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Mathematics



The gods have not revealed all things from the beginning,
But men seek and so find out better in time.

Let us suppose these things are like the truth.

But surely no man knows or ever will know
The truth about the gods and all 1 speak of.

For even if he happens to tell the perfect truth,
He does not know it, but appearance is fashioned over everything.
XENOPHANES



Introduction: The Thesis

To foresee the future of mathematics, the true method is
to study its history and its present state. HENRI POINCARE

There are tragedies caused by war, famine, and pestilence. But there
are also intellectual tragedies caused by limitations of the human mind.
This book relates the calamities that have befallen man's most effective
and unparalleled accomplishment, his most persistent and profound
effort to utilize human reason—mathematics.

Put in other terms, this book treats on a non-technical level the rise
and decline of the majesty of mathematics. In view of its present im-
mense scope, the increasing, even flourishing, mathematical activity,
the thousands of research papers published each year, the rapidly
growmg interest in computers, and the expanded search for quantita-
tive relationships especially in the social and biological sciences, how
can we talk about the decline of mathematics? Wherein lies the trag-
edy? To answer these questions we must consider first what values won
for mathematics its immense prestige, respect, and glory.

From the very birth of mathematics as an independent body of
knowledge, fathered by the classical Greeks, and for a period of over
two thousand years, mathematicians pursued truth. Their accomplish-
ments were magnificent. The vast body of theorems about number and
geometric figures offered in itself what appeared to be an almost end-
less vista of certainty.

Beyond the realm of mathematics proper, mathematical concepts
and derivations supplied the essence of remarkable scientific theories.
Though the knowledge obtained through the collaboration of mathe-
matics and science employed physical principles, these seemed to be as
secure as the principles of mathematics proper because the predictions
in the mathematical theories of astronomy, mechanics, optics, and hy-
drodynamics were in remarkably accurate accord with observation and
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experiment. Mathematics, then, provided a firm grip on the workings
of nature, an understanding which dissolved mystery and replaced it by
law and order. Man could pridefully survey the world about him and
boast that he had grasped many of the secrets of the universe, which in
essence were a series of mathematical laws. The conviction that mathe-
maticians were securing truths is epitomized in Laplace’s remark that
Newton was a most fortunate man because there is just one universe
and Newton had discovered its laws.

To achieve its marvelous and powerful results, mathematics relied
upon a special method, namely, deductive proof from self-evident
principles called axioms, the methodology we still learn, usually in high
school geometry. Deductive reasoning, by its very nature, guarantees
the truth of what is deduced if the axioms are truths. By utilizing this
seemingly clear, infallible, and impeccable logic, mathematicians pro-
duced apparently indubitable and irrefutable conclusions. This feature
of mathematics is still ated today. Whenever someone wants an ex-
ample of certitude and exactness of reasoning, he appeals to mathe-
matics.

The successes mathematics achieved with its methodology attracted
the greatest intellectuals. Mathematics had demonstrated the capacities,
resources, and strengths of human reason. Why should not this meth-
odology be employed, they asked, to secure truths in fields dominated
by authority, custom, and habit, fields such as philosophy, theology,
ethics, aesthetics, and the social sciences? Man’s reason, so evidently ef-
fective in mathematics and mathematical physics, could surely be the
arbiter of thought and action in these other fields and obtain for them
the beauty of truths and the truths of beauty. And so, during the
period called the Enlightenment or the Age of Reason, mathematical
methodology and even some mathematical concepts and theorems were
applied to human affairs.

The most fertile source of insight is hindsight. Creations of the early
19th century, strange geometries and strange algebras, forced mathe-
maticians, reluctantly and grudgingly, to realize that mathematics
proper and the mathematical laws of science were not truths. They
found, for example, that several differing geometries fit spatial experi-
ence equally well. All could not be truths. Apparently mathematical
design was not inherent in nature, or if it was, man’s mathematics was
not necessarily the account of that design. The key to reality had been
lost. This realization was the first of the calamities to befall mathemat-
ICS.

The creation of these new geometries and algebras caused mathe-
maticians to experience a shock of another nature. The conviction that
they were obtaining truths had entranced them so much that they had
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rushed impetuously to secure these seeming truths at the cost of sound
reasoning. The realization that mathematics was not a body of truths
shook their confidence in what they had created, and they undertook
to reexamine their creations. They were dismayed to find that the logic
of mathematics was in sad shape.

In fact mathematics had developed illogically. Its illogical develop-
ment contained not only false proofs, slips in reasoning, and nadver-
tent mistakes which with more care could have been avoided. Such
blunders there were aplenty. The illogical development also involved
inadequate understanding of concepts, a failure to recognize all the
principles of logic required, and an inadequate rigor of proof; that is,
intuition, physical arguments, and appeal to geometrical diagrams had
taken the place of logical arguments.

However, mathematics was still an effective description of nature.
And mathematics itself was certainly an attractive body of knowledge
and in the minds of many, the Platonists especially, a part of reality to
be prized in and for itself. Hence mathematicians decided to supply the
missing logical structure and to rebuild the defective portions. During
the latter half of the 19th century the movement often described as the
rigorization of mathematics became the outstanding activity.

By 1900 the mathematicians believed they had achieved their goal.
Though they had to be content with mathematics as an approximate
description of nature and many even abandoned the belief in the math-
ematical design of nature, they did gloat over their reconstruction of
the logical structure of mathematics. But before they had finished
toasting their presumed success, contradictions were discovered in the
reconstructed mathematics. Commonly these contradictions were re-
ferred to as paradoxes, a euphemism that avoids facing the fact that
contradictions vitiate the logic of mathematics.

The resolution of the contradictions was undertaken almost immedi-
ately by the leading mathematicians and philosophers of the times. In
effect four different approaches to mathematics were conceived, for-
mulated, and advanced, each of which gathered many adherents.
These foundational schools all attempted not only to resolve the known
contradictions but to ensure that no new ones could ever arise, that is,
to establish the consistency of mathematics. Other issues arose in the
foundational efforts. The acceptability of some axioms and some prin-
ciples of deductive logic also became bones of contention on which the
several schools took differing positions.

As late as 1930 a mathematician might perhaps have been content
with accepting one or another of the several foundations of mathemat-
ics and declared that his mathematical proofs were at least in accord
with the tenets of that school. But disaster struck again in the form of a
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famous paper by Kurt Gédel in which he proved, among other signifi-
cant and disturbing results, that the logical principles accepted by the
several schools could not prove the consistency of mathematics. This,
Godel showed, cannot be done without involving logical principles so
dubious as to question what is accomplished. Godel's theorems pro-
duced a debacle. Subsequent developments brought further complica-
tions. For example, even the axiomatic-deductive method so highly
regarded in the past as the approach to exact knowledge was seen to be
flawed. The net effect of these newer developments was to add to the
variety of possible approaches to mathematics and to divide mathema-
ticians into an even greater number of differing factions.

The current predicament of mathematics is that there is not one but
many mathematics and that for numerous reasons each fails to satisfy
the members of the opposing schools. It is now apparent that the con-
cept of a universally accepted, infallible body of reasoning—the majes-
tic mathematics of 1800 and the pride of man—is a grand illusion. Un-
certainty and doubt concerning the future of mathematics have
replaced the certainties and complacency of the past. The disagree-
ments about the foundations of the “most certain” science are both
surprising and, to put it mildly, disconcerting. The present state of
mathematics is a mockery of the hitherto deep-rooted and mdcly re-
puted truth and logical perfection of mathematics.

There are mathematicians who believe that the differing views on
what can be accepted as sound mathematics will some day be recon-
ciled. Prominent among these is a group of leading French mathema-
ticians who write under the pseudonym of Nicholas Bourbaki:

Since the earliest times, all critical revisions of the principles of mathe-
matics as a whole, or of any branch of it, have almost invariably fol-
lowed periods of uncertainty, where contradictions did appear and
had to be resolved. . . . There are now twenty-five centuries during
which the mathematicians have had the practice of correcting their
errors and thereby seeing their science enriched, not impoverished;
this gives them the right to view the future with serenity.

However, many more mathematicians are pessimistic. Hermann
Weyl, one of the greatest mathematicians of this century, said in 1944:

The question of the foundations and the ultimate meaning of mathe-
matics remains open; we do not know in what direction it will find its
final solution or even whether a final objective answer can be expected
at all. “Mathematizing™ may well be a creative activity of man, like lan-
guage or music, of primary originality, whose historical decisions defy
complete objective rationalization.
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In the words of Goethe, “The history of a science is the science itself.”

The disagreements concerning what correct mathematics is and the
variety of differing foundations affect seriously not only mathematics
proper but most vitally physical science. As we shall see, the most well-
developed physical theories are entirely mathematical. (To be sure, the
conclusions of such theories are interpreted in sensuous or truly physi-
cal objects, and we hear voices over our radios even though we have
not the slightest physical understanding of what a radio wave is.) Hence
scientists, who do not personally work on foundational problems,
must nevertheless be concerned about what mathematics can be
confidently employed if they are not to waste years on unsound math-
ematics.

