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1
The Theorem of Pythagoras

PrEVIEW

The Pythagorean theorem is the most appropriate starting point for a book
on mathematics and its history. It is not only the oldest mathematical the-
orem, but also the source of three great streams of mathematical thought:
numbers, geometry, and infinity.

The number stream begins with Pythagorean triples; triples of inte-
gers (a, b, ¢) such that a® + b* = ¢*. The geometry stream begins with the
interpretation of a”, b%, and ¢ as squares on the sides of a right-angled
triangle with sides a, b, and hypotenuse ¢. The infinity stream begins with
the discovery that V2, the hypotenuse of the right-angled triangle whose
other sides are of length 1, is an irrational number.

These three streams are followed separately through Greek mathemat-
ics in Chapters 2, 3, and 4. The geometry stream resurfaces in Chapter 6,
where it takes an algebraic turn. The basis of algebraic geometry is the
possibility of describing points by numbers—their coordinates—and the
bridge between coordinates and geometry is precisely the Pythagorean the-
orem, which defines length in terms of coordinates.

The Pythagorean theorem resurfaces in a new algebraic role in
Chapter 16. Here it appears in the guise of the inner product, which
introduces the concepts of length and angle into vector spaces.

© Springer Nature Switzerland AG 2020 1
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2 1 The Theorem of Pythagoras

1.1 Arithmetic and Geometry

If there is one theorem known to all mathematically educated people, it
is surely the theorem of Pythagoras. It will be recalled as a property of
right-angled triangles: the square of the hypotenuse equals the sum of the
squares of the other two sides (Figure 1.1). The “sum” is of course the sum
of areas and the area of a square of side / is /2, which is why we call it I
squared.” Thus the Pythagorean theorem can also be expressed by

@+ =, (1)

where a, b, c are the side lengths of the red triangle in Figure 1.1.

Figure 1.1: The Pythagorean theorem

Conversely, a solution of (1) by positive numbers a, b, ¢ can be realized
by aright-angled triangle with sides &, b and hypotenuse c. [t is clear that we
can draw perpendicular sides a, b for any given positive numbers a, b, and
then the hypotenuse ¢ must be a solution of (1) to satisfy the Pythagorean
theorem. This converse view of the theorem becomes interesting when we
notice that (1) has some very simple solutions. For example,

(a,b,c) = (3,4,5), (32 +4°=9+16=25=5?%,
(a,b,c) = (5,12,13), (52 + 122 =25+ 144 = 169 = 13%).

It is thought that in ancient times such solutions may have been used for
the construction of right angles. For example, by stretching a closed rope
with 12 equally spaced knots one can obtain a (3, 4,5) triangle with right
angle between the sides 3, 4, as seen in Figure 1.2.
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Figure 1.2: Right angle by rope stretching

Whether or not this is a practical method for constructing right angles,
the very existence of a geometrical interpretation of a purely arithmetical
fact like

F+47=5

is quite wonderful. At first sight, arithmetic and geometry seem to be com-
pletely unrelated realms. Arithmetic is based on counting, the epitome of a
discrete (or digital) process. The facts of arithmetic can be clearly under-
stood as outcomes of certain counting processes, and one does not expect
them to have any meaning beyond this. Geometry, on the other hand, involves
continuous rather than discrete objects, such as lines, curves, and surfaces.
Continuous objects cannot be built from simple elements by discrete pro-
cesses, and one expects to see geometrical facts rather than arrive at them
by calculation.

The Pythagorean theorem was the first hint of a hidden, deeper relation-
ship between arithmetic and geometry, and it has continued to hold a key
position between these two realms throughout the history of mathematics.
This has sometimes been a position of cooperation and sometimes one of
conflict, as followed the discovery that V2 is irrational (see Section 1.5). It
is often the case that new ideas emerge from such areas of tension, resolving
the conflict and allowing previously irreconcilable ideas to interact fruit-
fully. The tension between arithmetic and geometry is, without doubt, the
most profound in mathematics, and it has led to the most profound the-
orems. Since the Pythagorean theorem is the first of these, and the most
influential, it is a fitting subject for our first chapter.
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1.2 Pythagorean Triples

Pythagoras lived around 500 Bck, but the story of the Pythagorean theorem
begins long before that, at least as far back as 1800 Bce in Babylonia. The
evidence is a clay tablet, known as Plimpton 322, which systematically lists
a large number of integer pairs (a, ¢) for which there is an integer b satis-

fying
a* + b = (1)

A translation of this tablet, together with its interpretation and historical
background, was first published by Neugebauer and Sachs (1945). Inte-
ger triples (a,b,c) satisfying (1)—for example, (3,4,5), (5,12,13),
(8, 15, 17)—are now known as Pythagorean triples. Presumably the Baby-
lonians were interested in them because of their interpretation as sides of
right-angled triangles, though this is not known for certain. At any rate, the
problem of finding Pythagorean triples was considered interesting in other
ancient civilizations that are known to have possessed the Pythagorean the-
orem; van der Waerden (1983) gives examples from China (between 200
BcE and 220 ce) and India (between 500 and 200 Bcg). The most complete
understanding of the problem in ancient times was achieved in Greek math-
ematics, between Euclid (around 300 Bce) and Diophantus (around 250 ck).
A general formula for generating Pythagorean triples is

a= (p2 — qz)r, b = 2qpr, c= (p2 + qz)r.

Itis easy to see that a>+b*> = ¢ when a, b, c are given by these formulas, and
of course a, b, ¢ will be integers if p, g, r are. Even though the Babylonians
did not have the advantage of our algebraic notation, it is plausible that this
formula, or the special case

a=p2_q21 b=2pq, C=P2+q2

(which gives all solutions a, b, ¢, without common divisor and b even)
was the basis for the triples they listed. Less general formulas have been
attributed to Pythagoras himself (around 500 Bce) and Plato (see Heath
(1921), Vol. 1, pp. 80-81); a solution equivalent to the general formula is
given in Euclid’s Elements, Book X (lemma following Prop. 28). As far as
we know, this is the first statement of the general solution and the first proof
that it is general. Euclid’s proof is essentially arithmetical, as one would
expect since the problem seems to belong to arithmetic.
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However, there is a far more striking solution, which uses the geomet-
ric interpretation of Pythagorean triples. This emerges from the work of
Diophantus, and it is described in the next section.

EXERCISES

The integer pairs (a, ¢) in Plimpton 322 are shown in Figure 1.3.

a c
119 169
3367 | 4825
4601 | 6649
12709 | 18541
65 97
319 481
2291 | 3541
799 | 1249
481 769
4961 | 8161
45 75
1679 | 2929
161 289
1771 | 3229
56 106

Figure 1.3: Pairs in Plimpton 322

1.2.1 For each pair (a, ¢) in the table, compute ¢* — @*, and confirm that it is a
perfect square, b*. (Computer assistance is recommended. )

You should notice that in most cases b is a “rounder” number than a or c.

1.2.2 Show that most of the numbers b are divisible by 60, and that the rest are
divisible by 30 or 12.

Such numbers were in fact exceptionally “round” for the Babylonians, because 60
was the base for their system of numerals. It looks like they computed Pythagorean
triples starting with the “round” numbers b and that the column of b values later
broke off the tablet.

