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INDUCTION

It will seem not a little paradoxical to ascribe a great importance to observa-
tions even in that part of the mathematical sciences which is usually called
Pure Mathematics, since the current opinion is that observations are restricted
to physical objects that make impression on the senses. As we must refer the
numbers to the pure intellect alone, we can hardly understand how observations
and quasi-experiments can be of use in investigating the nature of the numbers.
Yet, in fact, as I shall show here with very good reasons, the properties of the
numbers known today have been mostly discovered by observation, and dis-
covered long before their truth has been confirmed by rigid demonstrations.
There are even many properties of the numbers with which we are well
acquainted, but which we are not ye! able to prove; only observations have led
us to their knowledge. Hence we see that in the theory of numbers, whick is
still very imperfect, we can place our highest hopes in observations; they will
lead us continually to new properties which we shall endeavor to prove after-
wards.  The kind of knowledge which is supported only by observations and
is not yet proved must be carefully distinguished from the truth; it is gained
by induction, as we usually say. Yet we have seen cases in which mere
induction led to error.  Therefore, we should take great care not to accept as
true such properties of the numbers which we have discovered by observation
and which are supported by induction alone. Indeed, we should use such a
discovery as an opportunity to tnvestigate more exactly the properties discovered
and to prove or disprove them; in both cases we may learn something
useful.—EULER!

1. Experience and belief. Experience modifies human beliefs. We
learn from experience or, rather, we ought to learn from experience. To
make the best possible use of experience is one of the great human tasks and
to work for this task is the proper vocation of scientists.

A scientist deserving this name endeavors to extract the most correct
belief from a given experience and to gather the most appropriate experience
in order to establish the correct belief regarding a given question. The

! Euler, Opera Omnia, ser. 1, vol. 2, p. 459, Specimen de usu observationum in mathesi
pura,
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scientist’s procedure to deal with experience is usually called induction.
Particularly clear examples of the inductive procedure can be found in
mathematical research. We start discussing a simple example in the next
section.

2. Suggestive contacts. Induction often begins with observation. A
naturalist may observe bird life, a crystallographer the shapes of crystals,
A mathematician, interested in the Theory of Numbers, observes the
properties of the integers §, 2, 3, 4,5,. ...

If you wish to observe bird life with some chance of obtaining interest-
ing results, you should be somewhat familiar with birds, interested in
birds, perhaps you should even like birds. Similarly, if you wish to observe
the numbers, you should be interested in, and somewhat familiar with,
them. You should distinguish even and odd numbers, you should know
the squares I, 4, 9, 16, 25, . . . and the primes 2, 3, 5, 7, 11, 13, 17, 19, 23,
29,.... (Itis better to keep 1 apart as “unity” and not to classify it as
a prime.) Even with so modest a knowledge you may be able to observe
something interesting.

By some chance, you come across the relations

34+7=10, 3417=20, 13417 =30

and notice some resemblance between them. It strikes you that the numbers
3, 7,13, and 17 are odd primes. The sum of two odd primes is necessarily
an even number; in fact, 10, 20, and 30 are even. What about the other
even numbers? Do they behave similarly? The first even number which
is a sum of two odd primes is, of course,

6 =34 3.
Looking beyond 6, we find that
8=3+45
10=347=5+5
12=5+47
14=3+11=7+7
16 =34+ 13=5+11.

Will it go on like this forever? At any rate, the particular cases observed
suggest a general statement: Any even number greater than 4 is the sum of two
odd primes. Reflecting upon the exceptional cases, 2 and 4, which cannot
be split into a sum of two odd primes, we may prefer the following more
sophisticated statement: Any even number that is neither a prime nor the square
of a prime, is the sum of twe odd primes.
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We arrived so at formulating a conjecture. 'We found this conjecture by
tnduction. 'That is, it was suggested by observation, indicated by particular
instances.

These indications are rather flimsy; we have only very weak grounds to
believe in our conjecture. We may find, however, some consolation in the
fact that the mathematician who discovered this conjecture a little more than
two hundred years ago, Goldbach, did not possess much stronger
grounds for it, '

Is Goldbach’s conjecture true? Nobody can answer this question today.
In spite of the great effort spent on it by some great mathematicians,
Goldbach’s conjecture is today, as it was in the days of Euler, one of those
“many properties of the numbers with which we are well acquainted, but
which we are not yet able to prove” or disprove.

