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Introduction

The fashion in books in the last decade or so has turned increas-
ingly to popular science. Even newspapers, Sunday supplements
and magazines have given space to relativity, atomic physics,
and the newest marvels of astronomy and chemistry. Symptomatic
as this is of the increasing desire to know what happens in
laboratories and observatories, as well as in the awe-inspiring
conclaves of scientists and mathematicians, a large part of
modern science remains obscured by an apparently impenetrable
verl of mystery. The feeling is widely prevalent that science,
ltke magic and alchemy in the Middle Ages, is practiced and
can be understood only by a small esoteric group. The mathema-
tician is still regarded as the hermit who knows little of the ways
of life outside his cell, who spends his time compounding incredible
and incomprehensible theories in a strange, clipped, unintelligible
Jargon.

Nevertheless, intelligent people, weary of the nervous pace of
their own existence—the sharp impact of the happenings of the
day—are hungry to learn of the accomplishments of more leisurely,
contemplative lives, timed by a slower, more deliberate clock
than their own. Science, particularly mathematics, though it
seems less practical and less real than the news contained in the
latest radio dispatches, appears to be building the one permanent
and stable edifice in an age where all others are either crumbling
or being blown to bits. This is not to say that science has not
also undergone revolutionary changes. But it has happened
quietly and honorably. That which is no longer useful has been
rejected only after mature deliberation, and the building has been

reared steadily on the creative achicvements of the past.
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Thus, in a certain sense, the popularization of science is a
duty to be performed, a duty to give courage and comfort to the
men and women of good will everywhere who are gradually losing
their faith in the life of reason. For most of the sciences the veil
of mystery is gradually being torn asunder. Mathematics, in
large measure, remains unrevealed. What most popular books on
mathematics have tried to do is either to discuss it philosophically,
or to make clear the stuff once learned and already forgotten.
In this respect our purpose in writing has been somewhat
different. “Haute vulgarisation” is the term applied by the
French to that happy result which neither offends by its condescen-
sion nor leaves obscure in a mass of technical verbiage. It has
been our aim to extend the process of “‘haute vulgarisation™ to
those outposts of mathematics which are mentioned, if at all,
only in a whisper; which are referred to, if at all, only by name;
to show by its very diversity something of the character of
mathematics, of its bold, untrammeled spirit, of how, as both
an art and a science, it has continued to lead the creative faculties
beyond even imagination and intuition. In the compass of so
brief a volume there can only be snapshots, not portraits. Yet, it
ts hoped that even in this Kaleidoscope there may be a stimulus
to further interest in and greater recognition of the proudest queen
of the intellectual world.



MATHEMATICS AND
THE IMAGINATION

I will not go so far as to say that to construct a history
of thought without profound study of the mathematical
ideas of successive epochs s ltke omitting Hamlet from the
play which is named after him. That would be claiming
too much. But it is certainly analogous to cutting out the
part of Ophelia. This simile is singularly exact. For
Ophelia is quite essential to the play, she is very charm-
ing,—and a little mad. Let us grant thai the pursuit of
mathematics is a divine madness of the human spirit, a
refuge from the goading urgency of contingent happenings.

~—ALFRED NORTH WHITEHEAD,
Science and the Modern World.
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New Names for Old

For out of olde feldes, as men seith,

Cometh al this newe corn fro yeer to yere;

And out of olde bokes, in good feith,

Cometh al this newe science that men lere.
—CHAUCER

EVERY ONCE in a while there is house cleaning in mathe-
matics. Some old names are discarded, some dusted off
and refurbished; new theories, new additions to the
household are assigned a place and name. So what our
title really means is new words in mathematics; not new
names, but new words, new terms which have in part
come to represent new concepts and a reappraisal of old
ones in more or less recent mathematics. There are surely
plenty of words already in mathematics as well as in other
subjects. Indeed, there are so many words that it is even
easier than it used to be to speak a great deal and say
nothing. It is mostly through words strung together like
beads in a necklace that half the population of the world
has been induced to believe mad things and to sanctify
mad deeds. Frank Vizetelly, the great lexicographer,
estimated that there are 800,000 words in use in the
English language. But mathematicians, generally quite
modest, are not satisfied with these 800,000; let us give
them a few more.

We can get along without new names until, as we ad-
vance in science, we acquire new ideas and new forms.

3



4 Mathematics and the Imagination

A peculiar thing about mathematics is that it does not
use so many long and hard names as the other sciences.
Besides, it is more conservative than the other sciences
in that it clings tenaciously to old words. The terms
used by Euclid in his Elements are current in geometry
today. But an Ionian physicist would find the terminol-
ogy of modern physics, to put it colloquially, pure Greek.
In chemistry, substances no more complicated than
sugar, starch, or alcohol have names like these: Meth-
ylpropenylenedihydroxycinnamenylacrylic acid, or, 0-
anhydrosulfaminobenzoine, or, protocatechuicaldehyde-
methylene. It would be inconvenient if we had to use such
terms in everyday conversation. Who could imagine
even the aristocrat of science at the breakfast table asking,
“Please pass the O0-anhydrosulfaminobenzoic acid,”
when all he wanted was sugar for his coffee? Biology also
has some tantalizing tongue twisters. The purpose of
these long words is not to frighten the exoteric, but to
describe with scientific curtness what the literary man
would take half a page to express.

In mathematics there are many easy words like
“group,” “family,” “ring,” “simple curve,” “limit,” etc.
But these ordinary words are sometimes given a very
peculiar and technical meaning. In fact, here is a booby-
prize definition of mathematics: Mathematics is the science
which uses easy words for hard ideas. In this it differs from
any other science. There are 500,000 known species of
insects and every one has a long Latin name. In math-
ematics we are more modest. We talk about “fields,”
“groups,” ‘‘families,” ‘‘spaces,” although much more
meaning is attached to these words than ordinary con-
versation implies. As its use becomes more and more
technical, nobody can guess the mathematical meaning
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of a word any more than one could guess that a “drug
store” is a place where they sell ice-cream sodas and
umbrellas. No one could guess the meaning of the word
‘““group” as it is used in mathematics. Yet it is so impor-
tant that whole courses are given on the theory of
“groups,” and hundreds of books are written about it.

Because mathematicians get along with common words,
many amusing ambiguities arise. For instance, the word
“function” probably expresses the most important idea
in the whole history of mathematics. Yet, most people
hearing it would think of a ‘““function” as meaning an
evening social affair, while others, less socially minded,
would think of their livers. The word “function” has
at least a dozen meanings, but few people suspect the
mathematical one. The mathematical meaning (which
we shall elaborate upon later) is expressed most simply
by a table. Such a table gives the relation between two
variable quantities when the value of one variable quan-
tity is determined by the value of the other. Thus, one
variable quantity may express the years from 1800 to
1938, and the other, the number of men in the United
States wearing handle-bar mustaches; or one variable
may express in decibels the amount of noise made by a
political speaker, and the other, the blood pressure units
of his listeners. You could probably never guess the mean-
ing of the word “‘ring” as it has been used in mathematics.
It was introduced into the newer algebra within the last
twenty years. The theory of rings is much more recent
than the theory of groups. It is now found in most of the
new books on algebra, and has nothing to do with either
matrimony or bells.

Other ordinary words used in mathematics in a pe-

culiar sense are ‘“domain,” “integration,” “differentia-
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tion.” The uninitiated would not be able to guess what
they represent; only mathematicians would know about
them. The word ‘“transcendental” in mathematics has
not the meaning it has in philosophy. A mathemati-
cian would say: The number m, equal to 3.14159...,
is transcendental, because it is not the root of any alge-
braic equation with integer coefficients.

Transcendental is a very exalted name for a small
number, but it was coined when it was thought that
transcendental numbers were as rare as quintuplets.
The work of Georg Cantor in the realm of the infinite
has since proved that of all the numbers in mathematics,
the transcendental ones are the most common, or, to
use the word in a slightly different sense, the least tran-
scendental. We shall talk of this later when we speak of
another famous transcendental number, e, the base of
the natural logarithms. Immanuel Kant’s ‘“transcen-
dental epistemology” is what most educated people
might think of when the word transcendental is used,
but in that sense it has nothing to do with mathematics.
Again, take the word “evolution,” used in mathematics
to denote the process most of us learned in elementary
school, and promptly forgot, of extracting square roots,
cube roots, etc. Spencer, in his philosophy, defines
evolution as “an integration of matter, and a dissipation
of motion from an indefinite, incoherent homogeneity
to a definite, coherent heterogeneity,” etc. But that,
fortunately, has nothing to do with mathematical evo-
lution either. Even in Tennessee, one may extract square
roots without running afoul of the law.

As we see, mathematics uses simple words for com-
plicated ideas. An example of a simple word used in a
complicated way is the word “simple.” “Simple curve”
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and “‘simple group” represent important ideas in higher
mathematics.

FIG. 1

The above is not a simple curve. A simple curve is a
closed curve which does not cross itself and may look like
Fig. 2. There are many important theorems about such
figures that make the word worth while. Later, we are

Vo z

going to talk about a queer kind of mathematics called
“rubber-sheet geometry,” and will have much more to
say about simple curves and nonsimple ones. A French
mathematician, Jordan, gave the fundamental theorem:
every simple curve has one inside and one outside. That
is, every simple curve divides the plane into two regions,
one inside the curve, and one outside.

There are some groups in mathematics that are
“simple” groups. The definition of ‘“‘simple group” is
really so hard that it cannot be given here. If we wanted
to get a clear idea of what a simple group was, we should

FIG. 2
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probably have to spend a long time looking into a great
many books, and then, without an extensive mathemat-
ical background, we should probably miss the point.
First of all, we should have to define the concept ““group.”
Then we should have to give a definition of subgroups,
and then of self-conjugate subgroups, and then we should
be able to tell what a simple group is. A simple group
is simply a group without any self-conjugate subgroups—
simple, is it not?

Mathematics is often erroneously referred to as the
science of common sense. Actually, it may transcend
common sense and go beyond either imagination or
intuition. It has become a very strange and perhaps
frightening subject from the ordinary point of view, but
anyone who penetrates into it will find a veritable fairy-
land, a fairyland which is strange, but makes sense, if
not common sense. From the ordinary point of view
mathematics deals with strange things. We shall show
you that occasionally it does deal with strange things,
but mostly it deals with familiar things in a strange way.
If you look at yourself in an ordinary mirror, regardless
of your physical attributes, you may find yourself amus-
ing, but not strange; a subway ride to Coney Island, and
a glance at yourself in one of the distorting mirrors will
convince you that from another point of view you may be
strange as well as amusing. It is largely a matter of what
you are accustomed to. A Russian peasant came to Mos-
cow for the first time and went to see the sights. He went
to the zoo and saw the giraffes. You may find a moral in
his reaction as plainly as in the fables of La Fontaine.
“Look,” he said, “at what the Bolsheviks have done to
our horses.” That is what modern mathematics has done
to simple geometry and to simple arithmetic.
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There are other words and expressions, not so familiar,
which have been invented even more recently. Take,
for instance, the word ‘‘turbine.” Of course, that is
already used in engineering, but it is an entirely new
word in geometry. The mathematical name applies to
a certain diagram. (Geometry, whatever others may
think, is the study of different shapes, many of them very
beautiful, having harmony, grace and symmetry. Of
course, there are also fat books written on abstract geom-
etry, and abstract space in which neither a diagram nor
a shape appears. This is a very important branch of
mathematics, but it is not the geometry studied by the
Egyptians and the Greeks. Most of us, if we can play
chess at all, are content to play it on a board with wooden
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F1G. 3.—Turbines.

chess pieces; but there are some who play the game
blindfolded and without touching the board. It might
be a fair analogy to say that abstract geometry is like
blindfold chess—it is a game played without concrete
objects.) Above you see a picture of a turbine, in fact, two
of them.