The loss of truth, the constantly increasing complexity of mathemat-
ics and science, and the uncertainty about which approach to mathe-
matics is secure have caused most mathematicians to abandon science.
With a “plague on all your houses” they have retreated to specialties in
areas of mathematics where the methods of proof seem to be safe.
They also find problems concocted by humans more appealing and
manageable than those posed by nature.

The crises and conflicts over what sound mathematics is have also
discouraged the application of mathematical methodology to many
areas of our culture such as philosophy, political science, ethics, and
aesthetics. The hope of finding objective, infallible laws and standards
has faded. The Age of Reason is gone.

Despite the unsatisfactory state of mathematics, the variety of ap-
proaches, the disagreements on acceptable axioms, and the danger that
new contradictions, if discovered, would invalidate a great deal of
mathematics, some mathematicians are still applying mathematics to
physical phenomena and indeed extending the applied fields to eco-
nomics, biology, and sociology. The continuing effectiveness of mathe-
matics suggests two themes. The first is that effectiveness can be used
as the criterion of correctness. Of course such a criterion is provisional.
What is considered correct today may prove wrong in the next applica-
tion.

The second theme deals with a mystery. In view of the disagreements
about what sound mathematics is, why is it effective at all? Are we per-
forming miracles with imperfect tools? If man has been deceived, can
nature also be deceived into yielding to man’s mathematical dictates?
Clearly not. Yet, do not our successful voyages to the moon and our ex-
plorations of Mars and Jupiter, made possible by technology which it-
self depends heavily on mathematics, confirm mathematical theories of
the cosmos? How can we, then, speak of the artificiality and varieties of
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mathematics? Can the body live on when the mind and spint are bewil-
dered? Certainly this is true of human beings and it is true of mathe-
matics. It behooves us therefore to learn why, despite its uncertain
foundations and despite the conflicting theories of mathematicians,
mathematics has proved to be so incredibly effective.



I

The Genesis of Mathematical Truths

Thrice happy souls! to whom ‘twas given to rise
To truths like these, and scale the spangled skies!
Far distant stars to clearest view they brought,
And girdled ether with their chains of thought.
So heaven is reached—not as of old they tried
By mountains piled on mountains in their pride.
OVID

Any civilization worthy of the appelation has sought truths. Thoughtful
people cannot but try to understand the variety of natural phenomena,
to solve the mystery of how human beings came to dwell on this earth,
to discern what purpose life should serve, and to discover human des-
tiny. In all early civilizations but one, the answers to these questions
were given by religious leaders, answers that were generally accepted.
The ancient Greek civilization is the exception. What the Greeks dis-
covered—the greatest discovery made by man—is the power of reason.
It was the Greeks of the classical period, which was at its height during
the years from 600 to 300 B.c., who recognized that man has an in-
tellect, a mind which, aided occasionally by observation or experi-
mentation, can discover truths.

What led the Greeks to this discovery is a question not readily an-
swered. The initiators of the plan to apply reason to human affairs and
concerns lived in Ionia, a Greek settlement in Asia Minor, and many his-
torians have sought to account for the happenings there on the basis of
political and social conditions. For example, the lonians were rather
freer to disregard the religious beliefs that dominated the European
Greek culture. However, our knowledge of Greek history before about
600 B.c. is so fragmentary that no definitive explanation is available.

In the course of time the Greeks applied reason to political systems,
ethics, justice, education, and numerous other concerns of man. Their
chief contribution, and the one which decisively influenced all later cul-
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tures, was to undertake the most imposing challenge facing reason,
learning the laws of nature. Before the Greeks made this contribution,
they and the other civilizations of ancient times regarded nature as
chaotic, capricious, and even terrifying. Acts of nature were either
unexplained or attributed to the arbitrary will of gods who could be
propmated only by prayers, sacrifices, and other rituals. The Babylon-
lans and Egyptians, who had notable civilizations as far back as 3000
B.C., did note some periodicities in the motions of the sun and moon
and indeed based their calendars on these periodicities but saw no
deeper significance in them. These few exceptional observations did
not influence their attitude toward nature.

The Greeks dared to look nature in the face. Their intellectual
leaders, if not the people at large, rejected traditional doctrines, super-
natural forces, superstitions, dogma, and other trammels on thought.
They were the first. people to examine the multifarious, mysterious,
and complex operations of nature and to attempt to understand them.
They pitted their minds against the welter of seemingly haphazard oc-
currences in the universe and undertook to throw the light of reason
upon them.

Possessed of insatiable curiosity and courage, they asked and an-
swered the questions that occur to many, are tackled by few, and are
resolved only by individuals of the highest intellectual caliber. Is there
any plan underlying the workings of the entire universe? Are plants,
animals, men, planets, light, and sound mere physical accidents or are
they part of a grand design? Because they were dreamers enough to ar-
rive at new points of view, the Greeks fashioned a conception of the
universe which has dominated all subsequent Western thought.

The Greek intellectuals adopted a totally new attitude toward nature.
This attitude was rational, critical, and secular. Mythology was dis-
carded as was the belief that the gods manipulate man and the physical
world according to their whims. The intellectuals eventually arrived at
the doctrine that nature is orderly and functions invariably according
to a grand design. All phenomena apparent to the senses, from the mo-
tions of the planets to the stirrings of the leaves on a tree, can be fitted
into a precise, coherent, intelligible pattern. In short, nature is ra-
tionally designed and that design, though unaffected by human ac-
tions, can be apprehended by man's mind.

The Greeks were not only the first people with the audacity to con-
ceive of law and order in the welter of phenomena but also the first
with the genius to uncover some of the underlying patterns to which
nature apparently conforms. Thus they dared to ask for, and found,
design underlying the greatest spectacle man beholds, the motion of
the brilliant sun, the changing phases of the many hued moon, the
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brightness of the planets, the broad panorama of lights from the can-
opy of stars, and the seemingly miraculous eclipses of the sun and
moon.

It was the Ionian philosophers of the 6th century B.c. who also made
the first attempts to secure a rational explanation of the nature and
funcuoning of the universe. The famous philosophers of: this period,
Thales, Anaximander, Anaximenes, Heraclitus, and Anaxagoras, each
fixed on a single substance to explain the constitution of the universe.
Thales, for example, argued that everything is made up of water in ei-
ther gaseous, liquid, or solid state, and he attempted explanations of
many phenomena in terms of water—a not unreasonable choice be-
cause clouds, fog, dew, rain, and hail are forms of water and water is
necessary to life, nourishes the crops, and supports much animal life.
Even the human body, we now know, is 90 percent water.

The natural philosophy of the lonians was a series of bold specula-
tions, shrewd guesses, and brilliant intuitions rather than the outcome
of extensive and careful scientific investigations. These men were per-
haps a little over-eager to see the whole picture and so jumped to broad
conclusions. But they did discard the older, largely mythical accounts
and substituted materialistic and objective explanations of the design
and operation of the universe. They offered a reasoned approach in
place of fanciful and uncritical accounts and they defended their con-
tentions by reason. These men dared to tackle the universe with their
minds and refused to rely on gods, spirits, ghosts, devils, angels, and
other mythical agents who might maintain or disrupt nature’s happen-
ings. The spirit of these rational explanations can be expressed in the
words of Anaxagoras: “Reason rules the world.”

The decisive step in dispelling the mystery, mysticism, and seeming
chaos in the workings of nature and in replacing them by an under-
standable pattern was the application of mathematics. Here the Greeks
displayed an insight almost as pregnant and as original as the discovery
of the power of reason. The universe is mathematically designed, and
through mathematics man can penetrate to that design. The first major
group to offer a mathematical plan of nature was the Pythagoreans, a
school led by Pythagoras (c.585-¢. 5008.c.) and rooted in southern Italy.
While they did draw inspiration and doctrines from the prevailing
Greek religion centering on purification of the soul and its redemption
from the taint and prison of the body, Pythagorean natural philosophy
was decidedly rational. The Pythagoreans were struck by the fact that
phenomena most diverse from a qualitative point of view exhibit iden-
tical mathematical properties. Hence mathematical properties must be
the essence of these phenomena. More specifically, the Pythagoreans
found this essence in number and in numerical relationships. Number
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was the first principle in their explanation of nature. All objects were
made up of elementary particles of matter or “units of existence” in
combinations corresponding to the various geometrical figures. The
total number of units represented, in fact, the material object. Number
was the matter and form of the universe. Hence the Pythagorean doc-
trine, “All things are numbers.” Since number is the “essence” of all ob-
jects, the explanation of natural phenomena could be achieved only
through number.