Now, let us look back and try to perceive such steps in the foregoing
reasoning as might be typical of the inductive procedure.

First, we noticed some similarity. We recognized that 3, 7, 13, and 17 are
primes, 10, 20, and 30 even numbers, and that the three equations
34+ 7=10,3 417 = 20, 13 4 17 = 30 are analogous to each other.

Then there was a step of generalization. From the examples 3, 7, 13, and
17 we passed to all odd primes, from 10, 20, and 30 to all even numbers,
and then on to a possibly general relation

even number = prime -+ prime.

We arrived so at a clearly formulated general statement, which, however,
is merely a conjecture, merely tentative. Thatis, the statement is by no means
proved, it cannot have any pretension to be true, it is merely an attempt
to get at the truth.

This conjecture has, however, some suggestive points of contact with
experience, with “the facts,” with “reality.”” It is true for the particular
even numbers 10, 20, 30, aiso for 6, 8, 12, i4, 16.

With these remarks, we outlined roughly a first stage of the inductive
process.

3. Supporting contacts. You should not put too much trust in any
unproved conjecture, even if it has been propounded by a great authority,
even if it has been propounded by yourself. You should try te prove it or
to disprove it; you should fest it.

We test Goldbach’s conijecture if we examine some new even number
and decide whether it is or is not a sum of two odd primes. Let us examine,
for instance, the number 60. Let us perform a ‘“quasi-experiment,” as
Euler expressed himself. The number 60 is even, but is it the sum of two
primes? Is it true that

60 = 3 4 prime?
No, 57 is not a prime. Is

60 = 5 + prime?
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The answer is again “No”: 55 is not a prime. If it goes on in this way,
the conjecture will be exploded. Yet the next trial yields

60 =7 4 53

and 53 is a prime. The conjecture has been verified in one more case.

The contrary outcome would have settled the fate of Goldbach’s con-
jecture once and for all. If, trying all primes under a given even number,
such as 60, you never arrive at a deéomposition into a sum of two primes,
you thereby explode the conjecture irrevocably, Having verified the
conjecture in the case of the even number 60, you cannot reach such a
definite conclusion. You certainly do not prove the theorem by a single
verification. It is natural, however, to interpret such a verification as a
Javorable sign, speaking for the conjecture, rendering it more credible, although,
of course, it is left to your personal judgement how much weight you attach
to this favorable sign.

Let us return, for a moment, to the number 60. After having tried the
primes 3, 5, and 7, we can try the remaining primes under 30. {Obviously,
it is unnecessary to go further than 30 which equals 60/2, since one of the
two primes, the sum of which should be 60, must be less than 30.) e
obtain so all the decompositions of 60 into a sum of two primes:

60=7453=13447=17+43 =194 41 =23 4+ 37 =29 + 31.
We can proceed systematically and examine the even numbers one after

the other, as we have just examined the even number 60. We can tabulate
the results as follows:

6=3+3

8=3-+5
10=3+4+7=545
12=5+7

14=34+11=747

16 =34 13=5+ 11
18=5+13=7 411

20 =3+ 17 =7+ 13

22 =34+ 19 =54 17 =11 + 11
924 =54+19=7 417 =11+ 13
26 =323 =7+19=13 + 13
98 =5+ 23 = 11 4 17

30 =7 +23 =114+ 19 =13+ 17.
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4. Observe the values of the consecutive sums

I, 148 148427, 148427+ 64,

Is there a simple rule?

5. The three sides of a triangle are of lengths /, m, and »n, respectively.
The numbers [, m, and n are positive integers, [ < m < n.  Find the number
of different triangles of the described kind for a given.n. [Taken =1, 2, 3,
4,5, ... .1 Find a general law governing the dependence of the number
of triangles on n.

6. The first three terms of the sequence 5, 15, 25, . . . (numbers ending
in 3) are divisible by 5. Are also the following terms divisible by 5?

The first three terms of the sequence 3, 13, 23, . . . (numbers ending in 3)
are prime numbers. Are also the following terms prime numbers?

