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Introduction

This book is intended to describe the practical and conceptual origins of
Mathematics and the character of its development—not in historical terms,
but in intrinsic terms. Thus we ask: What is the function of Mathematics
and what is its form? In order to deal effectively with this question, we
must first observe what Mathematics is. Hence the book starts with a sur-
vey of the basic parts of Mathematics, so that the intended general ques-
tions can be answered against the background of a careful assembly of the
relevant evidence. In brief, a philosophy of Mathematics is not convinc-
ing unless it is founded on an examination of Mathematics itself.
Wittgenstein (and other philosophers) have failed in this regard.

The questions we endeavor to answer come in six groups, as follows.

First, what is the Origin of Mathematics? What are the external sources
which lead to arithmetic and algebraic calculations and thence to
mathematical theorems and theories? Or, are there internal sources, so
that some of these theories develop just from imagination and introspec-
tion? This is close to the traditional question: Is Mathematics discovered
or invented?

Second, what is the Organization of Mathematics? Clearly a subject so
large and diverse as Mathematics requires a quite extensive and sys-
tematic organization. Traditionally, Mathematics is often split into four
parts: Algebra, analysis, geometry, and applied Mathematics. This subdi-
vision is handy at first, say for the arrangement of undergraduate courses,
but it soon needs refinement. Thus number theory is to be included,
perhaps as a part of algebra, but often using analysis as a tool. Finite (or
“discrete”) Mathematics is presently popular—but is it algebra, or logic, or
applied Mathematics? Algebra soon splits into group theory, field theory,
ring theory, and linear algebra (matrix theory). These split up again:
number theory can be elementary, analytic, or algebraic; research in
group theory is sharply divided between finite groups and infinite groups,
while ring theory is split into commutative and non-commutative ring
theory, with different uses and different theorems. Analysis can be real
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analysis, complex analysis, or functional analysis. In geometry, algebraic
geometry is based on projective geometry, differential geometry is close to
parts of analysis, and topology has branches labeled point-set topology,
geometric topology, differential topology, and algebraic topology. The
fourth part, “applied Mathematics”, is even more varied, since it may
refer primarily to classical applied topics such as dynamics, fluid mechan-
ics, and elasticity, or primarily to more recent applied topics such as sys-
tems science, game theory, statistics, operations research, or cybernetics.
Finally, the active study of partial differential equations is in part applied
Mathematics (especially when numerical methods are involved), in part
analysis, and in part differential geometry (especially when invariant
methods using differential forms are involved). But this list of subdivi-
sions is incomplete, for example, it omits logic and foundations and their
applications in computer science.

In sum, these subdivisions of Mathematics are imprecise and necessarily
involve overlaps and ambiguity. The use of even finer subdivisions (as in
the sixty-odd fields used by Marhematical Reviews to organize current
research papers) still presents corresponding difficulties. Should we con-
clude that the real organization of Mathematics cannot be accomplished
simply by subdivision into special fields? Are there deeper methods of
organization? What is the proper order of the parts of Mathematics, and
which branches belong first? Are there even parts of Mathematics which
are unimportant or mistaken?

Since Mathematical ideas often arise in prescribed order, one may also
ask whether a foundation of Mathematics provides a good organization of
the subject.

Our survey will indicate that each part of Mathematics inevitably has
an aspect which is formal. Factual problems necessitate calculations, but
the calculations then proceed by prescriptions or by rule, rather than by
continued attention to the facts of the case—yet the result of a good for-
mal calculation does agree with the facts. Proofs in geometry flow by log-
ical argument from axioms, but the resulting theorems fit the world.
Therefore we must inquire as to the relation of the formal to the factual.
Thus we begin the first chapter by exhibiting a few of the basic formal
structures of Mathematics.

This leads to our third question: Are the formalisms of Mathematics
based on or derived from the facts; if not, how are they derived? Alterna-
tively, if Mathematics is a purely formal game, why do the formal conclu-
sions fit the facts?

The fourth question is this: How does Mathematics develop? Is it
motivated by quantitative questions which arise in science and engineer-
ing, is it driven by the hard problems which have arisen in the Mathemat-
ical tradition, or is it pushed by the desire to understand the tradition
better? For example, how much does number theory owe to the repeated
attempts to prove Fermat’s last theorem? Is the solution of a famous
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problem the pinnacle of Mathematical accomplishment—or should there
be comparable credit to the more systematic work in the introduction of
new ideas by comparison, by generalization, and by abstraction? For that
matter, how does abstraction come about, and how do we know which
abstraction is appropriate?

These questions about the dynamics of the development of Mathemat-
ics touch on a further—and difficult—topic: How does one evaluate the
depth and importance of Mathematical research?

Careful methods and canons of proof developed first in geometry
(Chapter III). Subsequently the calculus worked well, but without careful
proof, using dubious notions of infinitely small quantities. This led to the
problem of finding a rigorous foundation for the calculus (Chapter VI).
These two cases present the fifth general question, that about rigor. Is
there an absolute standard of rigor? And what are the correct foundations
of Mathematics? Here there are at least six competing schools of thought,
as follows.

Logicism: Bertrand Russell asserted that Mathematics is a branch of
logic, and so can be founded by a development from a careful initial
statement of the principles of logic. Moreover, Whitehead and Russell
carried out such a development in their massive (but now neglected) book
Principia Mathematica.

Set Theory: It is remarkable that (almost) all Mathematical objects can
be constructed out of sets (and of course sets of sets). Hence arises the
view that Mathematics deals just with properties of sets and that these
properties can all be deduced from a suitable list of axioms for sets—either
the Zermelo—Fraenkel axioms, or these axioms with supplements, some
perhaps still to be discovered.

Platonism: This set-theoretic description of Mathematics is often cou-
pled with a strong belief that these sets objectively exist in some ideal
realm. Indeed some thinkers, such as Kurt Gédel, may consider that we
have special means (not the usual five senses) for perceiving this ideal
realm. There are other versions of platonism for Mathematics, for exam-
ple one in which the ideal realms are comprised of numbers and spatial
forms (the “ideal triangle”).

Formalism: The Hilbert School holds that Mathematics can be regarded
as a purely formal manipulation of symbols, as though in a game. This is
the manipulation done when we write rigorous proofs of Mathematical
theorems from axioms. This idea was part of the Hilbert program: To
show that some adequate system of axioms for Mathematics is consistent,
in the exact sense that proofs in the system could never lead to a contrac-
tion, such as the contradiction 0 = 1. To this end, the proofs were to be
viewed as purely formal manipulations and were to be studied objectively
by strictly “finite” (and hence secure) methods. As yet, such a consistency
proof has not been achieved, and Godel’s famous incompleteness theorem
(to be discussed in Chapter XI) makes it unlikely that it can be achieved.
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Intuitionism: The Brouwer school holds that Mathematics is based on
some fundamental intuitions—such as that of the sequence of natural
numbers. It holds, moreover, that proofs of the existence of Mathematical
objects must proceed by exhibiting these objects. For this reason intui-
tionism objects to some of the classical principles of logic, more explicitly
the tertium non datur (either p or not p). There are a number of variants
of intuitionism, some emphasizing the importance of finding proofs which
are constructive.

Empiricists claim that Mathematics is a branch of empirical science, and
so should have a strictly empirical foundation, say as the science of space
and number.

In recent years, these (and other) standard views as to the nature and
foundation of Mathematics have not been very fruitful of new insights or
understanding. For this reason, we do not wish in this book to assume
any one such position at the start. Instead, we intend to examine what is
actually present in the practice and in the formalism of Mathematics.
Only then, with the evidence before us, will we turn to the question of
what is and what ought to be a foundation of Mathematics.

Our last and most fundamental question concerns the Philosophy of
Mathematics. This is actually a whole bundle of questions. There are
ontological questions: What are the objects of Mathematics and where do
they exist (if indeed they do exist)? There are metaphysical problems:
What is the nature of Mathematical truth? This is a favorite question,
given that the philosophers’ search for truth often will use the truths of
Mathematics as the prime example of “absolute” truth. There are
epistemological problems: How is it that we can have knowledge of
Mathematical truth or of Mathematical objects? Here the answers may
well depend on what is meant by such truth or by such an object.

There are also more immediate or more practical questions. If
Mathematics is just formal or just logical deductions from axioms, how
can Mathematics be so unreasonably effective in science (E. Wigner)? Put
differently, why is Mathematics of such major use in understanding the
world?

The various schools on the foundations have correspondingly various
attempts to answer these questions, none of them generally convincing.
Often—especially in work by philosophers—they are anchored almost
exclusively in the most elementary parts of Mathematics—numbers and
continuity. Much more substantive material is at hand. This is why we
begin with a fresh view of the variety of Mathematics.

To this end, Chapter I starts with the traditional idea that Mathematics
is the science of numbers and space—but shows that this starting point can
lead directly to some basic formal notions (transformation group, con-
tinuity, and metric space) in defiance of the usual historical order. The
next chapter describes the natural numbers as a structure, with both sur-
face and deep aspects. The traditional foundations of geometry are sum-
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marized in the third chapter, with emphasis on the ubiquitous role of
groups of motions and on the remarkable observation that almost all the
basic geometrical ideas can be developed in just two dimensions. The
familiar (but extraordinary) fact that very many measures of magnitude
(in time, space or quantity) can all be consigned to one structure—that of
real numbers—is the subject of Chapter IV. The next chapter discusses
the origins of the idea of “function” and the troubles in defining it. This
leads through transformations to groups again and to the question: Why
do the very simple group axioms lead to such deep structural results? The
analysis of “effect proportional to cause” is the starting point of linear
algebra (Chapter VII), but its ramifications (such as the notion of an
eigenvalue) extend beyond algebra. The next chapter deals with some of
the aspects of higher geometry: What is a manifold? Some of these ideas
are closely tied to classical mechanics, which illustrates (Chapter IX) the
intricate connection between applied and pure Mathematics. Chapter X
in complex analysis returns to the study of functions—this time holo-
morphic functions; they are closely tied to the manifolds of Chapter VIII
and to the origins of topology. At the end, the book returns to questions
of foundations (Chapter XI) and then to the six philosophical questions
raised above. With this sample of the extensive substance of Mathematics
at hand, these questions take on a different and more illuminating form.