A turbine consists of an infinite number of ““‘elements”
filled in continuously. An element is not merely a point;
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it is a point with an associated direction—like an iron
filing. A turbine is composed of an infinite number of
these elements, arranged in a peculiar way: the points
must be arranged on a perfect circle, and the inclination
of the iron filings must be at the same angle to the circle
throughout. There are thus an infinite number of ele-
ments of equal inclination to the various tangents of the
circle. In the special case where the angle between the
direction of the element and the direction of the tangent
is zero, what would happen? The turbine would be a
circle. In other words, the theory of turbines is a gen-
eralization of the theory of the circle. If the angle is ninety
degrees, the elements point toward the center of the circle.
In that special case we have a normal turbine (see left-
hand diagram).

There is a geometry of turbines, instead of a geometry
of circles. It is a rather technical branch of mathematics
which concerns itself with working out continuous groups
of transformations connected with differential equations
and differential geometry. The geometry connected with
the turbine bears the rather odd name of ‘“turns and
slides.”

*

The circle is one of the oldest figures in mathematics.
The straight line is the simplest line, but the circle is the
simplest nonstraight curve. It is often regarded as the
limit of a polygon with an infinite number of sides. You
can see for yourself that as a series of polygons is inscribed
in a circle with each polygon having more sides than its
predecessor, each polygon gets to look more and more
like a circle.!

The Greeks were already familiar with the idea that
as a regular polygon increases in the number of its sides,
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it differs less and less from the circle in which it is in-
scribed. Indeed, it may well be that in the eyes of an
omniscient creature, the circle would look like a polygon
with an infinite number of straight sides.? However, in
the absence of complete omniscience, we shall continue

F1G. 4—The circle as the limit of inscribed polygons.

to regard a circle as being a nonstraight curve. There are
some interesting generalizations of the circle when it
is viewed in this way. There is, for example, the concept
denoted by the word “cycle,” which was introduced by
a French mathematician, Laguerre. A cycle is a circle
with an arrow on it, like this:

FIG. 5.

If you took the same circle and put an arrow on it in
the opposite direction, it would become a different cycle.
The Greeks were specialists in the art of posing prob-
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lems which neither they nor succeeding generations of
mathematicians have ever been able to solve. The three
most famous of these problems—the squaring of the
circle, the duplication of the cube, and the trisection of
an angle—we shall discuss later. Many well-meaning,
self-appointed, and self-anointed mathematicians, and
a motley assortment of lunatics and cranks, knowing
neither history nor mathematics, supply an abundant
crop of “solutions” of these insoluble problems each year.
However, some of the classical problems of antiquity
have been solved. For example, the theory of cycles was
used by Laguerre in solving the problem of Apollonius:
given three fixed circles, to find a circle that touches
them all. It turns out to be a matter of elementary high

2 3

¥16. 6(a).—The eight solutions of the problem of
Apollonius. Each lightly drawn circle is in contact
with 3 heavily drawn ones.
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school geometry, although it involves ingenuity, and
any brilliant high school student could work it out. It
has eight answers, as shown in Fig. 6(a).

They can all be constructed with ruler and compass,
and many methods of solution have been found. Given
three circles, there will be eight circles touching all of them.
Given three cycles, however, there will be only one clock-
wise cycle that touches them all. (Two cycles are said to
touch each other only if their arrows agree in direction at
the point of contact.) Thus, by using the idea of cycles,
we have one definite answer instead of eight. Laguerre
made the idea of cycles the basis of an elegant theory.

FIG. 6(b).—The eight solutions of Appolonius
merged into one diagram.

Another variation of the circle introduced by the emi-
nent American mathematician, C. J. Keyser, is obtained
by taking a circle and removing one point.? This creates
a serious change in conception. Keyser calls it “a patho-
circle,” (from pathological circle). He has used it in
discussing the logic of axioms.
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We have made yet another change in the concept of
circle, which introduces another word and a new di-
agram. Take a circle and instead of leaving one point
out, simply emphasize one point as the initial point.
This is to be called a “clock.” It has been used in the
theory of polygenic functions. ‘“Polygenic” is a word
recently introduced into the theory of complex functions
—about 1927. There was an important word, ‘“mono-
genic,” introduced in the nineteenth century by the
famous French mathematician, Augustin Cauchy, and
used in the classical theory of functions. It is used to
denote functions that have a single derivative at a point,
as in the differential calculus. But most functions, in the
complex domain, have an infinite number of derivatives
at a point. If a function is not monogenic, it can never
be bigenic, or trigenic. Either the derivative has one
value or an infinite number of values—either monogenic
or polygenic, nothing intermediate. Monogenic means
one rate of growth. Polygenic means many rates of
growth. The complete derivative of a polygenic function
is represented by a congruence (a double infinity) of
clocks, all with different starting points, but with the

FiG. 7.—The parhexagon.

same uniform rate of rotation. It would be useless to
attempt to give a simplified explanation of these con-
cepts. (The neophyte will have to bear with us over a
few intervals like this for the sake of the more experienced
mathematical reader.)
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The going has been rather hard in the last paragraph,
and if a few of the polygenic seas have swept you over-
board, we shall throw you a hexagonal life preserver.
We may consider a very simple word that has been intro-
duced in elementary geometry to indicate a certain kind
of hexagon. The word on which to fix your attention is
“parhexagon.” An ordinary hexagon has six arbitrary
sides. A parhexagon is that kind of hexagon in which
any side is both equal and parallel to the side opposite
to it (as in Fig. 7).

If the opposite sides of a quadrilateral are equal and
parallel, it 1s called a parallelogram. By the same rea-
soning that we use for the word parhexagon, a parallelo-
gram might have been called a parquadrilateral.

Here is an example of a theorem about the parhex-
agon: take any irregular hexagon, not necessarily a
parhexagon, ABCDEF. Draw the diagonals AC, BD,
CE, DF, EA, and FB, forming the six triangles, ABC,
BCD, CDE, DEF, EFA, and FAB. Find the six centers
of gravity, A’, B/, C’, D', E’, and F’ of these triangles.
(The center of gravity of a triangle is the point at which
the triangle would balance if it were cut out of cardboard
and supported only at that point; it coincides with the

FIG. 8. —~ABCDEF is an irregular hexagon. 4’8’
C'D’'E'F’ is a parhexagon.
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point of intersection of the medians.) Draw A'B’, B'C/,
C'D’, D'E’, E'F’, and F'A’. Then the new inner hex-
agon A’B’C’D’E’F’ will always be a parhexagon.

The word radical, favorite call to arms among Repub-
licans, Democrats, Communists, Socialists, Nazis, Fas-
cists, Trotskyites, etc., has a less hortatory and bellicose
character in mathematics. For one thing, everybody
knows its meaning: i.e., square root, cube root, fourth
root, fifth root, etc. Combining a word previously de-
fined with this one, we might say that the extraction of a
root is the evolution of a radical. The square root of 9 is
3; the square root of 10 is greater than 3, and the most
famous and the simplest of all square roots, the first in-
commensurable number discovered by the Greeks, the
square root of 2, is 1.414. . . . There are also composite
radicals—expressions like v/ 7 ++/10. The symbol for a
radical is not the hammer and sickle, but a sign three or
four centuries old, and the idea of the mathematical
radical is even older than that. The concept of the
“hyperradical,” or “ultraradical,” which means some-
thing higher than a radical, but lower than a transcen-
dental, is of recent origin. It has a symbol which we shall
see in a moment. First, we must say a few words about
radicals in general. There are certain numbers and
functions in mathematics which are not expressible in
the language of radicals and which are generally not
well understood. Many ideas for which there are no
concrete or diagrammatic representations are difficult to
explain. Most people find it impossible to think without
words; it is necessary to give them a word and a symbol
to pin their attention. Hyperradical or ultraradical, for
which hitherto there have been neither words, nor sym-
bols, fall into this category.
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We first meet these ultraradicals, not in Mexico City,
but in trying to solve equations of the fifth degree. The
Egyptians solved equations of the first degree perhaps
4000 years ago. That is, they found that the solution
of the equation ax + & = 0, which is represented in

geometry by a straight line, is ¥ = - The quadratic

equation ax? + bx 4 ¢ = 0 was solved by the Hindus and
—b & VB — 4ac

2a )
The various conic sections, the circle, the ellipse, the
parabola, and the hyperbola, are the geometric pictures
of quadratic equations in two variables.

Then in the sixteenth century the Italians solved the
equations of third and fourth degree, obtaining long
formulas involving cube roots and square roots. So that
by the year 1550, a few years before Shakespeare was
born, the equation of the first, second, third, and fourth
degrees had been solved. Then there was a delay of 250
years, because mathematicians were struggling with the
equation of the fifth degree—the general quintic. Finally,
at the beginning of the nineteenth century, Ruffini and
Abel showed that equations of the fifth degree could not
be solved with radicals. The general quintic is thus not
like the general quadratic, cubic or biquadratic. Never-
theless, it presents a problem in algebra which theoret-
ically can be solved by algebraic operations. Only, these
operations are so hard that they cannot be expressed by
the symbols for radicals. These new higher things are

v J

FIG. 9.—A portrait of two ultra-radicals.

the Arabs with the formula x =




18 Mathematics and the Imagination

named “‘ultraradicals,” and they too have their special
symbols (shown in Fig. 9).

With such symbols combined with radicals, we can
solve equations of the fifth degree. For example, the
solution of x* + x = ¢ may be written x = /@ or
x = J@. The usefulness of the special symbol and
name is apparent. Without them the solution of the
quintic equation could not be compactly expressed.

*

We may now give a few ideas somewhat easier than
those with which we have thus far occupied ourselves.
These ideas were presented some time ago to a number
of children in kindergarten. It was amazing how well
they understood everything that was said to them. In-
deed, it is a fair inference that kindergarten children
can enjoy lectures on graduate mathematics as long as
the mathematical concepts are clearly presented.

It was raining and the children were asked how many
raindrops would fall on New York. The highest answer
was 100. They had never counted higher than 100 and
what they meant to imply when they used that number
was merely something very, very big—as big as they
could imagine. They were asked how many raindrops
hit the roof, and how many hit New York, and how many
single raindrops hit all of New York in 24 hours. They
soon got a notion of the bigness of these numbers even
though they did not know the symbols for them. They
were certain in a little while that the number of raindrops
was a great deal bigger than a hundred. They were asked
to think of the number of grains of sand on the beach at
Coney Island and decided that the number of grains of
sand and the number of raindrops were about the same.
But the important thing is that they realized that the
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number was finite, not infinite. In this respect they showed
their distinct superiority over many scientists who to
this day use the word infinite when they mean some big
number, like a billion billion.

Counting, something such scientists evidently do not
realize, is a precise operation.* It may be wonderful
but there is nothing vague or mysterious about it. If
you count something, the answer you get is either per-
fect or all wrong; there is no half way. It is very much like
catching a train. You either catch it or you miss it, and
if you miss it by a split second you might as well have
come a week late. There is a famous quotation which
illustrates this:

““Oh, the little more, and how much it is!
And the little less, and what worlds away!”’

A big number is big, but it is definite and it is finite.
Of course in poetry, the finite ends with about three
thousand; any greater number is infinite. In many poems,
the poet will talk to you about the infinite number of
stars. But, if ever there was a hyperbole, this is it, for
nobody, not even the poet, has ever seen more than three
thousand stars on a clear night, without the aid of a
telescope.

With the Hottentots, infinity begins at three.f Ask
a Hottentot how many cows he owns, and if he has more
than three he’ll say “many.” The number of raindrops

* No one would say that 1 + 1 is “about equal to 2.” It is just as
silly to say that a billion billion is not a finite number, simply because
it is big. Any number which may be named, or conceived of in terms
of the integers is finite. Infinite means something quite different, as we shall
see in the chapter on the googol.

t Although, in all fairness, it must be pointed out that some of the
tribes of the Belgian Congo can count to a million and beyond.
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falling on New York is also “many.” It is a large finite
number, but nowhere near infinity.