This early Pythagorean doctrine is puzzling because to us numbers
are abstract ideas, and things are physical objects or substance. But we
have made an abstraction of number which the early Pythagoreans did
not make. To them, numbers were points or particles. When they
spoke of triangular numbers, square numbers, pentagonal numbers,
and others, they were thinking of collections of points, pebbles, or
point-like objects arranged in those shapes (Figs. 1.1-1.4).

Though historical fragments do not afford precise chronological
data, there i1s no doubt that as the Pythagoreans developed and refined
their own doctrines they began to understand numbers as abstract con-
cepts, whereas objects were merely concrete realizations of numbers.
With this later distinction we can make sense of the statement of Philo-
laus, a famous 5th-century Pythagorean: “Were it not for number and
its nature, nothing that exists would be clear to anybody either in itself
or in its relation to other things. . . . You can observe the power of
number exercising itself . . . in all the acts and the thoughts of men, in
all handicrafts and music.”

The reduction of music, for example, to simple relationships among
numbers became possible for the Pythagoreans when they discovered
two facts: first that the sound caused by a plucked string depends upon
the length of the string; and second that harmonious sounds are given
off by equally taut strings whose lengths are to each other as the ratios
of whole numbers. For example, a harmonious sound is produced by
plucking two equally taut strings, one twice as long as the other. In our
language the interval between the two notes is an octave. Another har-
monious combination is formed by two strings whose lengths are in the
ratio 3 to 2; in this case the shorter one gives off a note, called the fifth,
above that given off by the first string. In fact, the relative lengths in
every harmonious combination of plucked strings can be expressed as a
‘ratio of whole numbers. The Pythagoreans also developed a famous
musical scale. Though we shall not devote space to music of the Greek
period, we would like to note that many Greek mathematicians, includ-
ing Euclid and Ptolemy, wrote on the subject, especially on harmonious
combinations of sounds and the construction of scales.

The Pythagoreans reduced the motions of the planets to number



Figure 1.1
Triangular numbers

Figure 1.2
Square numbers

Figure 1.3
Pentagonal numbers

Figure 1.4
Hexagonal numbers




14 MATHEMATICS. THE LOSS OF CERTAINTY

relations. They believed that bodies moving in space produce sounds.
Perhaps this was suggested by the swishing of an object whirled on the
end of a string. They believed, further, that a body which moves rap-
idly gives forth a higher note than one which moves slowly. Now ac-
cording to their astronomy, the greater the distance of a planet from
the earth the more rapidly it moved. Hence the sounds produced by
the planets varied with their distances from the earth and these sounds
all harmonized. But this “music of the spheres,” like all harmony, re-
duced to no more than number relationships and hence so did the mo-
tions of the planets. We do not hear this music because we are accus-
tomed to it from birth.

Other features of nature were “reduced” to number. The numbers 1,
2, 3, and 4, the tetractys, were especially valued. In fact, the Pythagorean
oath is reported to be: “I swear in the name of the Tetractys which has
been bestowed on our soul. The source and roots of the everflowing
nature are contained in it.” Nature was composed of fournesses such as
the four geometric elements, point, line, surface, and solid; and the

four material elements Plato later emphasized, earth, air, fire, and
water.

The four numbers of the tetractys added up to ten and so ten was the
ideal number and represented the universe. Because ten was ideal
there must be ten bodies in the heavens. To fill out the required
number the Pythagoreans introduced a central fire around which the
earth, sun, moon, and the five planets then known revolved and a
counter-earth on the opposité side of the central fire. We do not see
this central fire and the counter-earth because the area of the earth on
which we live faces away from them. The details are not worth pursu-
ing; the main point is that the Pythagoreans tried to build an astronom-
ical theory based on numerical relationships.

Because the Pythagoreans “reduced” astronomy and music to num-
ber, music and astronomy came to be linked with arithmetic and geom-
etry, and all four subjects were regarded as mathematical. The four be-
came part of the school curriculum and remained so even into
medieval times, where they were labelled the quadrivium.

Anistotle in his Metaphysics sums up the Pythagorean identification of
number and the real world:

In numbers they seemed to see resemblances to things that exist and
come into being—more than in fire and earth and water (such and
such a modifcation of numbers being justice, another being soul and
reason, another being opportunity—and similarly almost all other
things being numerically expressible); since, again, that the modifica-
tions and the ratios of the musical scales were expressible in
numbers;—since, then, all other things seemed in their whole nature
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to be modelled on numbers, and numbers seemed to be the first things
in the whole of nature, they supposed the elements of numbers to be
the elements of all things, and the whole heaven to be a musical scale
and a number.

The natural philosophy of the Pythagoreans is hardly substantial.
Aesthetic considerations commingled with an obsession to find number
relationships certainly led to assertions transcending observational evi-
dence. Nor did the Pythagoreans develop any one branch of physical
science very far. One could justifiably call their theories superficial.
But, whether by luck or by intuitive genius, the Pythagoreans did hit
upon two doctrines which proved later to be all-important: the first is
that nature is built according to mathematical principles; the second
that number relationships underlie, unify, and reveal the order in na-
ture. Actually modern science adheres to the Pythagorean emphasis on
number, though, as we shall see, the modern doctrines are a much
more sophisticated form of Pythagoreanism.

The philosophers who chronologically succeeded the Pythagoreans
were as much concerned with the nature of reality and the underly-
ing mathematical design. Leuccipus (c. 440 B.c.) and Democritus
(c.460-¢.370 B.c.) are notable because they were most explicit in affirm-
ing the doctrine of atomism. Their common philosophy was that the
world is composed of an infinite number of simple, eternal atoms.
These differ in shape, size, hardness, order, and position. Every object
is some combination of these atoms. Though geometrical magnitudes
such as a line segment are infinitely divisible, the atoms are ultimate, in-
divisible particles. Properties such as shape, size, and the others just
mentioned were properties of the atoms. All other properties such as
taste, heat, and color were not in the atoms but in the effect of the
atoms on the perceiver. This sensuous knowledge was unreliable be-
cause it varied with the perceiver. Like the Pythagoreans, the atomists
asserted that the reality underlying the constantly changing diversity of
the physical world was expressible in terms of mathematics. Moreover,
the happenings in this world were strictly determined by mathematical
laws.

After the Pythagoreans the most influential group to expound and
propagate the doctrine of the mathematical design of nature was the
Platonists, led, of course, by Plato. Though Plato (427-347 s.c.) took
over some Pythagorean doctrines, he was a master who dominated
Greek thought in the momentous 4th century B.c. He was the founder
of the Academy in Athens, a center which attracted leading thinkers of
his day and endured for nine hundred years.

Plato’s belief in the rationality of the universe is perhaps best ex-
pressed in his dialogue the Philebus:
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Protarchus: What question?

Socrates: Whether all this which they call the universe is left to the
guidance of unreason and chance medley, or, on the contrary,
as our fathers have declared, ordered and governed by a mar-
vellous intelligence and wisdom.

Protarchus: Wide asunder are the two assertions, illustrious Socrates,
for that which you were just now saying to me appears to be
blasphemy, but the other assertion, that mind orders all things,
is worthy of the aspect of the world, and of the sun, and of the
moon, and of the stars and of the whole circle of the heavens;
and never will I say or think otherwise.

The later Pythagoreans and the Platonists distinguished sharply be-
tween the world of things and the world of ideas. Objects and rela-
tionships in the material world were subject to imperfections, change,
and decay and hence did not represent the ultimate truth, but there
was an ideal world in which there were absolute and unchanging
truths. These truths were the proper concern of the philosopher.
About the physical world we can only have opinions. The visible and
sensuous world is just a vague, dim, and imperfect realization of the
ideal world. “Things are the shadows of ideas thrown on the screen of
experience.” Reality then was to be found in the ideas of sensuous,
physical objects. Thus Plato would say that there is nothing real in a
horse, a house, or a beautiful woman. The reality is in the universal
type or idea of a horse, a house, or 2 woman. Infallible knowledge can
be obtained only about pure ideal forms. These ideas are in fact con-
stant and invariable, and knowledge concerning them is firm and inde-
structible.

Plato insisted that the reality and intelligibility of the physical world
could be comprehended only through the mathematics of the ideal
world. There was no question that this world was mathematically struc-
tured. Plutarch reports Plato’s famous, “God eternally geometrizes.” In
the Republic, Plato said “the knowledge at which geometry aims 1is
knowledge of the eternal, and not of aught perishing and transient.”
Mathematical laws were not only the essence of reality but eternal and
unchanging. Number relations, too, were part of reality, and collections
of things were mere imitations of numbers. Whereas with the earher
Pythagoreans numbers were immanent in things, with Plato they tran-
scended things.

Plato went further than the Pythagoreans in that he wished not
merely to understand nature through mathematics but to substitute
mathematics for nature herself. He believed that a few penetrating
glances at the physical world would suggest basic truths with which
reason could then carry on unaided. From that point on there would
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be just mathematics. Mathematics would substitute for physical inves-
tigation.

