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1 Introduction

“P versus NP — a gift to mathematics from computer science”

~Steve Smale

Here is just one tip of the iceberg we’ll explore in this book: How much time does
it take to find the prime factors of a 1,000-digit integer? The facts are that (1) we
can’t even roughly estimate the answer: it could be less than a second or more than
a million years, and (2) practically all electronic commerce and Internet security
systems in existence today rest on the belief that it takes more than a million years!

Digesting even this single example begins to illuminate the conceptual revolution
of computational complexity theory, to which this book is devoted. It illustrates how
a pure number theoretic problem, which has been studied for millennia by mathe-
maticians, becomes a cornerstone of a trillion-dollar industry, on which practically
all people, companies, and countries crucially depend. Extracting this novel mean-
ing and utility relies on making the above problem precise, and on transforming
the informal statement of (2) into a mathematical theorem. This in turn requires
formal definitions of such concepts as algorithm, efficiency, secret, and randomness,
among others, including several new notions of proof. The difficulty of resolving
(the now all-important) challenge (1), namely, proving the hardness of factoring or
suggesting alternatives to it, is intimately related to the great conundrum of P vs.
N'P. And as a final twist in this plot, a fork appeared in our computational path,
by which the answer to (1) may radically depend on whether we allow classical or
quantum physics to power our computers. This new possibility has propelled huge
investments in academia and industry to attempt to physically realize the potential
of quantum computers. It also demands revisiting and redefining the very concepts
mentioned above, as well as many physical ones like entanglement and decoher-
ence, interacting with quantum mechanics and proposing novel ways of testing its
foundations.

The book you are reading will explore the mathematical and intellectual aspects
of this goldmine. It will explain computational complexity theory, the concepts this
theory created and revolutionized, and its many connections and interactions with
mathematics. In its half-century of existence, computational complexity theory
has developed into a rich, deep, and broad mathematical theory with remarkable
achievements and formidable challenges. It has forged strong connections with most
other mathematical fields and at the same time is having a major practical impact
on the technological revolution affecting all aspects of our society (of which Internet
security and quantum computing above are “mere” examples).

Computational complexity theory is a central subfield of the theory of computa-
tion (ToC), and is playing a pivotal role in its evolution. This theory stands with
the great ones of physics, biology, math, and economics, and is central to a new
scientific revolution informed by computation. I have devoted the final chapter of
this book (which can be read first) to a panoramic overview of ToC. That chapter
describes the intellectual supernova that the theory of computing has created and
continues to shape. It reveals the broad reach of ToC to all sciences, technology,
and society, and discusses its methodology, challenges, and unique position in the
intellectual sphere.

Below I review the long history of the interactions of computation and mathe-
matics. I proceed with a short overview of the evolution and nature of computational
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complexity. I then describe the structure, scope, and the intended audience of this
book, followed by a chapter-by-chapter description of its contents.

1.1 On the interactions of math and computation

The Theory of Computation is the study of the formal foundations of computer sci-
ence and technology. This dynamic and rapidly expanding field straddles mathemat-
ics and computer science. It has benefited tremendously from the very different char-
acters, motivations, and traditions of these parent disciplines. Both sides naturally
emerged from its birth, in the “big bang” of Turing’s seminal 1936 paper [Tur36],
“On computable numbers, with an application to the Entscheidungsproblem.” This
is a paper written by a PhD student, in the area of mathematical logic, which,
combined with its long title, might seem to condemn it to obscurity. However, with
Turing’s incredible clarity of vision, exposition, and motivation, it is an inspiring
model in mathematical modeling with singular impact. This paper formally defined
an algorithm in the form of what we call today the “Turing machine.” On one hand,
the Turing machine is a formal mathematical model of computation, enabling for
the first time the rigorous definition of computational tasks, the algorithms to solve
them, and the basic resources these require (in particular, allowing Turing to prove
that very basic tasks are uncomputable). On the other hand, the extremely ele-
gant definition of the Turing machine allowed its simple, logical design to be readily
implemented in hardware and software, igniting the computer revolution.

These theoretical and practical aspects form the dual nature of ToC and strongly
influenced the field and its evolution. On the mathematical side, the abstract no-
tion of computation revealed itself as an extremely deep and mysterious notion that
illuminates other, often well-studied concepts in a new light. In pursuing the ab-
stract study of computation, ToC progresses like any other mathematical field. Its
researchers prove theorems and follow mathematical culture to generalize, simplify,
and create variations, following their instincts based on esthetics and beauty. On
the practical side, the universal applicability of automated computation fueled the
rapid development of computer technology, which now dominates our life. The in-
teraction between theory and practice never stops. The evolving world of computer
science and industry continuously creates new types and properties of computa-
tion, which need theoretical modeling and understanding, and directly impacts the
mathematical evolution of ToC. Conversely, the ideas, models, and techniques gen-
erated there feed back into the practical world. Besides technology, more recent and
growing sources of external influence on ToC are nature and science. Many natural
processes can (and should) be understood as information processes and demand sim-
ilar computational understanding. Here again theoretical modeling, techniques, and
new theoretical questions feed back to suggest experiments and better understand-
ing of scientific data. Much more on these connections is discussed in Chapter 20.

Needless to say, mathematics and computation did not meet in 1936 for the
first time; they have been tied to each other from the dawn of human civilization.
Indeed, ancient mathematics developed primarily from the need to compute, be
it for predicting natural phenomena of all types, managing crops and livestock,
manufacturing and building, trading commodities, and planning for the future. De-
vising representations of numbers and developing efficient methods for performing
arithmetic on them were thus central. More generally, in a very fundamental way,
a mathematical understanding could solve any practical problem only through a
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computational process applied to the data at hand. So, even though algorithms
were formally defined only in the twentieth century, mathematicians and scien-
tists continuously devised, described, and used better and better algorithms (albeit
informally explained and rarely analyzed) for the computations required to draw
conclusions from their theories. Examples abound, and we list just a few high-
lights. Euclid, working ca. 300 BCE, devised his fast GCD' algorithm to bypass
the need to laboriously factor integers when simplifying fractions. Euclid’s famous
13-volume FElements, the central math text for many centuries, contains dozens of
other algorithms to compute numerical and geometric quantities and structures. In
the same era, Chinese mathematicians compiled The Nine Chapters on the Math-
ematical Art, which contains many computational methods, including “Gaussian
elimination” (for solving systems of linear equations). In the ninth century, al-
Khwarizmi (after whom “algorithm” is named) wrote his books Compendious Book
on Calculation by Completion and Balancing and On the Hindu Art of Reckoning.
These books respectively expound on everything known up to that time about algo-
rithms for algebraic and arithmetic problems, such as solving quadratic equations
and linear systems, and performing arithmetic operations in the decimal system.
The very reason that the decimal system survived as the dominant way to represent
numbers is the usefulness of these efficient algorithms for performing arithmetic on
arbitrarily large numbers so represented.

The “modern era” has intensified these connections between math and compu-
tation. Again, examples. During the Renaissance, mathematicians found formulas,
the most basic computational recipe, for solving cubic and quartic equations via
radicals.? Indeed, famous competitions between Tartaglia, Piore, Ferrari, and oth-
ers in the early 1500s were all about who had a faster algorithm for solving cubic
equations. The Abel-Ruffini theorem that the quintic equation has no such formula
is perhaps the earliest hardness result: It proves the non existence of an algorithm
for a concrete problem in a precise computational model. Newton’s Principia Math-
ematica is a masterpiece not only of grand scientific and mathematical theories; it
is also a masterpiece of algorithms for computing the predictions of these theories.
Perhaps the most famous and most general is “Newton’s method” for approxi-
mating the roots of real polynomials of arbitrary degree (practically bypassing the
Abel-Ruffini obstacle mentioned above). The same can be said about Gauss’ mag-
num opus, Disquisitiones Arithmeticae—it is full of algorithms and computational
methods. One famous example (published after his death), is his discovery® of the
fast Fourier transform (FFT), the central algorithm of signal processing, some 150
years before its “official” discovery by J. W. Cooley and J. W. Tukey. Aiming be-
vond concrete problems, Leibniz, Babbage, Lovelace, and others pioneered explicit
attempts to design, build, and program general-purpose computational devices. Fi-
nally, Hilbert dreamed of resting all of mathematics on computational foundations,
seeking a “mechanical procedure” that would (in principle) determine all mathe-
matical truths. He believed that truth and proof coincide (i.e., that every true
statement has a valid proof), and that such proofs can be found automatically by
such a computational procedure. The quest to formalize Hilbert’s program in math-

IThe GOD (greatest common divisor) problem is to compute the largest integer that evenly
divides two other integers.

2Namely, using arithmetic operations and taking roots.

3For the purpose of efficiently predicting the orbits of certain asteroids.
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ories predated (and indeed enabled) significant technological advances.® In other
cases, these theories formed the basis of interactions with other sciences.

Thus, starting with the goal of understanding what can be efficiently computed.,
a host of natural long-term goals of deep conceptual meaning emerged. What can be
efficiently learned? What can be efficiently proved? Is verifying a proof much easier
than finding one? What does a machine know? What is the power of randomness
in algorithms? Can we effectively use natural sources of randomness? What is
the power of quantum mechanical computers? Can we utilize quantum phenomena
in algorithms? In settings where different computational entities have different
(possibly conflicting) incentives, what can be achieved jointly? Privately? Can
computers efficiently simulate nature, or the brain?

The study of efficient computation has created a powerful methodology with
which to investigate such questions. Here are some of its important principles,
which we will see in action repeatedly, and whose meaning will become clearer as
we proceed in this book. Computational modeling: uncover the underlying basic
operations, information flow, and resources of processes. Efficiency: attempt to
minimize resources used and their trade-offs. Asymptotic thinking: study problems
on larger and larger objects, as structure often reveals itself in the limit. Adversarial
thinking: always prepare for the worst, replacing specific and structural restrictions
by general, computational ones—such more stringent demands often make things
simpler to understand! Classification: organize problems into (complexity) classes
according to the resources they require. Reductions: ignore ignorance, and even if
you can’t efficiently solve a problem, assume that you can, and explore which other
problems it would help solve efficiently. Completeness: identify the most difficult
problems in a complexity class.® Barriers: when stuck for a long time on a major
question, abstract all known techniques used for it so far and try to formally argue
that they will not suffice for its resolution.

These principles work extremely well with one another, and in surprisingly di-
verse settings, especially when applied at the right level of abstraction (which I
believe has been indeed cleverly chosen, repeatedly). This methodology allowed
ToC to uncover hidden connections among different fields and create a beautiful
edifice of structure, a remarkable order in a vast collection of notions, problems,
models, resources, and motivations. While many of these principles are in use
throughout mathematics and science, I believe that the disciplined. systematic use
that has become ingrained in the culture of computational complexity—especially
of problem classification via (appropriate) reductions and completeness—has great
potential to further enhance other academic fields.

The field of Computational complexity is extremely active and dynamic. While
I have attempted to describe, besides the fundamentals, some of the recent advances
in most areas, I expect the state of the art will continue to expand quickly. Thus,
some of the open problems will become theorems, new research directions will be
created, and new open problems will emerge. Indeed, this has happened repeatedly
in the few years it has taken me to write this book.

5The best example is cryptography, which in the 1980s was purely motivated by a collection
of fun intellectual challenges, like playing poker over the telephone, but developed into a theory
that enabled the explosive growth of the Internet and e-commerce. (This will be discussed in
Chapter 18.)

