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Preface xiii

target audience of the book includes undergraduate university students, evening
learners and learners participating in online machine learning courses.

In analogy to music, there are three types of interaction that people have with
machine learning:

Astute Listener The democratization of machine learning by the provision
of open-source software, online tutorials and cloud-based tools allows users to
not worry about the specifics of pipelines. Users can focus on extracting insights
from data using off-the-shelf tools. This enables non-tech-savvy domain experts
to benefit from machine learning. This is similar to listening to music; the user
is able to choose and discern between different types of machine learning, and
benefits from it. More experienced users are like music critics, asking important
questions about the application of machine learning in society such as ethics,
fairness and privacy of the individual. We hope that this book provides a founda-
tion for thinking about the certification and risk management of machine learning
systems and allows them to use their domain expertise to build better machine
learning systems.

Experienced Artist  Skilled practitioners of machine learning can plug and
play different tools and libraries into an analysis pipeline. The stereotypical prac-
titioner would be a data scientist or engineer who understands machine learning
interfaces and their use cases and is able to perform wonderful feats of prediction
from data. This is similar to a virtuoso playing music, where highly skilled
practitioners can bring existing instruments to life and bring enjoyment to their
audience. Using the mathematics presented here as a primer, practitioners would
be able to understand the benefits and limits of their favourite method, and to
extend and generalize existing machine learning algorithms. We hope that this
book provides the impetus for more rigorous and principled development of
machine learning methods.

Fledgling Composer As machine learning is applied to new domains,
developers of machine learning need to develop new methods and extend existing
algorithms. They are often researchers who need to understand the mathematical
basis of machine learning and uncover relationships between different tasks. This
is similar to composers of music who, within the rules and structure of musical
theory, create new and amazing pieces. We hope this book provides a high-level
overview of other technical books for people who want to become composers of
machine learning. There is a great need in society for new researchers who are
able to propose and explore novel approaches for attacking the many challenges
of learning from data.
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1

Introduction and Motivation

Machine learning is about designing algorithms that automatically extract valu-
able information from data. The emphasis here is on “automatic,” i.e., machine
learning is concerned about general-purpose methodologies that can be applied
to many datasets, while producing something that is meaningful. There are three
concepts that are at the core of machine learning: data, a model, and learning.

Since machine learning is inherently data driven, data is at the core of machine
learning. The goal of machine learning is to design general-purpose methodolo-
gies to extract valuable patterns from data, ideally without much domain-specific
expertise. For example, given a large corpus of documents (e.g., books in many
libraries), machine learning methods can be used to automatically find relevant
topics that are shared across documents (Hoffman et al., 2010). To achieve this
goal, we design models that are typically related to the process that generates
data, similar to the dataset we are given. For example, in a regression setting,
the model would describe a function that maps inputs to real-valued outputs. To
paraphrase Mitchell (1997): A model is said to learn from data if its performance
on a given task improves after the data is taken into account. The goal is to find
good models that generalize well to yet unseen data, which we may care about
in the future. Learning can be understood as a way to automatically find patterns
and structure in data by optimizing the parameters of the model.

While machine learning has seen many success stories, and software is readily
available to design and train rich and flexible machine learning systems, we
believe that the mathematical foundations of machine learning are important
in order to understand fundamental principles upon which more complicated
machine learning systems are built. Understanding these principles can facilitate
creating new machine learning solutions, understanding and debugging existing
approaches, and learning about the inherent assumptions and limitations of the
methodologies we are working with.

1.1 Finding Words for Intuitions

A challenge we face regularly in machine learning is that concepts and words are
slippery, and a particular component of the machine learning system can be ab-
stracted to different mathematical concepts. For example, the word “algorithm”
is used in at least two different senses in the context of machine learning. In the
first sense, we use the phrase “machine learning algorithm” to mean a system that
makes predictions based on input data. We refer to these algorithms as predictor.

3

data

model

learning
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In the second sense, we use the exact same phrase “machine learning algorithm™
to mean a system that adapts some internal parameters of the predictor so that
it performs well on future unseen input data. Here we refer to this adaptation as
training a system.

This book will not resolve the issue of ambiguity, but we want to highlight
upfront that, depending on the context, the same expressions can mean different
things. However, we attempt to make the context sufficiently clear to reduce the
level of ambiguity.

The first part of this book introduces the mathematical concepts and foun-
dations needed to talk about the three main components of a machine learning
system: data, models, and learning. We will briefly outline these components
here, and we will revisit them again in Chapter 8 once we have discussed the
necessary mathematical concepts.

While not all data is numerical, it is often useful to consider data in a num-
ber format. In this book, we assume that data has already been appropriately
converted into a numerical representation suitable for reading into a computer
program. Therefore, we think of data as vectors. As another illustration of how
subtle words are, there are (at least) three different ways to think about vectors:
a vector as an array of numbers (a computer science view), a vector as an arrow
with a direction and magnitude (a physics view), and a vector as an object that
obeys addition and scaling (a mathematical view).

A model is typically used to describe a process for generating data, similar to
the dataset at hand. Therefore, good models can also be thought of as simplified
versions of the real (unknown) data-generating process, capturing aspects that
are relevant for modeling the data and extracting hidden patterns from them. A
good model can then be used to predict what would happen in the real world
without performing real-world experiments.

We now come to the crux of the matter, the learning component of machine
learning. Assume we are given a dataset and a suitable model. Training the model
means to use the data available to optimize some parameters of the model with
respect to a utility function that evaluates how well the model predicts the train-
ing data. Most training methods can be thought of as an approach analogous to
climbing a hill to reach its peak. In this analogy, the peak of the hill corresponds
to a maximum of some desired performance measure. However, in practice, we
are interested in the model to perform well on unseen data. Performing well on
data that we have already seen (training data) may only mean that we found a
good way to memorize the data. However, this may not generalize well to unseen
data, and, in practical applications, we often need to expose our machine learning
system to situations that it has not encountered before.

