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SOME CONSPICUOUS PATTERNS

I do not wish, at this stage, to examine the logical justification of this form of
argumentation; for the present, I am considering it as a practice, which
we can observe in the habits of men and animals.—BERTRAND RUSSELL!

1. Verification of a consequence. In the first volume of this work on
Induction and Analogy in Mathematics we found some opportunity to familiarize
ourselves with the practice of plausible reasoning. In the present second
volume we undertake to describe this practice in general terms. The examples
of the first part have already indicated certain forms or patterns of plausible
reasoning. In the present chapter we undertake to formulate some such
patterns explicitly.?

We begin with a pattern of plausible inference which is of so general use
that we could extract it from almost any example. Yet let us take an example
which we have not yet discussed before.

The following conjecture is due to Euler:® Any integer of the form 8n + 3 is
the sum of a square and of the double of a prime. Euler could not prove this
conjecture, and the difficulty of a proof appears perhaps even greater today

than in Euler’s time. Yet Euler verified his statement for all integers of the
form 8n 4+ 3 under 200; forn = 1,2,... 10 see Table I.

Table 1
11=1+4+2 x5
19 =94+ 2 x5
27 =14+ 2 x 13
35=14+2%x17=94+2x13=254+2 x5
43 =9 4+ 2 x 17
51 =25 4+ 2 x 13
I =14+2x29=25+2x17=49+4+ 2 x5
67 =9 4+ 2 X 29
75 =142 x37 =49 4+ 2 x 13
83 =14+2x4]1 =942 x37=254+2x29=49 4 2 x 17

1 Philosophy, W. W. Norton & Co., 1927, p. 80.

* Parts of this chapter were used in my address ““On plausible reasoning” printed in the
Proceedings of the International Congress of Mathematicians 1950, vol. 1, p. 739-747.

¥ Opera Omnia, ser. 1, vol. 4, p. 120-124. 1In this context, Euler regards 1 as a prime;
this is needed to account for thecase 3 =1 + 2 x 1.

3



4 SOME CONSPICUOUS PATTERNS

Such empirical work can be easily carried further; no exception has been
found in numbers under 1000.# Does this prove Euler’s conjecture? By
no means; even verification up to 1,000,000 would prove nothing. Yet
each verification renders the conjecture somewhat more credible, and we can
see herein a general pattern.

Let A denote some clearly formulated conjecture which is, at present,
neither proved, nor disproved. (For instance, 4 may be Euler’s conjecture
that, forn=1,2,3,... ,

8n +3=x*+4 2p

where x is an integer and p a prime.) Let B denote some consequence of 4;
also B should be clearly stated and neither proved, nor disproved. (For
instance, B may be the first particular case of Euler’s conjecture not listed in
Table I which asserts that 91 = 22 4 2p.) For the moment we do not know
whether 4 or B is true. We do know, however, that

A implies B.

Now, we undertake to check B. (A few trials suffice to find out whether the
assertion about 91 is true or not.) If it turned out that B is false, we could
conclude that A also is false. This is completely clear. We have here a
classical elementary pattern of reasoning, the “modus tollens’’ of the so-called
hypothetical syllogism:
A implies B
B false
A false

The horizontal line separating the two premises from the conclusion stands
as usual for the word ‘“‘therefore.”” We have here demonstrative inference of a
well-known type.

What happens if B turns out to be true? (Actually, 91 =9 4+ 2 X 41
= 81 4+ 2 X 5.) There is no demonstrative conclusion: the verification
of its consequence B does not prove the conjecture 4. Yet such verification
renders A more credible. (Euler’s conjecture, verified in one more case,
becomes somewhat more credible.) We have here a pattern of plausible
inference:

A implies B
B true
A more credible

The horizontal line again stands for ““therefore.”” We shall call this pattern
the fundamental inductive pattern or, somewhat shorter, the “inductive pattern.”

¢ Communication of Professor D. H. Lehmer.
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This inductive pattern says nothing surprising. On the contrary, it
expresses a belief which no reasonable person seems to doubt: 7he verification
of a consequence renders a conjecture more credible. 'With a little attention, we can
observe countless reasonings in everyday life, in the law courts, in science,
etc., which appear to conform to our pattern.

2. Successive verification of several consequences. In the present
section, I use the phrase “discussion of a theorem” in the specific meaning
“discussion, or survey, of some particular cases and some more immediate
consequences of the theorem.’”” I think that the discussion of the theorems
presented is useful both in advanced and in elementary classes. Let us
consider a very elementary example. Let us assume that you teach a class
in solid geometry and that you have to derive the formula for the area of the
lateral surface of the frustum of a cone. Of course, the cone is a right
circular cone, and you are given the radius of the base R, the radius of the
top r, and the altitude A. You go through the usual derivation and you

arrive at the result:
A. The area of the lateral surface of the frustum is

m(R+ 1)V (R —1) + b

We call this theorem A for future reference.

Now comes the discussion of the theorem 4. You ask the class: Can you
check the result? If there is no response, you give more explicit hints: Can you
check the result by applying it? Can you check it by applying it to some
particular case you already know? Eventually, with more or less collaboration
from the part of your class, you get down to various known cases. If R = r,

you obtain a first noteworthy particular case:
B,. The area of the lateral surface of a cylinder is 2mrh.