Our discussions of the scope of elementary Mathematics do assume
some acquaintance with Mathematics; however, we endeavor to motivate
and define explicitly all the Mathematical concepts which play a role in
our discussion. Each defined word is italicized. A reference to §VIL6 is
to the sixth section of chapter seven, while (VIL.6.5) is to the fifth num-
bered equation of that section; references within a chapter omit the
chapter number.

Since our survey touches upon many parts of classical elementary
Mathematics, we assume that the reader has at hand some of his own
familiar texts for possible reference. We add only occasional supplemen-
tary references to the Bibliography at the end, in the form Bourbaki
[1940]. There are a number of references to Survey of Modern Algebra and
to Algebra, both books written in some combination by Birkhoff and Mac
Lane. Homology and Categories Work (short for “Categories for the
Working Mathematician” refer to books by Mac Lane alone. We do note
here a few other overviews of Mathematics. That magnificent multivol-
ume monster by Bourbaki (for example, [1940]) is a splendid formal
organization of many advanced topics, formulated in blissful disregard of
the origins and applications which are important to our present purpose.
On a more elementary level the 1977 essay by Gairding covers, with
different emphasis, many of the topics on which we touch. Davis and
Hersh [1981] has a more popular scope.



CHAPTER |

Origins of Formal Structure

Mathematics, at the beginning, is sometimes described as the science of
Number and Space—better, of Number, Time, Space, and Motion. The
need for such a science arises with the most primitive human activities.
These activities presently involve counting, timing, measuring, and mov-
ing, using numbers, intervals, distances, and shapes. Facts about these
operations and ideas are gradually assembled, calculations are made, until
finally there develops an extensive body of knowledge, based on a few
central ideas and providing formal rules for calculation. Eventually this
body of knowledge is organized by a formal system of concepts, axioms,
definitions, and proofs. Thus Euclid provided an axiomatization of
geometry, with careful demonstrations of the theorems from the axioms;
this axiomatization was perfected by Hilbert about 1900, as we will indi-
cate in Chapter III. Similarly the natural numbers arise from counting,
with notation which provides to every number the next one—its successor,
and with formal rules for calculating sums and products of numbers. It
then turns out that all these formal rules can be deduced from a short list
of axioms (Peano-Dedekind) on the successor function (Chapter II).
Finally, the measurements of time and space eventually are codified in the
axioms (Chapter IV) for the real numbers. In sum, these three chapters
II-IV present the standard formal axiomatization of the science of
number, space, and time.

This development of the formal from the factual is a long historical
process in which the leading concepts might very well have come in a
different order. Our concern is not the historical order, but the very possi-
bility of a development of form from fact. To illustrate this, we start
again from number, time, space, and motion and build up directly some
of the general concepts of modern Mathematics. Thus counting leads to
cardinal and ordinal numbers and to infinite sets and transformations.
The analysis of time leads to the notion of an ordered set and a complete
ordered set; these concepts fit also with geometrical measurement. The
study of motion (in space) and of the composition of two motions suggests
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the notion of a transformation group. Comparison of this notion of com-
position with the arithmetic operations of addition and multiplication
leads by further abstraction to the concept of a group. On the other
hand, motion involves continuity, and the formal analysis of continuity
gives rise to a simple axiomatic description of space as a metric space or,
more intrinsically, as a topological space. Thus this chapter introduces the
idea of the formal in terms of certain basic structures: Set, transformation,
group, order, and topology. With Bourbaki, we hold that Mathematics
deals with such “mother structures”. Against the historical order, we hold
that they arise directly from the basic stuff of Mathematics.

1. The Natural Numbers

In order to list, label, count, enumerate, or compare it is convenient to use
the single system of natural numbers, written in our conventional decimal
notation as

0,123,....9,0,1L.... (1)

The same natural numbers could be written in other notations—with the
base 2 instead of 10, or as Roman numerals, or simply as marks

LILIIL, ... . (2)

These numbers are used to list in order the objects of some collection of
things, or simply to label these objects, or to count the collection, or to

(thereby) compare two collections. From these activities, several
Mathematical concepts arise together

set-number-label-list.

At this point the word “set” simply means a collection of things: A group-
ing or assemblage S of objects (say, of physical objects or of symbols)
such as the collection of two turtle doves, three french hens, four colley
birds, or five gold rings—or the two collections

S = {4BC), T = {UV.W) 3)

of three letters each, written with the conventional bracket notation for a
set or collection. At this stage, the word “collection” is appropriate,
because all that matters about a set (or collection) is that it is determined
by specifying its elements; one does not yet need more sophisticated
notions, such as sets whose elements are themselves sets, or sets of sets of
sets, or sets of subsets.
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In these terms, one can give semi-final descriptions of the (at first)
highly informal operations of listing, labeling, counting, and comparing,.
To “list” a collection such as {4,B,C} means to attach in regular order a
numeral to each object in the collection; one usually begins with the
numeral 1 and proceeds in order, say, as {4,,B,,C;}. Note that the
numerals will be adequate for this process in all cases only if there is
always a next numeral; this is one origin of the idea that every natural
number »n has an immediate successor s(n) = n + 1. To “label” means to
attach the same numerals to the objects of the collection, but irrespective
of their order, as in {4,,B;,C| }. To “count” a collection means to deter-
mine how many numerals (or which numerals) are needed to label all the
objects in the collection. In this connection, note that the count, done
properly, always comes out to the same answer. In particular, the
numerals needed do not depend on the order in which the objects of the
collections are counted: Whether it is {4,,B:,C3}, {B),45.C3} or
{C1,By,43}, it always ends at the same 3. Comparing two collections,
such as {4,B,C} and {U,V,W} means matching each object of the first
collection with some object of the second, until both are exhausted, as in
{4/W, B/V, C/U}. Of course, it might happen that one collection is
exhausted before the other; the first is then “smaller” in the comparison.
The result of this comparison does not depend on the order in which
objects are matched: {4,B} in any order is smaller than {U,V,W}. There
are many pairs of collections to be compared, but it again turns out that it
is not necessary to compare each pair; it is enough to compare finite col-
lections with the standard initial segments of the positive natural
numbers:

(123},  {1234),  {12345), et

In this context, one says that the collection {4,B,C} has the cardinal
number 3, in symbols

#{4,B,C} = 3. C))
As noted, this means that there is a one-to-one correspondence f
fi1 - A, 2 » B, 3 C (5)

which matches the standard collection {1,2,3} to the collection {4,B,C}.
The collection {U, ¥, W} has the same cardinal number, by the correspon-
dence

gl p U 2 -V 3 - W. (6)

The formal definition of this matching process states that a bijection b (a
one-to-one correspondence) from a collection S to a collection T is a rule
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b which assigns to each element s in § an element b(s) in 7, in such a way
that every element ¢ of T occurs for exactly one s. This means that the
inverse of b (b read backwards) is a bijection from 7 to §; thus the inverse
of the bijection f of (5) above is

fildwml, Bw2 ¢m3. 0

“Composed” with the bijection g of (6) this gives a bijection, f~' fol-
lowed by g, directly from {4,B,C} to {U,V,W{ as

gf AU BV, CerW ®)

Thus the elementary observation that the two collections
{A4,B,C} and {U,V,W} have the same cardinal number,

#{A,BC} = #{UV,W),

suggests the more general process of “composing” bijections, one followed
by another. Indeed, these ideas about bijections can be used to provide a
formal definition of the (cardinal) natural numbers (§I1.8).

But, whatever the natural numbers are (or however they may be
defined) their primary function is to serve in calculations of sums, prod-

ucts, or powers.
The sum of two numbers is the cardinal number one gets by combining

two sets with the two given numbers, provided these sets are disjoinz—that
is, have no common elements. Thus if 4, B, C, U, VV above are all
different, the sum 3 + 2 = 5 is

3+ 2= #{4BCUV},

and similarly for other sums. The product 2-3 can be described “geomet-
rically” as the cardinal number of a 2 X 3 square array

_ . Javneuecy
SRS {(A,V)(B,V)(c,m}-

Here the three columns are three disjoint sets, so the product can also be
described as an iterated sum

23=2+2+ 2.
Similarly, the exponential 2° can be described as an iterated product
P = 3.2

it can also be described as the cardinal number of the set of all functions
from a 3-element set {1,2,3} to a 2-element set {0,1}.



10 I. Origins of Formal Structure

These three arithmetic operations were invented (or discovered?)
because they have all manner of practical uses in financial or scientific
calculations. But, to make such calculations we never bother to reduce
each operation to its original meaning, as this meaning has just been
described. Instead, for the usual decimal notation, one may use a com-
puter or employ the familiar rules: The addition and multiplication tables
for the digits from 0 to 9, plus the rules for carry-over of tens. These rules
are “formal” in the basic sense of the word: They do not refer to the
meanings of the decimals or of the arithmetic operations (though they can
be rigorously deduced from these meanings). Instead they simply specify
what to do, and specify that correctly. Thus if one counts two disjoint col-
lections as having 5 and 17 members, respectively, and then adds the
decimals 5 and 17 according to the rules, the sum is always the count for
the combined collection—and similarly for the product. To be sure, items
can get lost from collections and calculators can make errors, but then
there are further rules to make checks, like the rule of “casting out 9’s”
(replace each decimal by the sum of its digits, then add or multiply,
according to the case). For numbers written in bases other than tens,
there are corresponding rules for calculations and for checks (what does
one cast out?).

This example gives a clear indication of what we intend to mean by for-
mal: A list of rules or of axioms or of methods of proof which can be
applied without attention to the “meaning” but which give results which
do have the correct interpretation.

2. Infinite Sets
The collection of all the natural numbers,
N = {0,1,2,3,...}, (N

starts with 0 and has to each number a successor; hence it is infinite. His-
torically, one started with 1 and not 0, but we need 0 as the cardinal
number of the empty set.

The infinite set N of all natural numbers includes many finite subsets

{0,1,2}, {1,3,5,7}, {2.4,16},
as well as infinite sets, such as the set P of all positive natural numbers
P = {1234,..},

the set E of all even positive numbers, and the set S of all positive multi-
ples of 6. These various infinite sets may be compared as follows:
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E {2, 4 6 8.} (2

s {6, 12, 18, 24,...};
the result shows that there are just as many even positives as there are
positives all told; h(n) = 2n defines a bijection b: P»E. Similarly
¢(2m) = 6m is a bijection ¢: E—S. In the comparisons (2), c(b(n)) = 6n
gives a “‘composite” bijection c:b: P> S.