Plutarch relates in his “Life of Marcellus” that Eudoxus and Archy-
tas, famous contemporaries of Plato, used physical arguments to
“prove” mathematical results. But Plato indignantly denounced such
proofs as a corruption of geometry; they utilized sensuous facts in
place of pure reasoning.

Plato’s attitude toward astronomy illustrates his position on the
knowledge to be sought. This science, he said, is not concerned with
the movements of the visible heavenly bodies. The arrangement of the
stars in the heavens and their apparent movements are indeed wonder-
ful and beautiful to behold, but mere observations and explanation of
the motions fall far short of true astronomy. Before we can attain to
this true science we “must leave the heavens alone,” for true astronomy
deals with the laws of motion of true stars in a mathematical heaven of
which the visible heaven is but an imperfect expression. He encouraged
devotion to a theoretical astronomy whose problems please the mind
and not the eye and whose objects are apprehended by the mind and
not by vision. The varied figures the sky presents to the eye are to be
used only as diagrams to assist the search for higher truths. We must
treat astronomy, like geometry, as a series of problems merely sug-
gested by visible things. The uses of astronomy in navigation, calendar-
reckoning, and the measurement of time were of no interest to Plato.

Aristotle, though a student of Plato from whom he derived many
ideas, had a quite different concept of the study of the real world and
of the relation of mathematics to reality. He criticized Plato’s other-
worldliness and his reduction of science to mathematics. Aristotle was a
physicist in the literal sense of the word. He believed in material things
as the primary substance and source of reality. Physics, and science
generally, must study the physical world and obtain truths from it
Genuine knowledge is obtained from sense experience by intuition and
abstraction. These abstractions have no existence independent of
human minds.

Aristotle did emphasize universals, general qualities that are ab-
stracted from real things. To obtain these he said we “start with things
which are knowable and observable to us and proceed toward those
things which are clearer and more knowable by nature.” He took the
obvious sensuous qualities of objects, hypostatized them, and elevated
them to independent, mental concepts.

Where was mathematics in Aristotle’s scheme of things? The physical
sciences were fundamental. Mathematics helped in the study of nature
by describing formal properties such as shape and ‘quantity. Also math-
ematics provided the reasons for facts observed in material phenom-
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ena. Thus geometry could provide the explanation of facts provided by
optics and astronomy, and arithmetical ratios could give the basis for
harmony. But mathematical concepts and principles are definitely ab-
stractions from the real world. Because they are abstracted from the
world, they are applicable to it. There is a faculty of the mind which
enables us to arrive at these idealized properties of physical objects from
sensations and these abstractions are necessarily true.

This brief survey of the philosophers who forged and molded the
Greek intellectual world may serve to show that all of them stressed the
study of nature for comprehension, understanding, and appreciation
of the underlying reality. Moreover, from the time of the Pythagoreans
practically all philosophers asserted that nature was designed mathe-
matically. By the end of the classical period the doctrine of the mathe-
matical design of nature was established and the search for mathemat-
ical laws had been instituted. Though this belief did not motivate all
later mathematics, once accepted it was acted on by most of the great
mathematicians, even those who had no contact with the belief. Of all
the triumphs of the speculative thought of the Greeks, the most truly
novel was their conception of the cosmos operating in accordance with
mathematical laws discoverable by human thought.

The Greeks, then, were determined to seek truths and in particular
truths about the mathematical design of nature. How does one go
about seeking truths and guaranteeing that they are truths? Here, too,
the Greeks provided the plan. Though this evolved gradually during
the period from 600 to 300 B.c., and though there is some question as
to when and by whom it was first conceived of, by 300 B.c. it was per-
fected.

Mathematics in a loose sense of the term, in the sense of utilizing
numbers and geometrical figures, antedates the work of the classical
Greeks by several thousand years. In this loose sense the term mathe-
matics includes the contributions of many bygone civilizations among
which the Egyptian and Babylonian are most prominent. In all of
these, except the Greek civilization, mathematics was hardly a distinct
discipline—it had no methodology nor was it pursued for other than
immediate, practical ends. It was a tool, a series of disconnected, simple
rules which enabled people to answer questions of daily life: calendar-
reckoning, agriculture, and commerce. These rules were arrived at by
trial and error, experience, and simple observation, and many were
only approximately correct. About the best one can say for the mathe-
matics of these civilizations is that it showed some vigor if not rigor of
thought and more perseverance than brilliance. This mathematics is
characterized by the word empirical. The empirical mathematics of the
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Babylonians and the Egyptians also served as a prelude to the work of
the Greeks.

Though the Greek culture was not entirely free of outside influ-
ences—Greek thinkers did travel and study in Egypt and Babylonia—
and though mathematics in the modern sense of the word had to un-
dergo a period of gestation even in the congenial intellectual atmo-
sphere of Greece, what the Greeks created differs as much from what
they took over as gold from tin.

Having decided to search for mathematical truths, the Greeks could
not build upon the crude, empirical, limited, disconnected, and, in
many instances, approximate results that their predecessors, notably
the Egyptians and Babylonians, had compiled. Mathematics itself, the
basic facts about number and geometrical figures, must be a body of
truths, and mathematical reasoning, aimed at arriving at truths about
physical phenomena, the motions of the heavens for example, must
produce indubitable conclusions. How were these objectives to be at-
tained?

The hrst principle was that mathematics was to deal with abstrac-
tions. For the philosophers who molded Greek mathematics, truth by
its very meaning could pertain only to permanent, unchanging entities
and relationships. Fortunately, the intelligence of man excited to reflec-
tion by the impressions of sensuous objects can rise to higher concep-
tions; these are the ideas, the eternal realities and the true object of
thought. There was another reason for the preference for abstractions.
If mathematics was to be powerful it must embrace in one abstract con-
cept the essential feature of all the physical occurrences of that concept.
Thus the mathematical straight line must embrace stretched strings,
ruler’s edges, boundaries of fields, and the paths of light rays. Accord-
ingly, the mathematical line was to have no thickness, color, molecular
structure, or tension. The Greeks were explicit in asserting that their

mathematics dealt with abstractions. Speaking of geometricians, Plato
said in The Republic:

Do you not know also that although they make use of the visible forms
and reason about them, they are thinking not of these, but of the
ideals which they resemble; not of the figures which they draw, but of
the absolute square and the absolute diameter . . . they are really
secking to behold the things themselves, which can be seen only with
the eye of the mind?

Hence mathematics would deal first of all with abstract concepts such
as point, line, and whole number. Other concepts such as triangle,
square, and circle could then be defined in terms of the basic ones,
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which as Aristotle pointed out must be undefined or else there would
be no starting point. The acuity of the Greeks is evident in the require-
ment that defined concepts must be shown to have counterparts in real-
ity, either by demonstration or construction. Thus one could not define
an angle trisector and prove theorems about it. It might not exist. And
in fact, since the Greeks did not succeed in constructing an angle trisec-
tor under the limitations they imposed on constructions, they did not
introduce this concept.

To reason about the concepts of mathematics the Greeks started with
axioms, truths so self-evident that no one could doubt them. Surely
such truths were available. Plato justified acceptance of the axioms by
his theory of recollection or anamnesis. There was for him, as we noted
earlier, an objective world of truths. Humans had experience as souls
in another world before coming to earth and the soul had but to be
stimulated to recall its prior experience in order to know that the
axioms of geometry were truths. No experience on earth was necessary.
Aristotle put it otherwise. The axioms are intelligible principles which
appeal to the mind beyond possibility of doubt. The axioms, Aristotle
said in Posterior Analytics, are known to be true by our infallible intu-
ition. Moreover, we must have these truths on which to base our rea-
soning. If, instead, reasoning were to use some facts not known to be
truths, further reasoning would be needed to establish these facts and
this process would have to be repeated endlessly. There would then be
an infinite regress. Among the axioms, he distinguished common no-
tions and postulates. Common notions are true in all fields of thought
and include statements such as “Equals added to equals give equals.”
Postulates apply to a specific subject such as geometry. Thus, “Two
points determine a unique line.” Aristotle did say that postulates need
not be self-evident but when not must be supported by the conse-
quences which follow from them. However, self-evidency was required
by the mathematicians.

From the axioms, conclusions were to be derived by reasoning.
There are many types of reasoning, for example, induction, reasoning
by analogy, and deduction. Of the many types, only one guarantees the
correctness of the conclusion. The conclusion that all apples are red
because one thousand apples are found to be red is inductive and
therefore not absolutely reliable. Likewise the argument that John
should be able to graduate from college because his brother who n-
herited the same faculties did so, is reasoning by analogy and certainly
not reliable. Deductive reasoning, on the other hand, though it can
take many forms does guarantee the conclusion. Thus, if one grants
that all men are mortal and Socrates is a man, one must accept that
Socrates is mortal. The principle of logic involved here is one form of
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what Arnistotle called syllogistic reasoning. Among other laws of deduc-
tive reasoning, Aristotle included the law of contradiction (a proposi-
tion cannot be both true and false) and the law of excluded middle (a
proposition must be either true or false).