Let us summarize the main concepts of machine learning that we cover in this
book:

m We represent data as vectors.

m We choose an appropriate model, either using the probabilistic or optimization
view.

m We learn from available data by using numerical optimization methods with
the aim that the model performs well on data not used for training.
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1.2 Two Ways to Read This Book

We can consider two strategies for understanding the mathematics for machine
learning:

m Bottom-up: Building up the concepts from foundational to more advanced.
This is often the preferred approach in more technical fields, such as mathe-
matics. This strategy has the advantage that the reader at all times is able to rely
on their previously learned concepts. Unfortunately, for a practitioner many of
the foundational concepts are not particularly interesting by themselves, and
the lack of motivation means that most foundational definitions are quickly
forgotten.

m Top-down: Drilling down from practical needs to more basic requirements.
This goal-driven approach has the advantage that the readers know at all times
why they need to work on a particular concept, and there is a clear path of
required knowledge. The downside of this strategy is that the knowledge is
built on potentially shaky foundations, and the readers have to remember a set
of words that they do not have any way of understanding.

We decided to write this book in a modular way to separate foundational
(mathematical) concepts from applications so that this book can be read in both
ways. The book is splitinto two parts, where Part I lays the mathematical founda-
tions and Part IT applies the concepts from Part I to a set of fundamental machine
learning problems, which form four pillars of machine learning as illustrated in
Figure 1.1: regression, dimensionality reduction, density estimation, and classi-
fication. Chapters in Part I mostly build upon the previous ones, but it is possible
to skip a chapter and work backward if necessary. Chapters in Part II are only
loosely coupled and can be read in any order. There are many pointers forward
and backward between the two parts of the book to link mathematical concepts
with machine learning algorithms.

Of course there are more than two ways to read this book. Most readers learn
using a combination of top-down and bottom-up approaches, sometimes building
up basic mathematical skills before attempting more complex concepts, but also
choosing topics based on applications of machine learning.

Part I Is about Mathematics

The four pillars of machine learning we cover in this book (see Figure 1.1)
require a solid mathematical foundation, which is laid out in Part I.

We represent numerical data as vectors and represent a table of such data as
a matrix. The study of vectors and matrices is called linear algebra, which we
introduce in Chapter 2. The collection of vectors as a matrix is also described
there.

Given two vectors representing two objects in the real world, we want to
make statements about their similarity. The idea is that vectors that are similar
should be predicted to have similar outputs by our machine learning algorithm
(our predictor). To formalize the idea of similarity between vectors, we need
to introduce operations that take two vectors as input and return a numerical

linear algebra
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value representing their similarity. The construction of similarity and distances
is central to analytic geometry and is discussed in Chapter 3.

In Chapter 4, we introduce some fundamental concepts about matrices and
matrix decomposition. Some operations on matrices are extremely useful in ma-
chine learning, and they allow for an intuitive interpretation of the data and more
efficient learning.

We often consider data to be noisy observations of some true underlying sig-
nal. We hope that by applying machine learning we can identify the signal from
the noise. This requires us to have a language for quantifying what “noise”
means. We often would also like to have predictors that allow us to express some
sort of uncertainty, e.g., to quantify the confidence we have about the value of
the prediction at a particular test data point. Quantification of uncertainty is the
realm of probability theory and is covered in Chapter 6.

To train machine learning models, we typically find parameters that maximize
some performance measure. Many optimization techniques require the concept
of a gradient, which tells us the direction in which to search for a solution.
Chapter 5 is about vector calculus and details the concept of gradients, which we
subsequently use in Chapter 7, where we talk about optimization to find maxima/
minima of functions.

Part Il Is about Machine Learning

The second part of the book introduces four pillars of machine learning as shown
in Figure 1.1. We illustrate how the mathematical concepts introduced in the first
part of the book are the foundation for each pillar. Broadly speaking, chapters
are ordered by difficulty (in ascending order).

In Chapter 8, we restate the three components of machine learning (data,
models, and parameter estimation) in a mathematical fashion. In addition, we
provide some guidelines for building experimental setups that guard against
overly optimistic evaluations of machine learning systems. Recall that the goal
is to build a predictor that performs well on unseen data.

In Chapter 9, we will have a close look at linear regression, where our ob-
jective is to find functions that map inputs € R to corresponding observed
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are very different from geometric vectors. While geometric vectors are con-
crete “drawings,” polynomials are abstract concepts. However, they are both
vectors in the sense previously described.

3. Audio signals are vectors. Audio signals are represented as a series of num-
bers. We can add audio signals together, and their sum is a new audio signal.
If we scale an audio signal, we also obtain an audio signal. Therefore, audio
signals are a type of vector, too.

4. Elements of R" (tuples of n real numbers) are vectors. R™ is more abstract
than polynomials, and it is the concept we focus on in this book. For instance,

1
2| e R?
3

a= (2.1

is an example of a triplet of numbers. Adding two vectors a, b € R" compo-
nentwise results in another vector: @ + b = ¢ € R™. Moreover, multiplying
a € R" by A € R results in a scaled vector Aa € R"™. Considering vectors
as elements of R™ has an additional benefit that it loosely corresponds to
arrays of real numbers on a computer. Many programming languages support
array operations, which allow for convenient implementation of algorithms
that involve vector operations.

