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Preface

[[ntuition comes to us much earlier and with much less outside in-
fluence than formal arguments which we cannot really understand
unless we have reached a relatively high level of logical experience
and sophistication. ... In the first place, the beginner must be con-
vinced that proofs deserve to be studied, that they have a purpose,
that they are interesting.

George Polya, Mathematical Discovery: On Understanding,
Learning and Teaching Problem Solving, 1968

The authors first met in 1985, when Bailey used the Borwein quartic
algorithm for 7 as part of a suite of tests on the new Cray-2 then be-
ing installed at the NASA Ames Research Center in California. As our
collaboration has grown over the past 18 years, we have became more
and more convinced of the power of experimental techniques in mathe-
matics. When we started our collaboration, relatively few mathematicians
employed computations in serious research work. In fact, there appeared
to be a widespread view in the field that “real mathematicians don't com-
pute.” In the ensuing years, computer hardware has skyrocketed in power
and plummeted in cost, thanks to the remarkable phenomenon of Moore’s
Law. In addition, numerous powerful mathematical software products,
both commercial and noncommercial, have become available. But just im-
portantly, a new generation of mathematicians is eager to use these tools,
and consequently numerous new results are being discovered.

The experimental methodology described in this book, as well as in
the second volume of this work, Experimentation in Mathematics: Com-
putational Paths to Discovery [72], provides a compelling way to generate
understanding and insight; to generate and confirm or confront conjectures;
and generally to make mathematics more tangible, lively and fun for both
the professional researcher and the novice. Furthermore, the experimen-
tal approach helps broaden the interdisciplinary nature of mathematical
research: a chemist, physicist, engineer, and a mathematician may not
understand each others’ motivation or technical language, but they often

vii
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share an underlying computational approach, usually to the benefit of all
parties involved.

Our views have been expressed well by Epstein and Levy in a 1995
article on experiment and proof [136].

The English word “prove”—as its Old French and Latin ancestors—
has two basic meanings: to try or test, and to establish beyond doubt.
The first meaning is largely archaic, though it survives in technical
expressions (printer’s proofs) and adages (the exception proves the
rule, the proof of the pudding). That these two meanings could have
coexisted for so long may seem strange to us mathematicians today,
accustomed as we are to thinking of “proof” as an unambiguous
term. But it is in fact quite natural, because the most common way
to establish something in everyday life is to examine it, test it, probe
it, experiment with it.

As it turns out, much the same is true in mathematics as well. Most
mathematicians spend a lot of time thinking about and analyzing
particular examples. This motivates future development of theory
and gives one a deeper understanding of existing theory. Gauss de-
clared, and his notebooks attest to it, that his way of arriving at
mathematical truths was “through systematic experimentation.” It
is probably the case that most significant advances in mathemat-
ics have arisen from experimentation with examples. For instance,
the theory of dynamical systems arose from observations made on
the stars and planets and, more generally, from the study of physi-
cally motivated differential equations. A nice modern example is the
discovery of the tree structure of certain Julia sets by Douady and
Hubbard: this was first observed by looking at pictures produced by
computers and was then proved by formal arguments.

Our goal in these books is to present a variety of accessible examples of
modern mathematics where intelligent computing plays a significant role
(along with a few examples showing the limitations of computing). We have
concentrated primarily on examples from analysis and number theory, as
this is where we have the most experience, but there are numerous excur-
sions into other areas of mathematics as well (see the Table of Contents).
For the most part, we have contented ourselves with outlining reasons and
exploring phenomena, leaving a more detailed investigation to the reader.
There is, however, a substantial amount of new material, including nu-
merous specific results that have not yet appeared in the mathematical
literature, as far as we are aware.

This work is divided into two volumes, each of which can stand by it-
self. This volume, Mathematics by Experiment: Plausible Reasoning in the
21st Century, presents the rationale and historical context of experimental
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mathematics, and then presents a series of examples that exemplify the ex-
perimental methodology. We include in this volume a reprint of an article
co-authored by one of us that complements this material. The second book,
Experimentation in Mathematics: Computational Paths to Discovery, con-
tinues with several chapters of additional examples. Both volumes include
a chapter on numerical techniques relevant to experimental mathematics.