Of course, 4 stands for the altitude of the cylinder and r for the radius of
its base. We call B, this consequence of A for future reference. The
consequence B, has been treated already in your class and so it serves as a

confirmation of A4.
You obtain another particular case of 4 in setting r = 0 which yields:

B,. The area of the lateral surface of a cone is wRV R® + 2.
Here 4 denotes the altitude of the cone and R the radius of its base. Also
this consequence B, of 4 was known before and serves as a further confirmation

of A.

There is a less obvious but interesting particular case corresponding to
h=0:

Bgy. The area of the annulus between two concentric circles with radii R and r is
mR® — =l

This consequence B3 of 4 is clear from plane geometry and yields still
another confirmation of A.
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different from the pattern that we have juststated, but rather a complementary
form of it:

A implies B,
B, ., is very similar to the formerly verified
consequences B,, B,, ... B, of 4

B, ., true

A just a little more credible

- Co—— ——————

The verification of a new consequence counts more or less according as the new
censequence differs more or less from the formerly verified consequences.

3. Verification of an improbable consequence. In a little known
short note® Euler considers, for positive values of the parameter n, the series

2 4 6
X X X

n(n + 1) | an+1)(n+2)(n+3) n...(Mn+5) e

which converges for all values of x. He observes the sum of the series and
its zeros for n = 1, 2, 3, 4.

(1) 1

n= 1: sum cos x, zeros + m/2, + 3nw/2, + S=[2, ...
n= 2: sum (sin x)/x, zeros + m, + 2m, + 3m, ...
n=3: sum 2(l — cos x)/x*, zeros 4+ 2m, 4+ 4w, + b=, ...
n=4: sum 6(x — sin x)/x% no real zeros.

Euler observes a difference: in the first three cases all the zeros are real, in
the last case none of the zeros is real. Euler notices a more subtle difference
between the first two cases and the third case: for n = 1 and n = 2, the
distance between two consecutive zeros is 7 (provided that we disregard the
zeros next to the origin in the case n = 2) but for n = 3 the distance between
consecutive zeros is 27 (with a similar proviso). This leads him to a striking
observation: in the case n = 3 all the zeros are double zeros. ‘““Yet we
know from Analysis,” says Euler, “that two roots of an equation always
coincide in the transition from real to imaginary roots. Thus we may
understand why all the zeros suddenly become imaginary when we take for
n a value exceeding 3.” On the basis of these observations he states a
surprising conjecture: the function defined by the series (1) has only real zeros,
and an infinity of them, when 0 << n < 3, but has no real zero at all whenn > 3. In
this statement he regards n as a continuously varying parameter.

In Euler’s time questions about the reality of the zeros of transcendental
equations were absolutely new, and we must confess that even today we

possess no systematic method to decide such questions. (For instance, we

8 Opera Omma, ser. 1, vol. 16, sect. 1, p. 241-263.
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cannot prove or disprove Riemann’s famous hypothesis.) Therefore, Euler’s
conjecture appears extremely bold. I think that the courage and clearness
with which he states his conjecture are admirable.

Yet Euler’s admirable performance is understandable to a certain extent.
Other experts perform similar feats in dealing with other subjects, and each
of us performs something similar in everyday life. In fact, Euler guessed the
whole from a few scattered details. Quite similarly, an archaeologist may
reconstitute with reasonable certainty a whole inscription from a few
scattered letters on a worn-out stone. A paleontologist may describe
reliably the whole animal after having examined a few of its petrified bones.
When a person whom you know very well starts talking in a certain way,
you may predict after a few words the whole story he is going to tell you.
Quite similarly, Euler guessed the whole story, the whole mathematical
situation, from a few clearly recognized points.

It is still remarkable that he guessed it from so few points, by considering
just four cases, n = 1, 2, 3, 4. We should not forget, however, that circum-
stantial evidence may be verystrong. A defendantis accused of having blown
up the yacht of his girl friend’s father, and the prosecution produces a receipt
signed by the defendant acknowledging the purchase of such and such an
amount of dynamite. Such evidence strengthens the prosecution’s case
immensely. Why? Because the purchase of dynamite by an ordinary
citizen is a very unusual event in itself, but such a purchase is completely
understandable if the purchaser intends to blow up something or somebody.
Please observe that this court case is very similar to the case n =3
of Euler’s series. That all roots of an equation written at random turn
out to be double roots 1s a very unusual event in itself. Yet it 1s com-
pletely understandable that in the transition from two real roots to two
imaginary roots a double root appears. The case n = 3 is the strongest
piece of circumstantial evidence produced by Euler and we can perceive
herein a general pattern of plausible inference:

A implies B
B very improbable in itself
B true

e

A very much more credible

Also this pattern appears as a modification or a sophistication of the funda-
mental inductive pattern (sect. 1). Let us add, without specific illustration
for the moment, the complementary pattern which explains the same idea
from the reverse side:
A implies B
B quite probable in itself
B true

A just a little more credible
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The first statement is the isoperimetric theorem, the second a celebrated
conjecture of Lord Rayleigh. Our tables yield sound inductive evidence
for both statements but, of course, no proof.

The situation has changed since we considered these tables in sect. 10.1]
and 10.4. In the meantime we have seen a proof for the isoperimetric
theorem (sect. 10.6-10.8, ex. 10.1-10.15). The geometrical minimum
property of the circle, inductively supported by Table II, has been proved.
It 1s natural to expect that the analogous physical minimum property of the
circle, inductively supported by Table III, will also turn out to be true.
In expecting this we follow an important pattern of plausible inference:

A analogous to B

B true

A more credible

A comjecture becomes more credible when an analogous conjecture turns out to be true.
The application of this pattern to the situation discussed seems sensible.
Yet there are further promising indications in this situation.