Linear algebra focuses on the similarities between these vector concepts. We
can add them together and multiply them by scalars. We will largely focus on
vectors in R"™ since most algorithms in linear algebra are formulated in R™. We
will see in Chapter 8 that we often consider data to be represented as vectors in
RR™. In this book, we will focus on finite-dimensional vector spaces, in which
case there is a 1:1 correspondence between any kind of vector and R™. When it
is convenient, we will use intuitions about geometric vectors and consider array-
based algorithms.

One major idea in mathematics is the idea of “closure.” This is the question:
What is the set of all things that can result from my proposed operations? In the
case of vectors: What is the set of vectors that can result by starting with a small
set of vectors, and adding them to each other and scaling them? This results in
a vector space (Section 2.4). The concept of a vector space and its properties
underlie much of machine learning. The concepts introduced in this chapter are
summarized in Figure 2.2.

This chapter is mostly based on the lecture notes and books by Drumm and
Weil (2001), Strang (2003), Hogben (2013), Liesen and Mehrmann (2015), as
well as Pavel Grinfeld’s Linear Algebra series. Other excellent resources are
Gilbert Strang’s Linear Algebra course at MIT and the Linear Algebra Series by
3BluelBrown.

Linear algebra plays an important role in machine learning and general math-
ematics. The concepts introduced in this chapter are further expanded to include
the idea of geometry in Chapter 3. In Chapter 5, we will discuss vector calculus,
where a principled knowledge of matrix operations is essential. In Chapter 10,

Be careful to check
whether array
operations actually
perform vector
operations when
implementing on a
computer.

Pavel Grinfeld’s series

on linear algebra:
http://tinyurl.com/
nahclwm

Gilbert Strang’s

course on linear

algebra: http://
tinyurl.com/29p5g8]
3Bluel Brown series

on linear algebra:
https://tinyurl
.com/h5g4kps
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Figure 2.2 A mind
map of the concepts
introduced in this
chapter, along with
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we will use projections (to be introduced in Section 3.8) for dimensionality re-
duction with principal component analysis (PCA). In Chapter 9, we will discuss
linear regression, where linear algebra plays a central role for solving least-
squares problems.

2.1 Systems of Linear Equations

Systems of linear equations play a central part of linear algebra. Many problems
can be formulated as systems of linear equations, and linear algebra gives us the
tools for solving them.

Example 2.1

A company produces products Ny, . .., N, for which resources I?y,..., R,,
are required. To produce a unit of product Nj, a;; units of resource R; are
needed, wherei =1,...,mand j =1,...,n.

The objective is to find an optimal production plan, i.e., a plan of how
many units z; of product N; should be produced if a total of b; units of
resource [?; are available and (ideally) no resources are left over.

If we produce x1, ..., x, units of the corresponding products, we need a
total of

@;1Z1 + -+ + QinTn ()

many units of resource R;. An optimal production plan (zy,...,x,) € R",
therefore, has to satisfy the following system of equations:

a11ZT1 + -+ 01nZn = b
: ; (2.3)
11 + - -+ GmnTn = bm

where a;; € Rand b; € R.
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Equation (2.3) is the general form of a system of linear equations, and  system of linear

xy,...,x, are the unknowns of this system. Every n-tuple (x;....,z,) € R™ equations
that satisfies (2.3) is a selution of the linear equation system. solution
Example 2.2
The system of linear equations
zT1 + x2 + =z = 3 (1)
I — T2 -+ 2.’L’3 = % (2) (24)
2z + 3dzz = 1 (3)

has no solution: Adding the first two equations yields 2z, 4 3x3 = 5, which
contradicts the third equation (3).
Let us have a look at the system of linear equations

r1 + T2 + I3 = 3 (].)
3 — s + 2z3 = 2 (2) . (2.5)
ro + X3 = 2 (3)

From the first and third equation, it follows that z; = 1. From (1) + (2),
we get 2xy + 3x3 = 5, i.e., 3 = 1. From (3), we then get that 2o = 1.
Therefore, (1,1,1) is the only possible and unique solution (verify that
(1,1,1) is a solution by plugging in).

As a third example, we consider

1 + x2 + w3 = 3 (1)
T = g A 2.’173 =’ (2) . (2.6)
2.’171 + 3.’1,"3 = 5 (3)

Since (1) + (2) = (3), we can omit the third equation (redundancy). From
(1) and (2), we get 221 = 5—3xs and 2x2 = 1 +x3. Wedefinexs =a € R
as a free variable, such that any triplet

o2 1 1

(5 = 5(1, 5 + Eﬂ, (_1) , aeR 2.7)
is a solution of the system of linear equations, i.e., we obtain a solution set
that contains infinitely many solutions.

In general, for a real-valued system of linear equations we obtain either no,
exactly one, or infinitely many solutions. Linear regression (Chapter 9) solves a
version of Example 2.1 when we cannot solve the system of linear equations.

Remark (Geometric Interpretation of Systems of Linear Equations). In a system
of linear equations with two variables x, x5, each linear equation defines a line
on the x; x»-plane. Since a solution to a system of linear equations must satisfy
all equations simultaneously, the solution set is the intersection of these lines.
This intersection set can be a line (if the linear equations describe the same
line), a point, or empty (when the lines are parallel). An illustration is given
in Figure 2.3 for the system
41 +4xo =5

2.8
2331 — 4332 =1 ( )
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Figure 2.3 The
solution space of a
system of two linear
equations with two
variables can be
geometrically
interpreted as the
intersection of two
lines. Every linear
equation represents

Linear Algebra

a line.

matrix

L N

where the solution space is the point (1, 22) = (1, ;). Similarly, for three vari-
ables, each linear equation determines a plane in three-dimensional space. When
we intersect these planes, i.e., satisfy all linear equations at the same time, we
can obtain a solution set that is a plane, a line, a point, or empty (when the planes
have no common intersection). )

For a systematic approach to solving systems of linear equations, we will in-
troduce a useful compact notation. We collect the coefficients a;; into vectors and
collect the vectors into matrices. In other words, we write the system from (2.3)
in the following form:

11 a1z a1p by
zp | | Fxe | | FeFa | | =] (2.9)
Am1 A2 Qmn bfm
aj;p v Qi | |7 by
Am1 - Omn Ly brn

In the following, we will have a close look at these matrices and define compu-
tation rules. We will return to solving linear equations in Section 2.3.