SNamely, those which all other problems in the class reduce to in the sense mentioned above.
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1.3 The nature, purpose, and style of this book

Computational complexity theory has been my intellectual (and social) home for
almost 40 years. During this period, I have written survey articles and have given
many more survey lectures on various aspects of of this field. This book grew out of
these expositions and out of the many other aspects I had planned to write and talk
about, but had never gotten around to. Indeed, breadth of scope is an important
goal of the book. Furthermore, as in my lectures and surveys, so in this book, I try
to explain not only what we do, but also why we do it, why is it so important, and
why is it so much fun!

The book explores the foundations and some of the main research directions of
computational complexity theory, and their many interactions with other branches
of mathematics. The diversity of these computational settings is revealed when
we discuss the contents of every chapter below. For every research area, the book
focuses on the main aspects of computation it attempts to model. The book presents
the notions, goals, results, and open problems for each area in turn, all from a
conceptual perspective, providing ample motivation and intuition. It describes the
history and evolution of ideas leading to different notions and results and explains
their meaning and utility. It also highlights the rich tapestry of (often surprising and
unexpected) connections among the different subareas of computational complexity
theory; this unity of the field is an important part of the field’s success.

To highlight the conceptual perspective, the material is generally presented at
a high level and in somewhat informal fashion. Almost no proofs are given, and
I focus on discussions of general proof techniques and key ideas at an informal
level. Precise definitions, theorem statements, and of course detailed proofs for
many topics discussed can be found in the excellent textbooks on computational
complexity [Pap03, Gol08, AB09, MM11]. Also, for historical reasons and greater
detail, I provide many references to original papers, more specialized textbooks,
and survey articles in every chapter.

1.4 Who is this book for?
I view this book as useful to several audiences in several different ways.

e First, it is an invitation to advanced undergraduates and beginning graduate
students in math, computer science, and related fields, to find out what this
field is about, get excited about it, and join it as researchers.

e Second, it should serve graduate students and young researchers working in
some area of CS theory to broaden their views and deepen their understanding
about other parts of the field and their interconnectivity.

e Third, computer scientists, mathematicians, researchers from other fields, and
motivated nonacademics can get a high-level view of computational complex-
ity, its broad scope, achievements, and ambitions.

e Last but not least, educators in the field can use different parts of the book for
planning and supplementing a variety of undergraduate and graduate courses.
I hope that the conceptual view of the field, its methodology, its unity, and the
beauty and excitement of its achievements and challenges that I have labored
to present here will help inform and animate these courses.
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Different chapters may require somewhat different backgrounds, but the intro-
duction to each aims to be welcoming and gentle. The first two chapters and the
last one should be accessible to most of the above mentioned audiences.

Let me conclude this section with a piece of advice that may be useful to some
readers. It can be tempting to read this book quickly. Many parts of the book
require hardly any specific prior knowledge and rely mostly on the mathematical
maturity needed to take in the definitions and notions introduced. Hopefully, the
story telling makes the reading even easier. However, the book (like the field itself)
is conceptually dense, and in some parts the concentration of concepts and ideas
requires, I believe, slowing down, rereading, and possibly looking at a relevant
reference to clarify and solidify the material and its meaning in your mind.

1.5 Organization of the book

Below I summarize the contents of each chapter in the book. Naturally, some of
the notions mentioned below will only be explained in the chapters themselves.
After the introductory Chapters 2 and 3, the remaining ones can be read in almost
any order. Central concepts (besides computation itself) that sweep across several
chapters include randomness (Chapters 7-10), proof (Chapters 3, 6, and 10) and
hardness (Chapters 5, 6, and 12).

Different partitions can be made around the focus of different sets of chapters.
Chapters 2-12 focus mostly on one computational resource, time, namely, the num-
ber of steps taken by a single machine (of various types) to solve a problem. Chapters
14-19 (as well as 10) deal with other resources and with more complex computa-
tional environments, in which interactions take place among several computational
devices. Finally, while mathematical modeling is an important part of almost every
chapter, it is even more so for the complex computational environments we’ll meet
in Chapters 15-19, where modeling options, choices, and rationales are discussed
at greater length. Chapters 13 and 20 are standalone surveys, the first on concrete
interactions between math and computational complexity and the second on the
Theory of Computation. Here are brief descriptions of each chapter (the headlines
below may differ from the chapter title).

Prelude: computation and mathematical understanding

Chapter 2 is the prelude to the arrival of computational complexity, starting with
the formalization of the notion of algorithm as the Turing machine. We discuss basic
computational problems in mathematics and algorithms for them. We then explore
the relevance of the boundary between decidable and undecidable problems about
classes of mathematical structures, in the hope of completely understanding them.

Computational complexity 101 and the P vs. NP question

Chapter 3 introduces the basic concepts of computational complexity: decision
problems, time complexity, polynomial vs. exponential time, efficient algorithms,
and the class P. We define efficient verification and the class NP, the first compu-
tational notion of proof. We proceed with efficient reductions between problems and
the notion of completeness. We then introduce N"P-complete problems and the P
vs. NP question. Finally, we discuss related problems and complexity classes. For
all these notions, I motivate some of the choices made and explain their importance
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for computer science, math, and beyond.

Different types of computational problems and complexity classes

Chapter 4 introduces new types of questions one can ask about an input beyond
classification, including counting, approximation, and search. We also move from
worst-case performance of algorithms to success or failure on average, and discuss
the related notions of one-way and trap-door functions underlying cryptography.
I explain how the methodology developed in the previous chapter leads to other
complexity classes, reductions, and completeness. This begins to paint the richer
structure organizing problems above, below, and “around” NP.

Hardness and the difficulties it presents

Chapter 5 discusses lower bounds—the major challenge of proving that P is dif-
ferent from AP, and more generally, proving that some natural computational
problems are hard. Central to this section is the model of Boolean circuits, a “hard-
ware” analog of Turing machines. We review the main techniques used for lower
bounds on restricted forms of circuits and Turing machines. We also discuss the
introspective barrier results, explaining why these techniques seem to fall short of
the real thing: lower bounds for general models.

How deep is your proof?

Chapter 6 introduces proof complexity, another view of the basic concept of proof.
Proof complexity applies computational complexity methodology to quantify the
difficulty of proving natural theorems. We describe a variety of propositional proof
systems—geometric, algebraic, and logical—all capturing different ways and in-
tuitions of making deductions for proving natural tautologies. 1 explain the ties
among proof systems, algorithms, circuit complexity, and the space: the final fron-
tier problem. We review the main results and challenges in proving lower bounds
in this setting.

The power and weakness of randomness for algorithms

Chapter 7 reviews using randomness to enhance the power of algorithms. We
define probabilistic algorithms and the class BPP of problems they solve efficiently.
We discuss such problems (among numerous others) for which no fast deterministic
algorithms are known, which suggests that randomness is powerful. However, this
intuition may be an illusion. We next introduce the fundamental notions of computa-
tional pseudo-randomness, pseudo-random generators, the hardness vs. randomness
paradigm, and de-randomization. These ideas suggest that randomness is weak, at
least assuming hardness statements like P # AP. The chapter concludes with a
discussion of the evolution and sources of these ideas, their surprising consequences,
and their impact beyond the power of randomness.

Is © random?

Chapter 8 covers “random looking” deterministic structures. We discuss “ab-
stract” pseudo-randomness, a general framework that extends computational pseudo-
randomness and accommodates a variety of natural problems in mathematics and
computer science. We define pseudo-random properties and discuss the question of
deterministically finding pseudo-random objects. We will see how the P vs. NP
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problem, the Riemann hypothesis, and many other problems that naturally fall into
this framework can be viewed as questions about pseudo-randomness. Finally, we
discuss the structure vs. pseudo-randomness dichotomy, a paradigm for proving the-
orems in a variety of areas, and examine the scope of this idea.

Utilizing the unpredictability of the weather, stock prices, quantum
effects, etc.

Chapter 9 discusses weak random sources, a mathematical model of some nat-
ural phenomena that seem to be somewhat unpredictable but may be far from a
perfect stream of random bits. We raise the question of if and how probabilistic al-
gorithms can use such weak randomness and define the main object used to answer
this question—the randomness extractor. We then explore the evolution of ideas
leading to efficient constructions of extractors, and the remarkable utility of this
pseudo-random object for other purposes.

Interactive proofs: teaching students with coin tosses

Chapter 10 addresses yet again, proofs this time concerning the impact of intro-
ducing randomness and interaction into the definition of proofs. These new notions
of proofs give rise to new complexity classes, like ZP and PCP, and their surpris-
ing characterization in terms of standard complexity classes. We explore how this
setting allows new types of proofs, like zero-knowledge proofs and spot-checking
proofs, and their implications for eryptography and hardness-of-approximation.

Schrédinger’s laptop: algorithms meet quantum mechanics

Chapter 11 introduces quantum computing: algorithms endowed with the ability
to use quantum mechanical effects in their computation. We discuss important al-
gorithms for this theoretical model, how they motivated a large-scale effort to build
quantum computers, and the status of this effort. We extend the idea of proofs
again by using this notion and discuss complete problems for quantum proofs. This
turns out to connect directly to quantum Hamiltonian dynamics, a central area
in condensed matter physics, and we explore some of the interactions between the
fields. Finally, we discuss the power of interactive proofs to answer the basic ques-
tion: Is quantum mechanics falsifiable?

Arithmetic complexity: plus and times revisited

Chapter 12 leaves the Boolean domain and introduces the model of arithmetic cir-
cuits, which use arithmetic operations to compute polynomials over (large) fields.
We review the main results and open problems in this area, relating it to the study
of Boolean circuits. We exposit Valiant’s arithmetic complexity theory, its main
complexity classes VP and VAP, complete problems, the determinant, and perma-
nent polynomials. We discuss a recent approach to solve the VP vs. VAP problem
via algebraic geometry and representation theory. We also survey a collection of
restricted models for which strong lower bounds are known.

All the chapters so far focus on one primary computational resource: time (or

more generally, the number of elementary operations). Before broadening our scope,
we take a break with an interlude.

10
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to date version. In some cases these are journal papers (which take longest to
appear), some are conference publications (which appear faster), and in rare
cases only electronic versions exist (which are instantaneous). Also, when I
call a result “recent”, please note that this is relative to the publication date
of the book.

Footnotes There are many footnotes in this book. In almost all cases, they
are designed to enrich, elaborate or further explain something. However, the
text itself should be self-contained without them. Therefore you can safely
skip footnotes; this will rarely affect understanding.

iff The shorthand iff will be used throughout to mean “if and only if”.

Asymptotic notation Crucial to most chapters is the following asymptotic
notation, relating “growth in the limit” of functions on the integers. Let f, g
be two integer functions. Then we denote:

* f = 0(g), if for some positive constant C, for all large enough n, f(n) <
C-g(n).
x f = Q(g), if for some positive constant e, for all large enough n, f(n) >
c-g(n).
x f=0(g), if both f=0(g) and f = (g) hold.
x f=o(g),if f(n)/g(n) tends to zero as n tends to infinity.
We say that an integer function f grows (at most) polynomially if there are
constants A, ¢ such that for all n, f(n) < An®.

We say that f grows (at most) exponentially if there are constants A, ¢ such
that for all n, f(n) < Aexp(n®).

13
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Prelude: Computation, undecidability, and limits

to mathematical knowledge

This short section will briefly recount the history of ideas leading the the birth of
computational complexity theory.