Now here is the name of a very large number: “Goo-
gol.”* Most people would say, “A googol is so large
that you cannot name it or talk about it; it is so large
that it is infinite.” Therefore, we shall talk about it,
explain exactly what it is, and show that it belongs to
the very same family as the number 1.

A googol is this number which one of the children in
the kindergarten wrote on the blackboard:

100000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000
00000

The definition of a googol is: 1 followed by a hundred
zeros. It was decided, after careful mathematical re-
searches in the kindergarten, that the number of rain-
drops falling on New York in 24 hours, or even in a year
or in a century, is much less than a googol. Indeed, the
googol is a number just larger than the largest numbers
that are used in physics or astronomy. All those numbers
require less than a hundred zeros. This information is,
of course, available to everyone, but seems to be a great
secret in many scientific quarters.

A very distinguished scientific publication recently
came forth with the revelation that the number of snow
crystals necessary to form the ice age was a billion to the
billionth power. This is very startling and also very silly.
A billion to the billionth power looks like this:

1000000000 000000000,
A more reasonable estimate and a somewhat smaller
number would be 10%. As a matter of fact, it has been
estimated that if the entire universe, which you will con-

* Not even approximately a Russian author.
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cede is a trifle larger than the earth, were filled with
protons and electrons, so that no vacant space remained,
the total number of protons and electrons would be
10"° (i.e., 1 with 110 zeros after it). Unfortunately,
as soon as people talk about large numbers, they run
amuck. They seem to be under the impression that since
zero equals nothing, they can add as many zeros to a
number as they please with practically no serious con-
sequences. We shall have to be a little more careful than
that in talking about big numbers.

To return to Coney Island, the number of grains of
sand on the beach is about 10%, or more descriptively,
100000000000000000000. That is a large number, but
not as large as the number mentioned by the divorcee
in a recent divorce suit who had telephoned that she
loved the man ‘““a million billion billion times and eight
times around the world.” It was the largest number that
she could conceive of, and shows the kind of thing that
may be hatched in a love nest.

Though people do a great deal of talking, the total
output since the beginning of gabble to the present day,
including all baby talk, love songs, and Congressional
debates, totals about 1018, This is ten million billion. Con-
trary to popular belief, this is a larger number of words
than is spoken at the average afternoon bridge.

A great deal of the veneration for the authority of
the printed word would vanish if one were to calculate
the number of words which have been printed since the
Gutenberg Bible appeared. It is a number somewhat
larger than 10%%. A recent popular historical novel alone
accounts for the printing of several hundred billion words.

The largest number seen in finance (though new
records are in the making) represents the amount of
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money in circulation in Germany at the peak of the

inflation. It was less than a googol—merely
496,585,346,000,000,000,000.

A distinguished economist vouches for the accuracy of

this figure. The number of marks in circulation was very

nearly equal to the number of grains of sand on Coney

Island beach.

The number of atoms of oxygen in the average thimble
is a good deal larger. It would be represented by perhaps
1000000000000000000000000000. The number of elec-
trons, in size exceedingly smaller than the atoms, is much
more enormous. The number of electrons which pass
through the filament of an ordinary fifty-watt electric
lamp in a minute equals the number of drops of water
that flow over Niagara Falls in a century.

One may also calculate the number of electrons, not
only in the average room, but over the whole earth, and
out through the stars, the Milky Way, and all the neb-
ulae. The reason for giving all these examples of very
large numbers is to emphasize the fact that no matter
how large the collection to be counted, a finite number
will do the trick. We will have occasion later on to speak
of infinite collections, but those encountered in nature,
though sometimes very large, are all definitely finite.
A celebrated scientist recently stated in all seriousness
that he believed that the number of pores (through which
leaves breathe) of all the leaves, of all the trees in all the
world, would certainly be infinite. Needless to say, he
was not a mathematician. The number of electrons in a
single leaf is much bigger than the number of pores of
all the leaves of all the trees of all the world. And still the
number of all the electrons in the entire universe can be
found by means of the physics of Einstein. It is a good
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deal less than a googol—perhaps one with seventy-nine
zeros, 1079, as estimated by Eddington.

Words of wisdom are spoken by children at least as
often as by scientists. The name ‘“googol” was invented
by a child (Dr. Kasner’s nine-year-old nephew) who was
asked to think up a name for a very big number, namely,
1 with a hundred zeros after it. He was very certain that
this number was not infinite, and therefore equally
certain that it had to have a name. At the same time that
he suggested ‘“‘googol” he gave a name for a still larger
number: “Googolplex.” A googolplex is much larger
than a googol, but is still finite, as the inventor of the
name was quick to point out. It was first suggested that a
googolplex should be 1, followed by writing zeros until
you got tired. This is a description of what would happen
if one actually tried to write a googolplex, but different
people get tired at different times and it would never do
to have Carnera a better mathematician than Dr. Ein-
stein, simply because he had more endurance. The goo-
golplex then, is a specific finite number, with so many
zeros after the 1 that the number of zeros is a googol. A
googolplex is much bigger than a googol, much bigger
even than a googol times a googol. A googol times a
googol would be 1 with 200 zeros, whereas a googolplex
is 1 with a googol of zeros. You will get some idea of the
size of this very large but finite number from the fact
that there would not be enough room to write it, if you
went to the farthest star, touring all the nebulae and put-
ting down zeros every inch of the way.

One might not believe that such a large number would
ever really have any application; but one who felt that
way would not be a mathematician. A number as large
as the googolplex might be of real use in problems of
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combination. This would be the type of problem in
which it might come up scientifically:

Consider this book which is made up of carbon and
nitrogen and of other elements. The answer to the ques-
tion, “How many atoms are there in this book?” would
certainly be a finite number, even less than a googol.
Now imagine that the book is held suspended by a string,
the end of which you are holding. How long will it
be necessary to wait before the book will jump up into
your hand? Could it conceivably ever happen? One
answer might be “No, it will never happen without
some external force causing it to do so.”” But that is not
correct. The right answer is that it will almost certainly
happen sometime in less than a googolplex of years—per-
haps tomorrow.

The explanation of this answer can be found in physical
chemistry, statistical mechanics, the kinetic theory of
gases, and the theory of probability. We cannot dispose
of all these subjects in a few lines, but we will try.
Molecules are always moving. Absolute rest of molecules
would mean absolute zero degrees of temperature, and
absolute zero degrees of temperature is not only non-
existent, but impossible to obtain. All the molecules of
the surrounding air bombard the book. At present the
bombardment from above and below is nearly the same
and gravity keeps the book down. It is necessary to wait
for the favorable moment when there happens to be an
enormous number of molecules bombarding the book
from below and very few from above. Then gravity will
be overcome and the book will rise. It would be some-
what like the effect known in physics as the Brownian
movement, which describes the behavior of small par-
ticles in a liquid as they dance about under the impact
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of molecules. It would be analogous to the Brownian
movement on a vast scale.
But the probability that this will happen in the near
future or, for that matter, on any specific occasion that
an ! .
googol googolplex
To be reasonably sure that the book will rise, we should
have to wait between a googol and a googolplex of years.
When working with electrons or with problems of
combination like the one of the book, we need larger
numbers than are usually talked about. It is for that
reason that names like googol and googolplex, though
they may appear to be mere jokes, have a real value.
The names help to fix in our minds the fact that we are
still dealing with finite numbers. To repeat, a googol is
10%%; a googolplex is 10 to the googol power, which may

be written 101" = 10s00sel,

We have seen that the number of years that one would
have to wait to see the miracle of the rising book would
be less than a googolplex. In that number of years the
earth may well have become a frozen planet as dead as
the moon, or perhaps splintered to a number of meteors
and comets. The real miracle is not that the book will
rise, but that with the aid of mathematics, we can
project ourselves into the future and predict with accu-
racy when it will probably rise, i.e., some time between
today and the year googolplex.

*

We have mentioned quite a few new names in mathe-
matics—new names for old and new ideas. There is one
more new name which it is proper to mention in con-
clusion. Watson Davis, the popular science reporter, has
given us the name “mathescope.” With the aid of the

we might mention, is between
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magnificent new microscopes and telescopes, man, mid-
way between the stars and the atoms, has come a little
closer to both. The mathescope is not a physical instru-
ment; it is a purely intellectual instrument, the ever-
increasing insight which mathematics gives into the fairy-
land which lies beyond intuition and beyond imagina-
tion. Mathematicians, unlike philosophers, say nothing
about ultimate truth, but patiently, like the makers of
the great microscopes, and the great telescopes, they
grind their lenses. In this book, we shall let you see
through the newer and greater lenses which the mathe-
maticians have ground. Be prepared for strange sights
through the mathescope!

FOOTNOTES

1. See the Chapter on pie.—P. 10.

2. See the Chapter on Change and Changeability—Section on Path-
ological Curves.—P.11.

3. N.B. This is a diagram which the reader will have to imagine,
for it is beyond the capacity of any printer to make a circle with
one point omitted. A point, having no dimensions, will, like
many of the persons on the Lord High Executioner’s list, never
be missed. So the circle with one point missing is purely con-
ceptual, not an idea which can be pictured.—P.13.



Beyond the Googol

If you do not expect the unexpected, you will not find it;
Sor it is hard to be sought out, and difficult.
—HERACLITUS

MATHEMATICS MAY well be a science of austere logical
propositions in precise canonical form, but in its count-
less applications it serves as a tool and a language, the
language of description, of number and size. It describes
with economy and elegance the elliptic orbits of the plan-
ets as readily as the shape and dimensions of this page
or a corn field. The whirling dance of the electron can
be seen by no one; the most powerful telescopes can re-
veal only a meager bit of the distant stars and nebulae
and the cold far corners of space. But with the aid of
mathematics and the imagination the very small, the
very large—all things may be brought within man’s
domain.

To count is to talk the language of number. To count
to a googol, or to count to ten is part of the same process;
the googol is simply harder to pronounce. The essential
thing to realize is that the googol and ten are kin, like
the giant stars and the electron. Arithmetic—this count-
ing language—makes the whole world kin, both in
space and in time.

To grasp the meaning and importance of mathematics,
to appreciate its beauty and its value, arithmetic must
first be understood, for mostly, since its beginning, mathe-

27
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matics has been arithmetic in simple or elaborate attire.
Arithmetic has been the queen and the handmaiden of
the sciences from the days of the astrologers of Chaldea
and the high priests of Egypt to the present days of
relativity, quanta, and the adding machine. Historians
may dispute the meaning of ancient papyri, theologians
may wrangle over the exegesis of Scripture, philosophers
may debate over Pythagorean doctrine, but all will con-
cede that the numbers in the papyri, in the Scriptures and
in the writings of Pythagoras are the same as the num-
bers of today. As arithmetic, mathematics has helped
man to cast horoscopes, to make calendars, to predict
the risings of the Nile, to measure fields and the height
of the Pyramids, to measure the speed of a stone as it fell
from a tower in Pisa, the speed of an apple as it fell
from a tree in Woolsthorpe, to weigh the stars and the
atoms, to mark the passage of time, to find the curvature
of space. And although mathematics is also the calculus,
the theory of probability, the matrix algebra, the science
of the infinite, it is still the art of counting.
*

Everyone who will read this book can count, and yet,
what is counting? The dictionary definitions are about
as helpful as Johnson’s definition of a net: “A series of
reticulated interstices.” Learning to compare is learning to
count. Numbers come much later; they are an artificiality,
an abstraction. Counting, matching, comparing are al-
most as indigenous to man as his fingers. Without the
faculty of comparing, and without his fingers, it is un-
likely that he would have arrived at numbers.

One who knows nothing of the formal processes of
counting is still able to compare two classes of objects,
to determine which is the greater, which the less. With-
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out knowing anything about numbers, one may ascertain
whether two classes have the same number of elements;
for example, barring prior mishaps, it is easy to show
that we have the same number of fingers on both hands
by simply matching finger with finger on each hand.