2.2 Matrices

Matrices play a central role in linear algebra. They can be used to compactly rep-
resent systems of linear equations, but they also represent linear functions (linear
mappings), as we will see later in Section 2.7. Before we discuss some of these
interesting topics, let us first define what a matrix is and what kind of operations
we can do with matrices. We will see more properties of matrices in Chapter 4.

Definition 2.1 (Matrix). With m,n € IN a real-valued (m,n) matrix A is an
m - n-tuple of elements a;;, ¢ = 1,...,m, j = 1,...,n, which is ordered
according to a rectangular scheme consisting of m rows and n columns:

air a1z vt Oip

(21 Q2 - dap

A= . . . N eR. (2.11)

Am1 Q2 " Gma
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By convention (1,n)-matrices are called rows, and (m, 1)-matrices are called
columns. These special matrices are also called row/column vectors.

IR™*™ ig the set of all real-valued (2, n)-matrices. A € R™*" can be equiv-
alently represented as a € R™" by stacking all n columns of the matrix into a
long vector; see Figure 2.4.

2.2.1 Matrix Addition and Multiplication

The sum of two matrices A € R™*™, B € R™*" is defined as the element wise
sum, 1.e.,
ar + b1 ain + bin

A+ B = e R™. (2.12)

Am1 + b'ml Qyn + b?nn

For matrices A € R™*", B € R"** the elements c¢;; of the product C' =
AB € R™** are computed as

n
cj = aaby, i=1..m, j=1...Fk (2.13)
=1
This means, to compute element ¢;; we multiply the elements of the ith row of
A with the jth column of B and sum them up. Later in Section 3.2, we will
call this the dot product of the corresponding row and column. In cases where
we need to be explicit that we are performing multiplication, we use the notation
A - B to denote multiplication (explicitly showing ).

Remark. Matrices can only be multiplied if their “neighboring” dimensions
match. For instance, an n x k-matrix A can be multiplied with a k& x m-matrix
B, but only from the left side:

A B = C (2.14)
Ve
nxk kxm nxm

The product B A is not defined if m # n since the neighboring dimensions do
not match. &

Remark. Matrix multiplication is nof defined as an elementwise operation on
matrix elements, i.e., ¢;; # a;;b;; (even if the size of A, B was chosen appro-
priately). This kind of elementwise multiplication often appears in programming
languages when we multiply (multidimensional) arrays with each other, and is

called a Hadamard product. &
Example 2.3
1 2 3 v
For A = [3 ) J ceR2*3, B= |1 —1| € R**2, we obtain
0 1|
0 2 -
AB = [; g ﬂ 1 -1f = E g € R**?, (2.15)

row
column

row vector
column vector

Figure 2.4 By
stacking its columns,
a matrix A can be
represented as a long
vector a.

AeR™ a€R?

Note the size of the

matrices.

C =
np.einsum(‘il,
1, A, B)

There are n columns
in A and n rows in B
so that we can
compute a;; by for
I=1,...,n
Commonly, the dot
product between two
vectors a, b is
denoted by @ " b or
(a,b).

Hadamard product
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2.2.3 Multiplication by a Scalar

Let us look at what happens to matrices when they are multiplied by a scalar
AecR. LetAec R™"™and A € R. Then AA = K, K;; = Aay;. Practically, A
scales each element of A. For A, ¢ € R, the following holds:

m Associativity:
(AM)C = AyC), CeR™*"
m \(BC) = (AB)C = B(\C) = (BC)\, BecR"™" CcR"
Note that this allows us to move scalar values around.
m (AC)T=C" AT =C"A=)C" since A = \" forall A € R.
m Distributivity:
A+9)C =XC+yC, CeR™*"
AB+C)=AB+XC, B,CecR™"

Example 2.5 (Distributivity)
If we define

C = [l 2 - (2.33)

then for any A, ¢ € R we obtain

[+ A2l [ A+ 22+ 2¢
(Aﬂb)c[(}ww)s (,\+¢)4] 3A+3p aridy] @39

A o2x b 2]

_[3)\ 4/\]+[3¢ w]_,\owo. (2.34b)

2.2.4 Compact Representations of Systems of Linear Equations

If we consider the system of linear equations

2331 + 3122 + 59‘33 =1
dxy — 2m0 — T3 = 8 (2.35)

92y + Sxo — 33 =2

and use the rules for matrix multiplication, we can write this equation system in
a more compact form as

2 3 5 T1 1
4 =2 =7 |z| = |8]. (2.36)
9 5 =3| |z3 2

Note that x; scales the first column, x5 the second one, and x5 the third one.

Generally, a system of linear equations can be compactly represented in their
matrix form as Az = b; see (2.3), and the product Ax is a (linear) combination
of the columns of A. We will discuss linear combinations in more detail in
Section 2.5.
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2.3 Solving Systems of Linear Equations
In (2.3), we introduced the general form of an equation system, i.e.,
a1+ -+ a1pm, = by

(2.37)

Am1T1 + -+ GpnTy = bm y

where a;; € R and b; € R are known constants and x; are unknowns, i =
1,...,m, 7 =1,...,n. Thus far, we saw that matrices can be used as a compact
way of formulating systems of linear equations so that we can write Ax = b;
see (2.10). Moreover, we defined basic matrix operations, such as addition and
multiplication of matrices. In the following, we will focus on solving systems of
linear equations and provide an algorithm for finding the inverse of a matrix.