Euclid’s formula for Pythagorean triples comes out of his theory of divisibil-
ity, which we take up in Section 3.3. Divisibility is also involved in some basic
properties of Pythagorean triples, such as their evenness or oddness.

1.2.3 Show that any integer square leaves remainder O or 1 on division by 4.

1.2.4 Deduce from Exercise 1.2.3 that if (a, b, ¢) is a Pythagorean triple then a
and b cannot both be odd.
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1.3 Rational Points on the Circle

We know from Section 1.1 that a Pythagorean triple (a, b, ¢) can be realized
by a triangle with sides a, b and hypotenuse ¢. This in turn yields a triangle
with fractional (or rational) number sides x = a/c, y = b/c and hypotenuse
1. All such triangles can be fitted inside the circle of radius 1 as shown in
Figure 1.4. The sides x and y become what we now call the coordinates of

Y

Figure 1.4: The unit circle

the point P on the circle. The Greeks did not use this language, but they
could derive the relationship between x and y we call the equation of the
circle. Since

a’+ b =c? (1)
we have
ERCR
c c
so the relationship between x = a/c and y = b/c is
¥+yr=1. (2)

Consequently, finding integer solutions of (1) is equivalent to finding ratio-
nal solutions of (2), or finding rational points on the curve (2).
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Such problems are now called Diophantine, after Diophantus, who was
the first to deal with them seriously and successfully. Diophantine equa-
tions have acquired the more special connotation of equations for which
integer solutions are sought, although Diophantus himself sought only ratio-
nal solutions. (There is an interesting open problem that turns on this dis-
tinction. Matiyasevich (1970) proved that there is no algorithm for deciding
which polynomial equations have integer solutions. It is not known whether
there is an algorithm for deciding which polynomial equations have ratio-
nal solutions.)

Most of the problems solved by Diophantus involve quadratic or cubic
equations, usually with one obvious trivial solution. Diophantus used the
obvious solution as a stepping stone to the nonobvious, but no account of his
method survived. It was ultimately reconstructed by Fermat and Newton in
the 17th century, and this chord and tangent construction will be considered
later. Here, we need it only for the equation x*> + > = 1, which is an ideal
showcase for the method in its simplest form (chord only).

Y

Figure 1.5: Construction of rational points

A trivial solution of this equation is x = —1, y = 0, which is the point Q
on the unit circle (Figure 1.5). After a moment’s thought, one realizes that
a line through Q, with rational slope ¢,

y=tx+1) (3)
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will meet the circle at a second rational point R. This is because substitution
of y = t(x + 1)in x> + 4> = 1 gives a quadratic equation with rational
coefficients and one rational solution (x = —1); hence the second solution
must also be a rational value of x. But then the y value of this point will
also be rational, since ¢ and x will be rational in (3). Conversely, the chord
joining Q to any other rational point R on the circle will have a rational
slope. Thus by letting ¢ run through all rational values, we find all rational
points R # ( on the unit circle.

What are these points? We find them by solving the equations just dis-
cussed. Substituting y = #(x + 1) in x> + y*> = 1 gives

P+ 1) =1,

or
A+ +28x+ (P -1)=0.

This quadratic equation in x has solutions —1 and (1 — #%)/(1 + ¢*). The
nontrivial solution x = (1 — #2)/(1 + #*), when substituted in (3), gives
y=2t/(1+1).

EXERCISES

The parameter ¢ in the pair (}:,, 1%) runs through all rational numbers if

t = g/p and p, g run through all pairs of integers.

1.3.1 Deduce that if (a, b, ¢) is any Pythagorean triple then

a_p-¢ b_ 2pq
c p2+q2’ c p2+q2

for some integers p and g.

1.3.2 UseExercise 1.3.1 to prove Euclid’s formula for Pythagorean triples, assum-
ing b even. (Remember, a and b are not both odd.)

The triples (a, b, ¢) in Plimpton 322 seem to have been computed to provide
right-angled triangles covering a range of shapes—their angles actually follow a
decreasing sequence in roughly equal steps. Figure 1.6 shows the lines with slope
a/b, ranging from the top value 119/120 for the top line in Plimpton 322, to 56/90
for the bottom line.

This raises the question, can the shape of any right-angled triangle be approx-
imated by a Pythagorean triple?

1.3.3 Show that any right-angled triangle with hypotenuse 1 may be approxi-
mated arbitrarily closely by one with rational sides.
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b a c a’b
120 119 169 | 0.9917
3456 3367 | 4825 | 0.9742
4800 | 4601 6649 | 0.9585
13500 | 12709 | 18541 | 0.9414
72 65 97 | 0.9028
360 319 481 | 0.8861
2700 | 2291 3541 | 0.8485
960 799 1249 | 0.8323
600 481 769 | 0.8017
6480 | 4961 8161 | 0.7656
60 45 75 | 0.7500
2400 1679 2929 | 0.6996
240 161 289 | 0.6708
2700 1771 3229 | 0.6559
90 56 106 | 0.6222

b

Figure 1.6: Lines of slope a/b corresponding to entries in Plimpton 322

Some important trigonometry may be gleaned from Diophantus’s method if
we compare the angle at O in Figure 1.4 with the angle at Q in Figure 1.5. The two
angles are shown in Figure 1.7, and high school geometry shows that the angle at

Q is half the angle at O.

1.3.4 Why does the angle at Q equal 6/2? (Hint: consider angles in the red
triangle.)

1.3.5 Use Figure 1.7 to show that 7 = tan g and

cosf =

-4
1+

2t

0= ——.
1+
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Figure 1.7: Angles in a circle

1.4 Right-Angled Triangles

It is high time we looked at the Pythagorean theorem from the traditional
point of view, as a theorem about right-angled triangles; however, we will
be rather brief about its proof. It is not known how the theorem was first
proved, but probably it was by simple manipulations of area, perhaps sug-
gested by rearrangement of floor tiles. Just how easy it can be to prove the
Pythagorean theorem is shown by Figure 1.8, given by Heath (1925) in his
edition of Euclid’s Elements, Vol. 1, p. 354. Each large square contains four
copies of the given right-angled triangle. Subtracting these four triangles
from the large square leaves, on the one hand (Figure 1.8, right), the sum
of the squares on the two sides of the triangle. On the other hand (left), it also
leaves the square on the hypotenuse. This proof, like the hundreds of others
that have been given for the Pythagorean theorem, rests on certain geomet-
ric assumptions. It is in fact possible to transcend geometric assumptions
by using numbers as the foundation for geometry, and the Pythagorean the-
orem then becomes true almost by definition, as an immediate consequence
of the definition of distance (see Section 1.5).

To the Greeks, however, it did not seem possible to build geometry on
the basis of numbers, due to a conflict between their notions of number and
length. In the next section we will see how this conflict arose.
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Figure 1.8: Proof of the Pythagorean theorem

EXERCISES

A way to see the Pythagorean theorem in a tiled floor was suggested by Mag-
nus (1974), p. 159, and it is shown in Figure 1.9. (The dotted squares are not tiles;
they are a hint.)