To describe the process of matching, which underlies
counting, mathematicians use a picturesque name. They
call it putting classes into a “one-to-one reciprocal cor-
respondence” with each other. Indeed, that is all there
is to the art of counting as practiced by primitive peoples,
by us, or by Einstein. A few examples may serve to make
this clear.

In a monogamous country it is unnecessary to count
both the husbands and the wives in order to ascertain
the number of married people. If allowances are made
for the few gay Lotharios who do not conform to either
custom or statute, it is sufficient to count either the
husbands or the wives. There are just as many in one
class as in the other. The correspondence between the
two classes is one-to-one.

There are more useful illustrations. Many people are
gathered in a large hall where seats are to be provided.
The question is, are there enough chairs to go around?
It would be quite a job to count both the people and the
chairs, and in this case unnecessary. In kindergarten
children play a game called “Going to Jerusalem”; in a
room full of children and chairs there is always one less
chair than the number of children. At a signal, each
child runs for a chair. The child left standing is “out.”
A chair is removed and the game continues. Here is
the solution to our problem. It is only necessary to ask
everyone in the hall to be seated. If everyone sits down
and no chairs are left vacant, it is evident that there
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are as many chairs as people. In other words, without
actually knowing the number of chairs or people, one
does know that the number is the same. The two classes—
chairs and people—have been shown to be equal in
number by a one-to-one correspondence. To each person
corresponds a chair, to each chair, a person.

In counting any class of objects, it is this method alone
which is employed. One class contains the things to be
counted; the other class is always at hand. It is the class
of integers, or ‘““natural numbers,” which for convenience
we regard as being given in serial order: 1, 2, 3, 4, 5, 6,
7 ... Matching in one-to-one correspondence the ele-
ments of the first class with the integers, we experience a
common, but none the less wonderful phenomenon—the
last integer necessary to complete the pairings denotes
how many elements there are.

*

In clarifying the idea of counting, we made the un-
warranted assumption that the concept of number was
understood by everyone. The number concept may seem
intuitively clear, but a precise definition is required.
While the definition may seem worse than the disease,
it is not as difficult as appears at first glance. Read it
carefully and you will find that it is both explicit and
economical.

Given a class C containing certain elements, it is
possible to find other classes, such that the elements of
each may be matched one to one with the elements of
C. (Each of these classes is thus called “equivalent to C.”)
All such classes, including C, whatever the character of
their elements, share one property in common: all of
them have the same cardinal number, which is called the
cardinal number of the class C.1
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The cardinal number of the class C is thus seen to be
the symbol representing the set of all classes that can be
put into one-to-one correspondence with C. For example,
the number 5 is simply the name, or symbol, attached
to the set of all the classes, each of which can be put into
one-to-one correspondence with the fingers of one hand.

Hereafter we may refer without ambiguity to the
number of elements in a class as the cardinal number of
that class or, briefly, as ‘its cardinality.” The question,
“How many letters are there in the word mathematics?”
is the same as the question, “What is the cardinality of
the class whose elements are the letters in the word
mathematics?’ Employing the method of one-to-one cor-
respondence, the following graphic device answers the
question, and illustrates the method:

M A T H E M A T I C
Pttt
2 3 4 5 8 9

1 6 7 10

<« N

—
—

It must now be evident that this method is neither
strange nor esoteric; it was not invented by mathema-
ticians to make something natural and easy seem un-
natural and hard. It is the method employed when we
count our change or our chickens; it is the proper
method for counting any class, no matter how large,
from ten to a googolplex—and beyond.

Soon we shall speak of the “beyond’ when we turn to
classes which are not finite. Indeed, we shall try to measure
our measuring class—the integers. One-to-one correspond-
ence should, therefore, be thoroughly understood, for
an amazing revelation awaits us: Infinite classes can
also be counted, and by the very same means. But before
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we try to count them, let us practice on some very big
numbers—big, but not infinite.
*

“Googol” is already in our vocabulary: It is a big
number—one, with a hundred zeros after it. Even bigger
is the googolplex: 1 with a googol zeros after it. Most
numbers encountered in the description of nature are
much smaller, though a few are larger.

Enormous numbers occur frequently in modern sci-
ence. Sir Arthur Eddington claims that there are, not
approximately, but exactly 136-22% protons,* and an
equal number of electrons, in the universe. Though
not easy to visualize, this number, as a symbol on paper,
takes up little room. Not quite as large as the googol,
it is completely dwarfed by the googolplex. None the
less, Eddington’s number, the googol, and the googolplex
are finite.

A veritable giant is Skewes’ number, even bigger than
a googolplex. It gives information about the distribution
of primes* and looks like this:

10101034
Or, for example, the total possible number of moves in
a game of chess is:

101050

And speaking of chess, as the eminent English mathe-
matician, G. H. Hardy, pointed out—if we imagine the

* Let no one suppose that Sir Arthur has counted them. But he
does have a theory to justify his claim. Anyone with a better theory
may challenge Sir Arthur, for who can be referee? Here is his number
written out: 15,747,724,136,275,002,577,605,653,961,181,555,468,-
044,717,914,527,116,709,336,231,425,076,185,631,031,276—accurate,
he says, to the last digit.
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entire universe as a chessboard, and the protons in it
as chessmen, and if we agree to call any interchange in
the position of two protons a “move” in this cosmic game,
then the total number of possible moves, of all odd coin-
cidences, would be Skewes’ number:

34

101010

No doubt most people believe that such numbers are
part of the marvelous advance of science, and that a few
generations ago, to say nothing of centuries back, no one
in dream or fancy could have conceived of them.

There is some truth in that idea. For one thing, the
ancient cumbersome methods of mathematical notation
made the writing of big numbers difficult, if not actually
impossible. For another, the average citizen of today en-
counters such huge sums, representing armament ex-
penditures and stellar distances, that he is quite conver-
sant with, and immune to, big numbers.

But there were clever people in ancient times. Poets
in every age may have sung of the stars as infinite in
number, when all they saw was, perhaps, three thousand.
But to Archimedes, a number as large as a googol, or
even larger, was not disconcerting. He says as much in
an introductory passage in The Sand Reckoner, realizing
that a number is not infinite merely because it is enor-
mous.

There are some, King Gelon, who think that the number of
the sand is infinite in multitude; and I mean by the sand, not
only that which exists about Syracuse and the rest of Sicily,
but also that which is found in every region whether inhabited
or uninhabited. Again there are some who, without regarding
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it as infinite, yet think that no number has been named which
is great enough to exceed its multitude. And it is clear that
they who hold this view, if they imagined a mass made up of
sand in other respects as large as the mass of the earth, in-
cluding in it all the seas and the hollows of the earth filled up
to a height equal to that of the highest of the mountains, would
be many times further still from recognizing that any number
could be expressed which exceeded the multitude of the sand
so taken. But I will try to show you by means of geometrical
proofs, which you will be able to follow, that, of the numbers
named by me and given in the work which I sent to Zeuxippus,
some exceed not only the number of the mass of sand equal in
magnitude to the earth filled up in the way described, but
also that of a mass equal in magnitude to the universe.

The Greeks had very definite ideas about the infinite.
Just as we are indebted to them for much of our wit and
our learning, so are we indebted to them for much of
our sophistication about the infinite. Indeed, had we
always retained their clear-sightedness, many of the prob-
lems and paradoxes connected with the infinite would
never have arisen.

Above everything, we must realize that “very big” and
““infinite” are entirely different.* By using the method
of one-to-one correspondence, the protons and electrons
in the universe may theoretically be counted as easily
as the buttons on a vest. Sufficient and more than
sufficient for that task, or for the task of counting any
finite collection, are the integers. But measuring the

* There is no point where the very big starts to merge into the
infinite. You may write a number as big as you please; it will be no
nearer the infinite than the number 1 or the number 7. Make sure
that you keep this distinction very clear and you will have mastered
many of the subtleties of the transfinite.
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fotality of iniegers is another problem. To measure such
a class demands a lofty viewpoint. Besides being, as the
German mathematician Kronecker thought, the work of
God, which requires courage to appraise, the class of
integers is infinite—which is a great deal more in-
convenient. It is worse than heresy to measure our own
endless measuring rod !
*

The problems of the infinite have challenged man’s
mind and have fired his imagination as no other single
problem in the history of thought. The infinite appears
both strange and familiar, at times beyond our grasp, at
times natural and easy to understand. In conquering
it, man broke the fetters that bound him to earth. All
his faculties were required for this conquest—his reason-
ing powers, his poetic fancy, his desire to know.

To establish the science of the infinite involves the
principle of mathematical induction. This principle affirms
the power of reasoning by recurrence. It typifies almost
all mathematical thinking, all that we do when we
construct complex aggregates out of simple elements.
It is, as Poincaré remarked, ‘“‘at once necessary to the
mathematician and irreducible to logic.” His statement
of the principle is: “If a property be true of the number
one, and if we establish that it is true of n ++ 1,* provided
it be of n, it will be true of all the whole numbers.”
Mathematical induction is not derived from experience,
rather is it an inherent, intuitive, almost instinctive
property of the mind. “What we have once done we can do
again.”

If we can construct numbers to ten, to a million, to a
googol, we are led to believe that there is no stopping,

* Where n is any integer.
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no end. Convinced of this, we need not go on forever;
the mind grasps that which it has never experienced—
the infinite itself. Without any sense of discontinuity,
without transgressing the canons of logic, the mathema-
tician and philosopher have bridged in one stroke the
gulf between the finite and the infinite. The mathematics
of the infinite is a sheer affirmation of the inherent power
of reasoning by recurrence.

In the sense that “infinite” means “without end, with-
out bound,” simply ‘““not finite,” probably everyone un-
derstands its meaning. No difficulty arises where no
precise definition is required. Nevertheless, in spite of
the famous epigram that mathematics is the science in
which we do not know what we are talking about, at
least we shall have to agree to talk about the same thing.
Apparently, even those of scientific temper can argue
bitterly to the point of mutual vilification on subjects
ranging from Marxism and dialectical materialism to
group theory and the uncertainty principle, only to find,
on the verge of exhaustion and collapse, that they are on
the same side of the fence. Such arguments are generally
the results of vague terminology; to assume that everyone
is familiar with the precise mathematical definition of
“infinite’ is to build a new Tower of Babel.

Before undertaking a definition, we might do well to
glance backwards to see how mathematicians and philos-
ophers of other times dealt with the problem.

The infinite has a double aspect—the infinitely large,
and the infinitely small. Repeated arguments and demon-
strations, of apparently apodictic force, were advanced,
overwhelmed, and once more resuscitated to prove or
disprove its existence. Few of the arguments were ever
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refuted—each was buried under an avalanche of others.
The happy result was that the problem never became
any clearer. *

*

The warfare began in antiquity with the paradoxes
of Zeno; it has never ceased. Fine points were debated
with a fervor worthy of the earliest Christian martyrs,
but without a tenth part of the acumen of medieval
theologians. Today, some mathematicians think the
infinite has been reduced to a state of vassalage. Others
are still wondering what it is.

Zeno’s puzzles may help to bring the problem into
sharper focus. Zeno of Elea, it will be recalled, said some
disquieting things about motion, with reference to an
arrow, Achilles, and a tortoise. This strange company
was employed on behalf of the tenet of Eleatic philosophy
—that all motion is an illusion. It has been suggested,
probably by “baffled critics,” that “Zeno had his tongue
in cheek when he made his puzzles.” Regardless of mo-
tive, they are immeasurably subtle, and perhaps still
defy solution. f

One paradox—the Dichotomy—states that it is im-
possible to cover any given distance. The argument:
First, half the distance must be traversed, then half of
the remaining distance, then again half of what remains,

* No one has written more brilliantly or more wittily on this subject
than Bertrand Russell. See particularly his essays in the volume AMys-
ticism and Logic.

tTo be sure, a variety of explanations have been given for the
paradoxes. In the last analysis, the explanations for the riddles rest
upon the interpretation of the foundations of mathematics. Mathe-
maticians like Brouwer, who reject the infinite, would probably not
accept any of the solutions given.
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and so on. It follows that some portion of the distance
to be covered always remains, and therefore motion is
impossible! A solution of this paradox reads:
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The successive distances to be covered form an infinite
geometric series:
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each term of which is half of the one before. Although
this series has an infinite number of terms, its sum is
finite and equals 1. Herein, it is said, lies the flaw of the
Dichotomy. Zeno assumed that any totality composed
of an infinite number of parts must, itself, be infinite,
whereas we have just seen an infinite number of elements
which make up the finite totality—1.