He and the world at large accepted unquestioningly that these de-
ductive principles when applied to any premise yielded conclusions as
reliable as the premise. Hence if the premises were truths, so would the
conclusions be. It is worthy of note, especially in the light of what we
shall be discussing later, that Aristotle abstracted the principles of de-
ductive logic from the reasoning already practiced by mathematicians.
Deductive logic is, in effect, the child of mathematics.

Though deductive reasoning was advocated by almost all the Greek
philosophers as the only reliable method of obtaining truths, Plato’s
view was somewhat different. Though he would not object to deductive
proof, he did regard it as superfluous, for the axioms and theorems of
mathematics exist in some objective world independent of man, and in
accordance with Plato’s doctrine of anamnesis, man has but to recall
them to recognize their indubitable truth. The theorems, to use Plato’s
own analogy in his Theaetetus, are like birds in an aviary. They exist and
one has only to reach in to grasp them. Learning is but a process of rec-
ollection. In Plato’s dialogue Meno, Socrates by skillful questioning
elicits from a young slave the assertion that the square erected on the
diagonal of an isosceles right triangle has twice the area of a square
erected on a side. Socrates then triumphantly concludes that the slave,
since he was not educated in geometry, recalled it under the proper
suggestions.

It is important to appreciate how radical the insistence on deductive proof
was. Suppose a scientist should measure the sum of the angles of a
hundred different triangles in different locations and of different size
and shape and find that sum to be 180° to within the limits of expen-
mental accuracy. Surely he would conclude that the sum of the angles
of any triangle is 180°. But his proof would be inductive, not deductive,
and would therefore not be mathematically acceptable. Likewise, one
can test as many even numbers as he pleases and find that each is a sum

of two prime numbers. But this test is not a deductive proof and so the
result is not a theorem of mathematics. Deductive proof is, then, a very
stringent requirement. Nevertheless, the Greek mathematicians, who
were in the main philosophers, insisted on the exclusive use of deduc-
uve reasoning because this yields truths, eternal verities.

There is another reason that philosophers favor deductive reasoning.
Philosophers are concerned with broad knowledge about man and the
physical world. To establish universal truths such as that man is basi-
cally good, that the world is designed, or that man’s life has purpose,
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deductive reasoning from acceptable first principles is far more feasible
than induction or analogy.

Still another reason for the classical Greeks’ preference for deduction
may be found in the organization of their society. Philosophical, mathe-
matical, and artistic activities were carried on by the wealthier class.
These people did no manual work. Slaves, metics (non-citizens), and
free citizen-artisans were employed in business and in the household,
and they even practiced the most important professions. Educated
freemen did not use their hands and rarely engaged in commercial
pursuits. Plato declared that the trade of a shopkeeper was a degrada-
tion to a freeman and wished that his engagement in such a trade be
punished as a crime. Anstotle said that in the perfect state no citizen (as
opposed to slaves) would practice any mechanical art. Among the
Boeotians, one of the Greek tribes, those who defiled themselves with
commerce were excluded from all state offices for ten years. To
thinkers in such a society, experimentation and observation would be

alien. Hence no results scientific or mathematical would be derived
from such sources.

Though there are many reasons for the Greeks' insistence on deduc-
tive proof there is some question as to which philosopher or group of
philosophers first laid down this requirement. Unfortunately our
knowledge of the teachings and writings of the pre-Socratic philoso-
phers is fragmentary and though various answers have been given
there is no universally accepted one. By Aristotle’s time the require-
ment was certainly in effect, for he is explicit about standards of rigor
such as the need for undefined terms and the laws of reasoning.

How successful were the Greeks in executing their plan of obtaining
mathematical laws of the universe? The cream of the mathematics
created by such men as Euclid, Apollonius, Archimedes, and Claudius
Prolemy has fortunately come down to us. Chronologically these men
belonged to the second great period of Greek culture, the Hellenistic
or Alexandrian (300 B.c.-a.p. 600). During the 4th century B.c. King
Philip of Macedonia undertook to conquer the Persians, who controlled
the Near East and had been traditional enemies of the European
Greeks. Philip was assassinated and was succeeded by his son Alexan-
der. Alexander did defeat the Persians and moved the cultural center
of the enlarged Greek empire to a new city which he modestly named
after himself. Alexander died in 323 B.c. but his plan to develop the
new center was continued by his successors in Egypt who adopted the
royal title of Ptolemy.

It is quite certain that Euclid lived in Alexandria about 300 s.c. and
trained students there, though his own education was probably ac-
quired in Plato’s Academy. This information, incidentally, is about all
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we have on Euclid’s personal life. Euclid’s work has the form of a sys-
tematic, deductive, and vast account of the separate discoveries of
many classical Greeks. His chief work, the Elements, offers the laws of
space and figures in space.

Euclid’s Elements was by no means all of his contribution to the geom-

etry of space. Euclid took up the theme of conic sections in a book no
longer extant, and Apollonius (262-190 B.c.), a native of Pergamum in
Asia Minor who learned mathematics in Alexandria, carried on this
study of the parabola, ellipse, and hyperbola and wrote the classic work
on the subject, the Conic Sections.
- To this purely geometrical knowledge Archimedes (287-212 B.c.),
who was educated in Alexandria but lived in Sicily, added several
works, On the Sphere and Cylinder, On Conoids and Spheroids, and The
Quadrature of the Parabola, all of which deal with the calculation of
complex areas and volumes by a method introduced by Eudoxus
(390-337 B.c.) and later known as the method of exhaustion. Nowadays
these problems are solved by the methods of the calculus.

The Greeks made one more major addition to the study of space and
figures 1n space—trigonometry. The originator of this work was Hip-
parchus, who lived in Rhodes and in Alexandria and died about 125
B.C. It was extended by Menelaus (c. A.p. 98) and given a complete and
authoritative version by the Egyptian Claudius Ptolemy (d. A.p. 168),
who worked in Alexandria. His major work was Mathematical Composi-
tion, known more popularly by the Arabic ttle, Almagest. T rigonometry
concerns the quantitative relationships among the sides and angles of a
triangle. The Greeks were concerned mainly with triangles on the sur-
tace of a sphere, the sides of which are formed by arcs of great circles
(circles with centers at the center of the sphere) because the major
application was to the motion of planets and stars, which in Greek as-
tronomy moved along great circles. However, the same theory, when
translated, readily applies to triangles in a plane, the form in which
trigonometry is approached in our schools today. The introduction of
trigonometry required of its users rather advanced arithmetic and
some algebra. Just how the Greeks operated in these areas will be a
later concern (Chapter V).

With these several creations mathematics emerged from obscure, em-
pirical, disconnected fragments to brilliant, huge, systematic, and deep
intellectual creations. However, the classics of Euclid, Apollonius, and
Archimedes—Ptolemy’s Abnagest is an exception—that deal with the
properties of space and of hgures in space seem to be limited in scope
and give little indication of the broader significance of their material.
These works seem to have little relation to revealing truths about the
workings of nature. In fact, these classics give only the formal, polished
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deductive mathematics. In this respect Greek mathematical texts are no
different from modern mathematical textbooks and treatises. Such
books seek only to organize and present the mathematical results that
have been attained and so omit the motivations for the mathematics,
the clues and suggestions for the theorems, and the uses to which the
mathematical knowledge is put. Hence many writers on classical Greek
mathematics assert that the mathematicians of the period were con-
cerned only with mathematics for its own sake and they arrive at and
defend this assertion by pointing to Euclid’s Elements and Apollonius’s
Conic Sections, the two greatest compilations of work in that period.
However, these writers have narrowed their focus. To look only at the
Elements and the Conic Sections is like looking at Newton’s paper on the
binomial theorem and concluding that Newton was a pure mathema-
tician.

The real goal was the study of nature. Insofar as the study of the
physical world was concerned, even the truths of geometry were highly
significant. It was clear to the Greeks that geometric principles were
embodied in the entire structure of the universe, of which space was
the primary component. Hence the study ol space and hgures in space
was an essential contribution to the investigation of nature. Geometry
was in fact part of the larger study of cosmology. For example, the
study of the geometry of the sphere was undertaken when astronomy
became mathematical, which happened in Plato’s time. In fact, the
Greek word for sphere meant astronomy for the Pythagoreans. And
Euclids's Phaenomena, which was on the geometry of the sphere, was
specifically intended for use in astronomy. With such evidence and with
the fuller knowledge of how developments in mathematics took place
in more recent times, we may be certain that the scientific investigations
must have suggested mathematical problems and that the mathematics
was part and parcel of the investigation. of nature. But we need not
speculate. We have only to examine what the Greeks accomplished in
the study of nature and who were the men involved.