A set X is called denumerable when there is a bijection f: N —X. Thus
the comparisons (2) indicate that P, E, and § are all denumerable; as a
matter of fact, any subset of N is either finite or denumerable.

Two sets X and Y have the same cardinal number when there is a bijec-
tion f: X—Y. This definition includes the finite cardinals 0,1,... already
discussed in §1, and the cardinal number called X, (aleph-naught) of N,
E, P, and all other denumerable sets. In this way, the elementary activity
of counting leads to infinite cardinal numbers—of which Rj is only the
first. We will later see that the set of all points on a line is infinite but not
denumerable.

One can also formally describe when a set is infinite: When its cardinal
number is not finite, or, equivalently, when it has a proper subset S for
which there is a bijection § —» X.

Finitists hold that infinite sets (and geometrical infinities) are just con-
venient fictions, while only the finite is “real”. This we must later con-
sider. For that matter, is a finite set real? On the fourth day of Christmas,
did my true love send me four colley birds or a set of four colley birds?
Where is the set?

3. Permutations

A finite set, counted in any order, leads to the same (finite) cardinal
number. The count is not changed by “permuting” the things counted.
But one may also count how many permutations there are. Thus the set
{1,2,3} has six permutations

(123), (231), (312), (213), (321), (132).
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Such counts are useful in gambling or speculating. Choose three cards in
succession from an (ordered) deck of thirteen; what is the chance that
they come out in a direct or reverse order? It is the ratio of favorable
cases [(123) or (321)] to the total number 6 of cases (of permutations).
This is the root of probability, though in the end the definition of a pro-
bability must be more sophisticated than the simple ratio of favorable
cases to total cases.

A permutation can be viewed “dynamically”—say, as an operation mov-
ing the original order (123) to the order (312) by the bijection

1 3, 2 b1, 3 b 2.

This is usually written as a cycle (132), standing for 1 » 3 » 2 b 1.
Any permutation of {1,2,3} can be viewed as a bijection

b: {123} — {1,2,3}

As a bijection, it has an inverse, and any two permutations of {1,2,3} have
a permutation as their composite.
Permutations also arise in algebra. Thus, given the polynomial

(x1 + x2)(x3 + x4), (D

what permutations of the subscripts will leave the polynomial unchanged?
To begin with, one may interchange 1 and 2, or interchange 3 and 4, or
do both interchanges, or do neither. These we may list as the permuta-
tions

(12), (34, (12)34), L ()

here (12)34)is 1 » 2,2 » 1,3 » 4,4 b 3; it is the composite of the
two cycles (12) and (34). Also I (do nothing) is the “identity” bijection
1 »1, 22 33 4p4 But the polynomial (1) is also left
unchanged by the following four permutations which interchange the two
factors:

(13)(24), (14)(23), (1324), (1423). (3)

This completes the list. Of the 24 possible permutations of the set
{1,2,3,4,} exactly eight leave this polynomial unchanged; of these eight,
four leave the factors unchanged. One may also wonder at the sequence
24, 8, 4. One may also experiment with other polynomials. Thus the poly-
nomial

(r1 — x2)(x1 — x3)(x1 — xa)(x2 — x3)(x2 — Xa)(x3 — X4)
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has more symmetries (12 permutations!) while the polynomial
(1 — x2)(x3 — x4) (O]
allows only four permutations (the four group)
(I12)34), (13)24), (14)23), [I. ©)

In this list, the composite of any two permutations still leaves the polyno-
mial (4) unchanged, so the composite is also in the list. Such a list of per-
mutations is called a permutation group. The combined list (2) and (3) is
also such a group.

4. Time and Order

The passage of time suggests the ideas “before” and “after”; when the
instant ¢ of time comes before the instant 1* we write t < ¢’. Moreover, if

in turn ¢’ is before ¢”, then it is apparent that f is also before ¢”. This can
be stated formally in the rransitive law

t<<t’ and " < 1" imply ¢ <t” n

for the “binary relation” <. Moreover, for any two distinct instants of
time, one must come before. In different language, for all ¢ and 1" exactly
one of

t<<t’ or t=1t" or t'<t 2)

must hold. This statement is the law of trichotomy.

But the “before” and “after” of time is not the only example of these
two laws. There is a “discrete” example. For natural numbers, m < n
means that n comes after m in the list of numbers succeeding m; here
both laws (1) and (2) hold:

G-L1=22E8 Sasa. 3)

The usual order of the positive and negative integers provides another
instance of these laws:

<2< -1I<0<CI<2<3I<C - (4)

as does the usual ordering of the rational numbers, suggested by the
display

Q:-fs< v <0 - <V < Y-
(5)

<lh< ... <o <]
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There are numerous other examples of these two formal laws. Hence it is
handy to have a name for this combined situation, as it might apply to
any set X (of instants of time or of integers or of rationals ...).

A binary relation < on a set X specifies that x < y is true or false for
any two elements x,y in X; one might also say that the relation amounts
to specifying a set: The set of all those ordered pairs (x,y) with x < y. A
linearly ordered set is then a set X with a binary relation < for which the
laws (1) and (2) hold; in other words it is a set equipped with a transitive
and trichotomous relation <. One can then invent (or discover?) many
other examples of linearly ordered sets: Finite ones such as
1 < 2 < 3 < 4 or long infinite ones such as

0<1l<?2<3< -+ <w<owt+tl<ot+2< ---, 6)

where w is the first thing beyond all the finite natural numbers. (This
linearly ordered set is actually the start of the infinite ordinal numbers.)

This definition is an easy first (of many) cases of a list of axioms
describing a common situation with many different examples. As in other
cases, the choice of axioms can vary. Thus, rather than using “before” and
“after”, the passage of time can be described by the notion “not later
than”, usually written ¢ < ¢’. This alternative can be formalized for any
linearly ordered set X. Define x < y to mean x < y or x = y. This
binary relation on X is then

Transitive: x <y and y <z imply x< z,
Reflexive: x € x for all x,
Antisymmetric: x <y and y < x imply x = y.

Finally, corresponding to trichotomy, it has the property:
For all x and y in X, either x < yor y < x.

Conversely, let any set X have a binary relation < with these four proper-
ties, and define x < y to mean that x < y but x # y. Then X is indeed
a linearly ordered set and the originally given relation < is related to <
as before. In brief, the same notion of linear order can be defined in two
formally different ways, via < or via <. In general, the same situation
may often be defined in two or more formally different ways.

One also asks when two “models” of the axioms are “essentially” the
same—in the sense that the linearly ordered set of natural numbers has
the same “order type” as the ordered set of even positive natural
numbers:

2<4<6<8<I0<
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So for linearly ordered sets X and Y an order isomorphism f: XY is
defined to be a bijection of the set X on the set Y such that order is
preserved: For all x; and x, in X,

x; < x3 implies fx; < fx;. (M

When there is such an isomorphism f, X and Y are said to have the same
order type. (This is like the definition of “same cardinal number” except
that now one also keeps in mind the order of the elements being com-
pared.) One can then readily prove (say) that any linearly ordered set of 4
elements is order isomorphic to the standard such set: 1 < 2 < 3 < 4.

A general question is then at hand: Can one describe a particular
model of the axioms by giving enough additional axioms to determine the
model uniquely (i.e. uniquely up to an order isomorphism?) In the present
case, can one give properties of an ordered set X which imply the
existence of an order isomorphism X N (or X-Q, the ordered set of
rationals, or X - R, the ordered set of reals?)

The answers are “yes”. To get at the case of the reals R, one must for-
mulate the sense in which a real number (an instant of time) can be
approximated by rational numbers. For example, the real number 7 is
determined by the usual sequence of decimal approximations

3.14, 3.141, 3.1415, 3.14159, 3.141592, . ...

Indeed, 7 is the “least upper bound” of this set of rational numbers. For-
mally, in a linearly ordered set X an element b is an upper bound for a
subset S of X if s b for every s in S. Also, b is a least upper bound for
S if no b’ with b’ < b is an upper bound for §. This implies that if §
has a least upper bound, that least upper bound is unique. (This is the
sense in which =, for example, is determined uniquely by its decimal
expansion). Also, the set X is unbounded if there is in X no upper bound
and no lower bound. (For example, the ordered set N has a lower bound
0, hence is not unbounded).

The crucial property of the ordered set of real numbers is completeness:
Every non-empty subset S with an upper bound has a least upper bound.
The additional fact that every real number can be approximated by
rationals can be made formal by stating that the set Q of rational
numbers is “dense” in R. Here a subset D of a linearly ordered set X is
said to be dense in X if, for all x << y in X there is always a d in D
between x and y, so that x << d << y. Itis then clear that the ordered set
R is complete, unbounded, and has a denumerable dense subset. Also
one can prove that any linearly ordered set X with these three properties
is order isomorphic to R (see Hausdorff). In the proof one uses a charac-
terization of the order type of Q: It is denumerable, unbounded, and
dense (as a subset of itself).
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This result does provide a description of the order of the real numbers.
In Chapter IV we will combine this with a description of their algebraic
properties. These properties also arise from experience with the passage
of time. Once intervals of time are measured by a clock (or an hourglass)
one can add one interval to another, and regard each instant of time ¢ as
the end of an interval (from some starting time). This addition is then an
operation which produces to each pair ¢, " of instants their sum, ¢ + ¢/,
with properties such as¢ 4+ ¢ = ¢’ + ¢ and

(I + tl) + !ll — t + (t’ + t”)

—just like those for the addition of natural numbers. Again, different
examples lead to the same formal law.

5. Space and Motion

Space can be regarded as something extended or as a receptable for
objects or as a background for ideal “figures”. These aspects are all
closely tied to the notion of motion through space, while motion provides
the notion of measuring distance in space. Space and motion crop up
together everywhere, from physics to physical exercise.

Idealization of the notion of space suggests that chunks of space are
made up of figures which are filled up with “points”. A point is in space,
but without extent. In the extreme analysis, the space consists just of
points—but to make this work the points must have added structure, say
that described by giving the distance p(p.q) from the point p to the point
q. This distance is to be measured along straight lines and is a number—
at first, just some rational number. But some lines must be vertical (for
balance) and others horizontal. Thence comes the idea of perpendicular
lines (the word suggest the vertical, as in the perpendicular version of
gothic architecture). This leads to right triangles. These lead in turn to
the pythagorean theorem and the discovery that the hypotheses of an isos-
celes right triangle with both legs of length 1 is measured by V2—which
cannot be a rational number (because V2 = m/n in lowest terms would
give m? = 2n?, forcing m and then n to be even). Thus it is that space,
measured with distances, requires not rational numbers but real numbers.