Mathematical classification problems Which mathematical structures can we
hope to understand? Consider any particular class of mathematical objects and any
particular relevant property. We seek to understand which of the objects have the
property and which do not. Examples of this very general classification problem
include the following!:

1.
2.

o v e w

>

Which Diophantine equations have solutions?

Which knots are unknotted? (see Figure 1)

Which planar maps are 4-colorable? (see Figure 2)
Which theorems are provable in Peano arithmetic?
Which pairs of smooth manifolds are diffeomorphic?
Which elementary statements about the reals are true?
Which elliptic curves are modular?

Which dynamical systems are chaotic?

& &

NO YES

Figure 1. Instances of problem 2 and their classification. The left is a diagram of
the Trefoil knot and the right is one of the Unknot.

It is not essential that you understand every mathematical notion mentioned below. If curious,
reading a Wikipedia-level page should be more than enough for our purposes here.
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Figure 2. Instances of problem 3 and their classification. Both maps are 4-colorable.

Understanding and algorithms A central question is what we mean by under-
standing. When are we satisfied that our classification problem has been reasonably
solved? Are there problems like these that we can never solve? A central observa-
tion (popularized mainly by David Hilbert) is that “satisfactory” solutions usually
provide (explicitly or implicitly) mechanical procedures, which when applied to an
object, determine (in finite time) whether it has the property. Hilbert’s problems
1 and 4 above were stated, it seems, with the expectation that the answer would
be positive; namely, that mathematicians would be able to understand them in this
very computational sense.

So, Hilbert identified mathematical knowledge with computational access to an-
swers, but never formally defined computation. This task was taken up by logicians
in the early twentieth century and was met with resounding success in the 1930s.
The breakthrough developments by Goédel, Turing, Church, and others led to several
quite different formal definitions of computation, which happily turned out to be
identical in power. Of all, Turing’s 1936 paper [Tur36] was most influential. Indeed,
it is easily the most influential math paper in history. We already mentioned in Sec-
tion 1.1 that in this extremely readable paper, Turing gave birth to the discipline of
computer science and ignited the computer revolution, which radically transformed
society. Turing’s model of computation (quickly named a Turing machine) became
one of the greatest intellectual inventions ever. Its elegant and simple design on
the one hand, and its universal power (elucidated and exemplified by Turing) on
the other immediately led to implementations, and the rapid progress since then
has forever changed life on Earth. This paper serves as one of the most powerful
demonstrations of how excellent theory predates and enables remarkable technolog-
ical and scientific advances. But on top of all these, Turing’s paper also resolved
problems 1 and 4 above! In the negative!! Let us see how.

With the Turing machine, we finally have a rigorous definition of computation,
giving formal meaning to Hilbert’s questions. It allows proving mathematical the-
orems about what “mechanical procedures” can and cannot do! Turing defined an
algorithm (also called a decision procedure) to be a Turing machine (in modern
language, simply a computer program) that halts on every input in finite time. So,
algorithms compute functions, and being finite objects themselves, one immediately
sees from a Cantor-like diagonalization argument that some (indeed almost all) func-
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tions are not computable by algorithms. Such functions are also called undecidable;
they have no decision procedure. But Turing went further and showed that specific,
natural functions, like Hilbert’s Entscheidungsproblem (4) above were undecidable
(this was independently proved by Church as well). Turing’s elegant 1-page proof
adapts a Godelian self-reference argument on a Turing machine.? These demon-
strate powerfully the mathematical value of Turing’s basic computational model.

Decidability and undecidability Turing thus shattered Hilbert’s first dream.
Problem 4 being undecidable means that we will never understand in general, in
Hilbert’s sense, which theorems are provable (say, in Peano arithmetic): No algo-
rithm can discern provable from unprovable theorems. It took 35 more years to
do the same to Hilbert’s problem 1. Its undecidability (proved by Davis, Putnam,
Robinson, and Mattiasevich in 1970) says that we will never understand in this
way polynomial equations over integers: No algorithm can discern solvable from
unsolvable ones.

A crucial ingredient in those (and all other undecidability) results is showing
that each of these mathematical structures (Peano proofs, integer polynomials)
can “encode computation” (in particular, these seemingly static objects encode a
dynamic process). This is known today to hold for many different mathematical
structures in algebra, topology, geometry, analysis, logic, and more, even though a
priori the structures studied seem to be completely unrelated to computation. This
ubiquity makes every mathematician a potential computer scientist in disguise. We
shall return to refined versions of this idea later.

Naturally, such negative results did not stop mathematical work on these struc-
tures and properties—they merely suggested the study of interesting subclasses of
the given objects. Specific classes of Diophantine equations were understood much
better, for example, Fermat's Last Theorem and the resolution of problem (7) re-
garding the modularity of elliptic curves. The same holds for restricted logics for
number theory (e.g. Presburger arithmetic).

The notion of a decision procedure (or algorithm) as a minimal requirement
for understanding a mathematical problem has also led to direct positive results.
It suggests that we should look for a decision procedure as a means, or as the
first step for understanding a problem. With this goal in mind, Haken [Hak61]
showed how knots can be understood in this sense, designing a decision procedure
for problem (2), determining knottedness. Similarly Tarski [Tar51] showed that
closed real fields can be thus understood, designing a decision procedure for problem
(6). Naturally, significant mathematical, structural understanding was needed to
develop these algorithms. Haken developed the theory of normal surfaces and Tarski
invented quantifier elimination for their algorithms; in both cases, these ideas and
techniques became cornerstones of their respective fields.

These important examples, and many others like them, only underscore what
has been obvious for centuries: mathematical and algorithmic understanding are
strongly related and often go hand in hand, as discussed at length in the introduc-
tion. And what was true in previous centuries is still true in this one: The language
of algorithms is compatible with and actually generalizes the language of equations
and formulas (which are special cases of algorithms), and is a powerful language for

2As a side bonus, a similar argument gives a short proof of Gédel’s incompleteness theorem, a
fact which for some reason is still hidden from many undergraduates taking logic courses.
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understanding and explaining complex mathematical structures.

The many decision procedures developed for basic mathematical classification
problems, such as Haken’s and Tarski’s solutions to problems (2) and (6), respec-
tively, demonstrate this notion of algorithmic understanding in principle. After
all, what they guarantee is an algorithm that will deliver the correct solution in
finite time. Should this satisfy us? Finite time can be very long, and it is hard to
distinguish a billion years from infinity. This is not just an abstract question for
the working mathematician, as we recounted in Section 1.1. Indeed, both Haken’s
and Tarski’s original algorithms were extremely slow, and computing their answer
for objects of moderate size may indeed have required a billion years. Can this be
quantified?

Efficient algorithms and computational complexity This viewpoint suggests
developing and using a computational yardstick and measuring the quality of under-
standing by the quality of the algorithms providing it. Indeed, we argue that better
mathematical understanding of given mathematical structures often goes hand in
hand with better algorithms for classifying their properties. Formalizing the no-
tions of algorithms’ resources (especially time) and their efficient use is the business
of computational complexity theory, the subject of this book, which we shall start
developing in the next section. But before we do, I would like to use the set of
problems above to highlight a few other issues, which we will not discuss further
here.

First, the representation of objects which algorithms process becomes impor-
tant! One basic issue raised by most of the problems above is the contrast between
continuity in mathematics and discreteness of computation. Algorithms manipu-
late finite objects (like bits) in discrete time steps. Knots, manifolds, dynamical
systems, and the like are continuous objects. How can they be described to an
algorithm and processed by it? As many readers will know, the answers vary, but
finite descriptions exist for all. For example, we use knot diagrams for knots, tri-
angulations for manifolds, and symbolic descriptions or successive approximations
for dynamical systems. It is these discrete representations that are indeed used in
algorithms for these (and other) continuous problems (as, e.g., Haken’s algorithm
demonstrates). Observe that this has to be the case; every continuous object we
humans will ever consider has discrete representations! After all, math textbooks
and papers are finite sequences of characters from a finite alphabet, just like the
input to Turing machines. And we, their readers, would never be able to process
and discuss them otherwise. All this does not belittle the difficulties that may arise
when seeking representations of continuous mathematical structures that would be
useful for description, processing, and discussion—instead, it further illustrates the
inevitable ties between mathematics and computation.

Let me demonstrate that algorithmic efficiency may crucially depend on repre-
sentation even for simple discrete structures. Where would mathematics (and soci-
ety) be if we continued using unary encodings of integers, or even Roman numerals?
The great invention of the decimal encoding (or more generally, the positional num-
ber system) was motivated by, and came equipped with, efficient algorithms for
arithmetic manipulation! And this is just one extremely basic example.

Problem 3 on the 4-colorability of planar maps points to a different aspect of
the interaction of computation and mathematics. Many readers will know that
problem (3) has a very simple decision procedure: Answer “yes” on every input.

17



CHAPTER 3

this chapter and be formalized in Section 3.9. To get there, we need to develop the
language and machinery that yield such surprising results.

Representation issues We start by discussing (informally and by example) how
such varied complex mathematical objects can be described in finite terms, eventu-
ally as a sequence of bits. Often there are several alternative representations, and
typically it is simple to convert one to the other. Let us discuss the representation
of inputs in these three problems.

For problem (1’) consider first the set of all equations of the form Az?+By+C =
0 with integer coefficients A, B,C. A finite representation of such equations is
obvious the triple of coefficients (A, B, ('), say with each integer written in binary
notation. Given such a triple, the decision problem is whether the corresponding
polynomial has a positive integer root (z,y). Let 2DI0 denote the subset of triples
for which the answer is YES.

Finite representation of inputs to problem (2') is tricky but still natural. The
inputs consist of a 3-dimensional manifold M, a knot K embedded in it, and an inte-
ger GG. A finite representation can describe M by a triangulation (a finite collection
of tetrahedra and their adjacencies). The knot K will be described as a closed path
along edges of the given tetrahedra. Given a triple (M, K, G), the decision problem
is whether a surface that K bounds has genus at most G. Let KNOT denote the
subset for which the answer is YES.

Finite representation of inputs to problem (3’) is nontrivial as well. Let us
discuss not maps but instead graphs, in which vertices represent the countries and
edges represent adjacency of countries (this view is equivalent; for a planar map,
its graph is simply its dual map). To describe a graph (in a way that makes its
planarity evident), one elegant possibility is to use a simple and beautiful theorem
of Fary [Far48] (discovered independently by others and which has many proofs). It
states that every planar graph has a straight line embedding in the plane (with no
edges crossing). So, the input can be a set V' of coordinates of the vertices (which
can in fact be small integers) and a set F of edges, each a pair of elements from V.
Let 3COL be the subset of those inputs (V, E) describing a 3-colorable map.

Any finite object (integers, tuples of integers, finite graphs, finite complexes,
ete.) can be represented naturally by binary sequences over the alphabet {0.1},
and this is how they will be described as inputs to algorithms. As discussed above,
even continuous objects like knots have finite descriptions and so can be described
this way as well.2 We will not discuss here subtle issues like whether objects have
unique representations or whether every binary sequence should represent a legal
object. It suffices to say that in most natural problems, this encoding of inputs
can be chosen such that these are not real issues. Moreover, going back and forth
between the object and its binary representation is simple and efficient (a notion to
be formally defined below).

