eim).

So a low-pass filter only passes low-frequency signals. The inverse Fourier
transform gives

X sin(nwe)
hin) = Lf” H(&?) e" do = wa e do = an o 170,
— 2r J_,,.

We
2n ?”, n=0.

Case 2. If H(e'?) = 0 (|w| < wc < 7), then the filter A is called a high-pass
filter. We can see that a high-pass filter passes only high-frequency signals.
The inverse Fourier transform gives

! 7 . . __ sin(nw¢) .n 0,
h(n) = —f H(e'”)e" dw = { ™ *
2

- ]—&, n=2~0.
13

Case3.If H(é”) = 0 (0 < |we| < |w| < |wqg| < ), then the filter A is called
a band-pass filter.

3.3.5 Z-Transforms

For a discrete signal x = {x(n)},ecz, its Z-transform is defined as
X(@2)=Y xmz".
n

It is sometimes called the two-sided Z-transform. Denote it by Z{x(n)}, i.e.,
Z{x(n)} = X(2).
If the limits
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rp = lim \”/ |x(n)|,
n— 00

= lim +/|x(#n)|
n——oo

exist and % < r2, then the convergence domain of its Z-transform is the

annular region ri < |z < r2. Letz = re'? (% < r < rp). Then the Z-transform
of {x(n)},cz can be rewritten as

X(re'?) = Z x(m)r e,

n

By the orthogonality of exponential sequence {e "?},cz, it follows that

w T
[ X(rel?) e ao = Z x(k)r_k[ el"=h0 40 = 27 x(n)r ™.

o P
So the inverse Z-transform of X(z) is

T il e
x(n)=Z"1X(@)] = —f X(re'?y el do.
2r J_,
If the Z-transform X (z) is a rational function which has only simple poles
pk (k= 1,...,N), then X(z) can be decomposed into a sum of partial fractions
and a polynomial p(z), i.e.,

N
Ag
X :E — 4+ pi2),
(2) Fr p(2)

where Ay = lim;_., X(2)(z — px). Expanding each 1/(z — py) into the positive
power series or the negative power series, we can also obtain the inverse Z-
transform of X (z).

The Z-transforms have the following properties.

Property. Let {x(n)},cz and {y(n)},cz be two discrete signals. Denote their
Z-transforms by X (z) and Y(z), respectively. Then

(i) Z{ax(n) + by(n)}is aX(z) + bY(z);
(i) Z{x(n —np)} is 27X (2);
(i) Z{a"x(n)}is X (£):
(iv) Z{x(n)} is X(2); and
(v) Z{nx(n)}is —zX'(2).

Proposition 3.6. For a discrete linear time-invariant system, let X(z), H(z),
and Y(z) be the Z-transforms of the input x, the output vy, and the filter h,
respectively. Then Y (z) = H(2)X(2).

The Z-transform of the filter h is called the transfer function of
the system.
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Proof. By Proposition 3.4, we have y(k) = (h % x) (k) = Zn h(k— n)x(n). It
follows that

Y(?) = Z y(k) Z—k — Z-’C(H)Z_n (Z h(k _ n)z—(k—n)) )
k k

n

Since Zk h(k — n.)z_(k_") = Zk h(k)z_k’ we get

Y(2) = (Z h(k)z"‘) (Z x(n.)z_") = HDX(2).
k

n

O

The concept of the one-dimensional Z-transform may be generalized to the
two-dimensional case.

Let {x(m,n)}ynez be a two-dimensional discrete signal. Then its Z-
transform is defined as

X(z1,22) = Y x(m,mz; "5 "

m,n
Letz; = rle_i‘”‘ and 2 = rzei“’z. Then

X(relt, rzelwg) — Zx(m! ) rl—mrz—ﬂ e Timwl g—inwy

m.n

IfY",,, [xGm,n)|r7™r;" < oo, then the series on the right-hand side converges.
The inverse Z-transform of X(z;, z2) is defined as

1 7 (7 . . . )
x(m,n) = o) X(r1e'“, e ?) Ary e "2 dwy dwy (m, n € Z).
-7 -

3.3.6 Linear Difference Equations
We will discuss the discrete linear time-invariant system which can be repre-
sented by a linear difference equation:

N N
> bk yu— k) =Y alk) x(u— k), (3.6)
0

0

where x(u) is the input signal, y(x) is the output signal, and a(k) and b(k) are
constants. Taking the Z-transform on both sides of (3.6), we get

N

N
Y bz v =Y a7t X (@),
0

0
where X(z) = Zg x(myz"and Y(2) = Zg’ v(n) z7", and so
Y(z) = H(z) X(2), (3.7
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where the transfer function
C Xhatk
YO bk 2k

Expand H(z) into the two-sided power series H(z) = ), h(n)z". By the convo-
lution property of the Z-transform, it follows from (3.7) that

v(n) = (h*x)(n).

If there exist infinitely many nonzero terms in {i(n)},¢cz, then it is called an
infinite impulse response (11R) filter. Otherwise, if there exist only finitely many
nonzero terms in {/(n)},cz, then itis called a finite impulse response (FIR) filter.

3.4 LINEAR-PHASE FILTERS

Let T be a discrete linear time-variant system with the FIR filter 4. The input
x = {x(n)}nez and the output y = {y(n)},ez of the system satisty

y(n) = (hxx)(n) (n€Z).

Without loss of generality, we assume that h(n) = 0(n#0,...,N—1). The
transfer function

H(z)

N—-1
H@) =) hmz"
0

is an N — | degree polynomial of z~!. This is a causal stable discrete system.
Let z = e'“. The frequency response is

N-1
H(ei(U) — Z h(n) e—i)?(x)- (3.8)
0
Clearly, this is a 2 -periodic function. It can be expressed as
‘ o Im (H (e'®
H(e”) = |[H(e”)| e, where tan6(w) = RJTM. (3.9)

Here |H(c¢'®)| is called the frequency spectrum and 6(w) is called the
phase.

When 6(w) = —1 w, where 7 is a constant, we say the filter has a rigorous
linear phase. When 0(w) = b — Tw, where t and b are constants, we say the
filter has a generalized linear phase. Now we study the FIR filter with a linear
phase. It is very important in geophysical signal processing.

From (3.8), it follows that

N—1

Im(H(e*)) = — Z h(n) sin(nw),
0
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N-1

Re(H(e)) = Y hin)cos(ne).
0

Combining this with (3.9), we have

ONfl h(n) sin(n w)

tanf(w) = — NI .
o h(n)cos(nw)
This implies that for any @, 6(w) = —t if and only if
N—=1
Z h(n)(cos(nw) sin(tw) — sin(nw) cos(tw)) = 0,
0
i.e., for any w, 0(w) = —tw if and only if ZSLI h(n) sin(t — n)w = 0.
Similarly, we can deduce that for any , #(w) = 7 — e if and only if

Zg_l h(n) cos(t — n)w = 0.

Proposition 3.7. Let the filter h = {h(n)},=0... n—1 be an FIR digital filter.

.....

W I

h(n)=hiN—-1-n) m=0,..., N—-1),
( then the filter h is a rigorous linear-phase filter and arg H(e'®) = —%m.
i) If

h(iny=—-h(N—1—n) (nm=0,...,N—1),

then the filter h is a generalized linear-phase filter and arg H(e'”) = 5 —

N—-1
Ta).

Proof. Lett = %

(i) By the assumption
h(n)=h(N—1—n) (n=0,...,N—1),
it follows that {h(n)}p=o0..ny—1 1S an even symmetric sequence with
center . So {sin®(r —n)},—o,. nN—1 1s an odd sequence with center

7, and so h(n)sinw(t —n) is an odd sequence with center 7. This
implies that

N—1
Y h(n) sin(z — mow =0,
0
which is equivalent to 0(w) = —rtw, so the filter A is a rigorous linear phase

filter and arg H(eiB) = —Tw.
(i) By the assumption

h(n) = —-h(N—1—n) (n=0,...,N—1),
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it follows that {A(n)},—0,... n—1 is an odd symmetric sequence with center 7.
Since {cos(t — n)w}p=0... n—1 1S an even sequence with center t,