4. By formal computation we find

(14 Ul 2062 1 313 - 418 L5165 L6148 4., )T
=1 —x —a%— 3% — 13x% — 71x% — 461x8 . ..
This suggests two conjectures about the following coefficients of the right

hand power series: (1) they are all negative; (2) they are all primes. Are
these two conjectures equally trustworthy?

8. Set
Apx?

2"'!—+.-.

(1 T .--)_1=A0+‘51—*f+
We find that for
n=0 12 3 4 5 6 7 8 9
A,=1 1 1 2 4 14 38 216 600 6240,
State a conjecture.
9. The great French mathematician Fermat considered the sequence

5, 17, 257, 65537, . . . ,

the general term of which is 22" 4 1. He observed that the first four terms
(here given), corresponding to n =1, 2, 3, and 4, are primes. He con-
jectured that the following terms are also primes. Although he did not
prove it, he felt so sure of his conjecture that he challenged Wallis and
other English mathematicians to prove it. Yet Euler found that the very
next term, 232 4 1, corresponding to n = 5, is not a prime: it is divisible
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by 641.2 See the passage of Euler at the head of this chapter: “Yet we
have seen cases in which mere induction led to-error.”

10. In verifying Goldbach’s conjecture for 2n = 60 we tried successively
the primes p under n = 30. We could have also tried, however, the
primes p’ between n = 30 and 2n = 60. Which procedure is likely to be
more advantageous for greater n?

11. In a dictionary, you will find among the explanations for the words
“induction,” “experiment,” and “cbservation’ sentences like the following.

“Induction is inferring a general law from particular instances, or a
production of facts to prove a general statement.”

“Experiment is a procedure for testing hypotheses.”

“Observation is an accurate watching and noting of phenomena as they
occur in nature with regard to cause and effect or mutual relations.”

Do these descriptions apply to our example discussed in sect. 2 and 37

12. Yes and No. The mathematician as the naturalist, in testing some
consequence of a conjectural general law by a new observation, addresses a
question to Nature: ‘I suspect that this law is true. Is it true?” If the
consequence is clearly refuted, the law cannot be true. If the consequence
is clearly verified, there is some indication that the law may be true. Nature
may answer Yes or No, but it whispers one answer and thunders the other,
its Yes is provisional, its No is definitive.

¥3. Experience and behavior. Experience modifies human behavior. And
experience modifies human beliefs. These two things are not independent
of each other. Behavior often results from beliefs, beliefs are potential
behavior. Yet you can see the other fellow’s behavior, you cannot see his
beliefs. Behavior is more easily observed than belief. Everybody knows
that ‘““a burnt child dreads the fire,” which expresses just what we said:
experience modifies human behavior.

Yes, and it modifies animal behavior, too.

In my neighborhood there is a mean dog that barks and jumps at people
without provocation. But I have found that I can protect myself rather
easily. IfI stoop and pretend to pick up a stone, the dog runs away howling,
All dogs do not behave so, and it is easy to guess what kind of experience
gave this dog this behavior,

The bear in the zoo “begs for food.” That is, when there is an onlooker
around, it strikes a ridiculous posture which quite frequently prompts the
onlooker to throw a lump of sugar into the cage. Bears not in captivity
probably never assume such a preposterous posture and it is easy to imagine
what kind of experience led to the zoo bear’s begging.

A thorough investigation of induction should include, perhaps, the study
of animal behavior.

2 Euler, Opera Omnia, ser. 1, vol. 2, p. 1-5. Hardy and Wright, The Theory of Numbers,
p- 14-15.
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14. The logician, the mathematician, the physicist, and the engineer. ‘‘Look at
this mathematician,” said the logician. ‘‘He observes that the first ninety-
nine numbers are less than hundred and infers hence, by what he calls
induction, that all numbers are less than a hundred.”

“A physicist believes,” said the mathematician, “that 60 is divisible by
all numbers. He observes that 60 is divisible by 1, 2, 3, 4, 5, and 6, He
examines a few more cases, as 10, 20, and 30, taken at random as he says.
Since 60 is divisible also by these, he considers the experimental evidence
sufficient.”

“Yes, but look at the engineers,” said the physicist. “An engineer
suspected that all odd numbers are prime numbers. At any rate, 1 can be
considered as a prime number, he argued. Then there come 3, 5, and 7,
all indubitably primes. Then there comes 9; an awkward case, it does not
seem to be a prime number. Yet 11 and 13 are certainly primes. ‘Coming
back to 9,” he said, ‘I conclude that 9 must be an experimental error.”