Consequently, let I denote the set of all finite binary sequences, and regard it as
the set of inputs to all our classification problems. Indeed, every subset of I defines
a classification problem. In this language, given a binary sequence x € I. we may
interpret it as a triple of integers (A, B,C) and ask whether the related equation
is in 2DIO0. This is problem (1”). We can also interpret = as a triple (M, K, G) of

2Theories of algorithms which have continuous inputs (e.g., real or complex numbers) have been
developed, for example, in [BCSS98, BCO6], but will not be discussed here.
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manifold, knot, and integer, and ask whether it is in the set KNOT. This is problem
(2"), and the same can be done with (3').

Reductions Theorem 3.1 states that there are simple translations (in both direc-
tions) between solving problem (1) and problem (2"). More precisely, it provides
efficiently computable functions f,h: I — I performing these translations:

(A, B.C) € 2DIOff f(A,B,C) € KNOT,
and
(M,K,G) e KNOT iff h(M,K,G) € 2DIO.

Thus, an efficient algorithm to solve one of these problems immediately implies
a similar one for the other. Putting it more dramatically, if we have gained enough
understanding of topology to solve, say, the knot genus problem, it means that we
automatically have gained enough number theoretic understanding for solving these
quadratic Diophantine problems (and vice versa).

The translating functions f and h are called reductions. We capture the sim-
plicity of a reduction in computational terms, demanding that it will be efficiently
computable.

Similar pairs of reductions exist between the map 3-coloring problem and each
of the other two problems. If sufficient understanding of graph theory leads to an
efficient algorithm to determine whether a given planar map is 3-colorable, similar
algorithms follow for both KNOT and 2DI0. And vice versa—understanding either
of them will similarly resolve 3-coloring. Note that this positive interpretation of
the equivalence paints all three problems as equally “accessible.” But the flip side
says that they are also equally intractable: If any one of them lacks such an efficient
classification algorithm, so do the other two. Indeed, with the better understanding
of these equivalences today, it seems more likely that the second interpretation is
right: These problems are all hard to understand.

When teaching this material in class, or in lectures to unsuspecting audiences,
it is always fun to watch listeners’ amazement at these remarkably strong and
unexpected connections between such remote problems. I hope it has a similar
impact on you. But now it is time to dispel the mystery and explain the source of
these connections. Here we go.

3.2 Efficient computation and the class P

Efficient algorithms are the engine which drives an ever-growing part of industry
and economy, and with it your everyday life. These jewels are embedded in most
devices and applications you use daily. In this section we abstract a mathematical
notion of efficient computation, polynomial-time algorithms. We motivate it and
give examples of such algorithms.

In all that follows, we focus on asymptotic complexity. Thus, e.g., we care
neither about the time it takes to factor the number 267 — 1 (as much as Mersenne
cared about it), nor about the time it takes to factor all 67-bit numbers, but rather
about the asymptotic behavior of factoring n-bit numbers, as a function of the input
length n. The asymptotic viewpoint is inherent to computational complexity theary,
and we shall see in this book that it reveals structure which would be obscured by
finite, precise analysis. We note that the dependence on input size does not exist in
Computability theory, where algorithms are simply required to halt in finite time.
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However, much of the methodology of these fields was imported to computational
complexity theory—complexity classes of problems, reductions between problems
and complete problems, all of which we shall meet.

Efficient computation (for a given problem) will be taken to be one whose run-
time on any input of length n is bounded by a polynomial function in n.

Recall that I denotes the set of all binary sequences of all lengths. Let I,, denote
all binary sequences in I of length n, namely I, = {0,1}".

Definition 3.2 (The class P). A function f: I — I is in the class P if there is an
algorithm computing f and positive constants A, e, such that for every n and every
x € I,, the algorithm computes f(z) in at most An® steps (namely, elementary
operations).

Note that the definition applies in particular to Boolean functions (whose output
is {0,1}), which capture classification problems (often called “decision problems”).
We will abuse notation and sometimes think of P as the class containing only these
classification problems. Observe that a function with a long output can be viewed
as a sequence of Boolean functions, one for each output bit.

This important definition, contrasting polynomial growth with (brute force)
exponential growth, was put forth in the late 1960s by Cobham [Cob65], Ed-
monds [Edm65b, Edm66, Edm67a], and Rabin [Rab67]. These researchers, coming
from different areas and motivations, all attempted to formally delineate efficient
from just finite algorithms. Edmonds’s papers in particular supply some ingenious
polynomial time algorithms to natural optimization problems. Of course, nontrivial
polynomial-time algorithms were discovered earlier, long before the computer age.
Many were discovered by mathematicians who needed efficient methods to calcu-
late (by hand). The most ancient and famous example is of course Euclid’s GCD
(greatest common divisor) algorithm mentioned in Chapter 1, which was invented
to bypass the need to factor integers when computing their largest common factor.

Two major choices must be made in selecting P to model the class of efficiently
computable functions, which are often debated and certainly demand explanation.
One is the choice of polynomial as the bound on time in terms of input length,
and the second is the choice of worst-case requirement (namely, that this time
bound holds for all inputs). We discuss the motivation and importance of these
two choices below. However, it is important to stress that these choice are not dog-
matic: computational complexity theory has considered and investigated numerous
other alternatives to these choices. These include many finer grained bounds on
efficiency other than polynomial, and many different notions of average case and
input-dependent measures replacing the worst-case demands. Some of theses will
be discussed later in the book. Still, the initial choices above were extremely im-
portant in the early days of computational complexity, revealing beautiful structure
that would become the solid foundation for the field, establish its methodology, and
guide the subsequent study of finer and more diverse alternatives.

3.2.1 Why polynomial?

The choice of polynomial time to represent efficient computation seems arbitrary.
However, this particular choice has justified itself over time from many points of
view. I list some important justifications.

Polynomials typify “slowly growing” functions. The closure of polynomials under
addition, multiplication, and composition preserves the notion of efficiency under
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natural programming practices, such as using two programs in sequence, or using
one as a subroutine of another. This choice removes the necessity of describing
the computational model precisely (e.g., it does not matter whether we allow arith-
metic operations only on single digits or on arbitrary integers, since long addition,
subtraction, multiplication, and division have simple polynomial-time algorithms
taught in grade school). Similarly, we need not worry about data representation:
one can efficiently translate between essentially any two natural representations of
a set of finite objects.

From a practical viewpoint, a running time of, say, n? is far more desirable than
n1% and of course linear time is even better. Indeed even the constant coefficient
of the polynomial running time can be crucial for real-life feasibility of an algo-
rithm. However, there seems to be a “law of small numbers” at work: Very few
known polynomial-time algorithms for natural problems have exponents above 3 or
4 (even though at discovery, the initial exponent may have been 30 or 40). However,
many important natural problems that so far resist any efficient algorithms cannot
at present be solved faster than in exponential time (which of course is totally im-
practical, even for small input data). This exponential gap gives great motivation
for the definition of P; reducing the complexity of such problems from exponential
to (any) polynomial will be a huge conceptual improvement, likely involving new
techniques.

3.2.2 Why worst case?

Another criticism of the definition of the class P is that a problem is deemed ef-
ficiently solvable if every input of length n can be solved in poly(n)-time. From a
practical standpoint, it would suffice that the instances we care about (e.g., those
generated by our application, be it in industry or nature) be solved quickly by our
algorithms, and the rest can take a long time. Perhaps it suffices that “typical”
instances be solved quickly. Of course, understanding what instances arise in prac-
tice is a great problem in itself, and a variety of models of typical behavior and
algorithms for them are studied (and we shall touch upon this in section 4.4). The
clear advantage of worst-case analysis is that we don’t have to worry about which
instances arise—they will all be solved quickly by what we call an “efficient algo-
rithm”. This notion “composes” well (i.e., when one algorithm is using another).
Moreover, it accounts for adversarial situations where an input (or more generally,
external behavior) is generated by an unknown opponent, who wishes to slow down
the algorithm (or system). Modeling such adversaries is crucial in such fields as
cryptography and error correction, and it is facilitated by worst-case analysis. Fi-
nally, as mentioned, this notion turned out to reveal a very elegant structure of
the complexity universe, which inspired the more refined study of average-case and
instance-specific theories.

Understanding the class P is central. Numerous computational problems arise
(in theory and practice) that demand eflicient solutions. Many algorithmic tech-
niques were developed in the past four decades and enable solving many of these
problems (see, e.g., the textbooks [CLRO1, KT06]). These techniques drive the ul-
trafast home computer applications we now take for granted, like web searching,
spell checking, data processing, computer game graphics, and fast arithmetic, as
well as heavier duty programs used across industry, business, math, and science.
But many more problems (some of which we shall meet soon), perhaps of higher

23



CHAPTER 3

Figure 3. A graph with a perfect matching (left; matching is shown) and one without
a perfect matching (right).

practical and theoretical value, remain elusive. The challenge of characterizing this
fundamental mathematical object—the class P of efficiently solvable problems—is
far beyond us at this point.

We end this section with some examples of nontrivial problems in P of mathe-
matical significance from diverse areas. In each, the interplay between mathematical
and computational understanding needed for the development of these algorithms
is evident. Most examples are elementary in nature, but if some mathematical no-
tion is unfamiliar, feel free to ignore that example (or possibly better, look up its
meaning).

3.2.3 Some problems in P

e Perfect matching. Given a graph, test whether it has a perfect matching,
namely, a pairing of all its vertices such that every pair is an edge of the graph
(see Figure 3). The ingenious algorithm of Edmonds [Edm65b] is probably
the first nontrivial algorithm in P, and as mentioned above, this paper was
central to highlighting P as an important class to study. The structure of
matchings in graphs is one of the most well-studied subjects in combinatorics
(see, e.g., [LP09)]).

e Primality testing. Given an integer, determine whether it is prime.? Gauss
literally appealed to the mathematical community to find an efficient algo-
rithm, but it took two centuries to resolve. The story of this recent achieve-
ment of Agrawal, Kayal, and Saxena [AKS04] and its history is beautifully
recounted by Granville in [Gra05]. Of course, there is no need to elaborate on
how central prime numbers are in mathematics (and even in popular culture).

¢ Planarity testing. Given a graph, determine whether it is planar. Namely,
can it be embedded in the plane without any edges crossing? (Try to determine
this for the graphs in Figure 3 and those in Figure 5.) A sequence of linear
time algorithms for this basic problem was discovered, starting with the paper
of Hopcroft and Tarjan [HTT4].

3For example, try to determine the answer for X — 1 and X + 1, where X = 6797727 x 215328,
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use polynomials to define both terms. A candidate proof y for the claim z € C
must have length at most polynomial in the length of x. And the verification that
a given y indeed proves the claim x € C' must be checkable in polynomial time (via
a verification algorithm we will call V). Finally, if ¢ C, no such y should exist.
Let us formalize this definition.

Definition 3.3 (The class N'P). The set C is in the class AP if there is a function
Ve € P and a constant k such that

o If 2 € C, then Jy with |y| < k- |z|* and Vo(z,y) = 1;
o If x ¢ C, then Vy we have Vo (z,y) = 0.

From a logic standpoint, each set C' in A"P may be viewed as a set of theorems
in the complete and sound proof system defined by the verification process V.

A sequence y that “convinces” Vi that xz € C is often called a witness or cer-
tificate for the membership of z in C. Again, we stress that the definition of N'P
is not concerned with how difficult it is to come up with a witness y, but rather
only with the efficient verification using y that x € C. The witness y (if it exists)
can be viewed as given by an ommnipotent entity, or simply guessed. Indeed, the
acronym NP stands for “Nondeterministic Polynomial time,” where the nondeter-
minism captures the ability of a hypothetical nondeterministic machine to “guess”
a witness y (if one exists) and then verify it deterministically.