2.3.1 Particular and General Solution

Before discussing how to generally solve systems of linear equations, let us have
a look at an example. Consider the system of equations

T

1 0 8 —4| [wg| [42

[0 1 2 12} T3 _[8]' (2.38)
Ty

The system has two equations and four unknowns. Therefore, in general we
would expect infinitely many solutions. This system of equations is in a partic-
ularly easy form, where the first two columns consist of a 1 and a 0. Remember
that we want to find scalars @1, ..., x4, such that Z'::l x;c; = b, where we
define ¢; to be the ith column of the matrix and b the right-hand side of (2.38).
A solution to the problem in (2.38) can be found immediately by taking 42 times
the first column and 8 times the second column so that

R TR

Therefore, a solution is [42,8,0,0] ". This solution is called a particular solution
or special solution. However, this is not the only solution of this system of linear
equations. To capture all the other solutions, we need to be creative in generating
0 in a nontrivial way using the columns of the matrix: Adding 0 to our special
solution does not change the special solution. To do so, we express the third
column using the first two columns (which are of this very simple form)

-l

so that 0 = 8e; + 2¢2 — les + Ocq and (21, w2, 23, 24) = (8,2, —1,0). In fact,
any scaling of this solution by A\; € R produces the 0 vector, i.e.,

8

108 -4 9

[U 1 2 12] M 1 =Ai(8¢c; +2¢3 —c3)=0. (2.41)
0

particular solution

special solution
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Following the same line of reasoning, we express the fourth column of the ma-
trix in (2.38) using the first two columns and generate another set of nontrivial
versions of 0 as

—4

108 —4 12

k 1 2 w] A2 | | | = Ae(der+12¢2—cy) =0 (2.42)
-1

for any A, € R. Putting everything together, we obtain all solutions of the
equation system in (2.38), which is called the general solution, as the set

42 8 —4
2 12

xeR i = ﬁ Fa | e | | AR e Ry 243)
0 0 -1

Remark. The general approach we followed consisted of the following three
steps:

1. Find a particular solution to Ax = b.
2. Find all solutions to Az = 0.
3. Combine the solutions from steps 1 and 2 to the general solution.

Neither the general nor the particular solution is unique. ¢

The system of linear equations in the preceding example was easy to solve
because the matrix in (2.38) has this particularly convenient form, which al-
lowed us to find the particular and the general solution by inspection. However,
general equation systems are not of this simple form. Fortunately, there exists a
constructive algorithmic way of transforming any system of linear equations into
this particularly simple form: Gaussian elimination. Key to Gaussian elimination
are elementary transformations of systems of linear equations, which transform
the equation system into a simple form. Then we can apply the three steps to the
simple form that we just discussed in the context of the example in (2.38).

2.3.2 Elementary Transformations

Key to solving a system of linear equations are elementary transformations that
keep the solution set the same, but that transform the equation system into a
simpler form:

m Exchange of two equations (rows in the matrix representing the system of
equations)

m Multiplication of an equation (row) with a constant A € R\{0}

m Addition of two equations (rows)

Example 2.6
For a € R, we seek all solutions of the following system of equations:
—2x7 + 4dxo — 233 — rs + 4dxs = -3
4y — 8xo 4+ 33 — 31r4 + T5 = 2 _ (2.44)
Ty — 210 + ry — TEa ar Ty = 0

Ty — 219 — 3ry + dxy = a
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We start by converting this system of equations into the compact matrix
notation Ax = b. We no longer mention the variables @ explicitly and build
the augmented matrix (in the form [A \ b})

—2 4 =2 -1 4 -3

4 -8 3 =3 1 2

1 —2 1 -1 1 0

1 —2 0 —3 4 a

where we used the vertical line to separate the left-hand side from the right-

hand side in (2.44). We use ~ to indicate a transformation of the augmented
matrix using elementary transformations.

Swapping Rows 1 and 3 leads to

Swap with R

Swap with R;

1 -2 1 -1 1 0
4 -8 3 -3 1 2 | —4R;
) 4 -2 1 4] -3 | +2R

1 —2 0 ) 4 a *Rl
When we now apply the indicated transformations (e.g., subtract Row 1 four
times from Row 2), we obtain

1 =2 1 -1 1 0]
0 0 -1 1 -3 2
0 0 0 -3 6| -3
0 0 -1 -2 3 a | —Ry— Ry
1 -2 1 -1 0]
0 0 -1 1 -3 2 | -(=1)
- 0 0 0 -3 6 -3 -(-1
0 0 0 0 0|a+1 |
[ 1 -2 I | 1 0
0 0 1 -1 3| -2
- 0 0 0 1 =2 1
L0 0 0 0 0|a+1 |

This (augmented) matrix is in a convenient form, the row-echelon form
(REF). Reverting this compact notation back into the explicit notation with
the variables we seek, we obtain

ry — 2w + wx3 — x4 + Ty = 0
3 — x4 + 35 = -2
T4 — 25 = 1 (245}
0 = a+1
Only for a = —1 this system can be solved. A particular solution is
I 2
I 0
3| = -1 (2.46)
T4 1

HA 0

augmented matrix

The augmented matrix
[A|B] compactly
represents the system
of linear equations
Axz =0b.

row-echelon form

particular solution
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In other texts, it is
sometimes required
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The general solution, which captures the set of all possible solutions, is

2 2 2
0 1 0

zeR:x= -1 +X [0 + X [-1|, ALdeR}. (247
1 0 2
0 0 1

In the following, we will detail a constructive way to obtain a particular and
general solution of a system of linear equations.

