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Preface

Early in the 20th century, the great mathematician David Hilbert
noticed that a number of important mathematical arguments were
structurally similar. In fact, he realized that at an appropriate level of
generality they could be regarded as the same. This observation, and
others like it, gave rise to a new branch of mathematics, and one of its
central concepts was named after Hilbert. The notion of a Hilbert space
sheds light on so much of modern mathematics, from number theory to
quantum mechanics, that if you do not know at least the rudiments of
Hilbert space theory then you cannot claim to be a well-educated
mathematician.

What, then, is a Hilbert space? In a typical university mathematics
course it is defined as a complete inner-product space. Students
attending such a course are expected to know, from previous courses,
that an inner-product space is a vector space equipped with an inner
product, and that a space is complete if every Cauchy sequence in it
converges. Of course, for those definitions to make sense, the students
also need to know the definitions of vector space, inner product,
Cauchy sequence and convergence. To give just one of them (not the
longest): a Cauchy sequence is a sequence 2, &,, &, . . . such that

for every positive number € there exists an integer N such that for any
two integers p and g greater than N the distance from 2, to z, is at
most €.



In short, to have any hope of understanding what a Hilbert space is, you
must learn and digest a whole hierarchy of lower-level concepts first.
Not surprisingly, this takes time and effort. Since the same is true of
many of the most important mathematical ideas, there is a severe limit
to what can be achieved by any book that attempts to offer an accessible
introduction to mathematics, especially if it is to be very short.

Instead of trying to find a clever way round this difficulty, I have focused
on a different barrier to mathematical communication. This one, which
is more philosophical than technical, separates those who are happy
with notions such as infinity, the square root of minus one, the twenty-
sixth dimension, and curved space from those who find them
disturbingly paradoxical. It is possible to become comfortable with
these ideas without immersing oneself in technicalities, and I shall try to
show how.

If this book can be said to have a message, it is that one should learn to
think abstractly, because by doing so many philosophical difficulties
simply disappear. I explain in detail what I mean by the abstract method
in Chapter 2. Chapter 1 concerns a more familiar, and related, kind of
abstraction: the process of distilling the essential features from a real-
world problem, and thereby turning it into a mathematical one. These
two'chapters, and Chapter 3, in which I discuss what is meant by a
rigorous proof, are about mathematics in general.

Thereafter, I discuss more specific topics. The last chapter is more about
mathematicians than about mathematics and is therefore somewhat
different in character from the others. I recommend reading Chapter 2
before the later ones, but apart from that the book is arranged as
unhierarchically as possible: I shall not assume, towards the end of the
book, that the reader has understood and remembered everything that
comes earlier.

Very little prior knowledge is needed to read this book - a British GCSE
course or its equivalent should be enough - but I do presuppose some
interest on the part of the reader rather than trying to drum it up myself.



For this reason I have done without anecdotes, cartoons, exclamation
marks, jokey chapter titles, or pictures of the Mandelbrot set. I have also
avoided topics such as chaos theory and Godel’s theorem, which have

a hold on the public imagination out of proportion to their impact on
current mathematical research, and which are in any case well treated
in many other books. Instead, I have taken more mundane topics and
discussed them in detail in order to show how they can be understood in
a more sophisticated way. In other words, I have aimed for depth rather
than breadth, and have tried to convey the appeal of mainstream
mathematics by letting it speak for itself.

I would like to thank the Clay Mathematics Institute and Princeton
University for their support and hospitality during part of the writing of
the book. I am very grateful to Gilbert Adair, Rebecca Gowers, Emily
Gowers, Patrick Gowers, Joshua Katz, and Edmund Thomas for reading
earlier drafts. Though they are too intelligent and well informed to
count as general readers, it is reassuring to know that what I have
written is comprehensible to at least some non-mathematicians. Their
comments have resulted in many improvements. To Emily I dedicate
this book, in the hope that it will give her a small idea of what it is I

do all day.
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Chapter 1
Models

How to throw a stone

Suppose that you are standing on level ground on a calm day, and
have in your hand a stone which you would like to throw as far as
possible. Given how hard you can throw, the most important
decision you must make is the angle at which the stone leaves your
hand. If this angle is too flat, then although the stone will have a
large horizontal speed it will land quite soon and will therefore not
have a chance to travel very far. If on the other hand you throw the
stone too high, then it will stay in the air for a long time but without
covering much ground in the process. Clearly some sort of
compromise is needed.