Figure 1.9: Pythagorean theorem in a tiled floor

1.4.1 What has this figure to do with the Pythagorean theorem?

Euclid’s first proof of the Pythagorean theorem, in Book I of the Elements, is
also based on area. It depends only on the fact that triangles with the same base and
height have equal area, though it involves a rather complicated figure. In Book VI,
Proposition 31, he gives another proof, based on similar triangles (Figure 1.10).

1.4.2 Show that the three triangles in Figure 1.10 are similar, and hence prove
the Pythagorean theorem by equating ratios of corresponding sides.
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C [85)

Figure 1.10: Another proof of the Pythagorean theorem

1.5 Irrational Numbers

We have mentioned that the Babylonians, although probably aware of the
geometric meaning of the Pythagorean theorem, devoted most of their atten-
tion to the whole-number triples it had brought to light, the Pytha-
gorean triples. Pythagoras and his followers were even more devoted to
whole numbers. It was they who discovered the role of numbers in musical
harmony: dividing a vibrating string in two raises its pitch by an octave,
dividing in three raises the pitch another fifth, and so on. This great discov-
ery, the first clue that the physical world might have an underlying math-
ematical structure, inspired them to seek numerical patterns, which to them
meant whole-number patterns, everywhere. Imagine their consternation
when they found that the Pythagorean theorem led to quantities that were
not numerically computable. They found lengths that were incommensu-
rable, that is, not measurable as integer multiples of the same unit. The ratio
between such lengths is therefore not a ratio of whole numbers, hence in
the Greek view not a ratio at all, or irrational.

The incommensurable lengths discovered by the Pythagoreans were
the side and diagonal of the unit square. It follows immediately from the
Pythagorean theorem that

(diagonal)2 =1+1=2.

Hence if the diagonal and side are in the ratio m/n (where m and n can be
assumed to have no common divisor), we have

m?/n® =2,

whence
m* = 2n°.
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The Pythagoreans were interested in odd and even numbers, so they proba-
bly observed that the latter equation, which says thatm? is even, also implies
that m is even, say m = 2p. But if

m=12p,
then
2n* = m* = 4p%,
hence
1’12 — 2p2’

which similarly implies that n is even, contrary to the hypothesis that m and
n have no common divisor. (This proof is in Aristotle’s Prior Analytics. An
alternative, more geometric, proof is mentioned in Section 3.4.)

This discovery had profound consequences. Legend has it that the first
Pythagorean to make the result public was drowned at sea (see Heath (1921),
Vol. 1, pp. 65, 154). It led to a split between the theories of number and
space that was not healed until the 19th century (if then, some believe). The
Pythagoreans could not accept V2 as a number, but no one could deny that
it was the diagonal of the unit square. Consequently, geometrical quantities
had to be treated separately from numbers or, rather, without mentioning
any numbers except rationals. Greek geometers thus developed ingenious
techniques for precise handling of arbitrary lengths in terms of rationals,
known as the theory of proportions and the method of exhaustion.

As we will see in Chapter 4, these techniques made necessary use of
infinity—something that the Greeks were very reluctant to do.

The Reconciliation of Numbers with Geometry

As we now know, it is not necessary to deny that V2 is a number, or to do
geometry without applying the processes of arithmetic to lengths, areas,
and volumes. In the 1620s, Fermat and Descartes realized that, if lengths
are viewed as numbers, then each point P in the plane is given by an ordered
pair (x, ) of numbers, called the coordinates of P. The coordinates x and
y are respectively the horizontal and vertical distances of P from an origin
0. We tell the story of their discovery, and the reasons for its success, in
Chapter 6.

In coordinate geometry one can define the distance between any two
points, guided by none other than the Pythagorean theorem. If P} = (xy,41)
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and P; = (x;,y7) then the line P, P, from P, to P, is the hypotenuse of a
triangle with horizontal side x; — x| and vertical side i, — y; (Figure 1.11).

Y

Pa(x2,142)

Y2 — Y1

X2 — X

Pi(x1,y1)

0

Figure 1.11: Distance via the Pythagorean theorem

Since the square of the hypotenuse is the sum of the squares on the other
two sides,

(2 —x1)* + (2 — 1),

we should define

length of P\ P, = \/(xz = x1)* + (2 — y1)*.

It follows, for example, that the points (x, y) at distance 1 from O satisfy
the equation x> + > = 1, which we called the equation of the (unit) circle
in Section 1.3. The coordinate geometry of Fermat and Descartes is part of
what is now called algebraic geometry, a vast expansion of Greek geome-
try. Algebraic geometry was made possible by 16th century discoveries in
algebra, which brought the study of curves into alignment with the study
of polynomial equations.

A coordinate geometry closer in content to Greek geometry, particu-
larly that of Euclid, was developed by Grassmann in the 1840s. Grass-
mann’s geometry is part of what we now call linear algebra, and its key
concept—the inner product—is also inspired by the Pythagorean theorem.
For more on linear algebra and the inner product, see Section 16.2.
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EXERCISES

The crucial step in the proof that V2 is irrational is showing that m” even
implies m is even or, equivalently, that m odd implies m? odd. It is worth taking a
closer look at why this is true.

1.5.1 Writing an arbitrary odd number m in the form 2¢ + 1, for some integer ¢,
show that m? also has the form 2r + 1, which shows that m? is also odd.

You probably did some algebra like this in Exercise 1.2.3, but if not, here is
your chance:

1.5.2 Show that the square of 2¢ + 1 is in fact of the form 4s + 1, and hence
explain why every integer square leaves remainder O or 1 on division by 4.
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Greek Geometry

PREVIEW

Geometry was the first branch of mathematics to become highly devel-
oped. The concepts of “theorem” and “proof™ originated in geometry, and
most mathematicians until recent times were introduced to their subject
through the geometry in Euclid’s Elements.

In the Elements one finds the first system for deriving theorems from
supposedly self-evident statements called axioms. Euclid’s axioms are
incomplete and one of them, the so-called parallel axiom, is not as obvi-
ous as the others. Nevertheless, it took over 2000 years to produce a clearer
foundation for geometry.

The climax of the Elements is the investigation of the regular poly-
hedra, five symmetric figures in three-dimensional space. The five regular
polyhedra make several appearances in mathematical history, most impor-
tantly in the theory of symmetry—group theory—discussed in Chapter 14.

The Elements contains not only proofs but also many constructions,
by ruler and compass. However, three constructions are conspicuous by
their absence: duplication of the cube, trisection of the angle, and squaring
the circle. These problems were not properly understood until the 19th
century, when they were resolved (in the negative) by algebra and analysis.

The only curves in the Elements are circles, but the Greeks studied
many other curves, such as the conic sections. Again, many problems that
the Greeks could not solve were later clarified by algebra. In particular,
curves can be classified by degree, and the conic sections are the curves of
degree 2, as we will see in Chapter 6.

© Springer Nature Switzerland AG 2020 17
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2.1 The Deductive Method

He was 40 years old before he looked on Geometry; which
happened accidentally. Being in a Gentleman’s Library, Euclid’s
Elements lay open, and 'twas the 47 El.libri I. He read the
Proposition. By G—sayd he (he would now and then sweare
an emphaticall Oath by way of emphasis) this is impossi-
ble! So he reads the Demonstration of it, which referred him
back to such a Proposition; which proposition he read. That
referred him back to another, which he also read . . . that at last
he was demonstratively convinced of that trueth. This made
him in love with Geometry.