Each volume is targeted to a fairly broad cross-section of mathemati-
cally trained readers. Most of this volume should be readable by anyone
with solid undergraduate coursework in mathematics. Most of the second
volume should be readable by persons with upper-division undergraduate
or graduate-level coursework. None of this material involves highly abstract
or esoteric mathematics.

The subtitle of this volume is taken from George Polya’s well-known
work, Mathematics and Plausible Reasoning [235]. This two-volume work
has been enormously influential—if not uncontroversial-—not only in the
field of artificial intelligence, but also in the mathematical education and
pedagogy community.

Some programming experience is valuable to address the material in this
book. Readers with no computer programming experience are invited to
try a few of our examples using commercial software such as Mathematica
and Maple. Happily, much of the benefit of computational-experimental
mathematics can be obtained on any modern laptop or desktop computer—
a major investment in computing equipment and software is not required.

Each chapter concludes with a section of commentary and exercises.
This permits us to include material that relates to the general topic of
the chapter, but which does not fit nicely within the chapter exposition.
This material is not necessarily sorted by topic nor graded by difficulty,
although some hints, discussion and answers are given. This is because
mathematics in the raw does not announce, “I am solved using such and
such a technique.” In most cases, half the battle is to determine how to
start and which tools to apply.

We should mention two recent books on mathematical experimentation:
[158] and [203]. In both cases, however, the focus and scope centers on the
teaching of students and thus is quite different from ours.

We are grateful to our colleagues Victor Adamchik, Heinz Bauschke, Pe-
ter Borwein, David Bradley, Gregory Chaitin, David and Gregory Chud-
novsky, Robert Corless, Richard Crandall, Richard Fateman, Greg Fee,
Helaman Ferguson, Steven Finch, Romnald Graham, Andrew Granville,
Christoph Haenel, David Jeffrey, Jeff Jovce, Adrian Lewis, Petr Lisonek,
Russell Luke, Mathew Morin, David Mumford, Andrew Odlyzko, Hristo
Sendov, Luis Serrano, Neil Sloane, Daniel Rudolph, Asia Weiss, and John
Zucker who were kind enough to help us prepare and review material for
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this book; to Mason Macklem, who helped with material, indexing (note
that in the index definitions are marked in bold, and quotes with a suffix
“"), and more; to Jen Chang and Rob Scharein, who helped with graphics;
to Janet Vertesi who helped with bibliographic research; to Will Galway,
Xiaoye Li, and Yozo Hida, who helped with computer programming; and
to numerous others who have assisted in one way or another in this work.
We thank Roland Girgensohn in particular for contributing a significant
amount of material and reviewing several drafts. We owe a special debt of
gratitude to Klaus Peters for urging us to write this book and for helping
us nurse it into existence. Finally, we wish to acknowledge the assistance
and the patience exhibited by our spouses and family members during the
course of this work.

Borwein’s work is supported by the Canada Research Chair Program
and the Natural Sciences and Engineering Council of Canada. Bailey’s
work is supported by the Director, Office of Computational and Technol-
ogy Research, Division of Mathematical, Information, and Computational
Sciences of the U.S. Department of Energy, under contract number DE-
AC02-05CH11231.

Photo and Illustration Credits

We are grateful to the following for permission to reproduce material:
Béla Bollobas (Littlewood’s Miscellany), David and Gregory Chudnovsky
(Random Walk on Pi), George Paul Csicsery (Paul Erdés photo), Hela-
man Ferguson (Sculpture photos), Géttingen University Library (Riemann
manuscript), Mathematical Association of America (Polya’s coin graphic),
Andrew Odlyzko (Data and graphs of Riemann zeta function), The Smith-
sonian Institution (ENIAC computer photo), Nick Trefethen (Daisy
pseudospectrum graphic), Asia Weiss (Coxeter’s memorabilia)

Experimental Mathematics Web Site

The authors have established a web site containing an updated collection
of links to many of the URLs mentioned in the two volumes, plus errata,
software, tools, and other web useful information on experimental mathe-
matics. This can be found at the following URL:
http://www.experimentalmath.info

Jonathan M. Borwein August 2003
David H. Bailey
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Expanded Second Edition

In this edition, in addition to correcting various minor infelicities and up-
dating references, we have replaced the original Chapter 7 (which was a
reprint of a philosophical article [76]) by roughly 100 pages of new mate-
rial. We wish to thank Peter Borwein, David Bradley, David Broadhurst,
Marc Chamberland, O-Yeat Chan, John Cosgrave, Richard Crandall, Karl
Dilcher, Frank Garvan, John Holte, Manuel Kauers, Dante Manna, Veron-
ica Pillwein, Mark Pinsky, Andrew Shouldice, Fernanda Villegas, and Stan
Wagon, among those who have provided interesting material for this new
chapter. As before, our thanks go to our friends and editors at A K Peters
for their support and care of our work.