Nonetheless, the complexity of finding a witness is, of course, important, as it
captures the search problem associated with NP sets. Every decision problem C
(indeed, every verifier Vi for C') in NP defines a natural search problem associated
with it: Given x € C, find a short witness y that “convinces” Vi of this fact. A
correct solution to this search problem can be efficiently verified by Vi, by definition.

It is clear that finding a witness (if one exists) can be done by brute-force search:
as witnesses are short (of length poly(n) for a length-n input), one can enumerate
all possible ones, and to each apply the verification procedure. However, this enu-
meration takes exponential time in n. The major question of this chapter (and this
book, and the theory of computation!) is whether much faster algorithms than
brute-force exist for all NP problems.

While it is usually the search problems that arise more naturally, it is often
more convenient to study the decision versions of these problems (namely, whether
a short witness exists). In almost all cases, both decision and search versions are
computationally equivalent.”

Here is a list of some problems (or rather properties) in NP, besides THEO-
REMS and COMPOSITES which we saw above. Note that some are variants of
the problems in the similar list we gave for the class P. However, we have no idea
whether any of these are in P. It is a good exercise (easy for most but not all exam-
ples) for the reader to define for each of them the short, easily verifiable witnesses
for inputs having the property.t°

Some problems in N'P:

9 A notable possible exception is the set COMPOSITES and the suggested verification procedure
for it, accepting as witness a nontrivial factor. Note that while COMPOSITES € P is a decision
problem, the related search problem is equivalent to integer factorization, which is not known to
have an efficient algorithm.

10The one difficult exception is Matrix Group Membership, which, if you cannot resolve yourself,
peek in the beautiful [BS84].
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e Hamiltonian cycles in graphs. The set of graphs having a Hamilton cy-
cle, namely, a cycle of edges passing through every vertex exactly once (see
Figure 5).11

e Factoring integers. Triples of integers (z,a,b), such that = has a prime
factor in the interval [a, b].

¢ Integer programming. Sets of linear inequalities in many variables that
have an integer solution.

e Matrix group membership. Triples (A, B, C') of invertible matrices (say,
over Fa) of the same size, such that A is in the subgroup generated by B, C.

¢ Graph isomorphism. Pairs of graphs that are isomorphic, namely, having
a bijection between their vertex sets that extends to a bijection on their edge
sets. (Find which pairs of graphs in Figure 5 are isomorphic.)

¢ Polynomial root. Multivariate polynomials of degree 3 over F, that have a
root (namely, an assignment to the variables on which it evaluates to 0).

Figure 5. Which of these graphs are Hamiltonian? Which pairs of these graphs are
isomorphic?

It is evident that decision problems in P are also in NP. The verifier V¢ is
simply taken to be the efficient algorithm for C, and the witness y can be the
empty sequence.

Corollary 3.4. P C NP.

But can we solve all NP problems efficiently? Can we vastly improve the trivial
“brute-force” exponential time algorithm mentioned above to polynomial time for
all NP problems? This is the celebrated P vs. NP question.

Open Problem 3.5. Is P = N'P?

The definition of NP, and the explicit P = N"P? question (and much more that
we will soon learn about) appeared formally first (independently and in slightly

' This problem is a special case of the well-known “Traveling Salesman Problem” (TSP), seeking
the shortest such tour in a graph with edge lengths given.
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different forms) in the papers of Cook [CooT71] and Levin [Lev73] in the early 1970s,
one researcher in America and the other in the Soviet Union. However, both the
definition and question appeared informally earlier, again independently in the East
and West, but with similar motivations. They all struggle with the tractability of
solving problems for which finite algorithms exist, including finding finite proofs of
theorems, short logical circuits for Boolean functions, isomorphism of graphs, and
a variety of optimization problems of practical and theoretical interest. In all these
examples, exhaustive search was an obvious but exponentially expensive solution,
and the goal of improving it by a possibly more clever (and faster) algorithm was
sought, hopefully one of polynomial complexity (namely, in P). The key recogni-
tion was identifying the superclass AN'P that so neatly encompasses almost all the
seemingly intractable problems mentioned above that people really cared about and
struggled with.

The excellent survey of Sipser [Sip92] describes this history and gives excerpts
from important original papers. Here I mention only a few precursors to the papers
above. In the Soviet Union, Yablonskii and his school studied Perebor, literally
meaning “exhaustive, brute-force search,” and Levin’s paper continues this line
of research (see Trakhtenbrot’s survey [Tra84] of this work, including a corrected
translation of Levin’s paper). In the West, Edmonds [Edm66] was the first to explic-
itly suggest “good characterization” of the short, efficiently verifiable type (which
he motivates by a teacher-student interaction, although in a slightly stricter sense
than A"P, which we will soon meet in Section 3.5). But already in 1956, a decade
earlier, a remarkable letter (discovered only in the 1990s, see original and translation
in [Sip92]) written by Godel to von Newmann essentially introduces P, NP, and
the P vs. NP question in rather modern language (see Section 1.2 of [WiglOb] for
more). In particular, Godel raises this fundamental problem of overcoming brute-
force search, exemplifies that it is sometimes nontrivially possible, and demonstrates
clearly how aware he was of the significance of this problem. Unfortunately, von
Neumann was already dying of cancer at the time, and it is not known whether he
ever responded or Gédel had further thoughts on the subject. It is interesting that
these early papers have different expectations as to the resolution of the P vs. NP
question (in the language of their time): Godel speculates that THEOREMS might
be in P, while Edmonds [Edm67a] conjectures that the Traveling Salesman problem
is not in P.

A very appealing feature of the P vs. A'P question (which was a source of early
optimism about its possible quick resolution) is that it can be naturally viewed as
a bounded analog of the decidability question from computability theory, which we
already discussed implicitly in Chapter 2. To see this, replace the polynomial-time
bound by a finite bound in both classes. For P, the analog becomes all problems
having finite algorithms, namely the decidable problems, sometimes called Recursive
problems and denoted by R. For AP, the analog is the class of properties for which
membership can be certified by a finite witness via a finite verification algorithm.
This class of problems is called Recursively Enumerable, or RE. 1t is easy to see that
most problems mentioned in Chapter 1 are in this class. For example, consider the
properties defined by problems 1 and 4 from Chapter 2, respectively the solvable
Diophantine equations and the theorems provable in Peano arithmetic. In the first,
an integer root of a polynomial is clearly a finite witness that can be easily verified
by evaluation in finite time. In the second, a Peano proof of a given theorem is
a finite witness, and the chain of deductions of the proof can be easily verified in
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finite time. Thus, both problems are in RE. We already know that both problems
are undecidable (namely, are not in R) and so can conclude that R # RE.

With nearly a half century of experience, we realize that resolving P vs. NP is
much harder than R vs. RE. A possible analogy (with a much longer history) is the
difficulty of resolving the Riemann Hypothesis, though we have known for millennia
that there are infinitely many primes. In both contexts, what we already know is
very qualitative, separating the finite and infinite, and what we want to know are
very precise, quantitative versions. Also for both problems, some weak quantitative
results were proved along the way. The prime number theorem is a much finer quan-
titative result about the distribution of primes than their infinitude. In this book,
we will discuss analogous quantitative progress on the computational complexity of
natural problems. In both cases, the long-term goals seem to require much deeper
understanding of the respective fields and far better tools and techniques. Inciden-
tally, we will discuss a completely different analogy between the P vs. N'P question
and the Riemann hypothesis in Chapter 8.

3.4 The P vs. NP question: Its meaning and importance

Should you care about the P vs. NP question? The previous sections make a
clear case that it is a very important question of computer science. It is also a
precise mathematical question. How about its importance for mathematics? For
some mathematicians, the presence of this question in the list of seven Clay Millen-
nium Prize Problems [CJW06], alongside the Riemann Hypothesis and the Poincaré
conjecture (which has since been resolved), may be sufficient reason to care. After
all, these problems were selected by top mathematicians in the year 2000 as major
challenges for the next millennium, each carrying a prize of one million dollars for
its solution.

In this section, I hope to explain the ways in which the P = NP question is
unique not only among the Clay problems but also among all mathematics questions
ever asked, in its immense practical and scientific importance, and its deep philo-
sophical content. In a (very informal, sensational) nutshell, it can be summarized
as follows:

Can we solve all the problems we can “legitimately” hope to solve?

where the royal “we” can stand for anyone or everyone, representing the general
human quest for knowledge and understanding. In particular, this phrasing of
the P = NP question clearly addresses the possibility of resolving extant and
future conjectures and open problems raised by mathematicians (at the very least,
problems regarding classifications of mathematical objects).

To support this overarching interpretation of the P = NP question, let us
try to understand at a high level and in intuitive terms which problems occupy
these two important classes. In fact, we have already intuitively identified the
class P with a good approximation of all problems we can solve (efficiently, e.g.,
in our lifetimes). So next we embark on intuitively identifying NP as a good
approximation of all “interesting” problems: those we are really investing effort in
trying to solve, believing that we possibly can. Note that any argument for this
interpretation will have to explain why undecidable problems (that are clearly not
in P) are not really “interesting” in this sense.
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The very idea that all (or even most, or even very many) “interesting” problems
can be mathematically identified is certainly audacious. Let us consider it, progress-
ing slowly. We caution that this discussion is mainly of a philosophical nature, and
the arguments I make here are imprecise and informal, representing my personal
views. I encourage the reader to poke holes in these arguments, but I also challenge
you to consider whether counterexamples found to general claims made here are
typical or exceptional. After this section, we shall soon return to the sure footing
of mathematics!

So, which problems occupy NP? The class NP turns out to be extremely
rich. There are literally thousands of AP problems in mathematics, optimization,
artificial intelligence, biology, physics, economics, industry, and more that arise
naturally out of very different necessities, and whose efficient solutions will benefit
us in numerous ways. What is common to all these possibly hard problems, which
nevertheless separates them from certainly hard problems (like undecidable ones)?

To explore this, it is worthwhile to consider a related question: What explains the
abundance of so many natural, important, diverse problems in the class N'P? After
all, this class was defined as a technical, mathematical notion by computational
theorists. Probing the intuitive meaning of the definition of NP, we will see that
it captures many tasks of human endeavor for which a successful completion can be
easily recognized. Consider the following professions, and the typical tasks they are
facing (this list will be extremely superficial, but nevertheless instructive):

e Mathematician: Given a mathematical claim, come up with a proof for it.

e Scientist: Given a collection of data on some phenomena, find a theory
explaining it.

e Engineer: Given a set of constraints (on cost, physical laws, etc.), come up
with a design (of an engine, bridge, laptop, etc.) that meets these constraints.

e Detective: Given the crime scene, find “who done it.”

Consider what may be a common feature of this multitude of tasks. I claim that
in almost all cases, “we can tell” a good!? solution when we see one (or we at least
believe that we can). Simply put, would you embark on a discovery process if you
didn’t expect to recognize what you set out to find? It would be good for the reader to
consider this statement seriously and try to look for counterexamples. Of course, in
different settings the “we” above may refer to members of the academic community,
consumers of various products, or the juries in different trials. I have had many
fun discussions, especially after lectures on the subject, of whether scientists or
even artists are indeed in the mental state described. I believe they are. It seems
to me that in these cases, the very decision to expose (or not) to others of our
creations typically follows the application of such a “goodness test” to our work.
Thus, embarking on any such task we undertake, we (implicitly or explicitly) expect
the solution (or creation) we come up with to essentially bear the burden of proof
of goodness that we can test; namely, be short and efficiently verifiable, just as in
the definition of N'P.