Remark (Pivots and Staircase Structure). The leading coefficient of a row (first
nonzero number from the left) is called the pivor and is always strictly to the right
of the pivot of the row above it. Therefore, any equation system in row-echelon
form always has a “staircase” structure. &

Definition 2.6 (Row-Echelon Form). A matrix is in row-echelon form if

m All rows that contain only zeros are at the bottom of the matrix; correspond-
ingly, all rows that contain at least one nonzero element are on top of rows that
contain only zeros.

m Looking at nonzero rows only, the first nonzero number from the left (also
called the pivot or the leading coefficient) is always strictly to the right of the
pivot of the row above it.

Remark (Basic and Free Variables). The variables corresponding to the pivots in
the row-echelon form are called basic variable, and the other variables are free
variable. For example, in (2.45), 1, x3, 4 are basic variables, whereas w2, x5
are free variables. ¢

Remark (Obtaining a Particular Solution). The row-echelon form makes our
lives easier when we need to determine a particular solution. To do this, we
express the right-hand side of the equation system using the pivot columns, such
that b = Zil Aip;, where p;, i = 1,..., P, are the pivot columns. The \; are
determined easiest if we start with the rightmost pivot column and work our way
to the left.

In the previous example, we would try to find A1, As, A3 so that

1 1 -1 0
0 1 -1 -2

A 0 + A 0 + A3 =141 (2.48)
0 0 0 0

From here, we find relatively directly that Ay = 1, Ao = —1,A; = 2. When
we put everything together, we must not forget the nonpivot columns for which
we set the coefficients implicitly to 0. Therefore, we get the particular solution
x=[2,0,—-1,1,0]". %
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Calculating the Inverse

To compute the inverse At of A € R, we need to find a matrix X that
satisfies AX = I,. Then X = A~!. We can write this down as a set of
simultaneous linear equations AX = I,,, where we solve for X = [zq]- - |@,].
We use the augmented matrix notation for a compact representation of this set of
systems of linear equations and obtain

[A[I,] ~ o~ [I]AT]. (2.56)
This means that if we bring the augmented equation system into reduced row-
echelon form, we can read out the inverse on the right-hand side of the equation
system. Hence, determining the inverse of a matrix is equivalent to solving sys-
tems of linear equations.

Example 2.9 (Calculating an Inverse Matrix by Gaussian Elimination)
To determine the inverse of

1 02 0
1 1 0 0
A= 1 2 0 1 (2.57)
1 1 11
we write down the augmented matrix

1 0 2 O0f1 0 0 O

1 1 0 0p 0 1 0 0

12 0 10 0 1 0

11 1 1,0 0 0 1

and use Gaussian elimination to bring it into reduced row-echelon form

1 0 0 0(-1 2 -2 2
o 1 0 0] 1 -1 2 =2
o 0 1 01 -1 1 -1
0o 0o 0 1|-1 0 -1 2

such that the desired inverse is given as its right-hand side:
-1 2 -2 2

1 -1 2 -2

1 -1 1 -1
-1 0 -1 2

(2.58)

We can verify that (2.58) is indeed the inverse by performing the multipli-
cation AA~! and observing that we recover I .

2.3.4 Algorithms for Solving a System of Linear Equations

In the following, we briefly discuss approaches to solving a system of linear
equations of the form Ax = b. We make the assumption that a solution exists.
Should there be no solution, we need to resort to approximate solutions, which
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we do not cover in this chapter. One way to solve the approximate problem is
using the approach of linear regression, which we discuss in detail in Chapter 9.

In special cases, we may be able to determine the inverse A, such that the
solution of Az = b is given as & = A~ 'b. However, this is only possible if A
is a square matrix and invertible, which is often not the case. Otherwise, under
mild assumptions (i.e., A needs to have linearly independent columns) we can
use the transformation

Ar=b <> AT Az =A"b <= == (ATA)'A"b (2.59)

and use the Moore—Penrose pseudo-inverse (A" A)~' A" to determine the so-
lution (2.59) that solves Ax = b, which also corresponds to the minimum norm
least-squares solution. A disadvantage of this approach is that it requires many
computations for the matrix-matrix product and computing the inverse of AT A,
Moreover, for reasons of numerical precision it is generally not recommended
to compute the inverse or pseudo-inverse. In the following, we therefore briefly
discuss alternative approaches to solving systems of linear equations.

Gaussian elimination plays an important role when computing determinants
(Section 4.1), checking whether a set of vectors is linearly independent (Sec-
tion 2.5), computing the inverse of a matrix (Section 2.2.2), computing the rank
of a matrix (Section 2.6.2), and determining a basis of a vector space (Sec-
tion 2.6.1). Gaussian elimination is an intuitive and constructive way to solve
a system of linear equations with thousands of variables. However, for systems
with millions of variables, it is impractical as the required number of arithmetic
operations scales cubically in the number of simultaneous equations.

In practice, systems of many linear equations are solved indirectly, by either
stationary iterative methods, such as the Richardson method, the Jacobi method,
the GauB-Seidel method, and the successive overrelaxation method, or Krylov
subspace methods, such as conjugate gradients, generalized minimal residual,
or biconjugate gradients. We refer to the books by Stoer and Burlirsch (2002),
Strang (2003), and Liesen and Mehrmann (2015) for further details.

Let @. be a solution of Az = b. The key idea of these iterative methods is to
set up an iteration of the form

2+ = cz® + 4 (2.60)

for suitable C' and d that reduces the residual error ||z**!) — .| in every
iteration and converges to x,. We will introduce norms || - ||, which allow us to
compute similarities between vectors, in Section 3.1.