5. Deepening the analogy. The Tables II and III, side by side, seem
to offer further suggestions. The ten figures considered do not appear in
exactly the same sequence in both tables. There is something peculiar about
this sequence. The arrangement in Table II appears not very different
from that in Table III, but this is not the main point. The tables contain
various kinds of figures: rectangles, triangles, sectors. How are the figures
of the same kind arranged? How would a shorter table look listing only
figures of one kind? The tables contain a few regular figures: the equi-
lateral triangle, the square, and, let us not forget it, the circle. How are
the regular figures arranged? Could we compare somehow figures of
different kinds, for instance, triangles and sectors? Could we broaden the
inductive basis by adding further figures to our tables? (In this we are
much restricted. It is not difficult to compute areas and perimeters, but
the principal frequency is difficult to handle and its explicit expression is
known 1n very few cases only.) Eventually we obtain Table IV.

Table IV exhibits a remarkable parallelism between these two quantities
depending on the shape of a variable plane figure: the perimeter and the
principal frequency. (We should not forget that the area of the variable
figure is fixed, = 1.) If we know the perimeter, we are by no means able
to compute the principal frequency or vice versa. Yet, judging from Table
IV, we should think that, in many simple cases, these two quantities vary in
the same direction. Consider the two columns of numerical data in this table
and pass from any row to the next row: if there is an increase in one of the
columns, there is a corresponding increase in the other, and if there is a
decrease in one of the columns, there is a corresponding decrease in the other.
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Table IV
Perimeters and principal frequencies of figures of equal area
Figure Perimeter Pr. frequency
Rectangles:
1 : 1 (square) 4.00 4.443
3:2 4.08 4.624
2:1 4.24 4.967
3:1 4.64 5.736
Triangles:
60° 60° 60° 4.56 4.774
45° 45° 90° 4.84 4.967
30° 60° 90° 5.08 5.157
Sectors:
180° (semicircle) 4.10 4.803
90° (quadrant) 4.03 4.551
60° {sextant) 4.21] 4616
45° 4.44 4.755
36° 4.68 4916
30° 4.93 5.084
Regular figures:
circle 3.55 4.261
square 4.00 4.443
equilateral triangle 4.56 4.774
Triangles versus sectors:
tr. 60° 60° 60° 4.56 4.774
sector 60° 4.21 4616
tr. 45° 45° 90° 4.84 4.967
sector 45° 4.44 4.755
tr. 30° 60° 90° 5.08 5.157
sector 30° 4.93 5.084

Let us focus our attention on the rectangles. If the ratio of the length to
the width increases from 1 to o0, so that the shape varies from a square to an
infinitely elongated rectangle, both the perimeter and the principal frequency
seem to increase steadily. The square which, being a regular figure, is
“nearest’’ to the circle among all quadrilaterals, has the minimum perimeter
and also the minimum principal frequency. Of the three triangles listed,
the equilateral triangle which, being a regular figure, is ““nearest” to the
circle among all triangles has the minimum perimeter and also the minimum
principal frequency. The behavior of the sectors is more complex. As the
angle of the sector varies from 180° to 0°, the perimeter first decreases, attains
a minimum, and then increases; and the principal frequency varies in the
same manner. Let us now look at the regular figures. The equilateral triangle
has 3 axes of symmetry, the square has 4 such axes, and the circle an infinity,
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As far as we can see from Table IV, both the perimeter and the principal
frequency seem to decrease as the number of the axes of symmetry increases.
In the last section of Table IV we matched each triangle against the sector
whose angle is equal to the least angle of the triangle. In all three cases,
the sector turned out to be “more circular,” having the shorter perimeter and
the lower principal frequency.

What we definitely know about these regularities goes, of course, only as
far as Table IV goes. That these regularities hold beyond the limits of the
experimental material collected is suggested and rendered plausible by
Table IV, but is by no means proved. And so Table IV led us to several
new conjectures which are similar to Rayleigh’s conjecture although, of
course, of much more limited scope.

How does Table IV influence our confidence in Rayleigh’s conjecture?
Can we find in Table IV any reasonable ground for it that we did not notice
before in discussing the Tables II and III?

We certainly can. First of all, the Table IV contains a few more particular
cases in which Rayleigh’s conjecture is verified (the 30° 60° 90° triangle, the
sectors with opening 45°, 36°, and 30°). Yet there is more than that. The
analogy between the isoperimetric theorem and Rayleigh’s conjecture has
been considerably deepened; the facts listed in Table IV add several new
aspects to this analogy. Now it seems to be reasonable to consider a con-
clusion from analogy as becoming stronger if the analogy itself, on which the
conclusion is based, becomes stronger. And so Table IV considerably

strengthens Rayleigh’s case.

6. Shaded analogical inference. Yet there is still something more.
As we have observed, Table IV suggests several conjectures which are analo-
gous to (but of more limited scope than) Rayleigh’s conjecture. Table IV
suggests these conjectures and lends them some plausibility too. Yet this
circumstance quite reasonably raises somewhat the plausibility of Rayleigh’s
original conjecture. If you think so too, you think according to the following

pattern:
A analogous to B

B more credible

SRS

A somewhat more credible

A conjecture becomes somewhat more credible when an analogous conjecture becomes more
credible. This is a weakened or shaded form of the pattern formulated in

sect. 4.