The paradox of the tortoise states that Achilles, running
to overtake the tortoise, must first reach the place where
it started:—but the tortoise has already departed. This
comedy, however, is repeated indefinitely. As Achilles
arrives at each new point in the race, the tortoise having
been there, has already left. Achilles is as unlikely to
catch him as a rider on a carrousel the rider ahead.

Finally: the arrow in flight must be moving every
instant of time. But at every instant it must be somewhere
in space. However, if the arrow must always be in some
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one place, it cannot at every instant also be in transit,
for to be in transit is to be nowhere.

Aristotle and lesser saints in almost every age tried
to demolish these paradoxes, but not very creditably.
Three German professors succeeded where the saints
had failed. At the end of the nineteenth century, it
seemed that Bolzano, Weierstrass and Cantor had laid
the infinite to rest, and Zeno’s paradoxes as well.

The modern method of disposing of the paradoxes is
not to dismiss them as mere sophisms unworthy of serious
attention. The history of mathematics, in fact, recounts a
poetic vindication of Zeno’s stand. Zeno was, at one time,
as Bertrand Russell has said, “A notable victim of pos-
terity’s lack of judgement.”” That wrong has been righted.
In disposing of the infinitely small, Weierstrass showed
that the moving arrow is really always at rest, and that
we live in Zeno’s changeless world. The work of Georg
Cantor, which we shall soon encounter, showed that
if we are to believe that Achilles can catch the tortoise,
we shall have to be prepared to swallow a bigger paradox
than any Zeno ever conceived of: THE WHOLE IS NO
GREATER THAN MANY OF ITS PARTS!

The infinitely small had been a nuisance for more than
two thousand years. At best, the innumerable opinions
it evoked deserved the laconic verdict of Scotch juries:
“Not proven.” Until Weierstrass appeared, the total
advance was a confirmation of Zeno’s argument against
motion. Even the jokes were better. Leibniz, according
to Carlyle, made the mistake of trying to explain the
infinitesimal to a Queen—Sophie Charlotte of Prussia.
She informed him that the behavior of her courtiers
made her so familiar with the infinitely small, that she
needed no mathematical tutor to explain it. But philos-
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ophers and mathematicians, according to Russell, “hav-
ing less acquaintance with the courts, continued to dis-
cuss this topic, though without making any advance.”

Berkeley, with the subtlety and humor necessary for an
Irish bishop, made some pointed attacks on the infini-
tesimal, during the adolescent period of the calculus,
that had the very best, sharp-witted, scholastic sting.
One could perhaps speak, if only with poetic fervor, of the
infinitely large, but what, pray, was the infinitely small?
The Greeks, with less than their customary sagacity,
introduced it in regarding a circle as differing infini-
tesimally from a polygon with a large number of equal
sides. Leibniz used it as the bricks for the infinitesimal
calculus. Still, no one knew what it was. The infinitesimal
had wondrous properties. It was not zero, yet smaller
than any quantity. It could be assigned no quantity or
size, yet a sizable number of infinitesimals made a very
definite quantity. Unable to discover its nature, happily
able to dispense with it, Weierstrass interred it alongside
of the phlogiston and other once-cherished errors.

*

The infinitely large offered more stubborn resistance.
Whatever it is, it is a doughty weed. The subject of reams
of nonsense, sacred and profane, it was first discussed
fully, logically, and without benefit of clergy-like prej-
udices by Bernhard Bolzano. Die Paradoxien des Unendlichen,
a remarkable little volume, appeared posthumously in
1851. Like the work of another Austrian priest, Gregor
Mendel, whose distinguished treatise on the principles
of heredity escaped oblivion only by chance, this im-
portant book, charmingly written, made no great im-
pression on Bolzano’s contemporaries. It is the creation
of a clear, forceful, penetrating intelligence. For the
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first time in twenty centuries the infinite was treated as a
problem in science, and not as a problem in theology.

Both Cantor and Dedekind are indebted to Bolzano
for the foundations of the mathematical treatment of the
infinite. Among the many paradoxes he gathered and
explained, one, dating from Galileo, illustrates a typical
source of confusion:

Construct a square—ABCD. About the point 4 as cen-
ter, with one side as radius, describe a quarter-circle, in-
tersecting the square at B and D. Draw PR parallel to
AD, cutting AB at P, CD at R, the diagonal AC at N, and
the quarter-circle at M.

C M
o |
R P

FIG. 11.—Extract triangle APM from the figure. It is
not hard to see that its three sides equal respectively the
radii of the three circles.

Thus
Ry — R? = Ry?
or,
7R1%2 — TR = wR3?
or, the two shaded areas are equal.
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By a well-known geometrical theorem, it can be shown
that if PN, PM and PR are radii, the following relation-
ship exists:

wer = wﬁ?z - rmz (1)

Permit PR to approach AD. Then the circle with PV as
radius becomes smaller, and the ring between the circles
with PM and PR as radii becomes correspondingly
smaller. Finally, when PR becomes identical with AD, the
radius PN vanishes, leaving the point 4, while the ring
between the two circles PM and PR contracts into one
periphery with AD as radius. From equation (1) it may
be concluded that the point A takes up as much area as
the circumference of the circle with AD as radius.

Bolzano realized that there is only an appearance of a
paradox. The two classes of points, one composed of a
single member, the point 4, the other of the points in
the circumference of the circle with AB as radius, take
up exactly the same amount of area. The area of both is
zero! The paradox springs from the erroneous conception
that the number of points in a given configuration is an
indication of the area which it occupies. Points, finite or
infinite in number, have no dimensions and can therefore
occupy no area,

Through the centuries such paradoxes had piled up.
Born of the union of vague ideas and vague philosophical
reflections, they were nurtured on sloppy thinking. Bol-
zano cleared away most of the muddle, preparing the way
for Cantor. It is to Cantor that the mathematics of the in-
finitely large owes its coming of age.

x

Georg Cantor was born in St. Petersburg in 1845,
six years before Bolzano’s book appeared. Though born
in Russia, he lived the greater part of his life in Germany,
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where he taught at the University of Halle. While Weier-
strass was busy disposing of the infinitesimal, Cantor
set himself the apparently more formidable task at the
other pole. The infinitely small might be laughed out of
existence, but who dared laugh at the infinitely large?
Certainly not Cantor! Theological curiosity prompted
his task, but the mathematical interest came to subsume
every other.

In dealing with the science of the infinite, Cantor
realized that the first requisite was to define terms. His
definition of “infinite class” which we shall paraphrase,
rests upon a paradox. AN INFINITE CLASS HAS THE UNIQUE
PROPERTY THAT THE WHOLE IS NO GREATER THAN SOME
OF ITS PARTS. That statement is as essential for the mathe-
matics of the infinite as THE WHOLE IS GREATER THAN ANY
OF ITS PARTS is for finite arithmetic. When we recall that
two classes are equal if their elements can be put into
one-to-one correspondence, the latter statement be-
comes obvious. Zeno would not have challenged it, in
spite of his scepticism about the obvious. But what is
obvious for the finite is false for the infinite; our extensive
experience with finite classes is misleading. Since, for
example, the class of men and the class of mathemati-
cians are both finite, anyone realizing that some men
are not mathematicians would correctly conclude that
the class of men is the larger of the two. He might also
conclude that the number of integers, even and odd, is
greater than the number of even integers. But we see
from the following pairing that he would be mistaken:

3 4 5 6
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6 8§ 10 12
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Under every integer, odd or even, we may write its
double—an even integer. That is, we place each of the
elements of the class of all the integers, odd and even, into
a one-to-one correspondence with the elements of the
class composed solely of even integers. This process may
be continued to the googolplex and beyond.

Now, the class of integers is infinite. No integer, no
matter how great, can describe its cardinality (or numer-
osity). Yet, since it is possible to establish a one-to-one
correspondence between the class of even numbers and
the class of integers, we have succeeded in counting the
class of even numbers just as we count a finite collection.
The two classes being perfectly matched, we must con-
clude that they have the same cardinality. That their
cardinality is the same we know, just as we knew that the
chairs and the people in the hall were equal in number
when every chair was occupied and no one was left
standing. Thus, we arrive at the fundamental paradox of
all infinite classes:—There exist component parts of an
infinite class which are just as great as the class itself.
THE WHOLE IS NO GREATER THAN SOME OF ITS PARTS!

The class composed of the even integers is thinned out
as compared with the class of all integers, but evidently
““thinning out” has not the slightest effect on its cardi-
nality. Moreover, there is almost no limit to the number
of times this process can be repeated. For instance, there
are as many square numbers and cube numbers as there
are integers. The appropriate pairings are:

1 2 3 4 5 6... 2 3 4 5 6...

1
PPt P11
1 4 9 16 25 36... 1 8 27 64 125216...
12 22 32 42 52 62 18 28 33 43 53 3
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Indeed, from any denumerable class there can always
be removed a denumerably infinite number of denumer-
ably infinite classes without affecting the cardinality of
the original class.

*

Infinite classes which can be put into one-to-one cor-
respondence with the integers, and thus ‘“‘counted,”
Cantor called countable, or denumerably infinite. Since all
finite sets are countable, and we can assign to each one
a number, it is natural to try to extend this notion and
assign to the class of all integers a number representing
its cardinality. Yet, it is obvious from our description of
“infinite class” that no ordinary integer would be ade-
quate to describe the cardinality of the whole class of in-
tegers. In effect, it would be asking a snake to swallow
itself entirely. Thus, the first of the transfinite numbers
was created to describe the cardinality of countable
infinite classes. Etymologically old, mathematically new,
N (aleph), the first letter of the Hebrew alphabet, was
suggested. However, Cantor finally decided to use the
compound symbol N, (Aleph-Null). If asked, “How
many integers are there?” it would be correct to reply,
“There are N, integers.”

Because he suspected that there were other transfinite
numbers, in fact an infinite number of transfinites, and
the cardinality of the integers the smallest, Cantor affixed
to the first N a small zero as subscript. The cardinality of
a denumerably infinite class is therefore referred to as ¥,
(Aleph-Null). The anticipated transfinite numbers form a
hierarchy of alephs: Mo, N1, N, Ng . . .

All this may seem very strange, and it is quite excus-
able for the reader by now to be thoroughly bewildered.
Yet, if you have followed the previous reasoning step
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by step, and will go to the trouble of rereading, you will
see that nothing which has been said is repugnant to
straight thinking. Having established what is meant by
counting in the finite domain, and what is meant by
number, we decided to extend the counting process to
infinite classes. As for our right to follow such a pro-
cedure, we have the same right, for example, as those who
decided that man had crawled on the surface of the earth
long enough and that it was about time for him to fly. It
is our right to venture forth in the world of ideas as it is
our right to extend our horizons in the physical universe.
One restraint alone is laid upon us in these adventures of
ideas: that we abide by the rules of logic.

Upon extending the counting process it was evident
at once that no finite number could adequately describe
an infinite class. If any number of ordinary arithmetic
describes the cardinality of a class, that class must be
finite, even though there were not enough ink or enough
space or enough time to write the number out. We shall
then require an entirely new kind of number, nowhere
to be found in finite arithmetic, to describe the cardi-
nality of an infinite class. Accordingly, the totality of inte-
gers was assigned the cardinality “aleph.” Suspecting that
there were other infinite classes with a cardinality greater
than that of the totality of integers, we supposed a whole
hierarchy of alephs, of which the cardinal number of the
totality of integers was named Aleph-Null to indicate it
was the smallest of the transfinites.