Jonathan M. Borwein May 2008
David H. Bailey
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What is Experimental
Mathematics?

The computer has in turn changed the very nature of mathemati-
cal experience, suggesting for the first time that mathematics, like
physics, may yet become an empirical discipline, a place where things
are discovered because they are seen.

— David Berlinski, “Ground Zero: A Review of The Pleasures
of Counting, by T. W. Koerner,” 1997

If mathematics describes an objective world just like physics, there
is no reason why inductive methods should not be applied in math-
ematics just the same as in physics.

— Kurt Godel, Some Basic Theorems on the Foundations, 1951

1.1 Background

One of the greatest ironies of the information technology revolution is that
while the computer was conceived and born in the field of pure mathe-
matics, through the genius of giants such as John von Neumann and Alan
Turing, until recently this marvelous technology had only a minor impact
within the field that gave it birth.

This has not been the case in applied mathematics, as well as in most
other scientific and engineering disciplines, which have aggressively inte-
grated computer technology into their methodology. For instance, physi-
cists routinely utilize numerical simulations to study exotic phenomena
ranging from supernova explosions to big bang cosmology—phenomena
that in many cases are beyond the reach of conventional laboratory experi-
mentation. Chemists, molecular biologists, and material scientists make use
of sophisticated quantum-mechanical computations to unveil the world of
atomic-scale phenomena. Aeronautical engineers employ large-scale fluid
dynamics calculations to design wings and engines for jet aircraft. Ge-
ologists and environmental scientists utilize sophisticated signal process-
ing computations to probe the earth’s natural resources. Biologists har-
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ness large computer systems to manage and analyze the exploding vol-
ume of genome data. And social scientists—economists, psychologists, and
sociologists—make regular use of computers to spot trends and inferences
in empirical data.

In the late 1980s, recognizing that its members were lagging behind
in embracing computer technology, the American Mathematical Society
began a regular “Computers and Mathematics” section in the monthly
newsletter, Notices of the American Mathematical Society, edited at first
by Jon Barwise and subsequently by Keith Devlin. This continued until
the mid-1990s and helped to convince the mathematical community that
the computer can be a useful research tool. In 1992, a new journal, Ex-
perimental Mathematics, was launched, founded on the belief “that theory
and experiment feed on each other, and that the mathematical community
stands to benefit from a more complete exposure to the experimental pro-
cess.” It encouraged the submission of algorithms, results of experiments,
and descriptions of computer programs, in addition to formal proofs of new
results [135].

Perhaps the most important advancement along this line is the devel-
opment of broad spectrum mathematical software products such as Math-
ematica and Maple. These days, many mathematicians are highly skilled
with these tools and use them as part of their day-to-day research work.
As a result, we are starting to see a wave of new mathematical results dis-
covered partly or entirely with the aid of computer-based tools. Further
developments in hardware (the gift of Moore’s Law of semiconductor tech-
nology), software tools, and the increasing availability of valuable Internet-
based facilities, are all ensuring that mathematicians will have their day in
the computational sun.

This new approach to mathematics—the utilization of advanced com-
puting technology in mathematical research—is often called experimental
mathematics. The computer provides the mathematician with a “labora-
tory” in which he or she can perform experiments: analyzing examples,
testing out new ideas, or searching for patterns. Our book is about this
new, and in some cases not so new, way of doing mathematics. To be
precise, by experimental mathematics, we mean the methodology of doing
mathematics that includes the use of computations for:

1. Gaining insight and intuition.
2. Discovering new patterns and relationships.

3. Using graphical displays to suggest underlying mathematical princi-
ples.

4. Testing and especially falsifying conjectures.
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5. Exploring a possible result to see if it is worth formal proof.