EXAMPLES AND COMMENTS ON CHAPTER XII

1. Table I, exhibiting some inductive evidence for Euler’s conjecture
mentioned in sect. 1, is very similar to the table in sect. 1.3, or to Tables I,
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6. Set
a" + b" + " =3,

forn=1,2,3,...and define p, ¢, and r by the identity in x

(x—a) (x —b) (x —¢) =2 —px® +gx — 1

so that
P=ﬂ+b+ﬂ:
— ab + ac + b,
r — abec.

(In the usual terminology, p, ¢, and r are the “elementary symmetric
functions” of a, b, and ¢, and 5, a ‘“‘sum of like powers.””) Obviousl

n P Ys
p = 5. It is asserted that, for arbitrary values of @, b, and ¢,

~ 25,° — 55y%53 + 355
= 5_@13__53) o
L 5,8 — 55353 — 5s55% + Osy5,
15(5° — 53)
provided that the denominator does not vanish. Check these formulas in

the particular case a = 1, b = 2, ¢ = 3 and in three more cases displayed
in the table:

Case a b ¢
(1) 1 9 3
(2) 1 2 —3
(3) 1 2 0
(4) 1 2 —2

Devise further checks. Especially, try to generalize the cases (2), (3),
and (4).

7. Let A, By, B,, By, and B, have the meaning given them in sect. 2. Does
the verification of B,, coming after that of B,, B,, and B,, supply additional
inductive evidence for 47?

8. Let us recall Euler’s “Most Extraordinary Law’ and the meaning of
the abbreviations 7', C,, GC,, C,, ... C, C5, CJ, ... explained in sect. 6.3.
Euler supported the theorem 7, when he was not yet able to prove it,
inductively, by verifying its consequences C,, C,, C,, . . . Cy,. (He went even
further, perhaps.) Then he discovered that also C{*, C, CJ, ... are con-
sequences of 7', and verified CT, C3, . . . Coy, Cly1, Cao;-  Thanks to these new
verifications Euler’s confidence was, presumably, much strengthened: but
was it justifiably strengthened? [Closer attention to detail is needed here

than in ex. 2.]
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9. We return to Euler’s conjecture discussed in sect. 1; for the sake of

brevity, we call it the “conjecture E.”” Let us note concisely the meaning of
this abbreviation,

E: 8n 4+ 3 = 2?2 4 2p.

The idea that led Euler to his conjecture E deserves mention. Euler
devoted much of his work to those celebrated propositions of Number
Theory that Fermat has stated without proof. One of these (we call it the
“conjecture F’) says that any integer is the sum of three trigonal numbers.
Let us note concisely the meaning of this abbrewviation,

x(x—1) -1 =z2z—1)

2 2 2 7
Euler observed that if his conjecture E were true, Fermat’s conjecture F
would easily follow. That is, Euler satisfied himself that E implies F.
(For details, see the next ex. 10.) Bent on proving Fermat’s conjecture F,
Euler naturally desired that his conjecture E should be true. Is this mere
wishful thinking? I do not think so; the relations considered yield some
weak but not unreasonable ground for believing Euler’s conjecture E
according to the following scheme:

F: n =

L 1implies £
F credible
E somewhat more credible

Here is another pattern of plausible inference. The reader should compare it
with the fundamental inductive pattern.

10. In proving that E implies F (in the notation of the foregoing ex. 9),
Euler used a deeper result which he proved previously: a prime number of
the form 4n 4 1 is a sum of two squares. (This was discussed inductively in
ex. 4.4.) Taking this for granted, prove that actually E implies F.

xx. After having conceived his conjecture discussed in sect. 3, Euler tested
it by computing the first zeros of his series for a few values of n. (By a
“first zero”” we mean a zero the absolute value of which is a minimum. If
x 1s a first zero of the series in question, also — x is a zero, and x and — x are
“first zeros.” Therefore, x is real if, and only if, x? is positive.) Of course,
Euler had to compute these zeros approximately. A method (Daniel
Bernoulli’s method) which he frequently used for such a purpose yielded the
following sequences of approximate values for the first zero x in the cases

n=1/2,1/3, 1/4.

n=1/2 n=1/3 n=1/4
4x2 ~ 3.000 9x2 ~ 4.0000 16x2 ~ 5.0000
3.281 4.2424 5.2232
3.291 4.2528 5.2302

3.304 4.2532 2.2304
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(2) The numerical data quoted in ex. 11 led the author to suspect the

general theorem proved l.c. This is a small but concrete example of the use
of the inductive method in mathematical research.

13. In ch. IV we investigated inductively the sum of four odd squares;
see sect. 4.3-4.6, Table 1. Later we tackled the analogous problems
involving four arbitrary squares and eight squares; see ex. 4.10-4.23 and
Tables II and I1I. The former investigation certainly helped us to recognize
the law in the latter cases. Should our confidence in the result of the latter
investigation also be enhanced by the result of the former?