This quotation about the philosopher Thomas Hobbes (1588-1679),
from Aubrey’s Brief Lives, beautifully captures the force of Greece’s most
important contribution to mathematics, the deductive method. (The propo-
sition mentioned, incidentally, is the Pythagorean theorem.)

We have seen that significant results were known before the period of
classical Greece, but the Greeks were the first to find results by deduction
from previously established results, resting ultimately on the most evident
possible statements, called axioms. Thales (624-547 BcE) is thought to be
the originator of this method (see Heath (1921), p. 128), and by 300 BcE
Euclid’s Elements set the standard for mathematical rigor until the 19th
century. But the Elements is difficult, so in time it was boiled down to
the simplest and driest propositions about lines, angles, and circles. These
propositions are based on the following axioms (in the translation of Heath
(1925), p. 154), which Euclid called postulates and common notions.

Postulates

Let the following be postulated:
. To draw a straight line from any point to any point.
. To produce a finite straight line continuously in a straight line.

1
2
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.

5

. That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if pro-
duced indefinitely, meet on that side on which are the angles less than the
two right angles.
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Common Notions

1. Things which are equal to the same thing are also equal to one another.
If equals be added to equals, the wholes are equal.
If equals be subtracted from equals, the remainders are equal.

Things which coincide with one another are equal to one another.

o N

The whole is greater than the part.

It appears that Euclid’s intention was to deduce geometric propositions
from visually evident statements (the postulates) using evident principles
of logic (the common notions). Actually, he often made unconscious use of
visually plausible assumptions that are not among his postulates. His very
first proposition used the unstated assumption that two circles meet if the
center of each is on the circumference of the other (Heath (1925), p. 242).
Nevertheless, such flaws were not noticed until the 19th century, and they
were rectified by Hilbert (1899). By themselves, they probably would not
have been enough to end the Elements’ run of 22 centuries as a leading
textbook. The Elements was overthrown by more serious mathematical
upheavals in the 19th century. The so-called non-Euclidean geometries,
using alternatives to Euclid’s fifth postulate (the parallel axiom), devel-
oped to the point where the old axioms could no longer be considered
self-evident (see Chapter 13). At the same time, the concept of number
matured to the point where irrational numbers became acceptable, and
indeed preferable to intuitive geometric concepts, in view of the doubts
about what the self-evident truths of geometry really were.

The outcome was a more adaptable language for geometry in which
“points,” “lines,” and so on, could be defined, usually in terms of numbers,
so as to suit the type of geometry under investigation. Such a develop-
ment was long overdue. Even in Euclid’s time the Greeks were investigat-
ing curves more complicated than circles, which did not fit conveniently
in Euclid’s system. Descartes (1637) introduced the coordinate method,
which gives a single framework for handling both Euclid’s geometry and
higher curves (see Chapter 6), but it was not at first realized that coordi-
nates allowed geometry to be entirely rebuilt on numerical foundations.

The comparatively trivial step (for us) of passing to axioms about num-
bers from axioms about points had to wait until the 19th century, when
geometric axioms about points lost authority and number-theoretic axioms
gained it. We say about these developments later (and of problems with the
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authority of axioms in general, which arose in the 20th century). For the
remainder of this chapter we will look at some important nonelementary
topics in Greek geometry, using the coordinate framework where conve-
nient.

EXERCISES

Euclid’s Common Notions 1 and 4 define what we now call an equivalence
relation, which is not necessarily the equality relation. In fact, the kind of relation
Euclid had in mind was equality in some geometric quantity such as length or
angle (but not necessarily equality in all respects—the latter is what he meant by
“coinciding”). An equivalence relation = is normally defined by three properties.
For any a, b and c:

a=a, (reflexive)
azbh = b=a, (symmetric)
azbandb=c = a=c. (transitive)

2.1.1 Explain how Common Notions | and 4 may be interpreted as the transitive
and reflexive properties. Note that the natural way to write Common Notion
1 symbolically is slightly different from the statement of transitivity above.

2.1.2 Show that the symmetric property follows from Euclid’s Common Notions
1 and 4.

Hilbert (1899) took advantage of Euclid’s Common Notions 1 and 4 in his
rectification of Euclid’s axiom system. He defined equality of length by postulat-
ing a transitive and reflexive relation on line segments, and stated transitivity in

the style of Euclid, so that the symmetric property was a consequence.

2.2 The Regular Polyhedra

Greek geometry is virtually complete as far as the elementary properties of
plane figures are concerned. It is fair to say that only a handful of interest-
ing elementary propositions about triangles and circles have been discov-
ered since Euclid’s time. Solid geometry is much more challenging, even
today, so it is understandable that it was left in a less complete state by the
Greeks. Nevertheless, they made some very impressive discoveries and
managed to complete one of the most beautiful chapters in solid geom-
etry, the enumeration of the regular polyhedra. The five possible regular
polyhedra are shown in Figure 2.1. (Images courtesy of Wikimedia.)
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Figure 2.1: Tetrahedron, cube, octahedron, dodecahedron, icosahedron

Each polyhedron is convex and is bounded by a number of congruent
polygonal faces, the same number of faces meet at each vertex, and in each
face all the sides and angles are equal, hence the term regular polyvhedron.
A regular polyhedron is a spatial figure analogous to a regular polygon in
the plane. But whereas there are regular polygons with any number n > 3
of sides, there are only five regular polyhedra.

This fact is easily proved and may go back to the Pythagoreans (see,
for example Heath (1921), p. 159). One considers the possible polygons
that can occur as faces, their angles, and the numbers of them that can
occur at a vertex. For a 3-gon (triangle) the angle is nr/3, so three, four, or
five can occur at a vertex, but six cannot, as this would give a total angle
2m and the vertex would be flat. For a 4-gon the angle is 7/2, so three can
occur at a vertex, but not four. For a 5-gon the angle is 37/5, so three can
occur at a vertex, but not four. For a 6-gon the angle is 27/3, so not even
three can occur at a vertex. But at least three faces must meet at each ver-
tex of a polyhedron, so 6-gons (and, similarly, 7-gons, 8-gons, ...) cannot
occur as faces of a regular polyhedron. This leaves only the five possibili-
ties just listed, which correspond to the five known regular polyhedra.

But do these five really exist? There is no trouble constructing the
tetrahedron, cube, or octahedron, but it is not clear that, say, 20 equilateral
triangles will fit together to form a closed surface. Euclid found this prob-
lem difficult enough to be placed near the end of the Elements, and few
of his readers ever mastered his solution. A beautiful direct construction
was given by Luca Pacioli, a friend of Leonardo da Vinci’s, in his book De
divina proportione (1509). Pacioli’s construction uses three copies of the
golden rectangle, with sides 1 and (1 + V/5)/2, interlocking as in Figure
2.2. The 12 vertices define 20 triangles such as ABC, and it suffices to
show that these are equilateral, that is, AB = 1. This is a straightforward
exercise in the Pythagorean theorem (Exercise 2.2.2).