Thus, given the real numbers, one is led to describe space—or a chunk
of space—as a collection of points p, ¢,... together with a non-negative
real number p(p,q) which is the measure of the distance from p to g. It is
the same as the distance from ¢ to p:

p(pq) = p(qp) forall pg; (1

it is zero only when the points coincide:
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p(p.q) = 0; plp.g) =0 if and only if p = g. )

Moreover the intent is that this distance is the shortest from p to g. (The
straight line is the shortest distance between two points.) In particular, this
means that the distance from p to ¢ is not lessened when it is measured
along two straight lines going through a third intermediate point r. This
amounts to the (Figure 1) triangle axiom: For all p, ¢ and r in X,

o(p.q) < p(p.r) + p(r.q). 3

Thus arises the concept of a metric space: A collection of points p, g
together with the real number distances p(p,q) which satisfy the axioms
(1), (2), and (3). The evident chunks of space—a square, a cube, a
cylinder, a blob, a dumbbell, each with the usual measure of distance—are
all metric spaces in the sense of this definition, as is the whole of our
(“ordinary”) three dimensional space. Non-Euclidean geometry (Chapter
ITI) provides natural examples of such spaces as do the curved spaces to
be considered in Chapter VIII; there are also bizarre examples—such as
“a space” with infinitely many different points, with distance 1 between
any two different points (try to fit thar into the plane). Despite such
bizarre examples, many elementary properties of space can be formalized
and studied for a general metric space. In other words, given numbers, the
Mathematical study of space need not start with the conventional ideas of
Euclidean geometry, but instead with an axiom system—that of metric
space—which applies to many different examples of “space”.

Motion can be described in any metric space—push the points around,
keeping fixed their distances apart. More formally, if F is a figure (a col-
lection of points) in a metric space X a motion of F will at each time ¢
take each point p of F to a new position (a new point) M,p in X. This
passage must be “continuous” (an idea to which we will soon return).
Moreover, the motion must be rigid—the distance apart of any two points
must stay the same during the motion; in other words, for all times ¢ and
all points p and g of F, the distance p must satisfy

p(M,pMq) = p(p.q). 4)

We speak of such a motion (p,t) +— M,p as a parametrized motion of the
figure F, with ¢ as the parameter.

It is perhaps easier to consider just a “completed” motion—the passage
from the initial position p to the final position M, p at some chosen time

r

/\

14 q

Figure 1
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t;. This is called a rigid motion M; it assigns to every point p of the figure
concerned a new point Mp such that, for all p and ¢,

p(Mp.Mq) = p(p.q); (%)

put briefly, a rigid motion is a bijection of space which preserves distances
between points. For example, a rigid motion of an equilateral triangle
into itself could be a rotation (by 120°, 240°) or a reflection of the triangle
in one of the three altitudes or the identity motion (every point stays put).
There are thus six such motions (symmetries) of the triangle. For motions
of the plane as a whole, we will see in Chapter III the use of three typical
motions: A translation (every line stays parallel to its original position), a
rotation (one point is fixed) and a reflection (all the points on a line stay
fixed. These are not all: Moving a triangle ABC into a congruent triangle
A’'B’C’ (Figure 2) may require a translation (4 to A ') followed by a rota-
tion about A ’; in other words, a composite motion.

From such examples arises the idea of the composition of two motions
M and N—first move by M and then move the result by N, to give the
composite motion C with

C(p) = N(Mp). (6)

We write C = N-M for the composite and observe at once that if M and
N are rigid motions, so is C. For parametrized motions the addition of
time intervals usually corresponds to composites, in that

M, (p) = (Ms-M,)(p). (M

The axioms for a metric space show that any rigid motion M keeps dis-
tinct points distinct. Indeed, p # g implies by axiom (2) that p(p,q) 0
and hence by the definition (5) of a motion that p(Mp,Mq) # 0), hence
Mp # Mg by axiom (2) again.

In studying the symmetry of a figure F, we usually consider a motion M
of F “into” itself; that is, a motion M such that p in F moves to some
M(p) in F and such that every point g of F comes from some p in F, so
that ¢ = M(p). By the above, the motion M is therefore a bijection of F
to F, and so has an inverse M ~' which is also a rigid motion of F to F.

However, the reader might wish to construct an infinite figure F (say
one in the plane) and a rigid motion M of F into F which is not onto F.

B

5
¢ 4
A'
A c

Figure 2
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6. Symmetry

Symmetrical objects are all about us. There are many (man-made) sym-
metrical figures (Figure 1). Each of the figures has vertical symmetry,
horizontal symmetry, and rotational symmetry. The vertical symmetry V
can be construed as a reflection of the figure in its vertical axis, and simi-
larly for the horizontal axis, H. The rotational symmetry can likewise be
regarded as a 180° rotation R of the figure about its center. If we think of
the figure as a metric space X, each of these symmetries is a rigid motion
M of X onto itself, and these four motions are the only such. This sug-
gests a definition of a symmetry of a figure F: A rigid motion of F onto
itself. In particular the different figures of (1) have by this definition the
same symmetry (later called the four-group).

By this definition, the composite of two symmetries of F is again a sym-
metry. Thus vertical reflection followed by another vertical reflection is
the identity (which thus must count as a symmetry). Again, vertical
reflection followed by horizontal reflection is the 180° rotation. This one
may check by actual experiments with a rectangular card—or one may
label the vertices of the rectangle by numbers 1, 2, 3, 4 so that V" amounts
to the permutation (12)(34), H is (14)(23), and the composite H-V (first

apply V then H) is
l»2r3 2b1rkr4d 341, 43 82; §))

this is the permutation (13)(24) given by the 180° rotation. Thus the total
list of symmetries for the Figure 1 is

(12)(34), (14)23), (13)(24), I. ()

This is identical to the list (3.5) of permutations allowed by the polyno-
mial (x; — x2)(x3 — x4) of (3.4). Thus the same symmetry turns up in
both geometric and algebraic circumstances. This suggests that the under-
lying symmetry here—in this case the “four group”—must itself be some-
thing “abstract”; neither geometric nor algebraic; or perhaps both. It
need not depend on numbers—the dumbell of Figure 1 has no convenient
corners to be numbered!

There are many different types of such symmetries. In three dimensions,
one has the symmetry of the regular tetrahedron, or of the cube, or of the
icosahedron, or of the octahedron. In the plane there are symmetrical
figures such as those of Figure 2. For the equilateral triangle there are six

2 1
3 4

Figure 1
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symmetries, accounting for all six permutations of the three vertices—or
just as well, all six permutations of the three sides. For the square and
also for the decorated square there are eight symmetries all told—four
reflections (vertical, horizontal, and two reflections in the diagonals) and
four rotations (counting the identity as a rotation through 360°!) If one
labels the four vertices as in Figure 2, the eight symmetries turn out to be
exactly the eight symmetries (3.2) and (3.3) listed in §3 for the polynomial
(x1 + x2)(x3 + x4). This again indicates that algebra and geometry
have in common some underlying, more abstract, form.

3 1 / \
2 4 ) \ / i

Figure 2

The frieze of a Greek temple, such as that suggested by the scheme
(Figure 3) has “more” symmetry. One considers it as a “linear orna-
ment”, extending to infinity in both directions: one may picture it more
schematically as in Figure 4, with nodes labeled by numbers. There are
then infinitely many symmetries: Vertical reflection (n to —n), translation
T to the right by two units and repeated such translation 7", n times, as
well as the inverse translation 77" (two units left) and its iterates 7",
There is also a different rigid motion S—translate one unit right and reflect
in the horizontal axis. Then the composite S-S is just T, so that all the
symmetries of this figure are “generated” by V and the “slide reflection” §
and its inverse. If we erase the lower spikes in Figure 4 we get fewer sym-
metries (no S, but ¥ and 7). The reader may try to find linear ornaments
with still different symmetries. (There are just seven sorts).

Three dimensional infinite symmetry comes in much greater variety.
There the origin is not just from architecture, since the classification of
three dimensional symmetries is the first step in the classification of cry-
stals by the “crystallographic groups™.

Figure 3

Figure 4
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7. Transformation Groups

A permutation of a set, a symmetry of a figure, and a motion of
Euclidean space are all examples of “transformations”. A transformation
T of a set X is a bijection T: X - X; that is, a one-to-one correspondence
xb Tx on the elements x of X. Thus each transformation T has an inverse
T~': X-X; any two transformations S and T have a composite S-7—first
apply T and then S.

A transformation group G on a set X is a non-empty set G of transfor-
mations 7" on X which contains with each T its inverse and with any two
transformations S, T in G their composite. This implies that G always
contains the identity transformation 7 on X:

Fes T = T7%0. (N

A transformation group on a finite set (and especially on the typical finite
set {1,2,...,n}) is usually called a permutation group. The symmetric
group of degree n is the group of all n! permutations of {1, ... ;n}.

Symmetry groups of figures or formulas are the leading examples of
transformation groups, and the source of the “abstract” concept. This is a
typical example of Mathematical experience leading to a formal
definition. But we are also led to explicate when two transformation
groups are “essentially” the same. To do this, one may examine a case
such as the representation in §6 of each symmetry of the square X by a
permutation of the vertices of that square. This takes place by labeling
the vertices by numbers, say by a function f:{1,2,3,4} - X which puts each
number on the corresponding vertex. The labeled vertices are all different;
that is, fk = fm implies k = m; one says that the function f is injective
(an injection, or one-one into). With these labels, each motion T: X - X of
the square sends each vertex to a vertex, so determines a permutation
#¥T: Y- Y of the set Y of vertices. Thus ¥ 7" does to k what T does to Jk;
in other words,

FO Dk = T(£ Ry )

for K = 1,2,3, or 4. This equation can be written in terms of composites
of functions as

FET=14 3)
or displayed in a diagram of the corresponding functions as
#
L £ LN—,
4 / @

XX .
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This exhibits f as comparing the action of *7 on the vertices ¥ with the
action of 7 on X. This diagram is called commutative because (3) holds:
Both paths from upper left to lower right have the same result. This
example (and many others like it) suggests a general formalization of the
idea of comparing a transformation group H on a set Y with G on X: A
map of (H,Y) to (G X) is a function f: Y-X and a function #: G- H
such that (4) commutes for every transformation T in G. In case this f is
an injection (as in the case above), the equation (3) shows that giving f
(giving the labels of the vertices) completely determines # . If moreover f
is a bijection, it has an inverse /' so that # can be described directly by

*T=f"Tf; ®)

to find the permutation, label each vertex by f, look to see where the ver-
tex goes, and read off its label (by f~").