14. Inductive conclusion from fruitless efforts. Construct, by ruler and com-
passes, the side of a square equal in area to a circle of given radius. This is the
strict formulation of the famous problem of the quadrature of the circle,
conceived by the Greeks. It was not forgotten in the Middle Ages, although
we cannot believe that many people then understood its strict formulation;
Dante refers to it at the theological culmination of the Divina Commedia,
toward the end of the concluding Canto. The problem was about two
thousand years old as the French Academy resolved that manuscripts
purporting to square the circle will not be examined. Was the Academy
narrow-minded? I do not think so; after the fruitless efforts of thousands
of people in thousands of years there was some ground to suspect that the
problem is insoluble.

You are moved to give up a task that withstands your repeated efforts.
You desist only after many and great efforts if you are stubborn or deeply
concerned. You desist after a few cursory trials if you are easy going or
not seriously concerned. Yetin any case there is a sort of inductive con-
clusion. The conjecture under consideration is:

A. It is impossible to do this task.

You observe:

B. Even I cannot do this task.

This, in itself, i1s very unlikely indeed. Yet certainly

A implies B

and so your observation of B renders 4 more credible, by the fundamental
irductive pattern.

The impossibility of squaring the circle, strictly formulated, was proved in
1882, by Lindemann, after the basic work of Hermite. There are other
similar problems dating from the Greeks (the Trisection of an Angle and the
Duplication of the Cube) that, after the accumulated evidence of fruitless
efforts, have been ultimately proved insoluble. After fruitless efforts to
construct a ‘“perpetuum mobile’’ the physicists formulated the ““principle of
the impossibility of a perpetual motion,” and this principle turned out
remarkably fruitful.
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FURTHER PATTERNS AND FIRST LINKS

When we have intuitively understood some simple propositions . . . it s
useful to go through them with a continuous, uninterrupted motion of thought,
to meditate upon their mutual relations, and to conceive distinctly several of
them, as many as possible, simultaneously. In this manner our knowledge
will grow more certain, and the capacity of the mind will notably increase.—
DESCARTES!

1. Examining a consequence. We consider a situation which
frequently occurs in mathematical research. We wish to decide whether a
clearly formulated mathematical proposition 4 is true or not. We have,

perhaps, some intuitive confidence in the truth of A4, but that is not enough:
we wish to prove 4 or disprove it. We work at this problem, but without
decisive success. After a while we notice a consequence B of 4. This B is
a clearly formulated mathematical proposition of which we know that it
follows from A4:

A implies B.

Yet we do not know whether B is true or not. Now it seems that B is more
accessible than A4; for some reason or other we have the impression that we
shall have better success with B than we had with 4. Therefore, we switch
to examining B. We work to answer the question: is B true or false?

Finally we succeed in answering it. How does this answer influence our confidence
inA?

That depends on the answer. If we find that B, this consequence of 4, 1s
false, we can infer with certainty that 4 must also be false. Yet if we find
that B is true, there is no demonstrative inference: although its consequence
B turned out to be true, A itself could be false. Yet there 1s a heuristic
inference: since its consequence B turned out to be true, A4 itself seems to

! The eleventh of his Rules for the Direction of the Mind. See Oeuvres, edited by Adam
and Tannery, vol. 10, 1908, p. 407.

18
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deserve more confidence. According to the nature of our result concerning
B, we follow a demonstrative or a heuristic pattern:

Demonstrative Heunistic

A implies B A implies B
B false B true
A false A more credible

We met these patterns already in sect. 12.1 where we called the heuristic
pattern the fundamental inductive pattern. We shall meet with similar
but different patterns in the following sections.

2. Examining a possible ground. We consider another situation
that frequently occurs in mathematical research. We wish to decide whether
the clearly formulated proposition A4 is true or not, we wish to prove 4 or
disprove it. After some indecisive work we hit upon another proposition
B from which 4 would follow. We do not know whether B is true or not,
but we have satisfied ourselves that

A is implied by B.

Thus, if we could prove B, the desired 4 would follow; B is a possible ground
for . We may be tired of 4, or B may appear to us more promising than 4;
for some reason or other we switch to examining B. QOur aim is now to
prove or disprove B. Finally we succeed. How will our result concerning
B influence our confidence in 4?

That depends on the nature of our result. If we find that B is true, we
can conclude that 4 which is implied by B (follows from B, is a consequence
of B) 1s also true. Yet if we find that B is false, there is no demonstrative
conclusion: A could still be true. But we have been obliged to discard a
possible ground for 4, we have one chance less to prove 4, our hope to
prove A from B has been wrecked: if there is any change at all in our
confidence in 4 in consequence of the disproof of B, it can only be a change
for the worse. In short, according to the nature of our result concerning B,
we follow a demonstrative or a heuristic pattern:

Demonstrative Heuristic
A implied by B A implied by B
B true B false
A true A less credible

Observe that the first premise is the same in both patterns. The second
premises are diametrically opposite, and the conclusions are also opposite,
although not quite as far apart.
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(1) The term proposition may be taken in a more general meaning, but
most of the time it will be sufficient and even advantageous to think of some
clearly formulated mathematical proposition of which for the moment we do
not know whether it is true or not. (A good example of a proposition for a more
advanced reader is the celebrated “Riemann hypothesis”: Riemann’s
&-function has only real zeros. We do not know, in spite of the efforts of many
excellent mathematicians, whether this proposition is true or false.) We
shall use capitals 4, B, C, . .. to denote propositions.

(2) The negation of the proposition 4 is a proposition that is true if, and
only if, 4 is false. We let non-A4 stand for the negation of A.