22 2 Greek Geometry

Figure 2.2: Pacioli’s construction of the icosahedron

The regular polyhedra will make another important appearance in yet
another 19th-century development, the theory of finite groups and Galois
theory. See Chapter 14. Before the regular polyhedra made this triumphant
comeback, they also took part in a famous fiasco: the Kepler (1596) the-
ory of planetary distances. Kepler’s theory is summarized by his famous
diagram (Figure 2.3) of the five polyhedra, nested in such a way as to pro-
duce six spheres of radii proportional to the distances of the six planets
then known. Unfortunately, although mathematics could not permit any
more regular polyhedra, nature could permit more planets, and Kepler’s
theory was ruined when Uranus was discovered in 1781.

EXERCISES

The ratios between successive radii in Kepler’s construction depend on what
may be called the inradius and circumradius of each polyhedron—the radii of the
spheres that touch it on the inside and the outside. It happens that the ratio

circumradius
inradius

is the same for the cube and the octahedron, and it is also the same for the dodec-
ahedron and the icosahedron. This implies that the cube and octahedron can be
exchanged in Kepler’s construction, as can the dodecahedron and the icosahe-
dron. Thus there are at least four different arrangements of the regular polyhedra
that yield the same sequence of radii.

It is easy to see why the cube and the octahedron are interchangeable.
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Figure 2.3: Kepler’s diagram of the polyhedra

2.2.1 Show that Sireumradius _ 3¢, b oih the cube and the octahedron.
inradius

To compute circumradius/inradius for the icosahedron and the dodecahedron
is quite difficult, and we will not pursue it further, other than verifying that Paci-
oli’s construction gives a figure bounded by equilateral triangles.

2.2.2 Check Pacioli’s construction: use the Pythagorean theorem to show that
AB = BC = CA in Figure 2.2. (It may help to use the additional fact that
7= (1+ V5)/2 satisfies 7> = 7+ 1.)

2.3 Ruler and Compass Constructions

Greek geometers prided themselves on their logical purity; nevertheless,
they were guided by intuition about physical space. One aspect of Greek
geometry that was peculiarly influenced by physical considerations was
the theory of constructions. Much of the elementary geometry of straight
lines and circles can be viewed as the theory of constructions by ruler and
compass. (By a “ruler” we mean simply a straightedge; it is not assumed
to have any marks on it.) The very subject matter, lines and circles, reflects



24 2 Greek Geometry

the instruments used to draw them. And many of the elementary problems
of geometry—for example, to bisect a line segment or angle, construct a
perpendicular, or draw a circle through three given points—can be solved
by ruler and compass constructions.

When coordinates are introduced, it is not hard to show that the points
constructible from points Py,..., P, have coordinates in the set of numbers
generated from the coordinates of Py, ..., P, by the operations +, —, X, +,
and V (see Moise (1963) or the exercises to Section 5.3). Square roots
arise, of course, because of the Pythagorean theorem: if points (a, b) and
(¢, d) have been constructed, then so has the distance v/(c — ) + (d — b)?
between them (Section 1.5). Conversely, it is possible to construct V7 for
any given length / (Exercise 2.3.2).

Seen from this viewpoint, ruler and compass constructions look very
special and unlikely to yield numbers such as V2, for example. Just this
number comes up in the classical Greek problem called duplication of the
cube, since doubling the volume of a cube amounts to multiplying its side
V2. Other notorious problems were frisection of the angle and squaring
the circle.! The latter problem was to construct a square equal in area to
a given circle or to construct the number r, which amounts to the same
thing. They sought ruler and compass solutions, though the possibility of
a negative solution was admitted and solutions by less elementary means
were tolerated. We will see some of these in the next sections.

The impossibility of solving these problems by ruler and compass con-
structions was not proved until the 19th century. For the duplication of
the cube and trisection of the angle, impossibility was shown by Wantzel
(1837). Wantzel seldom receives credit for settling these problems, which
had baffled the best mathematicians for 2000 years, perhaps because his
methods were superseded by the more powerful theory of algebraic num-
bers (see Chapter 16).

The impossibility of squaring the circle was proved by Lindemann
(1882), in a very strong way. Not only is 7 undefinable by rational opera-
tions and square roots; it is also transcendental, that is, not the root of any
polynomial equation with rational coefficients. Like Wantzel’s work, this
was a rare example of a major result proved by a minor mathematician. In

!"The term “squaring,” or its Latin equivalent “quadrature,” later became a general term
for finding the area of curved regions, particularly in the 17th century, when calculus solved
many such problems. Since ancient times the “squaring the circle” has been a popular
phrase for trying to do the impossible.
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Lindemann’s case the explanation is perhaps that a major step had already
been taken when Hermite (1873) proved the transcendence of e. Accessi-
ble proofs of both these results can be found in Klein (1924). Lindemann’s
subsequent career was mathematically undistinguished, even embarrass-
ing. In response to skeptics who thought his success with 7 had been a
fluke, he took aim at the most famous unsolved problem in mathematics,
“Fermat’s last theorem” (see Chapter 10 for the origin of this problem).
His efforts fizzled out in a series of inconclusive papers, each one correct-
ing an error in the one before. Fritsch (1984) has written an interesting
biographical article on Lindemann.

One ruler and compass problem is still open: which regular n-gons are
constructible? Gauss discovered in 1796 that the 17-gon is constructible
and then showed that a regular n-gon is constructible if and only if n =
2"p1pa -+ pr, where the p; are distinct primes of the form 22° + 1. (This
problem is also known as circle division, because it is equivalent to divid-
ing the circumference of a circle, or the angle 2, into n equal parts.) The
proof of necessity was actually completed by Wantzel (1837). However, it
is still not explicitly known what these primes are, or even whether there
are infinitely many of them. The only ones known are for h = 0,1, 2,3, 4.

EXERCISES

Many of the constructions made by the Greeks are simplified by translating
them into algebra, where it turns out that constructible lengths are those that can
be built from known lengths by the operations of +, —, X, +, and V. It is there-
fore enough to know constructions for these five basic operations. Addition and
subtraction are obvious, and the other operations are covered in the following
exercises, together with an example in which algebra is a distinct advantage.

2.3.1 Show, using similar triangles, that if lengths /; and [, are constructible, then
soare [/, and I, /1>.

2.3.2 Use similar triangles to explain why V7 is the length shown in Figure 2.4,
and hence show that V! is constructible from /.

Figure 2.4: Square root construction
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One of the finest ruler and compass constructions from ancient times is that of
the regular pentagon, which includes, yet again, the golden ratio 7 = (1 + V5)/2.
Knowing (from the questions above) that this number is constructible, it becomes
easy for us to construct the pentagon itself.

2.3.3 By finding some parallels and similar triangles in Figure 2.5, show that the
diagonal x of the regular pentagon of side 1 satisfies x/1 = 1/(x — 1).

1

Figure 2.5: The regular pentagon

2.3.4 Deduce from Exercise 2.3.3 that the diagonal of the pentagon is (1 + V5)/2
and hence that the regular pentagon is constructible.