The greatest success in the field of physical science proper was
achieved in astronomy. Plato, though fully aware of the impressive
number of astronomical observations made by the Babylonians and
Egyptians, emphasized that they had no underlying or umfying theory
and no explanation of the seemingly irregular motions of the planets.
Eudoxus, who was a student at the Academy and whose purely geomet-
rical work is incorporated in Books V and XII of Euclid’s Elements, took
up the problem of “saving the appearances.” His answer is the first
reasonably complete astronomical theory known to history.

We shall not describe Eudoxus’s theory except to state that it was
thoroughly mathematical and involved the motions of interacung
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spheres. These spheres were, except for the “sphere” of fixed stars, not
material bodies but mathematical constructions. Nor did he try to ac-
count for forces which would make the spheres rotate as he said they
did. His theory is thoroughly modern in spirit, for today mathematical
description and not physical explanation is the goal in science. This
theory was superseded by the theory credited to the three greatest the-
oretical astronomers after Eudoxus, namely, Apollonius, Hipparchus
and Polemy and incorporated in Ptolemy’s Almagest.

Apollonius left no extant work in astronomy. However, his contribu-
tions are cited by Greek writers including Prolemy in his Almagest (Book
XII). He was so famous as an astronomer that he was nicknamed €
(epsilon) because he had done much work on the motion of the moon
and € was the symbol for the moon. Only one minor work of Hip-
parchus is known but he, too, is cited and credited in the Almagest.

The basic scheme of what is now referred to as Ptolemaic astronomy
had entered Greek astronomy between the times of Eudoxus and Apol-
lonius. In this scheme a planet P moves at a constant speed on a circle
(Fig. 1.5) with center § while § itself moves with constant speed on a
circle with center at the earth E. The circle on which § moves is called
the deferent while the circle on which P moves is called an epicycle.
The point § in the cases of some planets was the sun but in other cases
it was just a mathematical point. The direction of the motion of P could
agree with or be opposite to the direction of motion of S. The latter
was the case for the sun and moon. Ptolemy also used a variation on
this scheme to describe the motion of some of the planets. By prop-
erly selecting the radii of the epicycle and deferent, the speed of a body
on its epicycle, and the speed of the center of the epicycle on the
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deferent, Hipparchus and Ptolemy were able to get descriptions of the
motions which were quite in accord with the observations of their
times. From the time of Hipparchus an eclipse of the moon could be
predicted to within an hour or two, though eclipses of the sun were
predicted somewhat less accurately. These predictions were possible
because Ptolemy used trigonometry, which he said he created for as-
tronomy.

From the standpoint of the search for truths, it is noteworthy that
Prolemy, like Eudoxus, fully realized that his theory was just a conven-
ient mathematical description which fit the observations and was not
necessarily the true design of nature. For some planets he had a choice
of alternative schemes and he chose the mathematically simpler one.
Ptolemy says in Book XIII of his Almagest that in astronomy one ought
to seek as simple a mathematical model as possible. But Ptolemy’s
mathematical model was received as the truth by the Christian world.

Ptolemaic theory offered the first reasonably complete evidence of
the uniformity and invariability of nature and is the final Greek answer
to Plato’s problem of rationalizing the apparent motions of the heav-
enly bodies. No other product of the entire Greek era rivals the Al-
magest for its profound influence on conceptions of the universe and
none, except Euchid’s Elements, achieved such unquestioned authority.

This brief account of Greek astronomy does not of course cover
many other contributions to the subject nor does it reveal the depth
and extent of the work even of the men treated. Greek astronomy was
masterful and comprehensive and it employed a vast amount of mathe-
matics. Moreover, almost every Greek mathematician devoted himself
to the subject, including the masters Euclid and Archimedes.

The attainment of physical truths did not end with the mathematics
of space and astronomy. The Greeks founded the science of mechanics.
Mechanics deals with the motion of objects that may be considered as
particles, the motion of extended bodies, and the forces that cause
these motions. In his Physics Aristotle put together a theory of motion
which is the high point of Greek mechanics. Like all of his physics, his
mechanics is based on rational, seemingly self-evident principles, en-
tirely in accord with observation. Though this theory held sway for al-
most two thousand years, we shall not review it because it was super-
seded by Newtonian mechanics. Notable additions to Aristotle’s theory
of motion were Archimedes’ works on centers of gravity of bodies and
his theory of the lever. What is relevant in all of this work is that math-
ematics played a leading role and thereby added to the conviction that
mathematics was fundamental in penetrating the design of nature.

Next to astronomy and mechanics optics has been the subject most
constantly pursued. This mathematical science, too, was founded by the
Greeks. Almost all of the Greek philosophers, beginning with the Py-
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thagoreans, speculated on the nature of light, vision, and color. Our con-
cern, however, is with mathematical accomplishments in these areas.
The first was the assertion on a priori grounds by Empedocles of
Agrigentum (c. 490 B.c.)—Agrigentum was in Sicily—that light travels
with finite velocity. The first systematic treatments of light that we have
are Euclid’s Optics and Catoptrica.* The Optics is concerned with the
problem of vision and with the use of vision to determine sizes of ob-
jects. The Catoptrica (theory of mirrors) shows how light rays behave
when reflected from plane, concave, and convex mirrors and the effect
of this behavior on what we see. Like the Optics it starts with definitions
which are really postulates. Theorem 1 (an axiom in modern texts) is
fundamental in geometrical optics and is known as the law of reflec-
tion. It says that the angle 4 that a ray incident from point P makes
with a mirror (Fig. 1.6) equals the angle B which the reflected ray
makes with the mirror. Euclid also proves the law for a ray striking a
convex or a concave mirror (Fig. 1.7). At the point of contact he substi-
tutes the tangent R for the mirror. Both books are thoroughly mathe-
matical not only in content but in organization. Definitions, axioms and
theorems dominate as in Euclid’s Elements.

From the law of reflection, the mathematician and engineer Heron
(1st century A.p.) drew an important consequence. If P and Q in Fig-
ure 1.6 are any two points on one side of the line ST, then of all the
paths one could follow in going from point P to the line and then to
point Q, the shortest path is by way of the point R such that the two line
segments PR and QR make equal angles with the line. And this is ex-
actly the path a light ray takes. Hence, the light ray takes the shortest
path in going from P to the mirror to Q. Apparently nature is well
acquainted with geometry and employs it to full advantage. This prop-
osition appears in Heron's Cafoptrica which also treats concave and con-
vex mirrors and combinations of mirrors.

*The version we have today is probably a compilation of several works including Eu-
clid’s.
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Any number of works were written on the reflection of light by mir-
rors of various shapes. Among these are the now lost works, Archime-
des’ Catoptrica and Apollonius’s On the Burning Mirror (¢.190 B.c.), and
the extant work of Diocles, On Burning-Mirrors (c.190 B.c.). Burning
mirrors were concave mirrors in the form of portions of a sphere,
paraboloids of revolution (formed by revolving a parabola about its
axis), and ellipsoids of revolution. Apollonius knew and Diocles’ book
contains the proof that a paraboloidal mirror will reflect light emanating
from the focus into a beam parallel to the axis of the mirror (Fig. 1.8).
Conversely, rays coming in parallel to the axis will after reflection be
concentrated at the focus. The sun’s rays thus concentrated produce
great heat at the focus and hence the term burning mirror. This is the
property of the paraboloidal mirror which Archimedes is reported to
have used to concentrate the sun's rays on the Roman ships besieging
his home city Syracuse and to set them afire. Apollonius also knew the
reflection properties of the other conic sections, such as that all rays
emanating from one focus of an ellipsoidal mirror will be reflected to
the other focus. He gives the relevant geometrical properties of the
ellipse and hyperbola in Book 111 of his Conic Sections.

The Greeks founded many other sciences, notably geography and
hydrostatics. Eratosthenes of Cyrene (c.284-.192 B.c.), one of the
most learned men of antiquity and director of the library at Alex-
andria, made numerous calculations of distances between significant
places on the portion of our earth known to the Greeks. He also made
a now famous and quite accurate calculation of the circumference of
the earth and wrote his Geography, in which beyond describing his
mathematical methods he also gave his explanation of causes for the
changes which had taken place on the earth’s surface.

The most extensive work on geography was Ptolemy’s Geography, in
eight books. Ptolemy not only extended Eratosthenes’ work but located
eight thousand places on the earth in terms of the very same latitude
and longitude we now use. Ptolemy also gave methods of mapmaking,

Figure 1.8
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some of which are still used, particularly the method of stereographic
projection. In all of this work in geography the geometry of figures on
a sphere, applied from the 4th century B.c. onward, was basic.