(3) The two statements “A is false’” and ““non-A4 is true’” amount exactly
to the same. We can substitute one for the other in any context without
changing the import, the truth, or the falsity, of the whole text. Two
statements which can be so substituted for each other are termed equivalent.
Thus, the statement “A4 is false’ is equivalent to the statement ‘““non-4 is
true.” It will be convenient to write this in the abbreviated form:

“A false” eq. “non-4 true.”

It 1s also correct to say that

“A true” eq. “non-4 false.”
“non-A4 true’’ eq. “4 false,”

“non-A4 false” eq. “4 true.”

(4) We say that the two propositions A and B are incompatible with each
other, if both cannot be true. The proposition 4 can be true or false,
B can be true or false; if we consider 4 and B jointly, four different cases can
arise:

A true, B true A true, B false

A false, B true A false, B false.

If we say that 4 is incompatible with B, we mean that the first of these four

cases (in the north-west corner) is excluded. Incompatibility is always
mutual. Therefore,

“4 incompatible with B eq. “B incompatible with 4.”

(5) We say that 4 implies B (or B is implied by A4, or B follows from 4, or
B is a consequence of A4, etc.) if 4 and non-B are incompatible. Thus the
concept of implication is characterized by the following equivalence:

“A 1mplies B” eq. “4 incompatible with non-B.”

To know that 4 implies B is important. For the moment we do not know
whether A4 is true or not and we are in the same state of ignorance concerning
B. If, however, it should turn out some day that A is true, we shall know
right away that non-B must be false and so B must be true.
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We know that
“A incompatible with non-B" eq. ‘““non-B incompatible with A4.”
We know also that
“non-B incompatible with 4” eq. ““non-B implies non-4.”
From the chain of the last three equivalences we conclude:
“4 1mplies B” eq. ““non-B implies non-4."

This last equivalence is quite important in itself and it will be essential in the
following consideration.

(6) The few points of formal logic discussed in this section enable us
already to clarify the relation between the demonstrative patterns encountered
in the three foregoing sections.

Let us start from the demonstrative pattern formulated in sect. 1 (the
“modus tollens™):

A implies B
B false

A false
[t 1s understood that this pattern is generally applicable. Let us apply it in
substituting non-4 for 4 and non-B for B. We obtain

non-A implies non-B

non-B false

non-A false
We have seen, however, in the foregoing that
“non-A implies non-B”" eq. ‘B implies 4”
“non-B false” eq. “B true”

“non-A4 false” eq. “A4 true”

Le. us substitute for the premises and the conclusion of the last considered
pattorn the three corresponding equivalent statements here displayed. Then
we obhtain:
B 1mplies 4
B true

A true

which is the demonstrative pattern of sect. 2, the “modus ponens.”

We leave to the reader to derive similarly the demonstrative pattern of
sect. 3 from that of sect. 1.
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can be interpreted as confirmation or refutation. Such interpretation
depends on some kind of plausible reasoning the difficulties of which in
“physical situations” begin a step earlier than in “mathematical situations.”
We shall try to reduce this distinction to its simplest expression.

Suppose that we are investigating a mathematical conjecture by examining
its consequences. Let A stand for the conjecture and B for one of its con-
sequences, so that 4 implies B. We arrive at a final decision concerning B:
we disprove B or we prove it and, accordingly, we face one or the other of
the following two situations:

A implies B A implies B
B false B true

We shall call these “mathematical situations.”” We have considered them
repeatedly and we know what reasonable inference we can draw from each.

Suppose now that we are investigating a physical conjecture 4 and that we
test experimentally one of its consequences B. We cannot arrive at an
absolute decision concerning B; our experiments may show, however, that
B, or its contrary, is very hard to believe. Accordingly, we face one or the
other of the following two situations:

A implies B A implies B

B scarcely credible B almost certain

We call these “physical situations.” What inference is reasonable in these
situations? (The empty space under the horizontal line that suggests the
word “‘therefore” symbolizes the open question.)

In each of the four situations considered we have two data or premises.
The first premise is the same in all four situations; all the difference between
them hinges on the second premise. This second premise is on the level
of pure formal logic in the “mathematical’ situations, but on a much vaguer
level in the “physical” situations. This difference seems to me essential;
it may account for the additional difficulties of the physical situations.

Let us survey the four situations “with a continuous uninterrupted motion
of thought,” as Descartes liked to say (see the motto at the beginning of this
chapter). Let us imagine that our confidence in B changes gradually,
varies ‘‘continuously.” We imagine that B becomes less credible, then still
less credible, scarcely believable, and finally false. On the other hand, we
imagine that B becomes more credible, then still more credible, practically
certain, and finally true. If the strength of our conclusion varies continually in
the same direction as the strength of our confidence in B, there is little doubt what
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our conclusion should be since the two extreme cases (B false, B true) are
clear. In this manner we arrive at the following patterns:

A implies B A implies B
B less credible B more credible
A less credible A somcu;fh;i ﬁmrc credible

The word “somewhat” in the second pattern is inserted to remind us that
the conclusion is, of course, weaker than in the fundamental inductive
pattern. Qur confidence in a conjecture is influenced by our confidence in one of its
consequences and varies in the same direcion. 'We shall call these patterns shaded,
the first is a shaded demonstrative pattern, the second is the shaded version
of the fundamental inductive pattern. The term ‘‘shaded” intends to
indicate the weakening of the second premise: ‘“less credible” instead of
“false’; ““more credible” instead of “true.” We have already used this
term in this meaning in sect. 12.6.