N—1

Z hn) cos(t — n)w = 0,

which is equivalent to 6 (w) = 5 — t®. So the filter / is a generalized linear
T

phase filter and argH(e‘“’) =3 —to.
O

3.4.1 Four Types of Linear-Phase Filters

Assume that {A(n)}n=0.. ~—1 1s an FIR filter and its frequency response
H(eiw) — 3’*' h(!‘l) e—inw.
(i) {h(m)}n=0... N—1 has even symmetry and N is odd.
Its frequency response is

;\1

elw) — E h(f?) e—mw _ § h(n) e—lntx)
N-1
N-1\ _» :
+h( 5 ) e—l%w 4 § :h(n) e inw

%
By h(n) = h(N — 1 — n), the third term on the right-hand side becomes

N-3
bl

2 h(n) e e=iV=Do,
0

So
N—3
. N-—-1 N-—1
H(e"™) = emifTo | ZU: 2h(n) cos (T — n) w + h( 5 )
’V 1
o N-l N-—1 -1
=e 'z 7 2h| ——— — m | cos(mw) + h
2 2
Leta(0) = h (NT) and a(m) = 2h( m) (m =1,..., N,LTI), Then

N-1

N—
o1
H(el®)=c 17T Z a(m) cos(me) + a(0) $ =e 17T Z a(n) cos(nw).
] U
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(ii) {h(m)}n=0..~N—1 has even symmetry and N is even.
Similarly to the argument in (i), its frequency response is

N
. - 1
He“y=e'"7¢ Z b(n) cos (n — E) w,

1

where b(n) = 2!1(% —n)n=12,..., %).
(i) {h(n)}y=0,_ . n—1 has odd symmetry and N is odd.
{h(n)}p=0,...N—1 has odd symmetry with center %, S0 h(%) =0.
Similarly to the argument in (i), its frequency response is
H(E®) = 3779 3" c(n) sin(no),
1
where c(n) = 2/1(1)% —n)n=12,..., "%).
(iv) {h(n)}n=0.. n—1 has odd symmetry and N is even.
Its frequency response is

2n

—1
@,

N
N 7
H(e) = i3~ 4to) Z d(n) sin 5
1

where d(n) = 2h(5 —m(n=1,2,...,%).
3.4.2 Structure of Linear-Phase Filters

For an FIR digital filter with arigorous linear phase, {h(n)},=0, .. ~—1. its transfer
function

N-1
H(z) =Y hmz™",
0
where h(n) = h(N — | — n) and arg H(E'®)= —tw,and t = % Therefore,
N-1 N-1
H@) =) hiN-1-mz" =13 " hme" =NV HE ),
0 0

From this, we see that if zx is a zero of H(z), then H(zk_l) = zﬁ/_l Hzx) = 0.
Since each h(n) is real,
N—1
Hz) =Y hn)Z =H@).
0
From this, we see that if z; is a zero of H(z), then H(Zx) = 0. Therefore, we
obtain the following conclusion.
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(ii)

(iii)

(iv)
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Suppose that zi is a zero of H(z):

If |zx] < 1 and zx is not real, then gz, Z]:l, Zk, and Zk_l are four differ-
ent zeros of H(z). This constitutes a system of order 4. Denote it by
Hy(2), 1.e.,

Hi(z) = (1— 77'20(0 — 2750 (1 — 2727 — 7 '20Y).

Denote zx = rx ¢!, This equality can be expanded into

1 1
Hy(z) = l—2zl(rk+—) (:ost9k-l-272 (rﬁ+—2+4cosz6’k)
Fk

Tk
1
—2773 (rk + r) cos O +z74
k

If |zx| <1 and zx = r¢ is real, then rg and rk_1 are two different
zeros of H(z). This constitutes a system of order 2. Denote it by
Hy(2), 1.,

Hy(z) = (1-2""n) ( 1 — Z—) =1-z"! (fk-l-—) + 772
Tk 'k

If |zx| = 1 and zx is not real, then zx = zl;l and zx = E;]. So z and Zk
are two different zeros of H(z). This also constitutes a system of order 2.
Denote it by H;(z), i.e.,

H@ = 01—z (0 —&z ) =14+ e+ ) + ok g2
= 1+2z "Re(z) + 7%

If |zx| = 1 and zx is real, then zx = z;l =Zk= Z;'. So only zk is a zero
of H(z). This constitutes the simplest system of order 1. Denote it by
Hy(2),1.e.,

Hi ) =1-z2z".