2.4 Vector Spaces

Thus far, we have looked at systems of linear equations and how to solve them
(Section 2.3). We saw that systems of linear equations can be compactly rep-
resented using matrix-vector notation (2.10). In the following, we will have a
closer look at vector spaces, i.e., a structured space in which vectors live.

In the beginning of this chapter, we informally characterized vectors as objects
that can be added together and multiplied by a scalar, and they remain objects
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of the same type. Now we are ready to formalize this, and we will start by
introducing the concept of a group, which is a set of elements and an operation
defined on these elements that keeps some structure of the set intact.

2.4.1 Groups

Groups play an important role in computer science. Besides providing a funda-
mental framework for operations on sets, they are heavily used in cryptography,
coding theory, and graphics.

Definition 2.7 (Group). Consider a set § and an operation ® : G x G — @
defined on G. Then GG := (G, @) is called a group if the following hold:

1. Closure of Gunder @:Ve,y € G:x @y e g
2. Associativity: Ve, y,z € G: (zQy)Rz=2R (y® z)
3. Neutral element: e e GVr e §:rRe=zande®@ 2z ==z

4. Inverse element: Vr € Gy € G : o @y = e and y @ & = e. We often write
2~ to denote the inverse element of .

Remark. The inverse element is defined with respect to the operation & and does
not necessarily mean <. ¢

If additionally Vo, y € G : 2 @ y = y ® x, then G = (G, ®) is an Abelian group
(commutative).

Example 2.10 (Groups)
Let us have a look at some examples of sets with associated operations and
see whether they are groups:

m (Z,+) is a group.

m (Np, +) is not a group: Although (INg, +) possesses a neutral element (0),
the inverse elements are missing.

m (Z,) is not a group: Although (Z,-) contains a neutral element (1), the
inverse elements for any z € Z, z # £1, are missing.

m (R, ) is not a group since 0 does not possess an inverse element.

s (R\{0},-) is Abelian.

m (R™, +), (Z",+),n € IN are Abelian if + is defined componentwise, i.e.,

(:L.l:"' 1$n)+(y11'” 1y'n) = (ffl +y11'” s Ly +y’n) (261)

Then, (1, ,2,) ' := (=21, -+, —2,) is the inverse element and ¢ =
(0,---,0) is the neutral element.

m (R™*™ +), the set of m x n-matrices is Abelian (with componentwise
addition as defined in (2.61)).

m Let us have a closer look at (R™*™, .), i.e., the set of n x n-matrices with
matrix multiplication as defined in (2.13).

group
closure
associativity
neutral element

inverse element

Abelian group

No := N U {0}
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— Closure and associativity follow directly from the definition of matrix
multiplication.

— Neutral element: The identity matrix I, is the neutral element with respect
to matrix multiplication “-” in (R"™*"™,.).

— Inverse element: If the inverse exists (A is regular), then A~ is the
inverse element of A € R™*™, and in exactly this case (R"*",-) is a
group, called the general linear group.

Definition 2.8 (General Linear Group). The set of regular (invertible) matrices
A € R™ ™ is a group with respect to matrix multiplication as defined in (2.13)
and is called general linear group GL(n,R). However, since matrix multiplica-
tion is not commutative, the group is not Abelian.

2.4.2 Vector Spaces

When we discussed groups, we looked at sets G and inner operations on G, i.e.,
mappings G x G — G that only operate on elements in G. In the following, we
will consider sets that in addition to an inner operation + also contain an outer
operation -, the multiplication of a vector & € G by a scalar A € R. We can think
of the inner operation as a form of addition, and the outer operation as a form of
scaling. Note that the inner/outer operations have nothing to do with inner/outer
products.

Definition 2.9 (Vector Space). A real-valued vector space V. = (V,+, ) is a set
V with two operations
+:VxV-=V (2.62)

R x V=V (2.63)
where

1. (V,+) is an Abelian group
2. Distributivity:
a VieRzyeV: A-(z+y)=A-z+ Ay
b.VAveRzeV:(A+¢)-z=A-x+-x
3. Associativity (outer operation): VA, 1y € Rz € V: A (¢ - x) = (A\)) - x
4. Neutral element with respect to the outer operation: Vx € V: 1.z =

The elements « € V are called vectors. The neutral element of (V, +) is the zero
vector 0 = [0,...,0]", and the inner operation + is called vector addition. The
elements A € R are called scalars and the outer operation - is a multiplication
by scalars. Note that a scalar product is something different, and we will get to
this in Section 3.2.

Remark. A “vector multiplication” ab, a, b € IR", is not defined. Theoretically,
we could define an elementwise multiplication, such that ¢ = ab with ¢; =
a;b;. This “array multiplication” is common to many programming languages
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but makes mathematically limited sense using the standard rules for matrix
multiplication: By treating vectors as n x 1 matrices (which we usually do),
we can use the matrix multiplication as defined in (2.13). However, then the
dimensions of the vectors do not match. Only the following multiplications for
vectors are defined: ab' € R™*" (outer product), a'b € R (inner/scalar/dot
product). &

Example 2.11 (Vector Spaces)
Let us have a look at some important examples:

m V =R",n € INis a vector space with operations defined as follows:

— Addition: z+y = (z1,...,20)+ (W1, .- Un) = (T14+Y1, - Zn+Yn)
forall z,y € R"

— Multiplication by scalars: A& = A(x1,...,2,) = (Azry,...,Ax,) for
alA e R,z € R"

m YV =R"*" m,n € INis a vector space with

aj; +b11 - a1 +bin
— Addition: A + B = : : is defined ele-
U1 + bml st Omp T bmﬁ
mentwise forall A, B € V
Aa;r -0 Aag,
— Multiplication by scalars: AA = : : as defined in
)\aml T /\amn

Section 2.2. Remember that R™*" is equivalent to IR™".

m V = C, with the standard definition of addition of complex numbers.