The best compromise, which can be worked out using a
combination of Newtonian physics and some elementary calculus,
turns out to be as neat as one could hope for under the
circumstances: the direction of the stone as it leaves your hand
should be upwards at an angle of 45 degrees to the horizontal. The
same calculations show that the stone will trace out a parabolic
curve as it flies through the air, and they tell you how fast it will
be travelling at any given moment after it leaves your hand.

It seems, therefore, that a combination of science and mathematics
enables one to predict the entire behaviour of the stone from the

1



moment it is launched until the moment it lands. However, it does
so only if one is prepared to make a number of simplifying
assumptions, the main one being that the only force acting on

the stone is the earth’s gravity and that this force has the same
magnitude and direction everywhere. That is not true, though,
because it fails to take into account air resistance, the rotation of the
earth, a small gravitational influence from the moon, the fact that
the earth’s gravitational field is weaker the higher you are, and the
gradually changing direction of ‘vertically downwards’ as you move
from one part of the earth’s surface to another. Even if you accept
the calculations, the recommendation of 45 degrees is based on
another implicit assumption, namely that the speed of the stone as
it leaves your hand does not depend on its direction. Again, this is
untrue: one can throw a stone harder when the angle is flatter.

In the light of these objections, some of which are clearly more
serious than others, what attitude should one take to the
calculations and the predictions that follow from them? One
approach would be to take as many of the objections into account as
possible. However, a much more sensible policy is the exact
opposite: decide what level of accuracy you need, and then try to
achieve it as simply as possible. If you know from experience that a
simplifying assumption will have only a small effect on the answer,
then you should make that assumption.

For example, the effect of air resistance on the stone will be fairly
small because the stone is small, hard, and reasonably dense.
There is not much point in complicating the calculations by taking
air resistance into account when there is likely to be a significant
error in the angle at which one ends up throwing the stone anyway.
If you want to take it into account, then for most purposes the
following rule of thumb is good enough: the greater the air
resistance, the flatter you should make your angle to compensate
for it.



What is a mathematical model?

When one examines the solution to a physical problem, it is often,
though not always, possible to draw a clear distinction between the
contributions made by science and those made by mathematics.
Scientists devise a theory, based partly on the results of observations
and experiments, and partly on more general considerations such as
simplicity and explanatory power. Mathematicians, or scientists
doing mathematics, then investigate the purely logical
consequences of the theory. Sometimes these are the results of
routine calculations that predict exactly the sorts of phenomena the
theory was designed to explain, but occasionally the predictions of a
theory can be quite unexpected. If these are later confirmed by
experiment, then one has impressive evidence in favour of the
theory.

The notion of confirming a scientific prediction is, however,
somewhat problematic, because of the need for simplifications
of the kind I have been discussing. To take another example,
Newton’s laws of motion and gravity imply that if you drop
two objects from the same height then they will hit the ground
(if it is level) at the same time. This phenomenon, first pointed
out by Galileo, is somewhat counter-intuitive. In fact, it is
worse than counter-intuitive: if you try it for yourself, with,
say, a golf ball and a table-tennis ball, you will find that the
golf ball lands first. So in what sense was Galileo

correct?

It is, of course, because of air resistance that we do not regard this
little experiment as a refutation of Galileo’s theory: experience
shows that the theory works well when air resistance is small. If you
find it too convenient to let air resistance come to the rescue every
time the predictions of Newtonian mechanics are mistaken, then
your faith in science, and your admiration for Galileo, will be
restored if you get the chance to watch a feather fall in a vacuum - it
really does just drop as a stone would.
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Nevertheless, because scientific observations are never completely
direct and conclusive, we need a better way to describe the
relationship between science and mathematics. Mathematicians do
not apply scientific theories directly to the world but rather to
models. A model in this sense can be thought of as an imaginary,
simplified version of the part of the world being studied, one in
which exact calculations are possible. In the case of the stone, the
relationship between the world and the model is something like
the relationship between Figures 1 and 2.

1. Aball in flight T

gravitational kS
acceleration S

initial angle %

2. Aball in flight IT



There are many ways of modelling a given physical situation, and
we must use a mixture of experience and further theoretical
considerations to decide what a given model is likely to teach us
about the world itself. When choosing a model, one priority is to
make its behaviour correspond closely to the actual, observed
behaviour of the world. However, other factors, such as simplicity
and mathematical elegance, can often be more important. Indeed,
there are very useful models with almost no resemblance to the
world at all, as some of my examples will illustrate.