In this way, for the FIR digital filter with a linear phase, its transfer function
H (z) can be expressed as

o= () (I (o) ().

where Hy, H,,, H;, and H; are subsystems with a rigorous linear phase.

3.5

DESIGNS OF FIR FILTERS

Now we give three methods for designing FIR digital filters.
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3.5.1 Fourier Expansions
From Section 3.3.4, for some 0 < . < 7,

sin(nec)

s n# 0,
OES Pk

B "=

is an ideal low-pass filter, and the corresponding frequency response is

19 |C£)| E a)C,
0, we < || <.

Hd(eiw) — Z ha(n) e—inw — {

The ideal low-pass filter is noncausal and infinite in duration. Clearly, it cannot
be implemented in practice. In order to obtain an FIR filter, we may approximate
to Hy(e'”) by Hyn (e'):

d N-1
H i — h —inw T = B i 310
an () ; almye ( — ) (3.10)
By Parseval’s identity of Fourier series, the approximation error is
1 [7 - - N—-1
= | 1Ha) = Hon(@) P do = 3 ha(n)] (r = T) :

|n|>t

Take an odd number N large enough such that the error Z|n\>r |ha(n)|* < .
To avoid the noncausal problem, we multiply both sides of (3.10) by =7

to get a new filter:
T 27
H(Clm) — o it Hle(claJ) — e iT® Zhd(n) e e _ Z h,d(n —1) e e
-7 0

Leth(n) = hg(n — t). Then the frequency response H(c®) = 3'7' hin) e~ine
where

sin(n — 7)w, We
hin)y=— m=0,....N—lin# 1), h(r)=—, (3.11)
T(n—r1) T
and H(e®) has rigorous linear phase arg H(e'”) = —tw, where T = % By

ZIHIN lha(m)|? < e, it follows that the filter {h(n)}p=0.... N—1 15 a linear-phase
filter and approximates to an ideal low-pass filter.

Since h(n+ 1) = h(t — n) and ™ 4 ™" — 2 cos(nw), by (3.11), the
frequency response H(e'”) can be rewritten in the real form

H(el@) = emit® (h(r) +2) h(n+ 1) cos(mu))

1

i We i sin(nwe)
1T 2 < i
e (— + E E— cos(nw))

T
1
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Since the frequency response of the ideal digital filter has points of discontinuity,
the convergence rate of partial sums of its Fourier series is low and truncating the
ideal digital filter introduces undesirable ripples and overshoots in the frequency
response. Therefore, the filter constructed as above cannot approximate well to
the ideal filter and makes the Gibbs phenomenon occur. To solve this problem,
window functions are introduced.

3.5.2 Window Design Method

Suppose that {hgq(n)} is an ideal digital filter and Hy(e'®) is its frequency
response. To reduce the Gibbs phenomenon, we need to choose a window
sequence @, with finite length and then multiply hq(n) by w,, i.e.,

hin) = hq(n) w,.
Denote the frequepcy responses corresponding to i(n), hq(n), and &, by H(el®),
Hy(e'), and W(e'“), respectively. By using the convolution theorem, we get
. . . 1 [ . _
H(e'”) = Hy(e'”) * W(e') = 5| Ha ) w(el@=%) do.
T J_x

This shows that the frequency response equals the convolution of the frequency
response of the ideal digital filter and the frequency response of the window
sequence. We choose window sequence {w,} such that H(e”) is smooth and
approximates well to Hy(e"). Several window sequences are often used, as
follows:

(i) Rectangular window
WR.n = .
0, otherwise.
Its frequency response is

N-1 iNow

Wi(e) = Z emino = L7 0T itgto SN@/2)
s 1 —e i@ sin(w/2)
From this equality, we see that its phase is linear.
(i) Bartlett window
2 _ N—1
o { NoT n=0,....55,
B.n —
; 2 _ N-1
2-fop =N

(iii) Hanning window

0.5-05cos %, n=0,....N— 1,
WHn =

0, otherwise.