Having had an interlude in the form of a summary,
let us turn once more to scrutinize the alephs, to find if,
upon closer acquaintance, they may not become easier
to understand.

The arithmetic of the alephs bears little resemblance
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to that of the finite integers. The immodest behavior of

N is typical.
A simple problem in addition looks like this:

No+1 = No
No + googol = N,
No + No = No

The multiplication table would be easy to teach, easier
to learn:

1 X R =N
2 X No = RNo
3 X Ne=No
n X 8o = No
where n represents any finite number.
Also,
M) = NRo X No
= No
And thus,
(No)» = No

when 7 is a finite integer.

There seems to be no variation of the theme; the
monotony appears inescapable. But it is all very deceptive
and treacherous. We go along obtaining the same result,
no matter what we do to 8o, when suddenly we try:

(R 0) No
This operation, at last, creates a new transfinite. But
before considering it, there is more to be said about

countable classes.
*

Common sense says that there are many more fractions
than integers, for between any two integers there is an in-
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finite number of fractions. Alas—common sense is amidst
alien corn in the land of the infinite. Cantor discovered a
simple but elegant proof that the rational fractions form a
denumerably infinite sequence equivalent to the class of
integers. Whence, this sequence must have the same car-
dinality.*

The set of all rational fractions is arranged, not in
order of increasing magnitude, but in order of ascending
numerators and denominators in an array:
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= /2 3 4 5
= 3 _3_/1 3 3 .
- 2/3 4 s
%Ci/i 4 4 4 .
g | 2 3 4 5
= 5 5 5 5 5
= 2 3 4 5

¥16. 12,—Cantor’s array.

Since each fraction may be written as a pair of integers,
i.e.,, 2 as (3,4), the familiar one-to-one correspondence

* It has been suggested that at this point the tired reader puts the
book down with a sigh—and goes to the movies. We can only offer
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with the integers may be effected. This is illustrated in
the above array by the arrows.

1 2 3 4 5 6 7 8 9

S A A A A T S A
(1,1) 1) (1,2) 1,3) (22) (3,1) (41) (3,2) (2,3)

Cantor also found, by means of a proof (too technical
to concern us here) based on the “height” of algebraic
equations, that the class of all algebraic numbers, num-
bers which are the solutions of algebraic equations with
integer coeflicients, of the form:

ax® +ax" 1+ . . .t apx +a, =0
is denumerably infinite.

But Cantor felt that there were other transfinites, that
there were classes which were not countable, which
could not be put into one-to-one correspondence with
the integers. And one of his greatest triumphs came when
he succeeded in showing that there are classes with a
cardinality greater than {No.

The class of real numbers composed of the rational
and irrational numberst is such a class. It contains those
irrationals which are algebraic as well as those which
are not. The latter are called transcendental numbers.*

in mitigation that this proof, like the one which follows on the non-
countability of the real numbers, is tough and no bones about it.
You may grit your teeth and try to get what you can out of them, or
conveniently omit them. The essential thing to come away with
is that Cantor found that the rational fractions are countable but that
the set of real numbers is not. Thus, in spite of what common sense
tells you, there are no more fractions than there are integers and
there are more real numbers between 0 and 1 than there are elements
in the whole class of integers.

! Irrational numbers are numbers which cannot be expressed as

rational fractions. For example, v/2, /3, ¢, w. The class of real
numbers is made up of rationals like 1, 2, 3, %, 4§, and irrationals as
above.
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Two important transcendental numbers were known
to exist in Cantor’s time: T, the ratio of the circumference
of a circle to its diameter, and e, the base of the natural
logarithms. Little more was known about the class of
transcendentals: it was an enigma. What Cantor had
to prove, in order to show that the class of real numbers
was nondenumerable (i.e., too big to be counted by the
class of integers), was the unlikely fact that the class of
transcendentals was nondenumerable. Since the rational
and the algebraic numbers were known to be denumer-
able, and the sum of any denumerable number of de-
numerable classes is also a denumerable class, the sole
remaining class which could make the totality of real
numbers nondenumerable was the class of transcendentals.

He was able to devise such a proof. If it can be shown
that the class of real numbers between 0 and 1 is non-
denumerable, it will follow a fortiori that all the real
numbers are nondenumerable. Employing a device often
used in advanced mathematics, the reductio ad absurdum,
Cantor assumed that to be true which he suspected was
false, and then showed that this assumption led to a
contradiction. He assumed that the real numbers be-
tween 0 and 1 were countable and could, therefore, be
paired with the integers. Having proved that this as-
sumption led to a contradiction, it followed that its
opposite, namely, that the real numbers could not be
paired with the integers (and were therefore not count-
able), was true.

To count the real numbers between 0 and 1, it is
required that they all be expressed in a uniform way
and a method of writing them down in order be devised
so that they can be paired one to one with the integers.
The first requirement can be fulfilled, for it is possible
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to express every real number as a nonterminating dec-
imal. Thus, for example: ®

1 3
3= .3333. .. E = .2142857121428571. ..
1 V2 1.414...

5_.1111111... 5 = 5 = .707...

Now, the second requirement confronts us. How shall
we make the pairings? What system may be devised to en-
sure the appearance of every decimal? We did find a
method for ensuring the appearance of every rational
fraction. Of course, we could not actually write them all,
any more than we could actually write all the integers;
but the method of increasing numerators and denomina-
tors was so explicit that, if we had had an infinite time
in which to do it, we could actually have set down all
the fractions and have been certain that we had not
omitted any. Or, to put it another way: It was always
certain and determinate after a fraction had been paired
with an integer, what the next fraction would be, and
the next, and the next, and so on.

On the other hand, when a real number, expressed
as a nonterminating decimal, is paired with an integer,
what method is there for determining what the next
decimal in order should be? You have only to ask your-
self, which shall be the first of the nonterminating dec-
imals to pair with the integer 1, and you have an inkling
of the difficulty of the problem. Cantor however assumed
that such a pairing does exist, without attempting to
give its explicit form. His scheme was: With the integer
1 pair the decimal .aj;asas..., with the integer 2,
.bibsbs . . ., etc. Each of the letters represents a digit
of the nonterminating decimal in which it appears. The
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determinate array of pairing between the decimals and
the integers would then be:

le=0.a;az2as3a4as5...
2¢—=>0, by by b3 by bs. ..
3e=(. C1 Cy C3 C4 C5..

4<=>0.d, ds ds dy ds . .

That was Cantor’s array. But at once it was evident
that it glaringly exhibited the very contradiction for
which he had been seeking. And in this defeat lay his
triumph. For no matter how the decimals are arranged,
by whatever system, by whatever scheme, it is always
possible to construct an infinity of others which are not
present in the array. The point is worth repeating:
having contrived a general form for an array which we
believed would include every decimal, we find, in spite
of all our efforts, that some decimals are bound to be
omitted. This, Cantor showed by his famous “diagonal
proof.” The conditions for determining a decimal omitted
from the array are simple. It must differ from the first
decimal in the array in its first place, from the second
decimal in the array in its second place, from the third
decimal in its third place, and so on. But then, #¢ must
differ from every decimal in the entire array in at least one
place. If (as illustrated in the figure) we draw a diagonal
line through our model array and write a new decimal,
each digit of which shall differ from every digit inter-
cepted by the diagonal, this new decimal cannot be
found in the array.
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Qg A3 A4 Ap

The new decimal may be written:—
0.a1az3030a40a5...;

where a; differs from ai, a, differs from b, as from c;
as from dy, ag from ¢;, etc. Accordingly, it will differ
from each decimal in at least one place, from the nth
decimal in at least its nth place. This proves conclusively
that there is no way of including all the decimals in any
possible array, no way of pairing them off with the inte-
gers. Therefore, as Cantor set out to prove:

1. The class of transcendental numbers is not only infinite,

but also not countable, i.e., nondenumerably infinite.

2. The real numbers between 0 and 1 are infinite and not

countable.

3. A fortiori,the class of all real numbers is nondenumerable.

*

To the noncountable class of real numbers, Cantor as-
signed a new transfinite cardinal. It was one of the alephs,
but which one remains unsolved to this day. It is sus-
pected that this transfinite, called the ‘“cardinal of the
continuum,” which is represented by ¢ or C, is identical
with Ni. But a proof acceptable to most mathematicians
has yet to be devised.
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The arithmetic of C is much the same as that of N.
The multiplication table has the same dependable mon-
otone quality. But when C is combined with N, it swal-
lows it completely. Thus:

C+No=C C—No=0C
CXNog=C andeven CX C =0C

Again, we hope for a variation of the theme when we
come to the process of involution. Yet, for the moment,
we are disappointed, for C¥ = C. But just as (No)™°
does not equal N, so C° does not equal C.

We are now in a position to solve our earlier problem
in involution, for actually Cantor found that (No)®¥® = C.
Likewise C® gives rise to a new transfinite, greater than
C. This transfinite represents the cardinality of the class
of all one-valued functions. It is also one of the N’s, but
again, which one is unknown. It is often designated by the
letter F.® In general, the process of involution, when re-
peated, continues to generate higher transfinites.

Just as the integers served as a measuring rod for
classes with the cardinality N, the class of real numbers
serves as a measuring rod for classes with the cardinality
C. Indeed, there are classes of geometric elements which
can be measured in no other way except by the class of
real numbers.

From the geometric notion of a point, the idea is
evolved that on any given line segment there are an
infinite number of points. The points on a line segment
are also, as mathematicians say, ‘“‘everywhere dense.”
This means that between any two points there is an
infinitude of others. The concept of two immediately
adjoining points is, therefore, meaningless. This property
of being “everywhere dense,” constitutes one of the es-
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sential characteristics of a continuum. Cantor, in referring
to the “cardinality of the continuum,” recognized that it
applies alike to the class of real numbers and the class
of points on a line segment. Both are everywhere dense,
and both have the same cardinality, C. In other words,
it is possible to pair the points on a line segment with
the real numbers.

Classes with the cardinality C possess a property similar
to classes with the cardinality No: they may be thinned
out without in any way affecting their cardinality. In
this connection, we see in very striking fashion another
illustration of the principle of transfinite arithmetic,
that the whole is no greater than many of its parts. For
instance, it can be proved that there are as many points
on a line one foot long as there are on a line one yard
long. The line segment AB in Fig. 13 is three times
as long as the line 4’B’. Nevertheless, it is possible to
put the class of all points on the segment 4B into a one-
to-one correspondence with the class of points on the
segment A'B’.

M
FIG. 13.

Let L be the intersection of the lines 44" and BB’.
If then to any point M of 4B, there corresponds a point
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M' of A’B’, which is on the line LM, we have established
the desired correspondence between the class of points
on A’B’ and those on AB. It is easy to see intuitively
and to prove geometrically that this is always possible,
and that, therefore, the cardinality of the two classes
of points is the same. Thus, since A’B’ is smaller than
AB, it may be considered a proper part of 4B, and we
have again established that an infinite class may contain
as proper parts, subclasses equivalent to it.