This result does formalize the evident fact that the permutations of a
typical set {1,2,3,4} of 4 things represent also the permutations of any set
of four things. Generally, if sets ¥ and X have the same cardinal number,
by a bijection f: Y —-X, then the correspondence # of (5) is a bijection
from the permutation group of X to that of Y. Note incidentally that #
goes in the direction opposite to f.

However, this notion of a map is a bit complicated. Moreover, it
doesn’t directly handle all the desired comparisons. Thus in (6.1) the dum-
bell ¥ and the perimeter X of the rectangle clearly have the “same” sym-
metries, but there is no evident way to get a map f: Y —X to make such a
comparison. Indeed, there is no such f—because the dumbell Y has a
center point left fixed by all the motions and there is no such point on the
perimeter of the rectangle. The two transformation groups in this case
can at least be compared through some intermediary—mapping each (say)
into a common (containing) such rectangle.

To summarize: symmetry forces us to consider transformation groups,
and even forces thoughts as to more abstractions from this notion.

8. Groups

For any three transformations R, §, and T of a set X the iterated compos-
ite, by its definition, satisfies

(R-8)-T)x = R(S(Tx)) = (R-(S-N)x,

so composition of transformations is associative. Now, in a transforma-
tion group G, forget the fact that the elements T of G transform things,
and use only the properties of composition. It is then a group in the sense
of the following definition of an “abstract” group:
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A group is a set G equipped with three rules, as follows:

(i) A rule assigning to any two elements s, ¢ of G on element sz, called
their product, such that the product is associative,

r(st) = (rs)t, @)

forallr, s, rin G.
(ii) A rule determining an element e (the unir, often written as e = 1) of
G such that, for all ¢ in G,

e = 1. (2)
(iii) A rule assigning to each ¢ in G an element ¢ ~' in G such that
n! =e. 3)

In every transformation group, composition has these properties, so every
transformation group is a group. Moreover (and vice versa) Cayley’s
theorem asserts that every group G arises in this way from a transforma-
tion group; just take the set X of points to be transformed to be the set G
itself, while each ¢ in G is the transformation sending x in G to the prod-
uct zx in G. But transformations are not the only sources of groups. With
multiplication taken to be the product, the positive rational numbers or
the positive real numbers or the non-zero complex numbers constitute
groups. If addition is taken to be a “product”, the real numbers (the
instants of time) form a group, as do the ordinary clock hours (12 = 0).
Other groups, as we will see, arise in number theory. Groups such as
these, where the product is commutative,

st = 1s @

for all s and ¢ are called abelian groups.
There are many consequences of the simple axioms (i), (ii), and (iii) for
a group. They include easy consequences such as the cancellation law
(st = st implies s = s5’) or the rules
te=t=e, Hl=e=1t"Y (5)
which might as well (for the sake of symmetry) be used as axioms in place
of (2) and (3). A group G may have subgroups S (a subset which is itself a
group under the same multiplication (and inverse)). If G is finite, its cardi-
nal number is called its order. One proves that the order of a subgroup is
always a divisor of the order of the group; this serves to understand and
explain some of the observations made above about the orders 8 and 4 of
subgroups of the symmetric group of four things. There are all manner of
constructions of particular groups. Thus to each positive n the cyclic group
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that always te = ¢”, our axiom (ii) has specified that the element e is
“given”. Indeed it can be “given” as a function e: {*}—>G mapping the
one point set { *} into the element e of the set G. Such a function is a nu/-
lary operation (on the set G). Thus the group axioms provide three opera-
tions

¢:G X GG e {*)=G —1:6-C (8)

a binary operation (multiplication), a nullary operation (unit), and a unary
operation (inverse). These operations are required to satisfy certain identi-
ties (1), (2), and (3) which can be regarded as identities between “compos-
ites” of the initial operations (8).

Much the same pattern applies to operations of addition and multipli-
cation (the axioms (§IV.3) for a ring or a commutative ring) and for the
axioms on the algebraic operations for lattices, vector spaces, and the like.

Groups have been variously generalized. There are, for example, gen-
eralizations made by deletion of axioms. Drop the unary operation of
inverse (and the axiom (iii) pertaining thereto) and one has the axioms for
a monoid. Drop also the axiom (ii) for the unit e to get the axioms for a
semi-group, and observe that there are various motivations for these dele-
tions; semi-groups arise in the operation of finite state machines (the
sequences of states form a semi-group) and in the composition of opera-
tions in functional analysis—but semi-groups do not have as rich a struc-
ture as do groups (How does one account for such varying richness of
structures?) We will repeatedly examine generalizations by deletion.

These and many other cases illustrate the general notion of an algebraic
structure: A set X with nullary, unary, binary, ternary . . . operations satis-
fying as axioms a variety of identities between composite operations.
“Universal algebra” is concerned with the general properties of such
structure. There is also a “many-sorted” universal algebra for those struc-
tures involving more than one set. A first example (two sorts) is a transfor-
mation group: A set X together with a group G of transformations on X.
An even more decisive example is that of a ring R and a left module
(8VIIL.11) over that ring. More recently, many-sorted universal algebra has
proved useful in the computer science of data types.

9. Boolean Algebra

Another example of an algebra is provided by the operations such as the
intersection and the union of subsets S and T of a given set X. If we write
x € S for “x is an element of $” and <<= for “if and only if”, these
operations are specified by giving the elements of the resulting subset of X
as follows:
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Intersection xeSNT<=xeS§ and x €T, ()

Union xeSuUuT<=xeS or xeT, (2)

= xe8§ =>T<if xe 8§, then x T, (3)
<>=xeT, ornot (x € §).

They correspond exactly to the three propositional connectives “and”,
“or”, and “if then”. They may also be pictured by Venn diagrams; if the
set X is taken to be all the points in a rectangle while S and T are respec-
tively the points inside the ovals S and T, then two of these operations
may be indicated by shaded areas as in Figure 1. There is also a unary
operation, the complement - S of S:

x € -S <> not(x € 9) ()]

These various operations N, U, =, - satisfy certain algebraic identities
which can all be deduced from a suitable list of axioms, the axioms for
Boolean Algebra. Thus the set P(X) of all subsets of X is a Boolean alge-
bra.

There also are operations on infinite families of sets. Thus if §; is a sub-
set of X for each i in some “index” set I, the (infinite) Union and intersec-
tion are defined by

X E US,- <= For some i in [, x e S;, (5
i

X e OS,- <= For everyiin I, x e S; (6)

1

These operations correspond to the logical quantifiers “There exists an i
and “For all i, respectively. These connections with logic will be
explored further in Chapter XI.

Boolean algebra provides a Mathematical way of representing proper-
ties, in that each property H of elements of a set X determines a subset of
X; namely, the subset S consisting of all those elements which have the

property

§ = {x|x € X and x has H}. )
JOME «©
|l

sNT

Figure 1. Boolean operations.
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This subset is sometimes called the extension of the property H, to
emphasize the notion that differently formulated properties may have the
same extension—and that Mathematics has to do with extensions rather
than with meanings. This in turn involves the “extensionality” axiom for
sets—that a set is completely determined just by specifying its elements.
This means that the equality of two subsets of X is described by the state-
ment

S=T < (ForallxinX, x e § < xeT), ®)
while the inclusion of one subset § in another is described by
ScT <> (ForallxinX,xe S = xeT),; %)

here the arrow = stands for “implies”.

This inclusion relation is transitive, reflexive, and antisymmetric, as
these properties were defined in §4 above. In general, an ordered set W is
a set W (such as P(X)) with a binary relation (such as § C T for
S, T € W) which is transitive, reflexive, and antisymmetric. An ordered
set is often said to be partially ordered (a poser) because it need not satisfy
the “trichotomy” property which holds for a linear order.

It is important to recognize that many orders are just partial orders and
not total orders (i.e., not linear). However, in many domains of the appli-
cation of Mathematics to social phenomena, there is a strong tendency to
order ideas, people, and institutions in a linear way—for example, accord-
ing to rank on some imagined numerical measure. The more relevant
notion of partial order seems little known and less used.

Diagrammatic presentation of an inclusion relation is suggestive. Thus
the various inclusions of the subsets of a three-element set can be pictured
by the rising lines in Figure 2, where the bottom symbol @ denotes the
empty subset. The Boolean operations on subsets may be visualized in
this figure. For example, the union {1,2} of the subsets {1} and {2} is the
smallest subset which lies “above” both the subsets {1} and {2}; in this
way it is the least upper bound, as defined in §4, of {1} and {2}. Gen-
erally, the union § U T of two subsets S and T of a set X has the proper-
ties

SE8UE TcRUET (10)
ScR and TCR = SUTCR, (11)

which state that it is the least upper bound of § and T in the partial order
given by inclusion. In an exactly dual way, the intersection § N T is the
greatest lower bound of the subsets § and 7. In other words, both these
Boolean operations can be described directly in terms of inclusion,
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' 2}><{1’ 3>< |
{1}\{2}

Figure 2. Lattice of subsets.

without any use of membership. In Chapter XI we will see further exam-
ples of sets treated without the use of elements.

There are corresponding definitions for other inclusion relations. In
general (and in view of diagrams like that above) a poset is said to be a
lattice when it has a top element 1, a bottom element 0 and when each
pair of elements have a least upper bound (called their join) and a
greatest lower bound (called their meet). The lattice of subobjects of an
algebraic object is a way of describing some of the structure of that object.

10. Calculus, Continuity, and Topology

Many notions besides those of transformation groups arise from the
mathematical analysis of motion. The complex motions of the planets
and the varying velocities of falling bodies suggest the idea of “rate of
change”: Velocity as rate of change of distance or acceleration as rate of
change of velocity. These ideas were codified in the notion of the deriva-
tive, subsequently formalized (Chapter VI) in the rigorous foundation of
the calculus, as based on the axioms for the real numbers. This uses the
definition of the derivative by means of limits and thus the consideration
of a class of “good” functions—those which are differentiable. As a first
example of this circle of ideas, we examine here another good class—the
functions which are continuous.