2.4 Conic Sections

Conic sections are the curves obtained by cutting a circular cone by a
plane: ellipses (including circles), parabolas, and hyperbolas (Figure 2.6,
left to right). Today we know the conic sections better by their equations:

)C2 2 .

= + % =1, (ellipse)
y = ax’, (parabola)
2 2

poie % =1 (hyperbola)

More generally, any second-degree equation represents a conic section or
a pair of straight lines, a result that was proved by Descartes (1637).

The names “ellipse,” “parabola”, and “hyperbola” come from the
Greek, meaning roughly “too little,” “alongside,” and “too much.” The
ellipse arises by cutting with a plane that slopes too little (to make an infi-
nite curve), the parabola from a plane parallel to one side of the cone, and
the hyperbola from a plane that slopes too much to avoid hitting the other

part of the cone, so it produces a curve with two branches.
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«y

Figure 2.6: Ellipse, parabola, hyperbola

The invention of conic sections is attributed to Menaechmus (fourth
century BCE), a contemporary of Alexander the Great. Alexander is said to
have asked Menaechmus for a crash course in geometry, but Menaechmus
refused, saying, “There is no royal road to geometry.” Menaechmus used
conic sections to give a very simple solution to the problem of duplicating
the cube. In algebraic notation, this can be described as finding the inter-
section of the parabola y = %xz with the hyperbola xy = 1. This yields

1
xix2 =] or =2

The theory and practice of conic sections finally came together when
Kepler (1609) found the orbits of the planets to be ellipses, and Newton
(1687) explained this fact by his law of gravitation. This wonderful vindi-
cation of the theory of conic sections has often been seen as basic research
receiving its long overdue reward, but perhaps one can also see it as a
rebuke to Greek disdain for applications. As for Kepler himself ... to the
end of his days he was proudest of his theory explaining the distances of
the planets in terms of the five regular polyhedra (Section 2.2).
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Figure 2.8: Construction of the cissoid

The Spiric Sections of Perseus (around 150 BcE)

Apart from the sphere, cylinder, and cone—whose sections are all conic
sections—one of the few surfaces studied by the Greeks was the forus.
This surface, generated by rotating a circle about an axis outside the cir-
cle, but in the same plane, was called a spira by the Greeks—hence the
name spiric sections for the sections by planes parallel to the axis. These
sections, which were first studied by Perseus, have four qualitatively dis-
tinct forms (see Figure 2.9).

These forms—convex ovals, “squeezed’ ovals, the figure 8, and pairs
of ovals—were rediscovered in the 17th century when analytic geometers
looked at curves of degree 4, of which the spiric sections are examples.
For suitable choice of torus, the figure 8 curve becomes the lemniscate
of Bernoulli and the convex ovals become Cassini ovals. Cassini (1625—
1712) was a distinguished astronomer but an opponent of Newton’s theory
of gravitation. He rejected Kepler’s ellipses and instead proposed Cassini
ovals as orbits for the planets.



2.5 Higher-Degree Curves 31

e

Figure 2.9: Spiric sections

The Epicycles of Ptolemy (140 ck)

These curves are known from a famous astronomical work, the Almagest
of Claudius Ptolemy. Ptolemy himself attributes the idea to Apollonius.
It seems almost certain that this is the Apollonius who mastered conic
sections, which is ironic, because epicycles were his candidates for the
planetary orbits, destined to be defeated by those very same conic sections.

An epicycle, in its simplest form, is the path traced by a point on a cir-
cle that rolls on another circle (Figure 2.10). More complicated epicycles
can be defined by having a third circle roll on the second, and so on. The
Greeks introduced these curves to try to reconcile the complicated move-
ments of the planets, relative to the fixed stars, with a geometry based on
the circle. In principle, this is possible! Lagrange (1772) showed that any
motion along the celestial equator can be approximated arbitrarily closely
by epicylic motion, and a more modern version of the result may be found
in Sternberg (1969). But Ptolemy’s mistake was to accept the apparent
complexity of the motions of the planets as actual in the first place. As we
now know, the motion becomes simple when one considers motion relative
to the sun rather than to the earth and allows orbits to be ellipses.
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Figure 2.10: Generating an epicycle

Epicycles still have a role to play in engineering, and their mathemat-
ical properties are interesting. Some of them are closed curves and turn
out to be algebraic, that is, of the form p(x,y) = 0 for a polynomial p.
Others, such as those that result from rolling circles whose radii have an
irrational ratio, lie densely in a certain region of the plane and hence can-
not be algebraic; an algebraic curve p(x,y) = 0 can meet a straight line
y = mx + ¢ in only a finite number of points, corresponding to roots of the
polynomial equation p(x, mx + ¢) = 0, and the dense epicycles meet some
lines infinitely often.

An obvious relative of the epicycles is the cycloid, the curve traced by
a point on a circle that rolls on a straight line. The cycloid does not seem to
have been studied by the Greeks, but it became a favorite of 17th-century
mathematicians. As we will see in Chapter 13, spectacular properties of
the cycloid were revealed by the methods of calculus.

EXERCISES
The equation of the cissoid is derivable as follows.

2.5.1 Using X and Y for the horizontal and vertical coordinates, show that the
straight line RP in Figure 2.8 has equation

=" x

I+x

2.5.2 Deduce the equation of the cissoid from Exercise 2.5.1.
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The simplest epicyclic curve is the cardioid (“heart-shape™), which results
from a circle rolling on a fixed circle of the same size.

2.5.3 Sketch a picture of the cardioid, confirming that it is heart-shaped (sort of).
2.5.4 Show that if both circles have radius 1, and we follow the point on the
rolling circle initially at (1, 0), then the cardioid it traces out has parametric
equations
x =2cos 8 — cos 20,
y = 2sin 6 — sin 26.
The cardioid is an algebraic curve. Its cartesian equation may be hard to dis-

cover, but it is easy to verify, especially if one has a computer algebra system.

2.5.5 Check that the point (x, ) on the cardioid satisfies

C+r =1 =4((x=- 1>+ ).
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Greek Number Theory

PrEVIEW

Number theory is the second large field of mathematics that comes to us
from the Pythagoreans via Euclid. The Pythagorean theorem led mathe-
maticians to the study of squares and sums of squares; Euclid drew atten-
tion to the primes by proving that there are infinitely many of them.

His investigations were based on the Euclidean algorithm, a method
for finding the greatest common divisor of two natural numbers. Common
divisors are the key to basic results about prime numbers, in particular
unique prime factorization, which says that each natural number factors
into primes in exactly one way.

Another discovery of the Pythagoreans, the irrationality of V2, has
consequences for natural numbers. Since V2 # m/n for any natural num-
bers m, n, there is no integer solution of the equation x> — 2y*> = 0. But
there are integer solutions of x> — 2y*> = 1, and in fact infinitely many of
them. The same is true of the equation x> — Ny*> = 1 for any nonsquare
natural number N.

The latter equation, called Pell’s equation, is perhaps second in fame
only to the Pythagorean equation x? + »*> = z2, among equations for which
integer solutions are sought. Equations for which integer or rational solu-
tions are sought are called Diophantine, after Diophantus. The methods he
used to solve quadratic and cubic Diophantine equations are still of inter-
est. We study his method for cubics in this chapter, and take it up again in
Chapter 10.