Rolling a pair of dice

If I roll a pair of dice and want to know how they will behave, then
experience tells me that there are certain questions it is unrealistic
to ask. For example, nobody could be expected to tell me the
outcome of a given roll in advance, even if they had expensive
technology at their disposal and the dice were to be rolled by a
machine. By contrast, questions of a probabilistic nature, such as,
‘How likely is it that the numbers on the dice will add up to seven?’
can often be answered, and the answers may be useful if, for
example, I am playing backgammon for money. For the second sort
of question, one can model the situation very simply by
representing a roll of the dice as a random choice of one of the
following thirty-six pairs of numbers.

1Ly 1,2 @3 0,4 q,5 @1,6)
2,1 (2,2) (2,3) (2,4) (2,5 (2,6)
3,1 (3,2) (3,3) (3,4) (3,5) (3,6)
41 42 43) 4,4 (4,5 (4,6)
5,1) (52) (5,3) (5,4) (55) (56)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

The first number in each pair represents the number showing on
the first die, and the second the number on the second. Since exactly
six of the pairs consist of two numbers that add up to seven, the
chances of rolling a seven are six in thirty-six, or one in six.
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One might object to this model on the grounds that the dice,
when rolled, are obeying Newton’s laws, at least to a very high
degree of precision, so the way they land is anything but
random: indeed, it could in principle be calculated. However, the
phrase ‘in principle’ is being overworked here, since the
calculations would be extraordinarily complicated, and would
need to be based on more precise information about the shape,
composition, initial velocities, and rotations of the dice than
could ever be measured in practice. Because of this, there is no
advantage whatsoever in using some more complicated
deterministic model.

Predicting population growth

The ‘softer’ sciences, such as biology and economics, are full of
mathematical models that are vastly simpler than the phenomena
they represent, or even deliberately inaccurate in certain ways, but
nevertheless useful and illuminating. To take a biological example
of great economic importance, let us imagine that we wish to
predict the population of a country in 20 years’ time. One very
simple model we might use represents the entire country as a pair of
numbers (¢, P(t)). Here, t represents the time and P(¢) stands for the
size of the population at time ¢. In addition, we have two numbers, b
and d, to represent birth and death rates. These are defined to be
the number of births and deaths per year, as a proportion of the
population.

Suppose we know that the population at the beginning of the year
2002 is P. According to the model just defined, the number of
births and deaths during the year will be 5P and dP respectively,

so the population at the beginning of 2003 will be

P+ bP - dP=( + b - d)P. This argument works for any year, so we
have the formula P(n + 1) = (1 + b — d)P(n), meaning that the
population at the beginning of year n + 1is (1 + b — d) times

the population at the beginning of year n. In other words, each year
the population multiplies by (1 +  — d). It follows that in 20 years
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it multiplies by (1 + & — d)*°, which gives an answer to our original
question.

Even this basic model is good enough to persuade us that if the
birth rate is significantly higher than the death rate, then the
population will grow extremely rapidly. However, it is also
unrealistic in ways that can make its predictions very inaccurate.
For example, the assumption that birth and death rates will
remain the same for 20 years is not very plausible, since in the
past they have often been affected by social changes and political
events such as improvements in medicine, new diseases, increases
in the average age at which women start to have children, tax
incentives, and occasional large-scale wars. Another reason to
expect birth and death rates to vary over time is that the ages of
people in the country may be distributed rather unevenly. For
example, if there has been a baby boom 15 years earlier, then
there is some reason to expect the birth rate to rise in 10 to

15 years’ time.

It is therefore tempting to complicate the model by introducing
other factors. One could have birth and death rates b(¢) and d(t)
that varied over time. Instead of a single number P(¢) representing
the size of the population, one might also like to know how many
people there are in various age groups. It would also be helpful to
know as much as possible about social attitudes and behaviour in
these age groups in order to predict what future birth and death
rates are likely to be. Obtaining this sort of statistical information is
expensive and difficult, but the information obtained can greatly
improve the accuracy of one’s predictions. For this reason, no single
model stands out as better than all others. As for social and
political changes, it is impossible to say with any certainty what
they will be. Therefore the most that one can reasonably ask of any
model is predictions of a conditional kind: that is, ones that tell us
what the effects of social and political changes will be if they

happen.