6. Suggesting approaches for formal proof.

7. Replacing lengthy hand derivations with computer-based derivations.
8. Confirming analytically derived results.

Note that the above activities are, for the most part, quite similar to the
role of laboratory experimentation in the physical and biological sciences.
In particular, they are very much in the spirit of what is often termed “com-
putational experimentation” in physical science and engineering, which is
why we feel the qualifier “experimental” is particularly appropriate in the
term experimental mathematics.

We should note that one of the more valuable benefits of the computer-
based experimental approach in modern mathematics is its value in reject-
ing false conjectures (Item 4): A single computational example can save
countless hours of human effort that would otherwise be spent attempting
to prove false notions.

With regards to Item 5, we observe that mathematicians generally do
not know during the course of research how it will pan out, but nonethe-
less must, in a conventional mathematical approach, prove all the pieces
along the way as assurance that the project makes sense and remains on
course. The methods of experimental mathematics allow mathematicians
to maintain a reasonable level of assurance without nailing down all the
lemmas the first time through. At the end of the day, they can decide if
the result merits proof. If it is not the answer that was sought, or if it is
simply not interesting enough, much less time will have been spent coming
to this conclusion.

Many mathematicians remain uncomfortable with the appearance in
published articles of expressions such as “proof by Mathematica” or “es-
tablished by Maple” (see Item T above). There is, however, a clear trend in
this direction, and it seems to us to be both futile and counterproductive to
resist it. In Chapter 7 we will further explore the nature of mathematical
experimentation and proof.

1.2 Complexity Considerations

Gordon Moore, the co-founder of Intel Corporation, noted in a 1965 article

The complexity for minimum component costs has increased at a
rate of roughly a factor of two per year. ... Certainly over the short
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term this rate can be expected to continue, if not to increase. Over
the longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for at
least 10 years. [219]

With these sentences, Moore stated what is now known as Moore’s
Law, namely the observation that semiconductor technology approximately
doubles in capacity and overall performance roughly every 18 to 24 months
(not quite every year as Moore predicted above). This trend has continued
unabated for nearly 40 years, and, according to Moore and other industry
analysts, there is still no end in sight—at least another ten years is assured
[2]. This astounding record of sustained exponential progress has no peer
in the history of technology. What’s more, we will soon see mathematical
computing tools implemented on parallel computer platforms, which will
provide even greater power to the research mathematician.

However, we do not suggest that amassing huge amounts of processing
power can solve all mathematical problems, even those that are amenable to
computational analysis. There are doubtless some cases where a dramatic
increase in computation could, by itself, result in significant breakthroughs,
but it is easier to find examples where this is unlikely to happen.

For example, consider Clement Lam’s 1991 proof of the nonexistence
of a finite projective plane of order ten [200]. This involved a search for a
configuration of n? 4+ n + 1 points and equally many lines. Lam’s computer
program required thousands of hours of run time on a Cray computer
system. Lam estimates that the next case (n = 18) susceptible to his
methods would take millions of years on any conceivable architecture.

Along this line, although a certain class of computer-based mathemat-
ical analysis is amenable to “embarrassingly parallel” (the preferred term
is now “naturally parallel”) processing, these tend not to be problems of
central interest in mathematics. A good example of this is the search for
Mersenne primes, namely primes of the form 2" — 1 for integer n. While
such computations are interesting demonstrations of mathematical com-
putation, they are not likely to result in fundamental breakthroughs. By
contrast let us turn to perhaps the most fundamental of current algorith-
mic questions.

The P versus NP problem. (This discussion is taken from [67].) Of
the seven million-dollar Millennium Prize problems, the one that is most
germane to our present voyage is the so-called “P versus NP problem,” also
known as the “P % NP7 problem. We quote from the discussion on the
Clay web site:

It is Saturday evening and you arrive at a big party. Feeling shy, you
wonder whether you already know anyone in the room. Your host
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proposes that you must certainly know Rose, the lady in the corner
next to the dessert tray. In a fraction of a second you are able to
cast a glance and verify that your host is correct. However, in the
absence of such a suggestion, you are obliged to make a tour of the
whole room, checking out each person one by one, to see if there is
anyone you recognize. This is an example of the general phenomenon
that generating a solution to a problem often takes far longer than
verifying that a given solution is correct. Similarly, if someone tells
you that the number 13, 717, 421 can be written as the product of two
smaller numbers, you might not know whether to believe him, but
if he tells you that it can be factored as 3607 times 3803, then you
can easily check that it is true using a hand calculator. One of the
outstanding problems in logic and computer science is determining
whether questions exist whose answer can be quickly checked (for
example by computer), but which require a much longer time to
solve from scratch (without knowing the answer). There certainly
seem to be many such questions. But so far no one has proved that
any of them really does require a long time to solve; it may be that we
simply have not yet discovered how to solve them quickly. Stephen
Cook formulated the P versus NP problem in 1971.