© Springer Nature Switzerland AG 2020 35
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The four-square theorem and the pentagonal number theorem were
both absorbed around 1830 into Jacobi’s theory of theta functions, a much
larger theory. Theta functions are related to the elliptic functions that we
study in Chapter 10.

The prime numbers were also considered within the geometric frame-
work, as the numbers with no rectangular representation. A prime number,
having no divisors apart from itself and 1, has only a “linear” representa-
tion. Of course this is merely a restatement of the definition of prime, and
most theorems about prime numbers require much more powerful ideas;
however, the Greeks did come up with one gem. This is the proof that there
are infinitely many primes, in Book IX of Euclid’s Elements.

Given any finite collection of primes pj, p2, ..., pn, We can find another

by considering p=piprpp+l.

This number is not divisible by py, p2,..., p, (each leaves remainder 1).
Hence either p itself is a prime, and p > py, p2,..., pa, or else it has a
prime divisor # py, p2, ..., Py

A perfect number is one that equals the sum of its divisors (including
1 but excluding itself). For example, 6 = 1 + 2 + 3 is a perfect number, as
is28 = 1+2+4+7+ 14. The concept goes back to the Pythagoreans,
but only two notable theorems about perfect numbers are known. Euclid
concludes Book IX of the Elements by proving that if 2" — 1 is prime, then
212"~ 1) is perfect (Exercise 3.2.5). These perfect numbers are of course
even, and Euler (1849) (a posthumous publication) proved that every even
perfect number is of Euclid’s form. Euler’s surprisingly simple proof may
be found in Burton (1985), p. 504. It is unknown whether odd perfect num-
bers exist—this may be the oldest open problem in mathematics.

In view of Euler’s theorem, all even perfect numbers arise from primes
of the form 2" — 1. These are known as Mersenne primes, after Marin
Mersenne (1588-1648), who first drew attention to the problem of find-
ing primes of this form. It is not known whether there are infinitely many
Mersenne primes, though larger and larger ones seem to be found quite reg-
ularly. In recent years each new world-record prime has been a Mersenne
prime, giving a corresponding world-record perfect number.

EXERCISES

Infinitely many natural numbers are not sums of three (or fewer) squares.
The smallest of them is 7, and it can be shown as follows that no number of the
form 8n + 7 is a sum of three squares.
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3.2.1 Show that any square leaves remainder 0, 1, or 4 on division by 8.

3.2.2 Deduce that a sum of three squares leaves remainder 0, 1, 2, 3,4, 5, or 6
on division by 8.

One reason polygonal numbers play only a small role in mathematics is that
questions about them are basically questions about squares—hence the focus is
on problems about squares.

3.2.3 Show that the kth pentagonal number is (3k> — k)/2.

3.2.4 Show that each square is the sum of two consecutive triangular numbers.

Euclid’s theorem about perfect numbers depends on the prime divisor prop-
erty, which will be proved in the next section. Assuming this for the moment, it
follows that if 2" —1 is a prime p, then the proper divisors of 2"~ p (those unequal
to 2" p itself) are

1,2,2%,...,2"" and p,2p,2%p....2" %p.

3.2.5 Given that the divisors of 2"!p are those just listed, show that 2"!p is
perfect when p = 2" — 1 is prime.

3.3 The Euclidean Algorithm

This algorithm is named after Euclid because its earliest known appear-
ance is in Book VII of the Elements. However, in the opinion of many
historians (for example, Heath (1921), p. 399) the algorithm and some of
its consequences were probably known earlier. At the very least, Euclid
deserves credit for a masterly presentation of the fundamentals of number
theory, based on this algorithm.

The Euclidean algorithm is used to find the greatest common divisor
(ged) of two positive integers a, b. The first step is to construct the pair
(ay, by), where

a; = max(a, b) — min(a, b),
by = min(a, b),
and then one simply repeats this operation of subtracting the smaller num-

ber from the larger. That is, if the pair constructed at step i is (a;, b;), then
the pair constructed at step i + 1 is

ajy1 = max(a;, b;) — min(a;, b;),

bis1 = min(a;, b;).
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The algorithm terminates at the first stage when a;y; = b;,, and this com-
mon value is gcd(a, b). This is because taking differences preserves any
common divisors; hence when a;.1 = b;.; we have

ged(a, b) = ged(ay, by) = - -+ = ged(@ivy, biv1) = @i = biy.

The sheer simplicity of the algorithm makes it easy to draw some important
consequences. Euclid of course did not use our notation, but nevertheless
he had results close to the following.

1. If ged(a, b) = 1, then there are integers m, n such that ma + nb = 1.
The equations

a; = max(a, b) — min(a, b),

b, = min(a, b),

a1 = max(a;, b;) — min(a;, b;),

bi+1 = min(a;, b;)
show first that a;, b, are integral linear combinations, ma + nb, of a
and b, hence so are ay, by, hence so are as, bs, .. ., and finally this is

true of a4, = b;y. But a4y = by = 1, since ged(a, b) = 1; hence
1 = ma + nb for some integers m, n.

2. If p is a prime number that divides ab, then p divides a or b (the
prime divisor property).

To see this, suppose p does not divide a. Then, since p has no other
divisors except 1, we have ged(p,a) = 1. Hence by the previous
result we get integers mi, n such that

ma+np = 1.
Multiplying each side by b gives
mab + nbp = b.

By hypothesis, p divides ab; hence p divides both terms on the left-
hand side, and therefore p divides the right-hand side b.
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3. Each positive integer has a unique factorization into primes (the fun-
damental theorem of arithmetic).

Suppose on the contrary that some integer n has two different prime
factorizations:
n=pip2--pj=4q192 - gk

By removing common factors, if necessary, we can assume that there
is a p; that is not among the ¢’s. But this contradicts the previous
result, because p; divides n = ¢,¢> - - - gx, yet it does not divide any
of g1, q2, ..., qr individually, since these are prime numbers # p;.

Induction

In this and the previous section we have glossed over an important point
that Euclid was aware of but mentioned only briefly—the principle that
an infinite decreasing sequence of positive integers is impossible. In the
present section this infinite descent principle guarantees termination of the
Euclidean algorithm, necessarily with the number ged(a, b), for any pair
of positive integers a, b. This is because the repeated subtraction process
produces steadily decreasing numbers.

In the previous section infinite descent played a hidden role in Euclid’s
proof that there are infinitely many prime numbers: namely, in the assump-
tion that some prime number divides p|pz - -- p, + 1. In Proposition 31 of
Book VII of his Elements, Euclid proves existence of a prime divisor of
any number N by repeatedly splitting N into smaller factors. If this pro-
cess does not arrive at a prime factor then we get an infinite sequence of
positive integers, each smaller than the one before. As Euclid says, this is
“impossible in numbers.”