We obtained the shaded patterns just introduced from their extreme
cases, the “modus tollens’ and the fundamental inductive pattern discussed
in sect. 1, by weakening the second premise. In the same manner we can
obtain other shaded patterns from the patterns formulated in sects. 2 and 3.
We state just one here (all are listed in the next section). The heuristic
pattern of sect. 3 yields the following st.aded pattern:

A incompatible with B
B less credible

A somewhat more credible

7. Atable. Inorder to list concisely the patterns discussed in this chapter,
it will be convenient to use some abbreviations. We write

A—> B for A implies B,
A<« B for A isimplied by B,
A|B for A incompatible with B.

The symbols introduced are used by some authors writing on symbolic
logic.? In this notation, the two formulas

A — B, B« A
are exactly equivalent and so are the formulas

A| B, B|A

o - W TS T el T

* D. Hilbert and W. Ackerman, Grundziige der theoretischen Logik.
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We shall also abbreviate “credible’ as ‘“‘cr.” and “somewhat’ as “‘s.” See
Table 1.

Table 1
(1) (2) (3) (4)
Shaded Shaded
Demonstrative Demonstrative Inductive Inductive

I. Examining a consequence A—~B A—-> B A—- B A—-> B

B false B less cr. B more cr. B true

A false A less cr. As. morecr. A more cr.
2. Examining a possible ground A<« B A<« B A<« B A<« B

B true B more cr. B less cr. B false

A true A more cr. ':A s. less cr. A less cr,
3. Examining a conflicting A|B A|B A|B A|B

conjecture B true B more cr. B less cr. B false
A false A less cr. As, morecr. A more cr.

8. Combination of simple patterns. The following situation can
easily arise in mathematical research. We investigate a theorem A. This
theorem A4 is clearly formulated, but we do not know and we wish to find
out whether it is true or false. After a while we hit upon a possible ground:
we see that 4 can be derived from another theorem H

A 1s implied by H

and so we try to prove H. We do not succeed in proving H, but we notice
that one of its consequences B is true. The situation is:

A implied by H
B implied by H
B true

[s there a reasonable inference concerning A4 from these premises?

There is one, I think, and we can even obtain it by combining two of the
patterns surveyed in the foregoing section. In fact, the fundamental
inductive pattern yields:

H implies B
B true

H more credible

In obtaining this conclusion, we have used only two of our three premises.
Let us combine the unused third premise with the conclusion just obtained;
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There is, of course, the important difference that now we do not have H,
we just hope for H. With this proviso, however, we can regard the two
premises

A implied by H
B implied by H

as equivalent to one:
A analogous to B.

In substituting this one premise for those two premises in the above com-
pound pattern we arrive at the fundamental pattern of plausible inference

first exhibited in sect. 12.4:

A analogous to B
B true

A more credible

10. Qualified inference. We come back again to the fundamental
inductive pattern. It is the first pattern that we introduced and it is the
most conspicuous form of plausible reasoning. It is concerned with the
verification of a consequence of a conjecture and the resulting change in our
opinion. It says something about the direction of this change; such a

verification can only increase our confidence in the conjecture. It says
nothing about the amount of the change; the increase of confidence can be

great or small. Indeed, it can be tremendously great or ridiculously small.

The aim of the present section is to clarify the circumstances on which
such an important difference depends. We begin by recalling one of our
examples (sect. 12.3).

A defendant is accused of having blown up the yacht of his girl friend’s
father and the prosecution produces a receipt signed by the defendant
acknowledging the purchase of such and such an amount of dynamite.

The evidence against the defendant appears very strong. Why does it
appearso? Let usinsist on the general features of the case. 'T'wo statements
play an essential role.

A: the defendant blew up that yacht.
B: the defendant acquired explosives.

At the beginning of the proceedings, the court has to consider 4 as a
conjecture. The prosecution works to render A more credible to the
jurors, the defense works to render it less credible.

At the beginning of the proceedings also B has to be considered as a
conjecture. Later, after the introduction of that receipt in court (the
authenticity of the signature was not challenged by the defense) B has to
be considered as a proven fact.
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Certain relations between A and B, however, should be clear from the
beginning.

A without B is impossible. If the defendant blew up the yacht, he had
some explosives. He had to acquire these explosives somehow: by purchase,
stealing, gift, inheritance or otherwise. That is

A implies B.

B without 4 is not impossible, but must appear extremely unlikely from
the outset. To buy dynamite is very unusual anyhow for an ordinary
citizen. To buy dynamite without the intention of blowing up something
or somebody would be nonsense. It was easy to suspect that the defendant
had quite strong emotional and financial grounds for blowing up that yacht.
It was difficult to suspect any purpose for the purchase of dynamite, except
blowing up the yacht. And so, as we said, B without 4 appears extremely
unlikely.

Let us nail down this important constituent of the situation: the credi-
bility of B, before the event, viewed under the assumption that A is not true. We shall
abbreviate this precise but long description as ‘“‘the credibility of B without
A.” Thus, we can say:

B without A4 is hardly credible.

Now, we can see the essential premises and the whole pattern of the
plausible inference that impressed us with its cogency:

A implies B
B without 4 hardly credible
B true

A very much more credible

For better understanding let us imagine that that important constituent of
the situation, the credibility of B without A, changes gradually, varies
continuously between its extreme cases.