It is only too obvious that induction can lead to error. Yet it is remark-
able that induction sometimes leads to truth, since the chances of error appear
so overwhelming. Should we begin with the study of the obvious cases in
which induction fails, or with the study of those remarkable cases in which
induction succeeds? The study of precious stones is understandably more
attractive than that of ordinary pebbles and, moreover, it was much more
the precious stones than the pebbles that led the mineralogists to the
wonderful science of crystallography.
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GENERALIZATION, SPECIALIZATION,
ANALOGY

And I cherish more than anything else the Analogies, my most trustworthy
masters. They know all the secrets of Nature, and they ought to be least
neglected in Geomelry.—KEPLER

1. Generalization, Specialization, Analogy, and Induction. Let us
look again at the example of inductive reasoning that we have discussed in
some detail (sect. 1.2, 1.3). We started from observing the analogy of the
three relations

34+7=10, 3+17=20, 13+ 17 = 30,

we generalized in ascending from 3, 7, 13, and 17 to all primes, from 10, 20,
and 30 to all even numbers, and then we specialized again, came down to test
particular even numbers such as 6 or 8 or 60.

This first example is extremely simple. It illustrates quite correctly the
role of generalization, specialization, and analogy in inductive reasoning.
Yet we should examine less meager, more colorful illustrations and, before
that, we should discuss generalization, specialization, and analogy, these
great sources of discovery, for their own sake.

2. Generalization is passing from the consideration of a given set of
objects to that of a larger set, containing the given one. For example, we
generalize when we pass from the consideration of triangles to that of
polygons with an arbitrary number of sides. We generalize also when we
pass from the study of the trigonometric functions of an acute angle to the
trigonometric functions of an unrestricted angle.

It may be observed that in these two examples the generalization was
effected in two characteristically different ways. In the first example, in
passing from triangles to polygons with n sides, we replace a constant by a
variable, the fixed integer 3 by the arbitrary integer n (restricted only by the
inequality n = 3). In the second example, in passing from acute angles to

12
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arbitrary angles «, we remove a restriction, namely the restriction that
0° < a < 90°.

We often generalize in passing from just one object to a whole class
containing that object.

3. Specialization is passing from the consideration of a given set of
objects to that of a smaller set, contained in the given one. For example,
we specialize when we pass from the consideration of polygons to that of
regular polygons, and we specialize still further when we pass from regular
pelygons with n sides to the regular, that is, equilateral, triangle.

These two subsequent passages were effected in two characteristically
different ways. In the first passage, from polygons to regular polygons, we
introduced a restriction, namely that all sides and all-angles of the polygon
be equal. In the second passage we substituted a special object for a
variable, we put 3 for the variable integer n.

Very often we specialize in passing from a whole class of objects to just
one object contained in the class. For example, when we wish to check
some general assertion about prime numbers we pick out some prime number,
say 17, and we examine whether that general assertion is true or not for
just this prime 17.

4. Analogy. There is nothing vague or questionable in the concepts of
generalization and specialization. Yet as we start discussing analogy we
tread on a less solid ground.

Analogy is a sort of similarity, It is, we could say, similarity on a more
definite and more conceptual level. Yet we can express ourselves a little
more accurately. The essential difference between analogy and other
kinds of similarity lies, it seems to me, in the intentions of the thinker.
Similar objects agree with each other in some aspect. If you intend to
reduce the aspect in which they agree to definite concepts, you regard those
similar objects as analogous. If you succeed in getting down to clear concepts,
you have clarified the analogy.

Comparing a young woman to a flower, poets feel some similarity, I
hope, but usually they do not contemplate analogy. In fact, they scarcely
intend to leave the emotional level or reduce that comparison to something
measurable or conceptually definable.

Locking in a natural history museumn at the skeletons of various mammals,
you may find them all frightening. If this is all the similarity you can find
between them, you do not see much analogy. Yet you may perceive a
wonderfully suggestive analogy if you consider the hand of a man, the paw
of a cat, the foreleg of a horse, the fin of a whale, and the wing of a bat,
these organs so differently used, as composed of similar parts similarly
related to each other.