There are more startling examples in geometry which
illustrate the power of the continuum. Although the
statement that a line one inch in length contains as many
points as a line stretching around the equator, or as a
line stretching from the earth to the most distant stars,
is startling enough, it is fantastic to think that a line
segment one-millionth of an inch long has as many points
as there are in all three-dimensional space in the entire
universe. Nevertheless, this is true. Once the principles of
Cantor’s theory of transfinites is understood, such state-
ments cease to sound like the extravagances of a mathe-
matical madman. The oddities, as Russell has said, ‘“then
become no odder than the people at the antipodes who
used to be thought impossible because they would find it
so inconvenient to stand on their heads.” Even conceding
that the treatment of the infinite is a form of mathemati-
cal madness, one is forced to admit, as does the Duke in
Measure for Measure:

“If she be mad,—as I believe no other,—
Her madness hath the oddest frame of sense,
Such a dependency of thing on thing,
As €’er I heard in madness.”
*
Until now we have deliberately avoided a definition
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of “infinite class.” But at last our equipment makes it
possible to do so. We have seen that an infinite class,
whether its cardinality is No, C, or greater, may be
thinned out in a countless variety of ways, without
affecting its cardinality. In short, the whole is no greater
than many of its parts. Now, this property does not
belong to finite classes at all; it bélongs only to infinite
classes. Hence, it is a unique method of determining
whether a class is finite or infinite. Thus, our definition
reads: An infinite class is one which can be put into one-to-one
reciprocal correspondence with a proper subset of itself.

Equipped with this definition and the few ideas we
have gleaned we may re-examine some of the paradoxes
of Zeno. That of Achilles and the tortoise may be ex-
pressed as follows: Achilles and the tortoise, running
the same course, must each occupy the same number of
distinct positions during their race. However, if Achilles
is to catch his more leisurely and determined opponent,
he will have to occupy more positions than the tortoise,
in the same elapsed period of time. Since this is man-
ifestly impossible, you may put your money on the
tortoise.

But don’t be too hasty. There are better ways of saving
money than merely counting change. In fact, you had
best bet on Achilles after all, for he is likely to win the
race. Even though we may not have realized it, we have
just finished proving that he could overtake the tortoise
by showing that a line a millionth of an inch long has
just as many points as a line stretching from the earth
to the furthest star. In other words, the points on the
tiny line segment can be placed into one-to-one corre-
spondence with the points on the great line, for there
is no relation between the number of points on a line
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and its length. But this reveals the error in thinking that
Achilles cannot catch the tortoise. The statement that
Achilles must occupy as many distinct positions as the
tortoise is correct. So is the statement that he must travel
a greater distance than the tortoise in the same time.
The only incorrect statement is the inference that since
he must occupy the same number of positions as the
tortoise he cannot travel further while doing so. Even
though the classes of points on each line, which cor-
respond to the several positions of both Achilles and the
tortoise are equivalent, the line representing the path of
Achilles is much longer than that representing the path
of the tortoise. Achilles may travel much further than
the tortoise without successively touching more points.

The solution of the paradox involving the arrow in
flight requires a word about another type of continuum.
It is convenient and certainly familiar to regard time as a
continuum. The time continuum has the same properties
as the space continuum: the successive instants in any
elapsed portion of time, just as the points on a line, may
be put into one-to-one correspondence with the class of
real numbers; between any two instants of time an
infinity of others may be interpolated; time also has the
mathematical property mentioned before—it is every-
where dense.

Zeno’s argument stated that at every instant of time
the arrow was somewhere, in some place or position,
and therefore, could not at any instant be in motion.
Although the statement that the arrow had at every
moment to be in some place is true, the conclusion that,
therefore, it could not be moving is absurd, Our natural
tendency to accept this absurdity as true springs from our
firm conviction that motion is entirely different from rest.
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We are not confused about the position of a body when
it is at rest—we feel there is no mystery about the state
of rest. We should feel the same when we consider a
body in motion.

When a body is at rest, it is in one position at one
instant of time and at a later instant it is still in the same
position. When a body is in motion, there is a one-to-one
correspondence between every instant of time and every
new position. To make this clear we may construct two
tables: One will describe a body at rest, the other, a
body in motion. The “rest” table will tell the life history

REST MOTION

s
b

=

On Bedloe’s Island 9 AM. In the city.

On Bedloe’s Island 11 aM. Over the river.

3
Bl

d

On Bedloe’s Island 3pM. In the mountains,

FIG. 14.—At the times shown, the Statue of
Liberty is at the point shown, while the taxi’s
passengers see the different scenes shown at the
right.
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and the life geography of the Statue of Liberty, while
the “motion” table will describe the Odyssey of an auto-
mobile.

The tables indicate that to every instant of time there
corresponds a position of the Statue of Liberty and of the
taxi. There is a one-to-one space-time correspondence for
rest as well as for motion.

No paradox is concealed in the puzzle of the arrow
when we look at our table. Indeed, it would be strange if
there were gaps in the table; if it were impossible, at any
instant, to determine exactly what the position of the
arrow is.

Most of us would swear by the existence of motion,
but we are not accustomed to think of it as something
which makes an object occupy different positions at
different instants of time. We are apt to think that motion
endows an object with the strange property of being
continually nowhere. Impeded by the limitations of our
senses which prevent us from perceiving that an object in
motion simply occupies one position after another and
does so rather quickly, we foster an illusion about the
nature of motion and weave it into a fairy tale. Mathe-
matics helps us to analyze and clarify what we perceive,
to a point where we are forced to acknowledge, if we no
longer wish to be guided by fairy tales, that we live either
in Mr. Russell’s changeless world or in a world where
motion is but a form of rest. The story of motion is the
same as the story of rest. It is the same story told at a
quicker tempo. The story of rest is: ‘It is here.” The story
of motion is: “It is here, it is there.” Because, in this re-
spect, it resembles Hamlet’s father’s ghost is no reason to
doubt its existence. Most of our beliefs are chained to less
substantial phantoms. Motion is perhaps not easy for our
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senses to grasp, but with the aid of mathematics, its
essence may first be properly understood.
*

At the beginning of the twentieth century it was
generally conceded that Cantor’s work had clarified the
concept of the infinite so that it could be talked of and
treated like any other respectable mathematical concept.
The controversy which arises wherever mathematical
philosophers meet, on paper, or in person, shows that
this was a mistaken view. In its simplest terms this con-
troversy, so far as it concerns the infinite, centers about
the questions: Does the infinite exist? Is there such a
thing as an infinite class? Such questions can have little
meaning unless the term mathematical “existence” is first
explained.

In his famous “Agony in Eight Fits,” Lewis Carroll
hunted the snark. Nobody was acquainted with the
snark or knew much about it except that it existed and
that it was best to keep away from a boojum. The
infinite may be a boojum, too, but its existence in any
form is a matter of considerable doubt. Boojum or garden
variety, the infinite certainly does not exist in the same
sense that we say, “There are fish in the sea.” For that
matter, the statement “There is a number called 77
refers to something which has a different existence from
the fish in the sea. “Existence’ in the mathematical sense
is wholly different from the existence of objects in the
physical world. A billiard ball may have as one of its
properties, in addition to whiteness, roundness, hardness,
etc., a relation of circumference to diameter involving
the number 7. We may agree that the billiard ball and
7 both exist; we must also agree that the billiard ball
and = lead different kinds of lives.
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There have been as many views on the problem of
existence since Euclid and Aristotle as there have been
philosophers. In modern times, the various schools of
mathematical philosophy, the Logistic school, Formalists,
and Intuitionists, have all disputed the somewhat less
than glassy essence of mathematical being. All these dis-
putes are beyond our ken, our scope, or our intention. A
stranger company even than the tortoise, Achilles, and
the arrow, have defended the existence of infinite classes
—defended it in the same sense that they would defend
the existence of the number 7. The Formalists, who think
mathematics is a meaningless game, but play it with no
less gusto, and the Logistic school, which considers that
mathematics is a branch of logic—both have taken
Cantor’s part and have defended the alephs. The defense
rests on the notion of self-consistency. ‘“Existence” is a
metaphysical expression tied up with notions of being and
other bugaboos worse even than boojums. But the ex-
pression, ‘‘self-consistent proposition” sounds like the
language of logic and has its odor of sanctity. A propo-
sition which is not self-contradictory is, according to the
Logistic school, a true existence statement. From this
standpoint the greater part of Cantor’s mathematics of
the infinite is unassailable.

New problems and new paradoxes, however, have
been discovered arising out of parts of Cantor’s structure
because of certain difficulties already inherent in class-
ical logic. They center about the use of the word ‘“all.”
The paradoxes encountered in ordinary parlance, such
as “All generalities are false including this one,” con-
stitute a real problem in the foundations of logic, just as
did the Epimenides paradox whence they sprang. In the
Epimenides, a Cretan is made to say that all Cretans are
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liars, which, if true, makes the speaker a liar for telling
the truth. To dispose of this type of paradox the Logistic
school invented a “Theory of Types.” The theory of
types and the axiom of reducibility on which it is based
must be accepted as axioms to avoid paradoxes of this
kind. In order to accomplish this a reform of classical
logic is required which has already been undertaken.
Like most reforms it is not wholly satisfactory—even to
the reformers—but by means of their theory of types the
last vestige of inconsistency has been driven out of the
house that Cantor built. The theory of transfinites may
still be so much nonsense to many mathematicians, but
it is certainly consistent. The serious charge Henri Poin-
caré expressed in his aphorism, “La logistique n’est plus
stérile: elle engendre la contradiction,” has been success-
fully rebutted by the logistic doctrine so far as the infinite
is concerned.

To Cantor’s alephs then, we may ascribe the same
existence as to the number 7. An existence statement free
from self-contradiction may be made relative to either.
For that matter, there is no valid reason to trust in the
finite any more than in the infinite. It is as permissible
to discard the infinite as it is to reject the impressions of
one’s senses. It is neither more, nor less scientific to do so.
In the final analysis, this is a matter of faith and taste,
but not on a par with rejecting the belief in Santa Claus.
Infinite classes, judged by finite standards, generate para-
doxes much more absurd and a great deal less pleasing
than the belief in Santa Claus; but when they are judged
by the appropriate standards, they lose their odd appear-
ance, behave as predictably as any finite integer.

At last in its proper setting, the infinite has assumed a
respectable place next to the finite, just as real and just as
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dependable, even though wholly different in character.
Whatever the infinite may be, it is no longer a purple
cow.

FOOTNOTES

1. We distinguish cardinal from ordinal numbers, which denote the re-
lation of an element in a class to the others, with reference to some
system of order. Thus, we speak of the first Pharaoh of Egypt,
or of the fourth integer, in their customary order, or of the third
day of the week, etc. These are examples of ordinals.—P. 30.
For the definition of primes, see the Chapter on pIe.—P. 32.

This series is said to CONVERGE TO A LimiT—1. Discussion of this

concept must be postponed to the chapters on PIE and the cal-

culus.—P. 38.

4. A transcendental number is one which is not the root of an
algebraic equation with integer coefficients. See pE.—P. 49.

5. Any terminating decimal, such as .4, has a nonterminating form
.3999...—P. 51.

6. A simple geometric interpretation of the class of all one-valued
functions F is the following: With each point of a line segment,
associate a color of the spectrum. The class F is then composed
of all possible combinations of colors and points that can be
conceived.—P. 54.
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In order to reach the Truth, it is necessary, once in one’s
life, to put everything in doubt—so far as possible.
—DESCARTES

PERHAPS PURE science begins where common sense ends;
perhaps, as Bergson says, “Intelligence is characterized
by a natural lack of comprehension of life.” ! But we have
no paradoxes to preach, no epigrams to sell. It is only
that the study of science, particularly mathematics, often
leads to the conclusion that one need only say that a thing
is unbelievable, impossible, and science will prove him
wrong. Good common sense makes it plain that the earth
is flat and stands still, that the Chinese and the Antipo-
deans walk about suspended by their feet like chandeliers,
that parallel lines never meet, that space is infinite, that
negative numbers are as real as negative cows, that —1
has no square root, that an infinite series must have an
infinite sum, or that it must be possible with ruler and
compass alone to construct a square exactly equal in area
to a given circle.

Just how far have we been carried by common sense
in arriving at these conclusions? Not very far! Yet some of
the statements seem quite plausible, even inescapable.
It would be wrong to say that science has proved that all
are false. We may still cling to the Euclidean hypothesis

that parallel lines never meet and remain always equi-
65
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distant, as long as we remember it is merely a hypothesis,
but the statements about the squaring of the circle, the
square root of —1, and about infinite series belong in a
different category.