A implies B. If| conversely, also B implies 4, so that 4 and B imply each
other mutually, the credibility of B without 4 attains its minimum, is nil,
In this case, if B is true, also 4 is true, so that the credibility of 4 attains its
maximum.

A implies B. That is, B is certain when 4 is true. If the credibility of
B without 4 approaches its maximum, B is almost certain when A4 is false.
Therefore, B is almost certain anyway. When an event happens that looks
almost certain in advance, we do not get much new information and so we
cannot draw surprising consequences. (The purchase of a loaf of bread,
for instance, can hardly ever yield such a strong circumstantial evidence,
as the purchase of dynamite.)
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This expresses essentially the same thing as the complementary patterns
formulated in sect. 12.2, but perhaps a little better. In fact, we may
regard the explicit mention of analogy as an advantage.

12. On rival conjectures. If there are two different conjectures, 4 and
B, aimed at explaining the same phenomenon, we regard them as opposed to
each other even if they are not proved to be logically incompatible. These
conjectures 4 and B may or may not be incompatible, but one of them tends
to render the other superfluous. This is enough opposition, and we regard
A and B as rival conjectures.

There are cases in which we treat rival conjectures almost as if they were
incompatible. For example, we have two rival conjectures 4 and B but,
in spite of some effort, we cannot think of a third conjecture explaining the
same phenomenon; then each of the two conjectures A and Bis the “‘unique
obvious rival” of the other. A short schematic illustration may clarify the
meaning of the term.

Let us say that 4 is the emission theory of light that goes back to Newton
and that B is the wave theory of light that originated with Huyghens. Let
us also imagine that we discuss these matters in the time after Newton and
Huyghens, but before Young and Fresnel when, in fact, much inconclusive
discussion of these theories took place. Nobody showed, or pretended to
show, that these two theories are logically incompatible, and still less that
they are the only logically possible alternatives; but there were no other
theories of light prominently in view, although the physicists had ample
opportunity to invent such theories: each theory was the unique obvious
rival of the other. And so any argument that seemed to speak against one
of the two rival theories was readily interpreted as speaking for the other.

In general, the relation between rival conjectures is similar to the relation
between rivals in any other kind of competition. If you compete for a prize,
the weakening of the position of any of your rivals means some strengthening
of your position. You do not gain much by a slight setback to one of your
many obscure rivals. You gain more if such setback occurs to a dangerous
rival. You gain still more if your most dangerous rival drops out of the race.
If you have a unique obvious rival, any weakening or strengthening of his
position influences your position appreciably. And something similar

happens between competing conjectures. There is a pattern of plausible
reasoning which we attempt to make somewhat more explicit in Table I1I.

Table 11
A incompatible with B A incompatible with B
B false B less credible
A more credible A somewhat more credible
A rival of B A rnival of B
B false B less credible

A a little more credible A very little more credible
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The disposition of Table II is almost self-explanatory. This Table contains
four patterns arranged in two rows and two columns. The first row contains
two patterns already considered; see sect. 3, the end of sect. 6, and the last
row of Table I. In passing from the first row to the second row, we weaken
the first premise; in fact we substitute for a clear relation of formal logic
between A and B a somewhat diffuse relation which, however, makes some
sense in practice. This weakening of the first premise renders the conclusion
correspondingly weaker, as the verbal expression attempts to convey. In
passing from the first column to the second column we weaken the second
premise, which renders the conclusion correspondingly weaker. The pattern
in the southeast corner has no premise that would make sense in demonstra-
tive logic and its conclusion is the weakest.

It is important to emphasize that the verbal expressions used are slightly
misleading. In fact, the specifications added to “‘credible” (‘“somewhat,”
“a little,” ““very little”) should not convey any absolute, only a relative, degree
of credibility. They indicate only the change in strength as we pass from
one row to the other, or from one column to the other. Even the weakest of
the four patterns may yield a weighty conclusion if the conviction that the
conjecture 4 has no other dangerous rival than B is strong enough. In fact,
this pattern will play some role in the next chapter.

13. On judicial proof. The reasoning by which a tribunal arrives at
its decisions may be compared with the inductive reasoning by which the
naturalist supports his generalizations. Such comparisons have been already
offered and debated by authorities on legal procedure.® Let us begin the
discussion of this interesting point by considering an example.

(1) The manager of a popular restaurant that is kept open to late hours
returned to his suburban home, as usual, well after midnight. As he left
his car to open the door of his garage, he was held up and robbed by two
masked individuals. The police, searching the premises, found a dark grey
rag in the front yard of the victim; the rag might have been used by one of
the holdup men for covering his face. The police questioned several persons
in the nearby town. One of the men questioned had an overcoat with a big
hole in the lining, but otherwise in good condition. The rag found in the
front yard of the victim of the holdup was of the same material as the lining
and fitted into the hole exactly. The man with the overcoat was arrested
and charged with participation in the holdup.

(2) Many of us may feel that such a charge was amply justified by the
related circumstances. But why? What is the underlying idea?

The charge is not a statement of facts, but the expression of a suspicion, of
a conjecture:

A. The man with the overcoat participated in the holdup.

— -—

8 J. H. Wigmore, The principles of judicial proof, Boston, 1913; cf. p. 9-12, 15-17.
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