The behaviour of gases

According to the kinetic theory of gases, introduced by Daniel
Bernoulli in 1738 and developed by Maxwell, Boltzmann, and
others in the second half of the 19th century, a gas is made up of
moving molecules, and many of its properties, such as
temperature and pressure, are statistical properties of those
molecules. Temperature, for example, corresponds to their average

speed.

With this idea in mind, let us try to devise a model of a gas
contained in a cubical box. The box should of course be represented
by a cube (that is, a mathematical rather than physical one), and
since the molecules are very small it is natural to represent them by
points in the cube. These points are supposed to move, so we must
decide on the rules that govern how they move. At this point we
have to make some choices.

If there were just one molecule in the box, then there would be an
obvious rule: it travels at constant speed, and bounces off the walls
of the box when it hits them. The simplest conceivable way to
generalize this model is then to take N molecules, where N is some
large number, and assume that they all behave this way, with
absolutely no interaction between them. In order to get the
N-molecule model started, we have to choose initial positions

and velocities for the molecules, or rather the points representing
them. A good way of doing this is to make the choice randomly,
since we would expect that at any given time the molecules in a
real gas would be spread out and moving in many directions.

It is not hard to say what is meant by a random point in the cube, or
a random direction, but it is less clear how to choose a speed
randomly, since speed can take any value from O to infinity. To avoid
this difficulty, let us make the physically implausible assumption
that all the molecules are moving at the same speed, and that it is
only the initial positions and directions that are chosen randomly. A
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3. A two-dimensional model of a gas

two-dimensional version of the resulting model is illustrated in
Figure 3.

The assumption that our N molecules move entirely independently
of one another is quite definitely an oversimplification. For
example, it means that there is no hope of using this model to
understand why a gas becomes a liquid at sufficiently low
temperatures: if you slow down the points in the model you get the
same model, but running more slowly. Nevertheless, it does explain
much of the behaviour of real gases. For example, imagine what
would happen if we were gradually to shrink the box. The molecules
would continue to move at the same speed, but now, because the
box was smaller, they would hit the walls more often and there
would be less wall to hit. For these two reasons, the number of
collisions per second in any given area of wall would be greater.
These collisions account for the pressure that a gas exerts, so we
can conclude that if you squeeze a gas into a smaller volume, then
its pressure is likely to increase - as is confirmed by observation. A
similar argument explains why, if you increase the temperature of
a gas without increasing its volume, its pressure also increases.
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And it is not too hard to work out what the numerical

relationships between pressure, temperature, and volume
should be.

The above model is roughly that of Bernoulli. One of Maxwell’s
achievements was to discover an elegant theoretical argument

that solves the problem of how to choose the initial speeds more
realistically. To understand this, let us begin by dropping our
assumption that the molecules do not interact. Instead, we shall
assume that from time to time they collide, like a pair of tiny billiard
balls, after which they go off at other speeds and in other directions
that are subject to the laws of conservation of energy and
momentum but otherwise random. Of course, it is not easy to see
how they will do this if they are single points occupying no volume,
but this part of the argument is needed only as an informal
justification for some sort of randomness in the speeds and
directions of the molecules. Maxwell’s two very plausible
assumptions about the nature of this randomness were that it
should not change over time and that it should not distinguish
between one direction and another. Roughly speaking, the second
of these assumptions means that if ¢, and d, are two directions and
s is a certain speed, then the chances that a particle is travelling at
speed s in direction d, are the same as the chances that it is
travelling at speed s in direction d,. Surprisingly, these two
assumptions are enough to determine exactly how the velocities
should be distributed. That is, they tell us that if we want to choose
the velocities randomly, then there is only one natural way to do it.
(They should be assigned according to the normal distribution. This
is the distribution that produces the famous ‘bell curve’, which
occurs in a large number of different contexts, both mathematical
and experimental.)

Once we have chosen the velocities, we can again forget all about
interactions between the molecules. As a result, this slightly
improved model shares many of the defects of the first one. In order
to remedy them, there is no choice but to model the interactions

10



Timothy Gowers

MATHEMATICS

A Very Short Introduction

‘a marvellously lucid guide to the beauty and mystery
of numbers'
Gilbert Adair

VERY SHORT INTRODUCTIONS
stimulating ways in to new subjects

ISBN 978 0-19= 285361 5

OXFORD

UNIVERSITY PRESS

192 853

www.oup.com
P £6.99 rre $9.95 Usa

www.oup.co.uk/vsi