A rigid motion M: F—F of a figure is continuous because (by rigidity)
the distance from Mp to Mg must equal that from p to g. For a function
f: R - R on the real numbers R continuity means considerably less: Just
that fx and fy will be close if the originals x and y are sufficiently close.
This formulation is still pretty vague; it should mean that one can make
fx and fy “as close as you please” by requiring x to be “suitably close”
to y. This is still vague. “As close as you please” should mean “within a
specified measure 8 (a positive real number) of closeness; “suitably close”
should mean that one can specify a measure of closeness (again a positive
real number ¢) which will do the job. All this (and we have telescoped a
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long and painful historical development) comes down to make the famil-
iar (but meticulous) ¢ — & definition of continuity: A function f: R - R
is continuous at a pointa € R if

For all real € > 0 there is a real § > 0 such that, for all x in R, (1)
If |x —a| <8, then |f(x) — f(a)| <. ()

If this statement holds for all points a € R, the function f is called con-
tinuous; the class of all such continuous functions is called C.

Note that the statement involves both propositional connectives (“if . . .
then”) and the so called “bounded” quantifiers (For all real numbers,
there exists a real number). Thus it is that careful formulations lead to the
use of concepts of formal logic.

Topological and metric spaces arise from analysis of this definition of
continuity. The inequalities used in the definition arise from ideas of
approximation (approximations of the value b = f(a) to within the accu-
racy €) and so implicitly involve the open interval [I.(b) =
{y | |y—b| < €} of center b and “radius” e. In the familiar represen-
tation of the function f by its graph (the set of points (x, f(x)) in the
plane), this open interval appears as an open horizontal strip of width 2e
around y = f(a) (Figure 1). The definition is concerned with those
points x € R for which f(x) lands in this interval I = I.(b)—this set of
points is usually called the inverse image of I under the function f, in
symbols:

f_lI = {x|x € R and f(x) € I}.

Indeed, if xo € f ~IJ (that is, if f(xg) € I), then one can prove from the
definition of continuity that there is an open interval (on the x axis) of
center xo wholly contained in f ~'J. This amounts to the

Theorem. The function > R — R is continuous for all a € R if and only
if the inverse image f ~'I of every open interval of R is a union of open
intervals.

/\/\/ :
fla)y=»56 2e
!

Fe— 25—

Figure 1
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X and Y. The three axioms on open sets are enough to prove most of the
basic facts about continuous functions—for example, the fact that the
composite x +— g(f(x)) of two continuous functions g and f is again con-
tinuous.

To describe continuity at a single point of a space, one may use the
notion of “neighborhood”" A neighborhood of a point a in a topological
space X is any open set of X which contains a. One then says that a func-
tion f: X-Y between topological spaces in continuous at one point
a € X if to each neighborhood V of f(a) there is a neighborhood U of a
for which f(U) C V. This definition agrees with the previous notion of
continuity at a point for a metric and expresses the intuitive idea that
“nearby” points in U go into nearby points in V. Moreover, f is continu-
ous if and only if it is continuous in this sense at each pointa & X.

Extensive experience has shown that this description of a “topology” in
terms of open sets and neighborhoods is extraordinarily effective in for-
mulating all sorts of Mathematical facts in a geometric form. The concept
of “topology” has been appropriately abstracted from the many examples
of “continuity”.

The notion of a topological space was first presented by F. Hausdorfl
in a famous (and beautiful) book Mengenlehre. His definition was formu-
lated differently, in terms of selected neighborhoods, and included an
added axiom (the Hausdorff separation axiom): Two distinct points have
disjoint neighborhoods. A topological space with this property is called a
Hausdorff space.

We have now seen a number of Mathematical concepts which are
described as sets-with-structure. Thus a linearly ordered set is a set
equipped with a binary relation < having certain specified properties. A
group is a set equipped with a binary, a unary, and a nullary operation,
which together satisfy certain identities. A Boolean algebras is similarly a
set with appropriate operations. A topological space X is a set-with-
structure, where in this case the “structure” consists of a specified collec-
tion of the subsets of X, namely the collection of all open sets. This kind
of structure is quite different in style from the algebraic structures. There
are also structures of a mixed kind. For example, there are cases of
motions (e.g., translations or rotations) which deal with a set of motions
which is both a group and a space. This leads to the notion of a ropologi-
cal group. Such a group is a set G which is both a group and a topological
space and in which the group operations—both the product G X G -G and
the inverse G —»G—are continuous. It is this last condition which ties the
two structures together (to make the definition complete, one must know
how the topology on G induces, in a natural way, a topology on G X G).
As in this case, most composite axiomatic structures (combinations of two
kinds of structure on the same set) involve one or more axioms expressing
the formal connection between the two structures—here between the
group structure and the topology.
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Here is another example of a mixed structure: A linearly ordered group
G is a set which is a group and also has a linear order, with the added
axiom that a < b in G and 1 < ¢ implies both ac < bc and ca < cb.
This added axiom is the one which ties together the two structures of
order and of multiplication. There are many examples of such linearly
ordered groups—positive rational numbers or real numbers under multi-
plication, or integers with multiplication replaced by addition.

We will see that many Mathematical notions can be described as set-
with-structure.

11. Human Activity and Ideas

This chapter, starting from the study of number, space, time, and motion,
has led to the description of various formal notions—especially cardinal
number, permutation, linear order, group, continuity, and topology. Each
notion represents a type of formalization in Mathematics. The formaliza-
tion may take the guise of a rule (e.g., a multiplication table), a simple
definition (the same cardinal number), a more subtle definition (that of
continuity), a list of axioms describing the common properties of several
systems (linear order), a less evident such list (a group), or a list of axioms
deemed sufficient to describe exactly one object (the real numbers as an
ordered set). In some cases, like that of topological space, the axioms
serve to help understand the common features of a wide variety of situa-
tions.

These formal notions arise largely from premathematical concerns
which can best be described as “human cultural activities”. For this rea-
son, our analysis of the genesis of Mathematics will note a number of such
activities. Often it is illuminating to say that the activity leads first to a
somewhat nebulous “idea”, which is finally formalized, perhaps formal-
ized in several different ways. For example, the process of counting sug-
gests the idea of “next”—the next item to be counted or the next number
to be used in the count or the next thing in some ordered list. This general
idea “next” may then be formalized by a rule for adding one to each
decimal or by the axioms on the operation which provide to each natural
number its successor. The idea “next” appears in other forms: The next
(infinite) ordinal beyond a given set of ordinals or the next step (after
choice of alternative) in some computer program. Or the frequent obser-
vation of steady changes may suggest the (nebulous) idea of steady
change, formalized (say) by what we called a parametrized motion.

This type of source for Mathematical form, in the cases we have noted
so far, may be summarized in a table, where each activity suggests an idea
and its subsequent formalizations (Table 1).

This tabulation is intended to be suggestive but not dogmatic. Each
“idea” is intended to have some intuitive content; it may serve as the car-
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Table 1.1
Activity Idea Formulation
Collecting Collection Set (of elements)
Counting Next Sucessor; order
Ordinal number
Comparing Enumeration Bijection
Cardinal number
Computing Combination (of nos) Rules for addition
Rules for multiplication
Abelian group
Rearranging Permutation Bijection
Permutation group
Timing Before and after Linear order
Observing Symmetry Transformation group
Building, shaping Figure; symmetry Collection of points
Measuring Distance; extent Metric space
Moving Change Rigid motion
Transformation group
Rate of change
Estimating Approximation Continuity
Limit
Nearby Topological space
Selecting Part Subset
Boolean algebra
Arguing Proof Logical connectives
Choosing Chance Probability (favorable /total)

Successive actions

Followed by

Composition
Transformation group

rier for the well known phenomenon of “Mathematical Intuition”. The
same idea may arise from different activities, and may well be the back-
ground for several different formalizations. We have tried to use familiar
words to describe each idea but this does not represent any established
consensus or precise definition. On the other hand, each notion, as con-
ventionally formalized, has a rigorous definition (within some context).

The table is by no means complete; as the reader keeps it in mind he
may find new examples in subsequent chapters.

Even after the basic Mathematical notions have been developed out of
these activities and ideas, there continue to be inputs from outside
Mathematics. These inputs often take the form of Mathematical questions
arising in other sciences and requiring application of Mathematics. Thus
the primitive sort of study of motion noted above becomes later the sub-
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ject of dynamics (in physics) or that of celestial dynamics in astronomy.
The study of social changes in part becomes the study of marginal costs or
econometrics. In general, under the genesis of Mathematics we intend to
include all sorts of inputs from scientific and other cultural activities.

Some formal Mathematical notions have a more complex origin. Such
is the case for the notion of a “set”. The idea of a collection is surely there
when we count, but on this level it is hardly a useful candidate for formal-
ization. Infinite collections also arise, perhaps at first in observations and
in Euclid’s proof that there are infinitely many prime numbers—but then
one soon has other infinite collections. They are often subsets of (say) the
set of all natural numbers, but the notion of a subset is not really forced
on our attention until we try to describe the completeness of the ordered
set of reals (Every bounded subset has a least upper bound) or the princi-
ple of Mathematical induction (Every set of natural numbers containing
zero and the successor of each of its elements contains all the numbers).
Even here we might dispense with subsets: Completeness can be described
by convergent sequences and induction can be described by properties.
But Boolean algebra is unthinkable without subsets. The more sophisti-
cated notion of a set whose elements are themselves sets does arise later.
The set of integers modulo 6 will be described as the set whose elements
are the congruence classes such as {1,7,13,19, . . .}, right now a topological
space is most clearly defined as a set with a specified set of its subsets
(namely, the open subsets). However, in both of these cases the use of sets
of sets can be avoided by using relations: the relation of congruence
module 6 (Gauss) or the relation stating that the subset U is a neighbor-
hood of the point p. The real motivation for the full use of set theory lies
much deeper, and will be explored in Chapter XI, where we will note the
curious fact that abstract set theory arose from the study of trigonometric
series!

12. Mathematical Activities

The genesis of the more complex mathematical structures tends to take
place within Mathematics itself. Here there are a variety of processes
which may generate new ideas and new notions. We list a few of these
processes in tentative form for further refinement after our more detailed
studies.