121n this context, “good” may mean “optimal,” or “better than previous ones,” or “publishable,”
or any criterion we establish for ourselves.

31



CHAPTER 3

3.5 The class coN'P, the NP vs. coN'P question, and efficiently
characterizable structures

We have discussed efficient computation and efficient verification. Now let us turn
to define and discuss efficient characterization of properties. Note that attempts,
mainly in combinatorics, graph theory, and optimization, to find “good” character-
izations (some successful ones, as for perfect matchings and Euler tours in graphs,
and some failed ones, as for Hamiltonian cycles and colorings in graphs), were cen-
tral to elucidating the definitions and importance of the concepts and classes in this
chapter. Many of these, and the focus on formally defining the notion of “good” (in
characterizations as well as in algorithms), go back Edmonds’ early optimization
papers, mainly [Edm66].
Fix a property C C I. We already have the interpretations

e (C € Pifitis easy to compute if an object = has property C,

e C € NP if it is easy to certify that an object  has property C,

to which we now add

e O € coNP if it is easy to certify that an object x does not have property C,
where we formally define the class as follows.

Definition 3.7 (The class coN'P). A set C'is in the class coNP iff its complement
C=I\Cisin NP.

For example, the set PRIMES of all prime numbers is in coN'P, since its com-
plement COMPOSITES is in N'P. Similarly, the set of non-Hamiltonian graphs is
in coNP, since its complement, the set of all Hamiltonian graphs, is in N'P.

While the definition of the class P is symmetric,'* the definition of the class A'P
is asymmetric. Having nice certificates that a given object has property C' by no
means automatically entails nice certificates that a given object does not have this
property.

Indeed, when we can do both, namely, having nice certificates for both the set
and its complement, we are achieving one of mathematics’ holy grails of under-
standing structure, namely, necessary and sufficient conditions, sometimes phrased
as a characterization or a duality theorem. As we well know, such characterizations
are rare. When insisting (as I shall) that the certificates are furthermore short,
efficiently verifiable ones,'® such characterizations are even rarer. This leads to the
following conjecture.

Conjecture 3.8. NP # coNP.

Note that this conjecture implies P # N'P. We shall discuss at length refine-
ments of this conjecture in Chapter 6 on proof complexity.

Despite the shortage of such efficient characterizations (namely, properties that
are simultaneously in NP N coN'P), they nontrivially exist. This class was intro-
duced by Edmonds [Edm66], who called them problems with good characterization.

14 Having a fast algorithm to determine whether an object has a property C is equivalent to
having a fast algorithm for the complementary set C. In other words, P = coP.

15There are many famous duality theorems in mathematics that do not conform to this strict
efficiency criterion (e.g., Hilbert’s Nullstellensatz).
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Here is a list of some exemplary ones, following important theorems of (respectively)
Menger, Dilworth, Farkas, von Neumann, and Pratt. I informally explain the NP
and coNP witnesses for most, which can be seen to be efficiently verifiable. Of
course, the crux is that for each of these problems, every instance of the problem
possesses one such witness: having the property or violating it.

Efficient duality theorems: problems in NP M coNP

o Graph k-connectivity. The set of graphs in which every pair of vertices is
connected by (a given number) k disjoint paths. Here the N P-witness is a
collection of such k paths between every pair, and the coNP-witness is a cut
of k — 1 vertices whose removal disconnects some pair in the graph.

e Partial order width. Finite partially ordered set (poset) whose largest
antichain (a set of pairwise incomparable elements) has at least (a given num-
ber) w elements. Here the N'P-witness is an antichain of w elements, and the
coN'P-witness is a partition of the given poset to w—1 chains (totally ordered
sets).

e Linear programming. Systems of consistent linear inequalities. Here an
NP-witness is a point satisfying all inequalities. A coN'P-witness is a linear
combination of the inequalities producing the contradiction 0 > 1.16

e Zero-sum games.'” Finite zero-sum games (described by a real payoff ma-
trix) in which the first player can gain at least v (some given value). Here the
NP-witness is a strategy for the first player (namely, a probability distribu-
tion on the rows), which guarantees her a payoff of v, and the coNP-witness
is a strategy for the second player (namely, probability distribution on the
columns), which guarantees that he pays less than v.

e Primes. Prime numbers. Here the coN'P-witness is simple: two nontrivial
factors of the input. The reader is encouraged to attempt to find the N'P-
witness: a short certificate of primality. It requires only very elementary
number theory.'®

The known relations of P, NP, and coN'P are depicted in Figure 6. The ex-
amples above, of problems in NP N coN'P were chosen to make a point. At the
time of their discovery, interest was seemingly focused only on characterizing these
structures; it is not clear whether efficient algorithms for these problems were sought
as well. However, with time, all these problems turned out to be in P, and their
resolutions entered the Hall of Fame of efficient algorithms. Famous examples are
the ellipsoid method of Khachian [Kha79] and the interior-point method of Kar-
markar [Kar84], both for Linear Programming, and the breakthrough algorithm of
Agrawal, Kayal, and Saxena [AKS04] for Primes.!?

16This duality generalizes to other convex bodies given by more general constraints, like semi-
definite programming. Such extensions include the Kuhn-Tucker conditions and the Hahn-Banach
theorem.

17This problem was later discovered to be equivalent to linear programming.

18Hint: Roughly, the witness consists of a generator of Zy, afactorization of p—1, and a recursive
certificate of the same type for each of the factors.

191t is interesting that assuming the Generalized Riemann Hypothesis, a simple polynomial-time
algorithm was given 30 years earlier by Miller [Mil76].
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Figure 6. P, NP, and coNP.

Is there a moral to this story? Only that sometimes, when we have an efficient
characterization of structure, we can hope for more: efficient algorithms. Indeed, a
natural stepping stone toward an elusive efficient algorithm may first be to get an
efficient characterization.

Can we expect this magic to always happen? Is NP NcoNP = P? We do
not have too many examples of problems in NP 1 coNP that have resisted ef-
ficient algorithms. Some of the famous, like integer factoring and discrete loga-
rithms,? arise from one-way functions which underlie cryptography (we discuss
these in Section 4.5). Note that while they are not known to be hard, humanity
literally banks on their intractability for electronic commerce security. Yet another
famous example, for which membership in AP and in coN'P are highly nontrivial
(respectively proved in [Lacl5] and [HLP99]) is the unknottedness problem, namely,
testing whether a knot diagram represents the trivial knot. A very different example
is Shapley’s stochastic games, studied by Condon in [Con92], for which no efficient
algorithm is known. However, we have seen that many problems first proved to be
in NP NcoNP eventually were found to be in P. Tt is hard to generalize from so
few examples, but the general belief is that the two classes are different.

Conjecture 3.9. NP NcoNP # P.

Note that this conjecture implies P £ NP.
‘We now return to developing the main mechanism, which will help us study such
questions: efficient reductions and completeness.

20Which have to be properly defined as decision problems.

36



COMPLEXITY 101, P AND NP

3.6 Reductions: A partial order of computational difficulty

In this section, we deal with relating the computational difficulty of problems for
which we have no efficient solutions (yet).

Recall that we can regard any classification problem (on finitely described ob-
jects) as a subset of our set of inputs I. Efficient reductions provide a natural
partial order on such problems that captures their relative difficulty. Note that
reductions are a primary tool in computability and recursion theory, from which
computational complexity developed. There, reductions were typically simply com-
putable functions, whereas the focus of computational complexity is on efficiently
computable ones. While we concentrate here on time efficiency, the field studies a
great variety of other resources; limiting these in reductions is as fruitful as limiting
them in algorithms. The following crucial definition is depicted in Figure 7.

Definition 3.10 (Efficient reductions). Let C, D C I be two classification problems.
f: I —1is an efficient reduction from C to D if f € P and for every x € I we have
x € Ciff f(z) € D. In this case, we call f an efficient reduction from C to D. We
write C' < D if there is an efficient reduction from C to D.

Figure 7. A schematic illustration of a reduction between two classification prob-
lems.

So, if C' < D, then solving the classification problem C' is computationally not
much harder than solving D (up to polynomial factors in the running time).?! If we
have both €' < D and D < C then C and D are computationally equivalent (again,
up to polynomial factors). This gives formal meaning to the word “equivalent” in
Theorem 3.1.

The definition of efficient computation (more precisely, that the composition of
two polynomials is a polynomial) allows two immediate but important observations
on the usefulness of efficient reductions. Please verify both for yourself! First, that

2n particular, if C' € P then it is not much harder than trivial problems D (e.g. D might ask
to distinguish sequences starting with 0 from those starting with 1). The reduction in this case
would simply solve C.
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indeed < is transitive, and thus defines a partial order on classification problems.
Second, one can compose (as in Figure 8) an efficient algorithm for one problem
and an efficient reduction from a second problem to get an efficient algorithm for

the second. Specifically, if C' < D and D € P, then also C' € P.

Algorithm for '

NN Algorithm f(z) Algorithm
for f for D

yes/no

Figure 8. Composing a reduction and an algorithm to create a new algorithm.

As noted, C' < D means that solving the classification problem C' is computa-
tionally not much harder than solving D. In some cases, one can replace “computa-
tionally” by the (vague) term “mathematically.” To be useful mathematically and
allow better understanding of one problem in terms of another may require more
properties of the reduction f than merely being efficiently computable. For exam-
ple, we may want f to be a linear transformation, or a low-degree polynomial map,
and indeed in some cases (as we will see e.g. in Chapter 12) this is possible. When
such a connection between two classification problems (which look unrelated) can
be proved, it can mean the importability of techniques from one area to another.

The power of efficient reductions to relate seemingly unrelated notions will un-
fold in later sections. We shall see that they can relate not only classification
problems but also such diverse concepts as hardness to randomness; average-case
to worst-case difficulty; proof length to computation time; and last but not least,
the security of electronic transactions to the difficulty of factoring integers. In a
sense, efficient reductions are the backbone of computational complexity. Indeed,
given that polynomial time reductions can do all these wonders, no wonder we have
a hard time characterizing the class P!

3.7 Completeness: Problems capturing complexity classes

We now return to classification problems. The partial order of their difficulty,
provided by efficient reductions, allows us to define the hardest problems in a given
class of problems. Let C be any collection of classification problems (namely, every
element of C is a subset C' of I). In this chapter we are mainly concerned about the
class C = A'P. But later in the book we will see this important idea recur for other
complezity classes (namely classes of problems defined by the resources required to
solve them, like N'P) .

Definition 3.11 (Hardness and completeness). A problem D is called C-hard if for
every C' € C, we have C < D. If we further have that if D € C, then D is called
C-complete.

In other words, if D is C-complete, it is a hardest problem in the class C: if we
manage to solve D efficiently, we have done so automatically for all other problems
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By + C = 0, then in fact there is a short one,?* indeed a solution whose length (in
bits) is linear in the lengths of A, B, C'. Thus, a short witness is simply a root (z,y).
But KNOT is an exception, and the short witnesses for the knot having a small
genus requires Haken'’s algorithmic theory of normal surfaces, considerably enhanced
(even short certificates for unknottedness in R? are hard to obtain; see [HLP99]). Let
us discuss what these N"P-completeness results mean, first about the relationship
between the three sets, and then about each individually.