The last example illustrates the most typical case of clarified analogy;
two systems are analogous, if they agree in clearly definable relations of their
respective parts.



16 GENERALIZATION, SPECIALIZATION, ANALOGY

This aim suggests that we describe squares on the three sides of our right
triangle. And so we arrive at the not unfamiliar part I of our compound
figure, fig. 2.3. (The reader should draw the parts of this figure as they
arise, in order to see it in the making.)

(2) Discoveries, even very modest discoveries, need some remark, the
recognition of some relation. We can discover the following proof by
observing the analogy between the familiar part 1 of our compound figure

\/

[l
T
N =Y
© =
¥ LN
& 3

I  anarogy I :[

Fig. 2.3.

and the scarcely less familiar part II: the same right triangle that arises in
I is divided in II into two parts by the altitude perpendicular to the
hypotenuse.

{3) Perhaps, you fail to perceive the analogy between I and II. This
analogy, however, can be made explicit by a common generalization of 1
and II which is expressed in III. There we find again the same right
triangle, and on its three sides three polygons are described which are similar
to each other but arbitrary otherwise.

(4) The area of the square described on the hvpotenuse in I is 22.. The
area of the irregular polygon described on the hypotenuse in III can be put
equal to Aa?; the factor A is determined as the ratio of two given areas.
Yet then, it follows from the similarity of the three polygons described on
the sides a, &, and ¢ of the triangle in III that their areas are equal to Aa2,
Ab2%, and Ac?, respectively.

Now, if the equation (A) should be true (as stated by the theorem that
we wish to prove), then also the following would be true:

(B) Aa?® = 1% + Ac2.
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-In fact, very little algebra is needed to derive (B) from (A). Now, (B)
represents a generalization of the original theorem of Pythagoras: If three
similar polygons are described on three sides of a right triangle, the one described on
the hypotenuse is equal in area to the sum of the two others.

It is instructive to observe that this generalization is eguivalent to the
special case from which we started. In fact, we can derive the equations
(A) and (B) from each other, by multiplying or dividing by A (which is, as
the ratio of two areas, different from 0).

{(5) The general theorem expressed by (B) is equivalent not only to the
special case (A), but to any other special case. Therefore, if any such
special case should turn out to be obvious, the general case would be
demonstrated.

Now, trying to specialize usefully, we look around for a suitable special
case. Indeed II represents such a case. In fact, the right triangle described
on its own hypotenuse is similar to the two other triangles described on the
two legs, as is well known and easy to see. And, obviously, the area of the
whole triangle is equal to the sum of its two parts. And so, the theorem of
Pythagoras has been proved. ‘

The foregoing reasoning is eminently instructive. A case is instructive
if we can learn from it something applicable to other cases, and the more
instructive the wider the range of possible applications. Now, from the
foregoing example we can learn the use of such fundamental mental opera-
tions as generalization, specialization, and the perception of analogies.
There is perhaps no discovery either in elementary or in advanced mathe-
matics or, for that matter, in any other subject that could do without these
operations, especially without analogy.

The foregoing example shows how we can ascend by generalization from
a special case, as from the one represented by I, to a more general situation
as to that of IT1, and redescend hence by specialization to an analogous case,
as to that of II. It shows also the fact, so usual in mathematics and still so
surprising to the beginner, or to the philosopher who takes himself for
advanced, that the general case can be logically equivalent to a special
case. Our example shows, naively and suggestively, how generalization,
specialization, and analogy are naturally combined in the effort to attain
the desired solution. Observe that only a minimum of preliminary
knowledge is needed to understand fully the foregoing reasoning.

6. Discovery by analogy. Analogy seems to have a share in all
discoveries, but in some it has the lion's share. I wish to illustrate this
by an example which is not quite elementary, but is of historic interest
and far more impressive than any quite elementary example of which
I can think.

Jacques Bernoulli, a Swiss mathematician (1654-1705), a contem-
porary of Newton and Leibnitz, discovered the sum of several infinite
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series, but did not succeed in finding the sum of the reciprocals of the
squares,

NN D S S SOV SO I
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“If somebody should succeed,” wrote Bernoulli, “in finding what till now
withstood our efforts and communicate it to us, we shall be much obliged
to him.”