The circle can not be squared with ruler and compass.
—1 has a square root. An infinite series can have a finite
sum. Three symbols, , i, ¢, have enabled mathemati-
cians to prove these statements, three symbols which rep-
resent the fruits of centuries of mathematical research.
How do they stand up to common sense?

*

The most famous problem in the entire history of math-
ematics is the “squaring of the circle.” Two other prob-
lems which challenged Greek geometers, the “duplication
of the cube” and the “trisection of an angle,” may, as a
matter of interest, be briefly considered with the first,
even though squaring the circle alone involves .

In the infancy of geometry, it was discovered that it
was possible to measure the area of a figure bounded by
straight lines. Indeed, geometry was devised for that very
purpose—to measure the fields in the valley of the Nile,
where each year the floods from the rising river obliter-
ated every mark made by the farmer to indicate which
fields were his and which his neighbor’s. Measuring areas
bounded by curved lines presented greater difficulties,
and an effort was made to reduce every problem of this
type to one of measuring areas with straight boundaries.
Clearly, if a square can be constructed with the area
of a given circle, by measuring the area of the square,
that of the circle is determined. The expression “squar-
ing the circle” derives its name from this approach.

The number 7 is the ratio of the circumference of a
circle to its diameter. The area of a circle of radius 7 is
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given by the formula 7% Now the area of a square with
side of length A is A% Thus, the algebraic statement:
A? = 7r? expresses the equivalence in area between a
given square and a circle. Taking square roots of both
sides of this equation yields 4 = r/7. As r is a known
quantity, the problem of squaring the circle is, in effect,
the computation 2 of the value of .

Since mathematicians have succeeded in computing
« with extraordinary exactitude, what then is meant by
the statement, “It is impossible to square the circle’?
Unfortunately, this question is still shrouded in many
misapprehensions, But these would vanish if the problem
were understood.

*

Squaring the circle is proclaimed impossible, but what
does “impossible’” mean in mathematics? The first steam
vessel to cross the Atlantic carried, as part of its cargo, a
book that “proved” it was impossible for a steam vessel
to cross anything, much less the Atlantic. Most of the
savants of two generations ago ‘““proved” that it would be
forever impossible to invent a practical heavier-than-air
flying machine. The French philosopher, Auguste Comte,
demonstrated that it would always be impossible for the
human mind to discover the chemical constitution of the
stars. Yet, not long after this statement was made the
spectroscope was applied to the light of the stars, and we
now know more about their chemical constitution, in-
cluding those of the distant nebulae, than we know about
the contents of our medicine chest. As just one illustra-
tion, helium was discovered in the sun before it was found
in the earth.

Museums and patent offices are filled with cannons,
clocks, and cotton gins, already obsolete, each of which
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confounded predictions that their invention would be im-
possible. A scientist who says that a machine or a project
is impossible only reveals the limitations of his day. What-
ever the intentions of the prophet, the prediction has none
of the qualities of prophecy. “It is impossible to fly to the
moon’ is meaningless, whereas ‘“We have not yet devised
a means of flying to the moon” is not.

Statements about impossibility in mathematics are of
a wholly different character. A problem in mathematics
which may not be solved for centuries to come is not
always impossible. “Impossible” in mathematics means
theoretically impossible, and has nothing to do with the
present state of our knowledge. “Impossible” in mathe-
matics does not characterize the process of making a silk
purse out of a sow’s ear, or a sow’s ear out of a silk purse;
it does characterize an attempt to prove that 7 times 6 is
43 (in spite of the fact that people not good at arithmetic
often achieve the impossible). By the rules of arithmetic
7 times 6 is 42, just as by the rules of chess, a pawn must
make at least 5 moves before it can be queened.

Where theoretical proof that a problem cannot be
solved is lacking, it is legitimate to attempt a solution, no
matter how improbable the hope of success. For centuries
the construction of a regular polygon of 17 sides was
rightly considered difficult, but falsely considered im-
possible, for the nineteen-year-old Gauss in 1796 suc-
ceeded in finding an elementary construction.? On the
other hand, many famous problems, such as Fermat’s
Last Theorem,* have defied solution to this day in spite
of heroic researches. To determine whether we have the
right to say that squaring the circle, trisecting the angle,
or duplicating the cube is impossible, we must find logical
proofs, involving purely mathematical reasoning. Once
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such proofs have been adduced, to continue the search
for a solution is to hunt for a three-legged biped.®
*

Having determined what mathematicians mean by
impossible, the bare statement, “It is impossible to square
the circle” still remains meaningless. To give it meaning
we must specify how the circle is to be squared. When
Archimedes said, “Give me a place to stand and I will
move the earth,” he was not boasting of his physical
powers but was extolling the principle of the lever, When
it is said that the circle cannot be squared, all that is
meant is that this cannot be done with ruler and compass alone,
although with the aid of the integraph or higher curves
the operation does become possible.

Let us repeat the problem: It is required to construct
a square equal in area to a given circle, by means of an
exact theoretical plan, using only two instruments: the
ruler and compass. By a ruler is meant a straightedge,
that is, an instrument for drawing a straight line, not
for measuring lengths. By a compass is meant an instru-
ment with which a circle with any center and any radius
can be drawn. These instruments are to be used a finite
number of times, so that limits or converging processes
with an infinite number of steps may not be employed.®
The construction, by purely logical reasoning, depending
only on Euclid’s axioms and theorems, is to be absolutely
exact.

The concepts of “limit” and ‘“‘convergence” are more
fully explained elsewhere,” but a word about them here
is in place.

Consider the familiar series 1 + 3 + ¥ + 3 + {5 +
w5 + . . . The sum of the first 5 terms of this series is
1.9375; the sum of the first 10 terms is 1.9980 . . . ; the



70 Mathematics and the Imagination

sum of the first 15is 1.999781 . . . What is readily appar-
ent is that this series tends to choke off, i.e., the additional
terms which are added become so small that even a vast
number will not cause the series to grow beyond a finite
bound. In this instance the bound, or limit, is 2. Such a
series which chokes off is said to “converge”® to a “limit.”

I-—— 1 FoOT -——’-I

— % roor —1

.l‘ 2 FEET bjl

FIG. 15.—An infinite number of terms with a finite sum.
If the width of the first block is one foot, the width of
the second 3 foot, of the third % foot, of the fourth } foot,
and so one, then an infinite number of blocks rests on the
2-foot bar, that is:

143+t +st+H&+...=2

The geometric analogues of the concepts of limit and
convergence are equally fruitful. A circle may be re-
garded as the limit of the polygons with increasing num-
ber of sides which may be successively inscribed in it, or
circumscribed about it, and its area as the common limit
of both of these sets of polygons.

This is not a rigorous definition of limit and conver-
gence, but too often mathematical rigor serves only to
bring about another kind of rigor—rigor mortis of math-
ematical creativeness.
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To return to squaring the circle: the Greeks, and later
mathematicians, sought an exact construction with ruler
and compass, but always failed. As we shall see later, all
ruler and compass constructions are geometric equiva-
lents of first- and second-degree algebraic equations and
combinations of such equations. But the German mathe-
matician Lindemann, in 1882, published a proof that =
is a transcendental number and thus any equation which
satisfies it cannot be algebraic and surely not algebraic of
first or second degree. It follows that the statement, “The
squaring of the circle is impossible with ruler and compass
alone,” s meaningful.

So far as the other two problems are concerned, thanks
in part to the work of “the marvelous boy . . . who
perished in his prime,” the sixteen-year-old Galois, it was
established about one hundred years ago that the dupli-
cation of the cube and the trisection of an angle are also
impossible with ruler and compass. We may allude to
them briefly.

There is a story among the Greeks that the problem of
duplicating the cube originated in a visit to the Delphic
oracle, There was an epidemic raging at the time, and
the oracle said the epidemic would cease only if a cubical
altar to Apollo were doubled in size. The masons and
architects made the mistake of doubling the side of the
cube, but that made the volume eight times as great. Of
course the oracle was not satisfied, and the Greek math-
ematicians, on re-examining the problem began to see
that the right answer involved, not doubling the side,
but multiplying it by the cube root of 2. This could not
be done geometrically with ruler and compass. They
finally succeeded by using other instruments and higher
curves. The oracle was appeased and the epidemic
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ceased. You may believe the story or not, much as you
choose, but you cannot ‘“duplicate the cube.”?

The trisection of an angle has received a good deal of
attention in the newspapers during the past few years
because monographs continue to crop up which claim to
solve the problem completely. The fallacies contained in
these ““solutions” are of four kinds: they are sometimes
merely approximate and not exact; instruments other
than the ruler and compass are occasionally used, either
wittingly or unwittingly; at times there is a logical fallacy
in the intended proof; and often only special and not
general angles are considered. An angle can be bisected
but not trisected by elementary geometry, since the first
problem involves merely square roots, while the second
involves cube roots, which, as we have stated, cannot be
constructed with ruler and compass.

*

The difficulty in squaring the circle, as stated at the
outset, lies in the nature of the number . This remark-
able number, as Lindemann proved, cannot be the root
of an algebraic equation with integer coefficients.!? It is
therefore not expressible by rational operations, or by the
extraction of square roots, and as only such operations
can be translated into an equivalent ruler and compass
construction, it is impossible to square the circle. The pa-
rabola is a more complicated curve than a circle, but
nevertheless, as Archimedes knew, any area bounded by a
parabola and a straight line can be determined by ra-
tional operations, and hence the “parabola can be
squared.”

Lindemann’s proof is too technical to concern us here.
If, however, we consider the history and development of
x, we shall be in a better position to understand its
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purpose without being compelled to master its difficulties.

If a triangle is inscribed in a circle (Fig. 16), the area of
the inscribed triangle will be less than the area of the
circle:

F1G6. 16.—The circle as the limit of inscribed and
circumscribed polygons.

The difference between the area of the circle and the
triangle are the three shaded portions of the circle. Now
consider the same circle with a triangle circumscribed about
it (Fig. 16). The area of the circumscribed triangle will
be greater than the area of the circle. The three shaded
portions of the triangle again represent the difference in
area. It may readily be seen that if the number of sides of
the inscribed figure is doubled,. the area of the resulting
hexagon will be less than the area of the circle, but closer
to it than the area of the inscribed triangle. Similarly, if
the number of sides of the circumscribed triangle is
doubled, the area of the circumscribed hexagon will still
be greater than the area of the circle but, again, closer to
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it than the area of the circumscribed triangle. By well-
known, simple, geometric methods, employing only ruler
and compass, the number of sides of the inscribed and
circumscribed polygons may be doubled as many times as
desired. The area of the successively inscribed polygons
will approach that of the circle, but will always remain
slightly less; the area of the circumscribed polygons will
also approach that of the circle but their area will always
remain slightly greater. The common value approached
by both is the area of the circle. In other words, the circle
is the /imit of these two series of polygons. If the radius of
the circle is equal to 1, its area, which equals #7? is
simply .

This method of increasing and decreasing polygons for
computing the value of = was known to Archimedes, who,
employing polygons of 96 sides, showed that = is less than
31 and greater than 31%. Somewhere in between lies the
area of the circle,

Archimedes’ approximation for = is considerably closer
than that given in the Bible. In the Book of Kings, and in
Chronicles, = is given as 3. Egyptian mathematicians
gave a somewhat more accurate value—3.16. The fa-
miliar decimal—3.1416, used in our schoolbooks, was
already known at the time of Ptolemy in 150 A.p.

Theoretically, Archimedes’ method for computing =
by increasing the number of sides of the polygons may
be extended indefinitely, but the requisite calculations
soon become very cumbersome. None the less, during
the Middle Ages such calculations were zealously carried
out.

Francisco Vieta, the most eminent mathematician of
the sixteenth century, though not a professional, made a
great advance in the calculation of = in determining its