The proofs that these problems are complete follow by reductions from (variants
of) SAT. The discrete, combinatorial nature of these reductions may cast doubt
on the possibility that the computational equivalence of these problems implies
the ability of real “technology transfer” between, for example, topology and num-
ber theory. Nevertheless, now that we know of the equivalence, perhaps simpler
and more direct reductions can be found between these problems. Moreover, we
stress again that reductions translate between witnesses as well. Namely, for any
instance, say (M, K,G) € KNOT, if we translate it using this reduction to an
instance (4, B,C) € 2DI0O and happen (either by sheer luck or special structure
of that equation) to find an integer root, the same reduction will translate that
root back to a description of a genus G manifold that bounds the knot K. Today
many such ANP-complete problems are known throughout mathematics, and for
some pairs, the equivalence can be mathematically meaningful and useful (as it is
between some pairs, of computational problems).

Let us discuss the simplest of the three reductions above, namely, from SAT to
3COL. If you have never seen one, it should be a mystery: The two problems talk
about different worlds, one of logic and the other of graph theory. Both are difficult
problems, but the reduction should be easy (namely, efficiently computable). The
key to this reduction, as well as to almost any other, is the locality of computation!
This of course is evident in SAT"; a formula is composed from Boolean gates, each of
which performs a simple, local operation. However, 3COL feels like a more global
property.?> The idea of this reduction is to focus on the individual gates of the
input formula. We'll find a reduction that works for each gate and will compose the
small (“gadget”) graphs produced, mimicking the structure prescribed by the input
formula. Let’s elaborate this idea.

Here is how to transform the satisfiability problem for the (trivial, 1-gate) for-
mula z V y to a graph 3-coloring problem. We will actually transform the equation
xVy = z to a graph 3-coloring statement using the gadget graph shown in Fig-
ure 9. Check that it satisfies the following condition: In every legal 3-coloring of
the graph with colors {0, 1,2}, the colors of the vertices labeled z,y, z will be from
{0,1}, which will satisfy the equation z V y = z. One can easily construct such
gadgets for the gates A, = as well. Now, to complete the reduction, the algorithm
proceeds as follows. Given an arbitrary formula as input, it names its wires, builds a
gadget graph for every gate, and identifies appropriate vertices in these to generate
an output graph. By construction, it is 3-colorable if and only if the given formula
was satisflable. This is essentially the reduction in [Kar72|, but we are not done
yet: The gadget graph above is not planar (and hence the output graphs are also
not planar). However, Stockmeyer [Sto73] gives another gadget that can eliminate

24Hint: If (z,y) is a root, so is (z + B,y — A(2z + B)).
25Consider, for example, a cycle on n vertices, where n is odd; it requires 3 colors, but if we
remove any edge, it can be 2-colored.
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crossings in planar embeddings of graphs without changing their 3-colorability. The
reader is encouraged to find such a gadget. With this, the proof of Theorem 3.17 is
complete.

Figure 9. The gadget underlying the reduction from SAT to 3COL.

We now list a few more AN'P-complete problems of a different nature, to give a
feeling for the breadth of this phenomenon. Some appear already in Karp's original
article [Kar72]. Again, hundreds more can be found in Garey and Johnson’s book,
[GJ79], and by now, many thousands are known:

Hamiltonian cycle. Given a graph, is there a simple cycle of edges going
through every vertex precisely once?

Subset-sum. Given a sequence of integers a4, ..., a, and b, is there a subset

J such that 3. ;a; = b7
Integer programming. Given a polytope in R™ (by its bounding hyper-
planes), does it contain an integer point?

Clique. Given a graph and an integer k, are there k vertices with all pairs
mutually adjacent?

Quadratic equations. Given a system of multivariate polynomial equations
of degree at most 2, over a finite field (say, Fz), do they have a common root?

Shortest lattice vector. Given a lattice L in R™ and an integer k, is the
shortest nonzero vector of L of (Euclidean) length < k7

3.10 The nature and impact of N'P-completeness

NP-completeness is a unique scientific discovery —there seems to be no precisely
defined scientific notion that even comes close to being pervasive in so many fields
of science and engineering! We start with its most immediate impact, in computer
science itself, move to mathematics, and then to science and beyond. Some of this
discussion will be become more meaningful (and impressive) as you read further
through the book, and in detail in the last chapter. More can be found in, for
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example, Papadimitriou’s retrospective on the subject [Pap97]. Curiously, that
paper reports that electronic search (new at the time) revealed thousands of science
and math papers with the phrase “NP-complete” in them; today, more than 20
years later, this number is far larger!

As mentioned, starting with Karp’s paper [Kar72], an explosion of N"P-complete-
ness results followed quickly in every corner and subfield of computer science. This
is easy to explain. Most individuals in the field of computer science, from academics
to industry programmers, are busy seeking efficient algorithms for numerous com-
putational problems. How can one justify failure to find such an algorithm? In
the absence of any techniques for proving intractability, the next best thing was
proving that the computational problem at hand was A'P-complete (or NP-hard),
which means that finding such an efficient algorithm for it would imply an effi-
cient algorithm for numerous others, which many others failed to solve. In short,
failing to prove P = NP is a very powerful excuse, and NP-completeness is an
excellent stamp of hardness. Every professional of the field knows this! While
NP-completeness is a negative result (basically showing that what we want is im-
possible), such negative results had a positive impact. As problems do not go
away when you declare them AP-complete and still demand solutions, weaker so-
lution concepts for them were developed. For example, for optimization problems,
people attempted to find good approximation algorithms. Moreover, given that
NP-completeness only captures worst-case hardness, people developed algorithms
that work well “on average” and heuristics that seem to work well on inputs that
“show up in practice.” This direction needs lots more theory, especially in light of
the recent practical success of deep networks, that is far from understood. A variety
of quality criteria and models were developed for different relaxations of efficient
solvability, leading to analogous complexity theories, which enable researchers to
argue hardness as well; some of these models will be discussed later in the book.
A major such theory, able to argue N'P-completeness for approximation problems,
and actually pinpoint in many cases the exact limits of efficient approximation, will
be discussed in Section 10.3.

The next field to be impacted by N'P-completeness was mathematics. With
some delay, N'P-completeness theorems started showing up in most mathemati-
cal disciplines, including algebra, analysis, geometry, topology, combinatorics, and
number theory. This “intrusion” may seem surprising, as most questions that math-
ematicians ask themselves are not algorithmic. However, existence theorems for a
variety of objects beg the question of having “explicit” descriptions of such objects.
Moreover, in many fields, one actually needs to find such objects. Mathematics is
full of a variety of constructions, done by hand long ago and by numerous libraries
of computer programs that are essential for progress, and hence, their efficiency
is also essential. Like computer scientists, mathematicians adopted the notion of a
polynomial-time algorithm as a first cut at defining “efficient” and “explicit.” Thus,
description and construction problems that are N"P-complete were extremely useful
to set limits on the hopes of achieving these properties. Furthermore, in mathemat-
ics, such N"P-completeness results signified an underlying “mathematical nastiness”
of the structures under study. For example, as explained in Section 3.5, an efficient
characterization of a property that is N"P-complete will imply that NP = coNP.
and so it is unlikely (as we understand things today) that such a characterization
exists. As in CS, so in math as well, such bad news begets good outcomes, nudging
mathematicians into more productive directions: refining or specializing the prop-
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erties under study, considering a variety of approximate notions, or simply being
satisfied with sufficient and necessary conditions that are not complementary (as is
needed for characterization).

The presence and impact on N P-completeness in science is evidenced by the
fact that such results (which are patently about computation) in biology, chemistry,
economics, neuroscience, electrical engineering, and other fields are being proved
not by computer scientists but by biologists, chemists, economists, neuroscientists,
electrical engineers, and so forth. Moreover, these results are being published in the
scientific journals of these very fields. And the numbers are staggering: A search for
papers that contain the phrase “A'P-complete” or “A"P-completeness” prominently
(in the title, abstract, or keywords) reveals that in each of these disciplines, there
are hundreds of such papers, and many thousands more that mention these terms in
the body of the paper. To obtain such results, these thousands of scientists needed
to learn the concepts and proof methods of computational complexity, typically
a foreign language to most (for instance, mathematical theorems rarely appear in
science articles at all).

This phenomenon begs an explanation! Indeed, there are two questions to an-
swer. What explains the abundance of N"P-completeness in these diverse disci-
plines? And why do their scientists bother making the unusual effort to prove these
computational theorems?

One important observation is that scientists often study processes and try to
build models that explain and predict them. Almost by definition, these are com-
putational processes, namely, composed of a sequence of simple, local steps, like
Turing machines, albeit manipulating not bits in computers but possibly neurons
in the brain, proteins in the cell, atoms in matter, fish in a school, or stars in a
galaxy. In other words, many models simply describe algorithms that nature uses
for generating certain processes or behavior. A typical N"P-completeness result of-
ten refers to the limits of prediction by a particular model of some natural process.
Here are some illustrative examples. In some existing models, it is NP-complete
to compute the following quantities: the minimal surface area that a given foam
will settle into (in physics), the minimal energy configuration of a certain molecule
(e.g., as in protein folding in biology), and the maximum social welfare of certain
equilibria (in economics). Let’s explore the meaning of such results to modeling
natural phenomena.

We'll make two natural assumptions, which seem completely benign. First, that
P # N'P. Then N'P-completeness means that no efficient algorithm can compute
the required quantities (e.g., in the examples just mentioned), at least for some
instances. Second, that natural processes are inherently efficient algorithms, and
so are the measurements we perform to extract these quantities at the end of the
process. These two assumptions clash with each other, which seems to suggest at
least one of two possible conclusions. One possibility is that the model (for which
NP-completeness was proved) is simply wrong (or incomplete) in describing reality.
The other possibility is that the “hard” instances simply never occur in nature.?%
In both cases, N'P-completeness calls for a better understanding (e.g., refinement
of the model at hand), a characterization of the instances for which the algorithm
suggested by the model solves efficiently (and an argument that these conditions

26For example, it is quite possible that over billions of years of evolution, only proteins that are
easily and efficiently foldable survived, and others became extinct.
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are consistent with what we see in nature).

This idea has caused some researchers to propose that our underlying conjecture,
P # NP, should be viewed as a law of nature. Perhaps the first explicit such
occurrence is this quote,?” from Volker Strassen’s laudation [Str86] for Les Valiant
on his Nevanlinna Prize: “The evidence in favor of Cook’s and Valiant’s hypotheses
is so overwhelming, and the consequences of their failure are so grotesque, that their
status may perhaps be compared to that of physical laws rather than that of ordinary
mathematical conjectures.” Note that at that time, the utility of this mathematical
conjecture to science was not as well understood as it is today. How to precisely
articulate this mathematical statement as a relevant law of nature is of course still
interesting to debate. An intuitive desire is to let it play the same role that the
second law of thermodynamics plays in science: Scientists would be extremely wary
to propose a model that violates it. One suggestion, by Scott Aaronson, is a stronger
statement about the real world: There are no physical means to solve N'P-complete
problems in polynomial time. A host of possible physical means that were actually
attempted is discussed in [Aar05].