(a) Conundrums. Finding the solution of hard problems is one of the
driving forces of Mathematical development. Fermat asserted without
proof that the equations x” + y” = z" for n > 2 have no solutions in
integers. As we will see in Chapter XII, this apparently innocent diophan-
tine equation was one historical source of the whole development of alge-
braic number theory in the 19th century—and so was the principal origin
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of such algebraic notions as that of “ideal”—although the arithmetic
theory of quadratic forms also played a role.

The problem of solving polynomial equations by formulas involving
radicals was a historically important conundrum. For quadratic polynomi-
als the solution is easy, by the familiar “quadratic formula”. Early alge-
braists found no such formulas for solutions of the general equation of
5th degree. Using permutations of the roots, it was eventually showed (by
Lagrange) that such a solution was impossible—but the first real insight
into the reasons for the impossibility came with Galois in 1832, (see
Chapter V); this was the point where the notion of a group first explicitly
arose.

Our presentation has in effect argued that the notion of a group could
have arisen otherwise—but in historical perspective the solution of
different Mathematical problems is a vital element in the progress of the
science (and is often viewed as the characteristic aspect of that science).

(b) Completion. The whole list of natural numbers arises by starting
with the first few 0, 1, 2, 3, ..., 9 and asking that there always be a suc-
cessor. Then subtraction, alas, is not always possible—until one creates all
the integers. To insure the possibility of division, one must then have all
the rational numbers, and so on to the real numbers and then to the com-
plex numbers. In many other cases, the need to complete a structure
under some partially defined operation brings out a new structure.

(c) Invariance. A non-trivial homogeneous equation

ax + by + cz =0

has infinitely many non-zero solutions, but all can be expressed as sums of
multiples of some two solutions—because, as we know, the set of all solu-
tions (x,),z) is a plane through the origin in 3-space and any vector lying
in that plane is the sum of multiples of two suitable such. Again the solu-
tions of the homogeneous linear second order differential equation
d’x/dt* = —k?*x all have the form

x = A cos kt + B sin kt;

they are expressed here as linear combinations of two particular solutions
cos kt and sin k¢, These two parallel situations serve to suggest the struc-
ture of a vector space (Chapter VII), the idea of a basis for such a space,
and the need to describe its properties independently of any one choice of
basis.

(d) Common Structure (Analogy). This example exhibits also the motive
of finding a common structure (here, that of a vector space) underlying
different but similar phenomena (here, geometry, linear equations, and
linear differential equations). Another such instance is given by a descrip-
tion (§4) of linear order. The symmetry group as the commonality of two
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striking example is the proof that a function f: /- R, continuous on a
closed interval I of the reals, is uniformly continuous there. A straightfor-
ward direct proof can be given, using the basic properties of the real
numbers. This proof, originally given by the German Mathematician
Heine, and further developed by the French Mathematician Emil Borel,
leads to the Heine—Borel theorem: If the closed interval 7 is the union of
an (infinite) collection of opens sets U;, so that I = UU,, then it is a
union of a finite number of these open sets,

I = Ui, u---uly,
for some finite list of indices 7} , . .., i4. In current terminology, this pro-
perty states that [ is a compact subset (of R) and so leads to the idea of
compactness for topological spaces.

At the end of our study of structure, we will return to a more detailed
examination of these processes, internal to Mathematics, for the genera-
tion of new notions. They play a role counterpuntal to the input of prob-
lems from the sciences outside Mathematics. Both are accompanied by
the continued search for deeper properties of the notions already at hand.

13. Axiomatic Structure

In the next three chapters we will indicate how number, space, and time
can be described by axioms; that is, by axioms for the natural numbers,
the Euclidean plane, and the real line which describe these structures
uniquely. In classical terminology, these axiom systems are categorical, in
the sense that any two “models” of the axioms, taken within an inclusive
set theory, are isomorphic—as in the case described in §4 for the reals (we
will also note another “first order” version of these axioms where there
can be non-isomorphic non-standard models). Thus these structures are
closely attached to the traditional view that (say) the axioms of Euclidean
geometry describe one specific object—physical space.

In this first chapter, we have deliberately followed a different order of
axiomatics, emphasizing those systems of axioms (linear order, group,
metric space) which have many essentially different models. This use of
axioms is historically more recent than the categorical axiomatization of
geometry. In particular, it allows for the view that the formal systems stu-
died in Mathematics come in a great variety and are intended primarily to
help organize and understand selected aspects of the “real world” without
being necessarily exact descriptions of a part of that unique world. For
example, our presentation allows that the first step in the formalization of
space could be the description of figures and chunks of space as models of
metric space and not as subsets of Euclidean space. This is by no means
the conventional view.



4]

13. Axiomatic Structure

Nevertheless, this chapter has started from the conventional idea of
Mathematics as the science of number, time, space, and motion, to go
beyond these topics to related more general formal notions of cardinal
number, permutation, order, transformation, group, and topological space.
Mathematical experience, as suggested in our subsequent chapters, shows
that each of these notions plays a basic role in Mathematics. We have
deliberately put them first to let the reader judge their importance. This
does not mean that they need be prior to the classical description of
number and space, but simply that they appear in parallel to these classi-
cal notions.

The linear order of a book does not allow the actual presentation to be

in parallel.



CHAPTER I

From Whole Numbers to
Rational Numbers

1. Properties of Natural Numbers

Various human activities such as listing, counting, and comparing lead, as
we saw, to the natural numbers

N = {01234,...}

and to the operations of addition, multiplication, and exponentiation on
these numbers. These operations have a variety of general properties. For
example, addition for all natural numbers &, m, and n satisfies the equa-
tions

m+ 0 = m, m+n=n-+m, (1)
k+@m+n=(®k + m) + n. 2)

These rules can be proved from the definitions of the operations. For
example, the commutative law (1) holds because, when two disjoint finite
sets are combined, the cardinal number of the combined set does not
depend on which of the two sets is taken first. On the other hand, the
rules are formal in the sense that they can be used directly without atten-
tion to their “meaning”. For example, the associative law (2) tells me that
if I add a long column of figures in three successive groups, subsequently
combined, the final result will be the same, irrespective of the order in
which the three are combined. A similar rule will work for more than
three groups. Moreover, these (long-established) rules are inviolate: If it
doesn’t turn out as they specify, I know that I have made a mistake some-
where. This is the merit of a formal rule: Once firmly established, it can
be applied mechanically and is an infallible guide.
Multiplication has corresponding formal properties:

m-l=m, mn = nm, 3)

k(mn) = (km)n. 4
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Together, addition and multiplication satisfy the distributive law
k(im + n) = km + kn. (5)

Again, this law can be used formally, without attention to its origin in the
definitions of addition and multiplication, as suggested in the following
display:

(6)

m n m n

There are many other properties of these operations. For example,
every square, on division by 4, leaves a remainder 0 or 1 (never 2 or 3). If
b > 1, then every natural number n can be written in terms of b as

n=ab* +aq '+ ... +ab+ a @)

for some natural k and with coefficients a; all satisfying 0 < a; < b. In
particular, if b = 10, this is the decimal expansion of n, and its properties
lead to the familiar formal rules for manipulating decimals.

2. The Peano Postulates

Each of these properties, and many more, of the addition and multiplica-
tion of natural numbers could be demonstrated directly from the
definitions of these operations on finite cardinal numbers. Such proofs
would be cumbersome. However, a remarkable fact emerges: Both addi-
tion and multiplication can be described just in terms of the number zero
and the single operation “add 17, and their properties can be derived
from a short list of axioms on the single operation. These axioms are the
Peano postulates. The idea is that the natural numbers can be listed, start-
ing with zero, so that to each number n there is always a “next” number,
its successor n + 1, and so that this process exhausts all the natural
numbers. Thus we can state formally:

The (natural) numbers N with zero and “successors” s form a collection
with the following five properties (the Peano postulates):

(i) 0 is a number;
(ii) If n is a number, so is its successor sn;
(iii) 0 is not a successor (i.e., sn is never 0);
(iv) Two numbers n, m with the same successor are equal (ie., if
sn = sm, then n = m);
(v) Let P be a property of natural numbers. If 0 has P, and if sn has P
whenever n does, then P holds for all natural numbers.
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This is a typical description of a structure by axioms. There are certain
primitive (or undefined) terms: here the terms “number”, “zero”, and
“successor”. The statements of the axioms use only these terms and the
standard logical connectives: “if ... then”, “not”, “and”, “equality”, “for
all”, “there exists”. Such a statement is called a formula (or a formal
statement) in the language of Peano arithmetic (for more detail, see
Chapter XI). In particular, a “property” of the number n, as used in pos-
tulate (v), should be one which is described by such a formula, involving
n.

The induction axiom (v) is vital; it expresses the intuitive idea that tak-
ing successors exhausts all the natural numbers. It is very useful practi-
cally, in proving all sorts of formulas involving general »n (for example, the
formula for the sum 1 + 2% 4+ 3% + ... + n® of the first n squares)
and for proving such results as the binomial theorem.

Sometimes the induction axiom is formulated in terms of sets rather
than properties, as follows:

(v") If S is a set of numbers containing 0 and if every » in § has its suc-
cessor in S, then § contains all (natural) numbers.

This axiom implicitly refers to “all” subsets of N, so it is sometimes called
a “second order” axiom, because the quantifier “all” is applied not just to
elements of N, but also to subsets. More specifically, this form of the
axiom means that we are considering the natural numbers in a context of
sets, and that proofs of theorems about natural numbers may use not just
the Peano axioms, but properties of sets, as these might be formulated in
axioms for set theory. In this respect, it is like the completeness property
of the real numbers (§1.4).

The set-theoretic induction axiom (v’) does include the property-
theoretic version (v), because the usual axioms for set theory do specify
that every (formal) property of elements of a set N does determine a sub-
set of N. This transition from properties of numbers to sets of numbers is
a familiar one. The use of properties may be called “intensional”,
because a property is described by a formula. Thus the properties “n is
odd” and “n leaves the remainder 1 on division by 2” are verbally
different, but describe the same set {1,3,5, ...}. On the other hand, as in
§1.9, the use of sets is extensional: As soon as two sets include the same
elements, they are equal. The “extent” of the set is all that matters.