Although in many instances one may question the practical distinction
between polynomial and nonpolynomial algorithms, this problem really is
central to our current understanding of computing. Roughly it conjectures
that many of the problems we currently find computationally difficult must
per force be that way. It is a question about methods, not about actual
computations, but it underlies many of the challenging problems one can
imagine posing. A question that requests one to “compute such and such a
sized incidence of this or that phenomena” always risks having the answer,
“It’s just not possible,” because P # NP.

With the “NP” caveat (though factoring is difficult it is not generally
assummed to be in the class of N P-hard problems), let us offer two challenges
that are far fetched, but not inconceivable, goals for the next few decades.

First Challenge. Design an algorithm that can reliably factor a
random thousand digit integer.

Even with a huge effort, current algorithms get stuck at about 150 digits.
Details can be found at http://www.rsasecurity.com /rsalabs/node.asp?id=
2094 where the current factoring challenges are listed. One possible solution
to the factorization problem may come through quantum computing, using
an algorithm found by Peter Shor in 1994 [258]. However, it is still not clear
whether quantum phenomenon can be harnessed on the scale required for
this algorithm to be practical.
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With regards to cash prizes, there is also $100, 000 offered for any honest
10,000,000 digit prime: http://www.mersenne.org/prime.htm.

Primality checking is currently easier than factoring, and there are some
very fast and powerful probabilistic primality tests—much faster than those
providing “certificates” of primality. There is also the recently discovered
“AKS” deterministic polynomial time algorithm for primality, whose imple-
mentations, as we note in Section 7.2 of the second volume, keep improving,.

Given that any computation has potential errors due to: (i) subtle (or
even not-so-subtle) programming bugs, (ii) compiler errors, (iii) system
software errors, and (iv) undetected hardware integrity errors, it seems
increasingly pointless to distinguish between these two types of primality
tests. Many would take their chances with a (1—1071%0) probability statis-
tic over a “proof” any day (more on this topic is presented in Section 7.2
of the second volume).

The above questions are intimately related to the Riemann Hypothesis
and its extensions, though not obviously so. They are also critical to issues
of Internet security. If someone learns how to rapidly factor large numbers,
then many current security systems are no longer secure.

Many old problems lend themselves to extensive exploration. One ex-
ample that arose in signal processing is called the Merit Factor problem,
and is due in large part to Marcel Golay with closely related versions due
to Littlewood and to Erdds. It has a long pedigree though certainly not as
elevated as the Riemann Hypothesis.

The problem can be formulated as follows. Suppose A,, consists of all
sequences (ag = 1,a1,--- ,a,) of length n+ 1 where each q; is restricted to
lor—1,fori>0. If ¢, = Z;L;(f @j@j4+r, then the problem is to minimize
Sh__, % over A, for each fixed n. This is discussed at length in [82].

Minima have been found up to about n = 50. The search space of
sequences of size 50 is 2°° a2 10'°, which approaches the limit of the very
large-scale calculations feasible today. The records use a branch and bound
algorithm which grows more or less like 1.8™. This is marginally better than
the naive 2" growth of a completely exhaustive search but is still painfully
exponential.

Second Challenge. Find the minima in the merit factor problem
for sizes n < 100.

The best hope for a solution lies in development of better algorithms.
The problem is widely acknowledged as a very hard problem in combina-
torial optimization, but it isn’t known to be in one of the recognized hard
classes like N P. The next best hope is a radically improved computer tech-
nology, perhaps quantum computing. And there is always a remote chance
that analysis will lead to a mathematical solution.
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1.3  Proof versus Truth

In any discussion of an experimental approach to mathematical research,
the questions of reliability and standards of proof justifiably come to center
stage. We certainly do not claim that computations utilized in an exper-
imental approach to mathematics by themselves constitute rigorous proof
of the claimed results. Rather, we see the computer primarily as an ex-
ploratory tool to discover mathematical truths, and to suggest avenues for
formal proof.