The problem came to the attention of another Swiss mathematician,
Leonhard Euler (1707-1783), who was born at Basle as was Jacques
Bernoulli and was a pupil of Jacques’ brother, Jean Bernoulli (1667-1748).
He found various expressions for the desired sum (definite integrals, other
series), none of which satisfied him. He used one of these expressions to com-
pute the sum numerically to seven places (1.644934). Yet this is only an
approximate value and his goal was to find the exact value. He dis-
covered it, eventually. Analogy led him to an extremely daring conjecture.

(1) We begin by reviewing a few elementary algebraic facts essential to
Euler’s discovery. If the equation of degree n

g+ ax +ax+ ...+ ax"=0
has n different roots

By, Oy« o - &y

the polynomial on its left hand side can be represented as a product of n
linear factors,

ay + ayx + apx® + ...+ g =
a,(x — ) (¥ — o) - .. (x — &),

By comparing the terms with the same power of x on both sides of this
identity, we derive the well known relations between the roots and the
coefficients of an equation, the simplest of which is

4y = —‘ﬂ"(ﬂl + %o + L + un);
we find this by comparing the terms with x"-1.

There is another way of presenting the decomposition in linear factors.
If none of the roots o, ay, . . . &, is equal to 0, or (which is the same) if
a, is different from 0, we have also

gy + ayx + ax® + ... + g x"
=202 (-2

| 1
%=ﬂ4—+—+”.+ﬂ.

* % %n

and
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There is still another variant. Suppose that the equation is of degree
2n, has the form

by — by® + byt — .. .+ (—1)"h 22 = 0

and 2n different roots

B —Bu By —By - Bo —Bn

Then
by — byx® 4 bpxt — . ..+ (—1)"h A%
(=) -5) (- 7)
=pl1 =2 )(1=2)...(1 =2
° ity B2 /i
and

1 1 1
b1=b°(ﬁ_“1’+?§+"'+ﬁ)'

{2) Euler considers the equation
sinx =0
or
X xs + x5 x'?
1 1-2:3"1.-2-3-4-5 1:2-3---7
The left hand side has an infinity of terms, is of “infinite degree.”” Therefore,
it is no wonder, says Euler, that there is an infinity of roots

+...=0.

0, », —m, 27w, —2m, 3w, —3m,
Euler discards the root 0. He divides the left hand side of the equation by

x, the linear factor corresponding to the root 0, and obtains so the equation

x2 x4 x8
9372325 234567

with the roots

+...=0

™, —m, 2w, —2mw, 3w, —3m=,

We have seen an analogous situation before, under (1), as we discussed the
last variant of the decomposition in linear factors. Euler concludes, by
analogy, that

sin x x2 x4 X8
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This is the series that withstood the efforts of Jacques Bernoulli—but it
was a daring conclusion.

(3) Euler knew very well that his conclusion was daring. *“The method
was new and never used yet for such a purpose,” he wrote ten years later.
He saw some objections himself and many objections were raised by his
mathematical friends when they recovered from their first admiring surprise.

Yet Euler had his reasons to trust his discovery. First of all, the numerical
value for the sum of the series which he has computed before, agreed to the
last place with #%/6. Comparing further coefficients in his expression of
sin x as a product, he found the sum of other remarkable series, as that of the
reciprocals of the fourth powers,

1 rd

i 1 1
l++sitmtast o~
Again, he examined the numerical value and again he found agreement.
(4) Euler also tested his method on other examples. Doing so he
succeeded in rederiving the sum 72/6 for Jacques Bernoulli’s series by various
modifications of his first approach. He succeeded also in rediscovering by
his method the sum of an important series due to Leibnitz.
Let us discuss the last point. Let us consider, following Euler, the
equation
1—sinx=0.
It has the roots
g 37 5= 7o 9x 11ar
? " T o
Each of these roots is, however, a double root. (The curve y = sin x does
not intersect the line y = | at these abscissas, but is tangent to it. The

derivative of the left hand side vanishes for the same values of x, but not the
second derivative.) Therefore, the equation

. NI |
1 1-2-3 1:-2-3-4-5
has the roots
T om 3w 37 57 Sm Tm __ T
20 2 2’ 2’ 27 2 2° 2’
and Euler’s analogical conclusion leads to the decomposition in linear factors
l—smx_l—~—|— al al +.

3 2-3-4-5

()