However, the induction axiom (v) for properties is weaker than that for
subsets. Since a property, as explained, can be expressed in a finite list of
words in a fixed language, the number of properties of natural numbers is
denumerable. However, for the usual notions of sets, a “diagonal” argu-
ment (see Chapter XI) shows that the number of subsets of N is not denu-
merable but larger. This observation has consequences. One can formu-
late theorems about natural numbers which are true within set theory but
which cannot be proved from the Peano axioms with induction in the
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Now compare the composite function g-f: N—N with the identity func-
tion I: N-N. They both make the diagram
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commute. Hence, by the uniqueness assertion of (5), g-f = I. Similarly,
f-g is the identity function. Thus f has g as a two-sided inverse under
composition, and so is a bijection.

This result is typical of the axiomatic description of sets with structure.
At best, such a description can determine the model only “up to isomor-
phism”. As in this case, an isomorphism means a bijection from one
model to another which “preserves” all the primitive terms involved in the
axioms—as in (6) above. In this case, there are in fact many different but
isomorphic models. For instance, if 100 is viewed as the zero, then the
even natural numbers starting with 100 form a model for the Peano pos-
tulates when the assignment n —» n+2 is taken to be the successor func-
tion.

3. Natural Numbers Described by Recursion

The Peano postulates are not the only possible axiomatic description of
the natural numbers. Instead, one can take the recursion theorem as the
(sole) axiom. In detail, this axiom assumes that the natural numbers are a
set N with a distinguished object 0 and a function s: N >N which together
satisfy (for all a ¢ X and all g: X - X) the recursion theorem, as pictured
in the diagram (2.5). This approach to the natural numbers was first made
explicit by Lawvere; it is described in some detail in (the first edition of)
Mac Lane-Birkhoff.

The logical equivalence of the two approaches is readily verified. Thus,
we have already seen that the Peano postulates imply the recursion axiom.
Conversely, one may prove that the recursion axiom implies all the Peano
postulates. The most interesting part of this demonstration is that for the
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axiom of mathematical induction, for a subset S of N, as summarized in
the following diagram:

1 L N : N
| !
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Since S is a subset of N each of its objects x is in N, so the assignment
Xx b x is a function i: §— N (the inclusion function, as displayed in the
lower part of (1)). The induction assumptions on S state that O is in S,
giving the function 0: 1-S, and also that each » in § has its successor sn
in S, so that the assignment n + sn for n in § is a function §: §-5 as
shown. By the recursion axiom, there is a function h: N-S with
h0 = 0,5h = hs, as displayed in (1). The composite function
f =i-h: N>N then satisfies the same recursion conditions
SO0 = 0, sf = fs as the identity function N—N. Since our axiom asserts
that the conditions determine the function uniquely, / must be the iden-
tity. Thus, each number n is n = fn = i(hn), which states that n is the
element An of S and hence that the elements in § include all the elements
n of N.

This case illustrates a general point: The axioms needed to describe a
Mathematical structure (here to describe the structure of N, unique up to
isomorphism) are themselves by no means unique. The recursion
theorem of (2.5) is an especially convenient form of axiom; it states that
the diagram 1NN is “universal” (that is, maps uniquely into every
other such diagram 1-X - X).

4. Number Theory

Once the Peano postulates are at hand, they yield all manner of specific
results. Division is sometimes but not always possible, but if one tries to
divide m by n one obtains a quotient ¢ and a remainder r, which may be
0 but in any event less than n, as in the equation m = ng + r with
0 < r < n. This result is known as the division algorithm. Those natural
numbers which have no divisors (except, of course, for themselves and 1)
are the primes; they appear in a curious irregular order:

2,357 11,13, 17, - - - .
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Every number n can be factored into a product of primes (some of which
may be repeated). No matter how this factorization is obtained, the result-
ing prime factors are unique, except, of course, for their order. The proof
of this unique factorization theorem rests on the division algorithm. From
the prime factorization of two numbers one may read off their greatest
common divisor; however, this also could be found directly from the
numbers by the Euclidean algorithm, which is just an iteration of the divi-
sion algorithm.

The curiously irregular sequence of primes noted above is infinite, by a
proof which goes back to Euclid. One is soon led to try to estimate how
thick the primes are. If w(n) denotes the number of primes less than or
equal to n, the prime number theorem (proved with more sophisticated
means) will tell how fast #(n) grows as n approaches infinity. Again, if we
arrange all the numbers according to their remainder on division by 3, we
get the following three arithmetic sequences

036 9 12,...,
1 4 7 10 13,...,
2 5 8 11 14,...

Except for the prime 3 in the first sequence, all the primes must fall in the
last two sequences. It turns out that there are an infinite number of
primes in each of these two arithmetic sequences, and that they are, in a
sense, equally distributed between those two sequences. More generally,
Dirichlet’s theorem asserts that any arithmetic sequence nd + r, for fixed
d and r and increasing n, will have an infinite number of primes, provided
only that 4 and r have no common factors except 1.

Every number can be written as a sum of at most four squares or of at
most nine cubes. These results have relatively elementary proofs; by
much deeper analysis for Waring’s problem, similar results hold for higher
powers. By trial, one can verify that each small even number can be writ-
ten as a sum of two primes. Goldbach (in 1742) conjectured that this was
always true. To date, no one has proved this to be so. The best results to
date are Vinogradoff's: Every sufficiently large odd number r is a sum of
three primes, and Chen’s: Every sufficiently large even number is a sum
p + b, where p is a prime and b is either a prime or a product of two
primes.

Problems in Diophantine equations ask for solutions in integers and in
natural numbers. The equation x? + »* = z? has infinitely many (well-
known) solutions in non-zero integers x, y, and z, but the equation
x* + y* = z* has none. Fermat stated, and no one has yet proved, that
x" 4+ y" = z" for n > 2 has none. That the numbers of such solutions is
finite has just recently been proved (the Mordell conjecture). Pell’s equa-
tion x> — Dy? = 1 has an infinite number of integer solutions, of
relevance to algebraic number theory.
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This is but a small sample of the wealth of questions arising for the
natural numbers. All these results are ultimate consequences of the struc-
ture specified with such simplicity by the five Peano postulates.

5. Integers

To keep accounts of gains and losses, subtraction is needed. Within the
natural numbers, subtraction is not always possible, but it becomes possi-
ble when the set N of all natural numbers is expanded to the set Z of
integers. One can formally define the integers (and arithmetic operations
upon them) in several ways. Perhaps the simplest is that of adjoining to
N a new copy of the positive numbers, each prefixed by —, as
—1,-2,-3,—4,. ... Then addition of the old and new integers is
defined for natural numbers # and m in N in cases:

n+(-m)=n—m, ifn >m,
= —(m—n), ifn < m,
(=n) + (—m) = —(n+m).

With this definition, subtraction is always possible in Z; moreover, similar
definitions describe the appropriate multiplication and order in Z.

Another approach to Z observes that subtraction amounts to solving for
x an equation n + x = m; the ordered pair (m,n) is then introduced for-
mally so as to denote “the” solution to this equation. The familiar rules
for manipulating differences m — n translate to give definitions of sum
and product of such pairs by the formulas

(mn)+(m',n’Yy=(m+m’',n+n’), (imn)(m’,n’)=(mm’+nn’,mn’+m’).

But beware: the pairs (m,n) and (m+h,n+h) should count as the same,
hence one defines (m,n) = (rs) if and only if m + s = »n + r, and
verifies that this artificial equality satisfies the expected rules; in particu-
lar, that sums and products of equals are equal. The integers, defined to
be these pairs with this equality, do not literally contain the natural
numbers from which we started, but the meaning of subtraction suggests
that each n in N be identified with the pair (n,0); this identification
preserves addition and multiplication. Stated more formally, this says that
the function N - Z given by n + (n,0) carries sums to sums, products to
products, inequalities to inequalities, and distinct numbers to distinct
integers; it is thus a monomorphism of the structure described by
+, X, and <.

These two constructions of the integers give essentially the same result.
Specifically, the map n — (n,0), —m  (0,n) is an isomorphism (for
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4. Hyperbolic Geometry

A set of axioms is said to be an independent set if no one of these axioms
can be deduced from the others. It is desirable and appropriate (though
not necessary) that the axioms for a basic structure, such as that of the
Euclidean plane, be independent. In particular, there is the question: Is
the parallel axiom independent, or can it be deduced from the others?
This question has had considerable historical importance. For example,
one might try to prove the parallel axiom by assuming the contrary (more
than one parallel to m through a point A) and deducing a contradiction.
There were several attempts to do this, most notably one in which Sac-
cheri in 1733 deduced a large number of consequences, some of them
perhaps bizarre—but none a contradiction. Nevertheless, he concluded
that Euclid’s parallel postulate was “vindicated”. Then in the 19th century
Bolyai, Lobachevsky, and Gauss took the opposite view, preparing to
develop systematically a non-Euclidean geometry (specifically, a hyper-
bolic geometry) on the assumption that there is more than one parallel,
and hence that the angle sum in a triangle is not 180°. When this is done
systematically, it turns out that the angle sum is always less than 180" and
that the difference between 180° and the sum is proportional to the area
of the triangle.

This striking development raised (at least) two questions: “Is the result-
ing geometry consistent?”, and “Does it fit the real world?” To answer the
latter question, one must propose a specific “real world” interpretation of
the primitive concepts of the geometry—say, by taking a straight line to be
the path (in vacuum) of a ray of light, while an angle is the thing meas-
ured by a surveyor “turning off” with a transit the angle between two rays
of light. With this interpretation, it appears that Gauss (who was also
active as an astronomer) measured the angle sum for the triangle formed
by chosen “points” on the peaks of three convenient mountains in Ger-
many; the resulting angle sum was 180°, within the accuracy of the mea-
surements then made. While the result indicates that there is not a
flagrant deviation from Euclidean geometry on this interpretation, it does
not provide any clear decision between the reality of Euclidean and
hyperbolic geometry. It even suggests that there might never be such a
decision, in view of the inevitable margin of error in the measurements
made in any such interpretation. The terms involved in the interpretation
are also open to question; for example, in general relativity theory the
path of a light ray may not be “straight” in the intended sense. This ulti-
mately brings up another and more profitable thought: Any geometrical
axioms, Euclidean or non-Euclidean, offer a mathematical structure which
may be open to a variety of different interpretations to suit a variety of
geometrical (or even non-geometrical) circumstances.

There remains the question of the consistency of the assumptions of
hyperbolic geometry. By definition, these assumptions are consistent if