As for hydrostatics, the subject which deals with the pressure on bod-
ies which are placed in water, Archimedes’ book On Floating Bodies is
the foundational work. Like all of the works we have been describing it
1s thoroughly mathematical in approach and derivation of results. In
particular it contains what is now known as Archimedes’ principle, that
a body immersed in water is buoyed up by a force equal to the weight
of the water displaced. Thus we owe to Archimedes the explanation of
how man can remain afloat in a world of forces that tend to submerge
him. |

Though the deductive approach to mathematics and the mathemat-
ical representation of the laws of nature dominated the Alexandrian
Greek period, we should note that the Alexandrians, unlike the clas-
sical Greeks, also resorted to experimentation and observation. The
Alexandrians took over and utilized the remarkably accurate astronom-
ical observations which the Babylonians had made over a period of two
thousand years. Hipparchus made a catalogue of the stars observable in
his time. Inventions (notably by Archimedes and the mathematician
and engineer Heron) included sun-dials, astrolabes, and uses for steam
and water power.

Particularly famous was the Alexandrian Museum, which was started
by Ptolemy Soter, the immediate successor of Alexander in Egypt. The
Museum was a home for scholars and included a famous library of
about 400,000 volumes. Since it could not house all the manuscripts an
additonal 300,000 were housed in the Temple of Serapis. The scholars
also gave instruction to students.

With their mathematical work and many scientific investigations, the
Greeks gave substantial evidence that the universe is mathematically
designed. Mathematics is immanent in nature; it is the truth about na-
ture's structure, or, as Plato would have it, the reality about the physical
world. There is law and order in the universe and mathematics is the
key to this order. Moreover, human reason can penetrate the plan and
reveal the mathematical structure.

The impetus for the conception of a logical, mathematical approach
to nature must be credited primarily to Euclid’s Elements. Though this
work was intended to be a study of physical space, its organization, in-
genuity, and clarity inspired the axiomatic-deductive approach not only
to other areas of mathematics such as the theory of numbers but to all
of the sciences. Through this work the notion of a logical organization
of all physical knowledge based on mathematics entered the intellectual

world.
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Thus the Greeks founded the alliance between mathematics and the
study of nature’s design which has since become the very basis of mod-
ern science. Until the latter part of the 19th century, the search for
mathematical design was the search for truth. The belief that mathe-
matical laws were the truth about nature attracted the deepest and
noblest thinkers to mathematics.



11

The Flowering of Mathematical Truths

The chief aim of all investigations of the external world
should be to discover the rational order and harmony
which has been imposed on it by God and which He re-
vealed to us in the language of mathematics.

JOHANNES KEPLER

The majestic Greek civilization was destroyed by several forces. The
first was the gradual conquest by the Romans of Greece, Egypt, and the
Near East. The Roman objective in extending its political power was
not to spread its materialistic culture. The subjugated areas became col-
onies from which great wealth was extracted by expropriation and by
taxation.

The rise of Christianity was another blow to pagan Greek culture.
Though Christian leaders adopted many Greek and Oriental myths
and customs with the intent of making Christianity more acceptable to
converts, they opposed pagan learning and even ridiculed mathemat-
ics, astronomy, and physical science. Despite cruel persecution by the
Romans, Christianity spread and became so powerful that the Roman
emperor Constantine the Great in his Edict of Milan of A.p. 313 recog-
nized Christianity as the official religion of the Empire. Later, Theodo-
sius (ruled A.p. 379-396) proscribed the pagan religions and in 392 or-
dered that their temples be destroyed.

Thousands of Greek books were burned by the Romans and the
Christians. In 47 B.c., the Romans set fire to the Egyptian ships in the
harbor of Alexandria; the fire spread and burned the library—the most
extensive of ancient libraries. In the year that Theodosius banned the
pagan religions, the Christians destroyed the temple of Serapis in Alex-
andria, which housed the only remaining sizable collection of Greek
works. Many other works written on parchment were expunged by the
Christians so that they could use the parchment for their own writings.

The late history of the Roman Empire is also relevant. The Emperor
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Theodosius divided the extensive empire between his two sons, Hon-
orius, who was to rule Italy and western Europe, and Arcadius, who
was to rule Greece, Egypt, and the Near East. The western part was
conquered by the Goths in the 5th century A.p. and its subsequent his-
tory belongs to the history of medieval Europe. The eastern part pre-
served its independence. Since the Eastern Roman Empire, known also
as the Byzantine Empire, included Greece proper and Egypt, Greek
culture and Greek works were to some extent preserved.

The final blow to the Greek civilization was the conquest of Egypt by
the upsurging Moslems in A.p. 640. The remaining books were de-
stroyed on the ground that, as Omar, the Arab conqueror, put it, “Ei-
ther the books contain what i1s in the Koran, in which case we don’t
have to read them, or they contain the opposite of what is in the Koran,
in which case we must not read them.” And so for six months the baths
of Alexandria were heated by burning rolls of parchment.

After the capture of Egypt by the Mohammedans the majority of
scholars migrated to Constantinople, which had become the capital of
the Eastern Roman Empire. Though no activity along the lines of
Greek thought could flourish in the unfriendly Christian atmosphere
of Byzantium, this inflow of scholars and their works to comparative
safety increased the treasury of knowledge that was to reach Europe
800 years later.

India and Arabia contributed to the continuity of mathematical activ-
ity and introduced some ideas that were to play a larger role later.*
During the years from a.p. 200 to about 1200 the Hindus, influenced
somewhat by the Greek works, made some original contributions to
arithmetic and algebra. The Arabs, whose empire at its height ex-
tended over all the lands bordering the Mediterranean and into the
Near East and embraced many races united by Mohammedanism, ab-
sorbed the Greek and Hindu contributions and also made some ad-
vances of their own. These, in the spirit of the Alexandrian Greeks,
commingled deductive reasoning and experimentation. The Arabs con-
tributed to algebra, geography, astronomy, and optics. They also built
colleges and schools for the transmission of knowledge. It is to the
credit of the Arabs that though they were firm adherents of their own
religion, they did not allow religious doctrines to restrict their mathe-
matical and scientific investigations.

Despite the fact that both the Hindus and the Arabs were able to
profit from the magnificent foundations erected by the Greeks and
though they furthered Greek mathematics and science, they were not
possessed as were the Greeks to understand the structure of the uni-

* We shall say more about the work of the Hindus and Arabs in Chapter V.
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verse. The Arabs translated and commented extensively and even cri-
tically on Greek works but nothing of great moment or magnitude was
added to the truths already known. By A.p. 1500 their empire was de-
stroyed by the Christians in the West and by internal strife in the East.

While the Arabs were building and expanding their civilization, an-
other civilization was being founded in Western Europe. A high level
of culture in this region was attained in the medieval period, which ex-
tended from about A.p. 500 to 1500. This culture was dominated by the
Catholic Church, and its teachings, however deep and meritorious, did
not favor the study of the physical world. The Christian God ruled the
universe and man’s role was to serve and please Him and by so doing
win salvation, whereupon the soul would live in an after-life of joy and
splendor. The conditions of life on this earth were immaterial and
hardship and suffering were not only to be tolerated but were in fact to
be undergone as a test of man’s faith in God. Understandably, interest
in mathematics and science which had been motivated in Greek times
by the study of the physical world was at a nadir. The intellectuals of
medieval Europe were devoted seekers of truths but these they sought
in revelation and in the study of the Scriptures. Hence medieval
thinkers did not adduce additional evidence for the mathematical de-
sign of nature. However, late medieval philosophy did support the
belief in the regularity and uniformity of nature’s behavior, though this
was thought to be subject to the will of God.

Late medieval Europe was shaken and altered by a number of revolu-
tionary influences. Among the many which converted the medieval civi-
lization into-the modern, the most important for our present concern
was the acquisition and study of Greek works. These became known
through the Arabic translations and through Greek works which had
been kept intact in the Byzantine Empire. In fact, when the Turks
conquered this empire in 1453 many Greek scholars fled westward with
their books. It was from Greek works that the leaders of the intellectual
revitalization of Europe learned nature is mathematically designed and
this design 1s harmonious, aesthetically pleasing, and the inner truth
about nature. Nature not only is rational and orderly but acts in accor-

dance with inexorable and immutable laws. European scientists began
their study of nature as the children of ancient Greece.