There is still the mystery of the ubiquitous presence of N'P-completeness in
practically every subfield of CS, math, and essentially all sciences. With hindsight,
this is an amplified (and much more relevant) incarnation of the ubiquity of unde-
cidability in all these disciplines. Both are explained by the fact that computation,
viewed (as above) as any process evolving via a sequence of simple, local steps, is so
ubiquitous. Similarly, descriptions of properties of systems with many parts (either
desired properties or observed properties, which are typically the outcomes of such
computations) are often given or modeled by sets of simple, local constraints on
small subsystems of the whole. As it happens, for almost all choices of constraints,
their mutual satisfaction for given instances is undecidable if the system is infinite
and is N'P-complete if finite. In much rarer cases, they lead to (respectively) decid-
able or polynomial-time solvable problems. Understanding these phenomena, and
delineating the types of constraints across the tractable/intractable barrier, is an
active field of study and will be discussed further in Section 4.3.

Concluding this somewhat philosophical section, we note another major impact
of N'P-completeness. Namely, that it served as a role model for numerous other
notions of computational universality. N P-completeness turned out to be an ex-
tremely flexible and extendible notion, allowing numerous variants, which enabled
capturing universality in other (mainly computational, but not only) contexts. It
led to the definitions of classes of problems solvable using very different resource
bounds. In most cases, these classes were also shown to have complete problems,
capturing the difficulty of the whole class under natural reductions, with the benefits
described above (some examples will be discussed in Section 4.1 and then in later
chapters). Much of the whole evolution of computational complexity, the theory of
algorithms, and most other areas in theoretical computer science has been guided
by the powerful approach of reduction and completeness. This progression has gen-
erated multiple theories of intractability in various settings and tools to understand
and possibly curb or circumvent it (even though we are still mostly unable to prove
intractability in most cases). The structures revealed by this powerful methodology
send an important message to other disciplines.

2TIn this quote Cook’s hypothesis is P # NP, and Valiant’s hypothesis is what became known
as VP # VNP which we will discuss in Chapter 12.
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One of the most interesting and fascinating is MCSP, the minimum circuit
size problem! whose status is surveyed in [AH17].

e Counting problems. Fix an AP problem. Given an input, find the number
of solutions (witnesses) for it. Many problems in enumerative combinatorics
and in statistical physics fall into this category. Here too, a natural relaxation
of counting problems is approximation: computing a number that is “close” to
the actual count. The natural home of most of these problems is a class called
#P. A most natural complete problem for this class is #5AT', which asks to
compute the number of satisfying assignments of a given formula (more gen-
erally, counting versions of typical N"P-complete classification problems are
#P-complete). A remarkable complete problem for it is evaluating the Perma-
nent polynomial,? or equivalently, counting the number of perfect matchings
of a given bipartite graph. Thus, even counting versions of easy classification
problems (e.g., testing if a perfect matching exists) can be #P-complete. This
discovery, the definition of the class #P, and the complexity theoretic study
of enumeration problems originates from Valiant’s papers [Val79a,Val79c]. A
surprising, fundamental result of Toda [Tod91] efficiently reduces quantified
problems (above) to counting problems (in symbols, PH C P#7).

e Strategic problems. Given a (complete information, 2-player) game, find an
optimal strategy for a given player. Equivalently, given a position in the game,
find the best move. Many problems in economics and decision theory, as well
as playing well the game of chess, fall into this category. The natural home
for most of these problems is the class PSPACE of problems solvable using a
polynomial amount of memory (but possibly exponential time). Indeed, many
such games (appropriately extended to families of games of arbitrary sizes, to
allow asymptotics, and restricting the number of moves to be polynomial in
“board size”) become complete for PSPACE. This characterization of the
basic memory (or space) resource in computation in terms of alternation of
quantifiers (namely, as game strategies) arises as well from [Sto76] and obvi-
ously extends the bounded alternation games described above (which defined
PH). A major, surprising understanding of polynomial space is the result
IP = PSPACE of [Sha92]. It establishes PSP.ACE as the home of all prob-
lems having efficient interactive proofs (an important extension of “written
proofs” captured by N'P), as discussed in Section 10.1.

e Total NP functions. These are search problems seeking to find objects
that are guaranteed to exist (like local optima, fixed points, Nash equilibria)
and are certified by small witnesses. In many such problems, the input is
an implicitly defined® exponentially large graph, (possibly weighted, possibly
directed). The task is to find a vertex with some simple property, whose ex-
istence is guaranteed by a combinatorial principle. For example, that every
directed acyclic graph has a sink (and so the task is to find one), or that
every undirected graph has an even number of vertices of odd degree (and so

I'The input to this problem is a Boolean circuit, and the problem is to determine if there exists
a smaller circuit computing the same function. We will formally define circuits in Section 5.2.

2A sibling of the Determinant, which is discussed in Chapter 12.

3For example, via a program computing the neighbors of any given vertex.
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the task is, given one such vertex, to find another). In the paper initiating
this study, Papadimitriou [Pap94] defines several complexity classes, each cap-
tured by one such principle. These classes lie between (the search problems
associated with) P and AN'P. One important example is the class PLS, for
polynomial local search, in which a complete problem is finding a local mini-
mum in a weighted directed graph. Another is the class PPAD, for which a
natural complete problem is (a discrete version of) computing a fixed point of
a given function. Computing the Nash equilibrium in a given 2-player game is
clearly in this class, as the proof of Nash’s theorem (that every game has such
an equilibrium) follows simply from Brouwer’s fixed-point theorem. A major
result [DGP09, CDT09] was proving the converse: establishing that finding a
Nash equilibrium is a complete problem for this class. These classes of prob-
lems and their complexity were studied in [BCE*95] through the framework
of proof complexity, a subject we will discuss in Chapter 6.

Figure 10 shows some of the known inclusions between these classes and some
problems in them. Note that even though SAT and CLIQUE are N'P-complete,
while Perfect Matching is in P, their counting versions are all in #7P, and indeed,
all three are complete for this class (Permanent is the counting problem for perfect
matchings).*

I shall not elaborate on these families of important problems and classes here.
Some of them will be mentioned in subsequent sections, but I will not develop their
complexity theory systematically. Note that the methodology of efficient reductions
and completeness illuminates much of their computational complexity in the same
way as for classification problems.

4.2 Between P and NP

We have seen that AP contains a vast number of problems, but that in terms of
difficulty, nearly all of those we have seen fall into one of two equivalence classes: P,
which are all efficiently solvable, and N"P-complete. Of course, if P = NP, the two
classes are the same. But assuming P # AP, is there anything else? Ladner [Lad75)
proved the following result.

Theorem 4.1 [Lad75]. IfP # NP, then there are infinitely many levels of difficulty
in N'P. More precisely, there are sets Cy,Ca, ... in N'P such that for all i, we have
Ci < Ciqa, but Cipy £ C;.

So, there is a lot of “dark matter” between P and N'P-complete. But are there
any natural decision® problems that fall between these classes? We know only of
very precious few candidates: those on the list below (some of which were also
discussed in Section 3.5) and a handful of others. We discuss each in turn after
listing them.

e Integer factoring. Given an integer, find its prime factors (a decision version
might ask for the ith bit of the jth prime).

4We oversimplified the figure a bit; technically, we only know that PH C P#7P, rather than
PHC #P.

5We discussed search problems in this gap in Section 4.1.
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PSPACE
* CHESS

#P

% Permanent

* #SAT % #CLIQUE

v Circuit Minimization

NP

% SAT
* CLIQUE

% Perfect Matching

Figure 10. Between P and PSPACE. As far as we know, all these classes may be
equal.

e Stochastic games. Three players, White, Black, and Nature, move a token
on a directed graph, whose vertices are labeled with players’ names. At every
step, the token can be moved by the player labeling the vertex it occupies to
another along an edge out of that vertex. Nature’s moves are random, while
White and Black play strategically. Given a labeled graph, and start and
target nodes for the token, does White have a strategy that guarantees that
the token reaches the target with probability > 1/27

¢ Knot triviality. Given a diagram describing a knot (see, e.g., Figure 1), is
it the trivial knot?

e Approximate shortest lattice vector. Given a (basis for a) lattice L in
R™ and an integer k, does the shortest vector of L have (Euclidean) length at

most k, or at least kn? (It is guaranteed that this minimum length is not in
[k, kn].)

¢ Graph isomorphism. Given two graphs, are they isomorphic? Namely, is
there a bijection between their vertices that preserves the edges?®

SThe recent breakthrough of Babai [Babl15] gives a quasipolynomial-time algorithm for this
problem (namely of complexity roughly exp((logn)?(1))), bringing it very close to P. See also the
exposition [HBD17] of this result.
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e Circuit minimization. The notions appearing in this problem description
will be formalized in Chapter 5. Intuitively, it asks for the fastest program
computing a function on fixed-size inputs. More formally, given a truth table
of a Boolean function f and an integer s, does there exist a Boolean circuit of
size at most s computing f? Some evidence of the “intermediate status” of
this problem can be found in [AH17] and its references.

Currently we cannot rule out that efficient algorithms will be found for any of
these problems, and so some may actually be in P. But we have good formal reasons
to believe that they are not N"P-complete. This is interesting; we already saw that
if a problem is AN'P-complete, it is an indication that it is not easy (namely, in P),
if we believe that P # ANP. What indications do we have that a problem is not
universally hard (namely, that it is not A'P-complete)? Well, if, for example, the
problem is in AP NcoN P, and we believe NP # coN P, then that problem cannot
be N'P-complete. In both arguments above, unlikely collapses of complexity classes
(P = NP and NP = coN'P) give us (perhaps with different confidence levels) an
indication as to the complexity of specific problems. This is somewhat satisfactory,
in the absence of a definite theorem about their complexity. In particular, we can
now explain better why the problems above are not likely to be A/P-complete.

The first four problems are all in NP N coN'P. This is clear for (the decision
problem of) factoring. For stochastic games, this result is proved in [Con93]. The
lattice problem was resolved in [AR05]. The knottedness problem is special: It is
a rare example where both inclusions are highly nontrivial. Membership in NP
was proved in [HLP99] (and again, very differently, in [Lac15]). Membership in
coNP was first proved conditionally on the generalized Riemann hypothesis (GRH)
in [Kup14],” and only recently a different proof that requires no unproven assump-
tion was given in [Lacl6].

Graph isomorphism, while in NP, is not known to be in coN P, and so we cannot
use the same logic to rule out its possible N'P-completeness directly. However, one
can apply very similar logic. Graph nonisomorphism has a different type of short,
efficient proof, called inferactive proof, discussed in Chapter 10. Using this, one can
prove that if graph isomorphism is N"P-complete, it would yield a surprising collapse
of the polynomial time hierarchy PH (defined in Section 4.1). Of course, with the
recent quasi-polynomial-time algorithm for graph isomorphism [Babl5] mentioned
above, we have much better reasons to believe that it cannot be N'P-complete.

The last problem, circuit minimization (which has several variations), is even
more mysterious than the previous four. Numerous papers have been written on
“unlikely” consequences of its possible easiness (being in P) and its possible hardness
(being N'P-complete). A recent survey on the topic is [All17].

Finding other natural examples (or better yet, classes of examples) like these will
enhance our understanding of the gap NP \ P. Considering the examples above,
we expect that mathematics is a more likely source for them than, say, industry.
However, for some large classes of natural problems, we know or believe that they
maust exhibit this dichotomy: Every problem in the class is either in P or is N'P-
complete. These are classes of constraint-satisfaction problems, which we discuss
next.

"It may seem mysterious what the GRH has to do with knots, and 1 encourage you to look at
the paper to find out.
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