Today, the impossibility of infinite descent is one way of stating math-
ematical induction (also known as complete induction), a method of proof
that reflects the nature of positive integers as numbers that arise from 1 by
repeatedly adding 1. On the one hand, this property implies that we arrive
at 1 from any positive integer by stepping downward only finitely often.
On the other hand, it implies that any positive integer can be reached from
1 by finitely often adding 1. In particular, a property P can be proved to
hold for all positive integers by proving

1. P holds for the number 1 (the base step),
2. If P holds for n, then P holds for n + 1 (the induction step).
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“Base step, induction step” is often considered the standard form of proof
by induction, but it is perfectly fair to say that proofs by infinite descent,
such as Euclid’s, are also proofs by induction.

Moreover, it is not generally appreciated that number theory needs
induction as much as Euclid needed the parallel axiom in his geometry.
The first to appreciate this fact was Grassmann (1861), who showed that
all the basic algebraic properties of positive integers, suchasa+b =b+a
and ab = ba, can be proved by induction. Even then, Grassmann’s break-
through was buried in a school textbook, and not brought into general
mathematical consciousness until the 1880s, when Peano (1889) formu-
lated an axiom system for arithmetic with an induction axiom at its core.
This system, called Peano arithmetic or PA, is an important part of the
foundations of mathematics, as we will see in Chapter 17.

EXERCISES

We can now fill the gap in the proof of Euclid’s theorem on perfect numbers
(previous exercise set), using the prime divisor property.

3.3.1 Use the prime divisor property to show that the proper divisors of 2"~!p,
for any odd prime p, are 1,2,2%,...,2" " and p,2p,2°p...,2" ?p.

The result that it gcd(a,b) = 1 then 1 = ma + nb for some integers m and n
is a special case of the following way to represent the gcd.

3.3.2 Show that, for any integers a and b, there are integers m and n such that
gcd(a, b) = ma + nb.

This in turn gives a general way to find integer solutions of linear equations.

3.3.3 Deduce from Exercise 3.3.2 that the equation ax + by = ¢ with integer
coeflicients a, b, and ¢ has an integer solution x, y if gcd(a, b) divides c.

The converse of this result is also valid, as one discovers when considering
a necessary condition for ax + by = c¢ to have an integer solution.

3.3.4 The equation 12x + 15y = 1 has no integer solution. Why?

3.3.5 (Solution of linear Diophantine equations) Give a test to decide, for any
given integers a, b, ¢, whether there are integers x, y such that

ax+ by = c.
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Yn
Xn + Yn Yn

Yn+1

Xn+1

Figure 3.3: The recurrence relation

Nevertheless, one feels that Figure 3.3 gives the most natural interpre-
tation of these relations. The discovery that the same relations generate
solutions of x* — 2> = 1 possibly arose from wishing that the Euclidean
algorithm terminated with x; = y; = 1. If the Pythagoreans started with
x1 =y = 1 and applied the recurrence relations, then they may well have
found that (x,,y,) satisfies x> — 2y> = (=1)", as we did earlier.

Many other instances of the Pell equation x> — Ny = 1 occur in Greek
mathematics. In the seventh century ce the Indian mathematician Brah-
magupta gave a procedure for generating larger solutions of x> — Ny*> = 1
from known solutions. But existence of a solution, for any non-square N,
was rigorously proved only in 1768 by Lagrange. The later European work
on Pell’s equation, which began in the 17th century with Brouncker and
others, was based on the continued fraction for VN , though this amounts
to the same thing as anthyphairesis (see exercises). A short but detailed
history of Pell’s equation is in Dickson (1920), pp. 341-400.

An interesting aspect of the theory is the very irregular relationship
between N and the number of steps before a rectangle proportional to the
original recurs. If the number of steps is large, the smallest nontrivial solu-
tion of x> — Ny* = 1 is enormous. A famous example is what is called the
cattle problem of Archimedes (287-212 Bce), which leads to the equation

x° — 4729494y% = 1.
Its smallest solution was found by Krummbiegel and Amthor (1880) to

have 206,545 digits!

A recent paper on the cattle problem, Lenstra (2002), gives a strikingly
condensed form of solution: “for the first time in history, @il infinitely many
solutions to the cattle problem are displayed in a handy little table.”
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be rational, and its third intersection with the curve will also be rational, by
an argument like the preceding one. This fact becomes more useful when
one realizes that the two known rational points can be taken to coincide,
in which case the line is the tangent through the known rational point.
Thus from one rational solution we can generate another by the tangent
construction, and from two we can construct a third by taking the chord
between the two.

Diophantus found rational solutions to cubic equations in what seems
to have been essentially this way. The surviving works of Diophantus reveal
little of his methods, but a plausible reconstruction—an algebraic version
of the tangent and chord constructions—has been given by Bashmakova
(1981). Probably the first to understand Diophantus’s methods was Fermat,
in the 17th century, and the first to give the tangent and chord interpretation
was Newton (1670s).

—

Figure 3.4: Cubic curve > = x* — 3x% + 3x + 1 and tangent

In contrast to the quadratic case, we have no choice in the slope of the
rational line for cubics. Thus it is unclear whether this method will give all
rational points on a cubic. A remarkable theorem, conjectured by Poincaré
(1901) and proved by Mordell (1922), says that all rational points can
be generated by tangent and chord constructions applied to finitely many
points. However, it is still not known whether there is an algorithm for
finding a finite set of such rational generators on each cubic curve.
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EXERCISES

3.5.1 Explain the solution x = 21/4, 5y = 71/8 to x* = 3x> + 3x+ | = y* given by
Diophantus (Heath (1910), p. 242) by constructing the tangent through the
obvious rational point on this curve (Figure 3.4).

3.5.2 Rederive the following rational point construction of Viéte (1593), p. 145.
Given the rational point (a, b) on - y3 = a° — b, show that the tangent
at (a, b) is

2
a
y= ﬁ(x - a) + bv

and that the other intersection of the tangent with the curve is the rational
point
a’ - 2b° bb3 -24°
X=a—-Fr, =b—--.
a + b} Y a + b
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4
Infinity in Greek Mathematics

PrEVIEW

Perhaps the most interesting—and most modern—feature of Greek math-
ematics is its treatment of infinity. The Greeks feared infinity and tried to
avoid it, but in doing so they laid the foundations for a rigorous treatment
of infinite processes in 19th century calculus.

The most original contributions to the theory of infinity in ancient
times were the theory of proportions and the method of exhaustion. Both
were due to Eudoxus and expounded in Books V and XII of Euclid’s Ele-
ments.

The theory of proportions develops the idea that a “quantity” A (what
we would now call a real number) can be known by its position among the
rational numbers. That is, A is known if we know the rational numbers less
than A and the rational numbers greater than A. In a sense, the space less
than A can be “exhausted” by rational numbers.

The method of exhaustion generalizes this idea from quantities to regions
of the plane or space. A region becomes known (in area or volume) when
its position among known areas or volumes is known. For example, we
know the area of a circle when we know the areas of the polygons inside
it and the areas of polygons outside it; we know the volume of a pyramid
when we know the volumes of stacks of prisms inside it and outside it.

Using this method, Euclid found that the volume of a tetrahedron
equals 1/3 of its base area times its height, and Archimedes found the area
of a parabolic segment. Both of them relied on an infinite process that is
fundamental to many calculations of area and volume: the summation of
an infinite geometric series.
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