That the revival of Greek ideals induced some to take up the study of
nature is indubitable. But the speed and intensity of the revival of
mathematics and science were due to many other factors. The forces
which overthrew one culture and fostered the development of a new
one are numerous and complicated. The rise of science has been stud-
ied by many scholars and much history has been devoted to pinpoint-
ing the causes. We shall not attempt here to do more than name them.
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The rise of a class of free artisans, and a consequent interest in mate-
rials, skills, and technology, generated scientific problems. Geographical
explorations, motivated by the search for raw materials and gold, in-
troduced knowledge of strange lands and customs which challenged
medieval European culture. The Protestant revolution rejected some
Catholic doctrines, thereby fostering controversy and even scepticism
concerning both religions. The Puritan emphasis on work and utility of
knowledge to mankind, the introduction of gunpowder, which raised new
military problems such as the motion of projectiles, and the problems
raised by the navigations over thousands of miles of sea out of sight of
land all motivated the study of nature. The invention of printing per-
mitted the spread of knowledge which the Church had been able to
control. Though authorities differ on the degree to which one or more
of these forces may have influenced the investigation of nature, it suf-
fices for our purposes to note their multitude and the universally ac-
cepted fact that the pursuit of science did become the dominant feature
of modern European civilization.

T'he Europeans generally did not respond immediately to the new
forces and influences. During the period often labelled humanistic the
study and absorption of Greek works were far more characteristic than
active pursuit of the Greek objectives. But by about A.p. 1500 minds in-
tused with Greek goals—the application of reason to the study of na-
ture and the search for the underlying mathematical design—began to
act. However, they faced a serious problem. The Greek goals were in
conflict with the prevailing culture. Whereas the Greeks believed in the
mathematical design of nature, nature conforming invariably and unal-
terably to some ideal plan, late medieval thinkers ascribed all plan and
action to the Christian God. He was the designer and creator, and all
the actions of nature followed the plan laid down by this agency. The
universe was the handiwork of God and subject to His will. The mathe-
maticians and scientists of the Renaissance and several succeeding cen-
turies were orthodox Christians and so accepted this doctrine. But
Catholic teachings by no means included the Greek doctrine of the
mathematical design of nature. How then was the attempt to understand
God’s universe to be reconciled with the search for the mathematical
laws of nature? The answer was to add a new doctrine, that the Chris-
tian God had designed the universe mathematically. Thus the Catholic
doctrine postulating the supreme importance of seeking to understand
God’s will and His creations took the form of a search for God's mathe-
matical design of nature. Indeed the work of 16th-, 17th-, and most
18th-century mathematicians was, as we shall soon see more clearly, a
religious quest. The search for the mathematical laws of nature was an
act of devouon which would reveal the glory and grandeur of His
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handiwork. Mathematical knowledge, the truth about God’s design of
the universe, was as sacrosanct as any line of Scripture. Man could not
hope to perceive the divine plan as clearly as God Himself understood
it, but man could with humility and modesty seek at least to approach
the mind of God and so understand God’s world.

One can go further and assert that these mathematicians were sure
of the existence of mathematical laws underlying natural phenomena
and persisted in the search for them because they were convinced a
priori that God had incorporated them into the construction of the uni-
verse. Each discovery of a law of nature was hailed as evidence of God's
brilliance rather than the investigator's. The beliefs and attitudes of the
mathematicians and scientists exemplify the larger cultural phenome-
non that swept Renaissance Europe. The recently rediscovered Greek
works confronted a deeply devout Christian world, and the intellectual
leaders born in one and attracted to the other fused the doctrines of
both.

Perhaps the most impressive evidence that the Greek doctrine of the
mathematical design of nature coupled with the Renaissance belief in
God’s authorship of that design had taken hold in Europe is furnished
by the work of Nicolaus Copernicus and Johannes Kepler. Up to the
16th century, the only sound and useful astronomical theory was the
geocentric system of Hipparchus and Ptolemy. This was the theory ac-
cepted by professional astronomers and applied to calendar-reckoning
and navigation. Work on a new astronomical theory was begun by
Copernicus (1473-1543). At the University of Bologna, which he en-
tered in 1497, he studied astronomy. In 1512 he assumed his duties as
canon of the Cathedral of Frauenberg in East Prussia. This work left
Copernicus with plenty of time to make astronomical observations and
to think about the relevant theory. After years of reflection and obser-
vation, Copernicus evolved a new theory of planetary motions which he
incorporated in a classic work, On the Revolutions of the Heavenly Spheres.
He had written his first version in 1507 but feared to publish it because
it would antagonize the Church. The book appeared in 1543, the year
in which he died.

When Copernicus began to think about astronomy, the Ptolemaic
theory had become somewhat more complicated. More epicycles had
been added to those introduced by Prtolemy in order to make the
theory fit the increased amount of observational data gathered largely
by the Arabs. In Copernicus’s time the theory required a total of
seventy-seven circles to describe the motion of the sun, moon, and the
five planets known then. To many astronomers the theory, as Coper-
nicus says in his Preface, was scandalously complex.

Copernicus had studied the Greek works and had become convinced
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that the universe was mathematically and harmoniously designed. Har-
mony demanded a more pleasing theory than the complicated exten-
sion of Ptolemaic theory. He had read that some Greek authors, nota-
bly Aristarchus (3rd century B.c.), had suggested the possibility that the
sun was stationary and that the earth revolved about the sun and ro-
tated on its axis at the same time. He decided to explore this possibility.

The upshot of his reasoning was that he used the Ptolemaic scheme
of deferent and epicycle (Chapter 1) to describe the motions of the
heavenly bodies, with, however, the all-important difference that the
sun was at the center of each deferent. The earth itself became a planet
moving on an epicycle while rotating on its axis. Thereby he achieved
considerable simplification. He was able to reduce the total number of
circles (deferents and epicycles) to thirty-four instead of the seventy-
seven required in the geocentric theory.

The more remarkable simplification was achieved by Johannes
Kepler (1571-1630), one of the most intriguing figures in the history of
science. In a life beset by many personal misfortunes and hardships oc-
casioned by religious and political events, Kepler had the good fortune
in 1600 to become an assistant to the famous astronomer Tycho Brahe.
Brahe was then engaged in making extensive new observations, the
first major undertaking since Greek times. These observations and
others which Kepler made himself were invaluable to him. When
Brahe died in 1601 Kepler succeeded him as Imperial Mathematician
to Emperor Rudolph 11 of Austria.

Kepler's scientific reasoning is fascinating. Like Copernicus he was a
mystic, and like Copernicus he believed that the world was designed by
God in accordance with some simple and beautiful mathematical plan.
He said in his Mystery of the Cosmos (1596), the mathematical harmonies
in the mind of the Creator furnish the cause “why the number, the size,
and the motion of the orbs are as they are and not otherwise.” This
belief dominated all his thinking. But Kepler also had qualities which
we now associate with scientists. He could be coldly rational. Though
his fertile imagination triggered the conception of new theoretical sys-
tems, he knew that theories must fit observations and, in his later years,
saw even more clearly that empirical data may indeed suggest fun-
damental principles of science. He therefore sacrificed even his most
beloved mathematical hypotheses when he saw that they did not fit ob-
servational data, and it was precisely this incredible persistence in re-
fusing to tolerate discrepancies any other scientist of his day would
have disregarded that led him to espouse radical scientific ideas. He
also had the humility, patience, and energy that enable great men to
perform extraordinary labor.

Kepler’s search for the mathematical laws of nature, which his beliefs
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assured him existed, led him to spend years in following up false trails.
In the Preface to his Mystery of the Cosmos, we find him saying: “I under-
take to prove that God, in creating the universe and regulating the
order of the cosmos, had in view the five regular bodies of geometry as
known since the days of Pythagoras and Plato, and that he has fixed ac-
cording to those dimensions the number of heavens, their proportions,
and the relations of their movements.” However, the deductions from
his attempt to build a theory based on the five regular polyhedra were
not in accord with observations, and he abandoned this approach only
after he had made extraordinary efforts to apply it in modified form.

But he was eminently successful in later efforts to find harmonious
mathematical relations. His most famous and important results are
known today as Kepler's three laws of planetary motion. The first two
were published in a book of 1609 bearing a long title and often re-
ferred to by the first part, The New Astronomy, or by the last part, Com-
mentaries on the Motion of the Planet Mars. The first of these laws is
especially remarkable, for Kepler broke with the tradition of two thou-
sand years that circles or spheres must be used to describe heavenly
motions. Instead of resorting to deferent and several epicycles, which
both Ptolemy and Copernicus had used to describe the motion of any
one planet, Kepler found that a single ellipse would do. His first law
states that each planet moves on an ellipse and that the sun is at one
(common) focus of each of these elliptical paths (Fig. 2.1). The other
focus of each ellipse is merely a mathematical point at which nothing
exists. This law is of immense value in comprehending readily the
paths of the planets. Of course Kepler, like Copernicus, added that the
earth also rotates on its axis as it travels along its elliptical path.

But astronomy had to go much further if it was to be useful. It must
tell us how to predict the positions of the planets. If one finds by obser-
vation that a planet is at a particular position, P, say, in Figure 2.1, he
might like to know when it will be at some other position such as a sol-
stice or an equinox, for example. What is needed is the velocity with
which the planets move along their respective paths.

Here, too, Kepler made a radical step. Copernicus and the Greeks

Figure 2.1. Each planet moves in an ellipse about the sun.