For starters, it must be acknowledged that no amount of straightforward
case checking constitutes a proof. For example, the “proof” of the Four
Color Theorem in the 1970s, namely that every planar map can be colored
with four colors so adjoining countries are never the same color, was consid-
ered a proof because prior mathematical analysis had reduced the problem
to showing that a large but finite number of bad configurations could be
ruled out. The “proof” was viewed as somewhat flawed because the case
analysis was inelegant, complicated and originally incomplete (this com-
putation was recently redone after a more satisfactory analysis). Though
many mathematicians still yearn for a simple proof, there is no particu-
lar reason to believe that all elegant true conjectures have elegant proofs.
What’s more, given Gdédel’s result, some may have no proofs at all.

Nonetheless, we feel that in many cases computations constitute very
strong evidence, evidence that is at least as compelling as some of the more
complex formal proofs in the literature. Prominent examples include: (1)
the determination that the Fermat number Fay = 227 +1 is composite, by
Crandall, Mayer, and Papadopoulos [118, page 219]; (2) the recent compu-
tation of 7 to more than one trillion decimal digits by Yasumasa Kanada
and his team; and (3) the Internet-based computation of binary digits of
7 beginning at position one quadrillion organized by Colin Percival. These
are among the largest computations ever done, mathematical or otherwise
(the m computations will be described in greater detail in Chapter 3). Given
the numerous possible sources of error, including programming bugs, hard-
ware bugs, software bugs, and even momentary cosmic-ray induced glitches
(all of which are magnified by the sheer scale of these computations), one
can very reasonably question the validity of these results.

But for exactly such reasons, computations such as these typically
employ very strong validity checks. For example, the Crandall-Mayer-
Papadopoulos computation employed a “wavefront” scheme. Here a faster
computer system computed a chain of squares modulo Fyy, such as 3200
mod Fby, 32 mod Fyy, 32°7 hod Fy,, ---. Then each of a set of
slower computers started with one of these intermediate values, squared it
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1,000,000 times modulo Fy4, and checked to see if the result (a 16-million-
bit integer) precisely reproduced the next value in the chain. If it did, then
this is very strong evidence that both computations were correct. If not,
then the process was repeated [118, page 219].

In the case of computations of digits of m, it has been customary for
many years to verify a result either by repeating the computation using a
different algorithm, or by repeating with a slightly different index position.
For example, if one computes hexadecimal digits of 7 beginning at position
one trillion (we shall see how this can be done in Chapter 3), then this
can be checked by repeating the computation at hexadecimal position one
trillion minus one. It is easy to verify (see Algorithm 3.4 in Section 3.4)
that these two calculations take almost completely different trajectories,
and thus can be considered “independent.” If both computations generate
25 hexadecimal digits beginning at the respective positions, then 24 digits
should perfectly overlap. If these 24 hexadecimal digits do agree, then
we can argue that the probability that these digits are in error, in a very
strong (albeit heuristic) sense, is roughly one part in 162* = 7.9 x 1028, a
figure much larger even than Avogadro’s number (6.022 x 10%%). Percival’s
actual computation of the quadrillionth binary digit (i.e., the 250 trillionth
hexadecimal digit) of = was verified by a similar scheme, which for brevity
we have simplified here.

Kanada and his team at the University of Tokyo, who just completed a
computation of the first 1.24 trillion decimal digits of 7, employed an even
more impressive validity check (Kanada’s calculation will be discussed in
greater detail in Section 3.1). They first computed more than one trillion
hexadecimal digits, using two different formulas. The hexadecimal digit
string produced by both of these formulas, beginning at hex digit position
1,000,000,000,001, was B4466E8D21 5388C4E014. Next, they employed the al-
gorithm, mentioned in the previous paragraph and described in more detail
in Chapter 3, which permits one to directly compute hexadecimal digits be-
ginning at a given position (in this case 1,000,000,000,001). This result was
B4466E8D21 5388C4E014. Needless to say, these two sets of results, obtained
by utterly different computational approaches, are in complete agreement.
After this step, they converted the hexadecimal expansion to decimal, then
back to hexadecimal as a check. When this final check succeeded, they felt
safe to announce their results.

As a rather different example, a computation jointly