Remark. In the following, we will denote a vector space (V,+,) by V when
+ and - are the standard vector addition and scalar multiplication. Moreover, we
will use the notation € V for vectors in V to simplify notation. &

Remark. The vector spaces R™, R"*! R'*" are only different in the way we
write vectors. In the following, we will not make a distinction between R™ and
R™*!, which allows us to write n-tuples as column vectors

Iy
z=|:|. (2.64)

In

This simplifies the notation regarding vector space operations. However, we do
distinguish between R™*! and R'*"™ (the row vectors) to avoid confusion with
matrix multiplication. By default, we write & to denote a column vector, and a
row vector is denoted by x ', the transpose of x. &

outer product

column vector

row vector

transpose
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and vice versa. However, the third “751 km West” vector (black) is a linear
combination of the other two vectors, and it makes the set of vectors linearly
dependent. Equivalently, given “751 km West” and “374 km Southwest” can
be linearly combined to obtain “506 km Northwest™.

Mery

o o
= Embn
f

Figure 2.7 Geographic example (with crude approximations to cardinal directions) of linearly
dependent vectors in a two-dimensional space (plane).

Remark. The following properties are useful to find out whether vectors are
linearly independent:

m k vectors are either linearly dependent or linearly independent. There is no
third option.

m If at least one of the vectors &y, ....x; is O then they are linearly dependent.
The same holds if two vectors are identical.
m The vectors {@1,...,xx : x; # 0,i = 1,...,k}, k > 2, are linearly

dependent if and only if (at least) one of them is a linear combination of
the others. In particular, if one vector is a multiple of another vector, i.e.,
@y = gy A € R, then the set {@y,...y®% { @ 2 0, = L.,k B
linearly dependent.

m A practical way of checking whether vectors @;,...,xr € V are linearly
independent is to use Gaussian elimination: Write all vectors as columns of a
matrix A and perform Gaussian elimination until the matrix is in row-echelon
form (the reduced row-echelon form is unnecessary here):

— The pivot columns indicate the vectors, which are linearly independent of
the vectors on the left. Note that there is an ordering of vectors when the
matrix is built.

— The nonpivot columns can be expressed as linear combinations of the pivot
columns on their left. For instance, the row-echelon form
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130
[0 0 2] (2:66)

tells us that the first and third columns are pivot columns. The second
column is a nonpivot column because it is three times the first column.

All column vectors are linearly independent if and only if all columns are pivot
columns. If there is at least one nonpivot column, the columns (and, therefore,
the corresponding vectors) are linearly dependent.

&
Example 2.14
Consider R* with
1 1 -1
2 1 —2
4 2 1

To check whether they are linearly dependent, we follow the general
approach and solve

1 1 —1
2 1 -2
A1y + Aoxo + A3;3z = A\q 3 + Ao 0 + A3 1 = (I (2.68)
4 2 1
for A1....,A3. We write the vectors x;, ¢ = 1,2,3, as the columns of

a matrix and apply elementary row operations until we identify the pivot
columns:

1 1 -1 11 -1
2 1 -2 01 0
-3 0 1 T oo 1 252
4 2 1 00 0

Here, every column of the matrix is a pivot column. Therefore, there is no
nontrivial solution, and we require Ay = 0, Ay = 0,3 = 0 to solve the
equation system. Hence, the vectors @1, @, 3 are linearly independent.

Remark. Consider a vector space V' with k linearly independent vectors

b;...., b, and m linear combinations
k
z = b,
i=1
(2.70)
k
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Defining B = [by,. .., by] as the matrix whose columns are the linearly inde-
pendent vectors by, . ... by, we can write
Al g
a:j:B)\j, AJ‘Z , J=1,...,m, (271
Akj
in a more compact form.

We want to test whether @x,,...,2,, are linearly independent. For this
purpose, we follow the general approach of testing when Z;”:l iz, = 0.
With (2.71), we obtain

> = 1U;BA;=BY ;). (272)
i=1 j=1 =1
This means that {@, ..., x,, } are linearly independent if and only if the column
vectors {1, ..., A, } are linearly independent.
¢
Remark. In a vector space V', m linear combinations of k vectors x, ..., x} are
linearly dependent it m > k. &

Example 2.15

Consider a set of linearly independent vectors by, ba, bz, by € R and

xr = bl — 2b2 + bg — b4
o = —4by — 2bs + 4by

. 2.7
xr3 = 2b +  3bs — b3 — 3by B2
xy = 17y — 10bs + 11by + by

Are the vectors ©,...,xy € R" linearly independent? To answer this

question, we investigate whether the column vectors

1 —4 2 17
—2 —2 3 —10

17107 |[=1f{"] 11 (2.74)
-1 4 -3 1

are linearly independent. The reduced row-echelon form of the correspond-
ing linear equation system with coefficient matrix

1 -4 2 17
-2 -2 3 -10
4=11 0 -1 n @73)

-1 4 -3 1

is given as
1 0 0 -7
01 0 —15
0 0 1 -18 (2.76)
00 0 0
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‘We see that the corresponding linear equation system is nontrivially solv-

able: The last column is not a pivot column, and , = —7x; — 152, — 18x;.
Therefore, x4, ..., x4 are linearly dependent as x, can be expressed as a
linear combination of &4, ..., ®3.

2.6 Basis and Rank

In a vector space V', we are particularly interested in sets of vectors A that pos-
sess the property that any vector v € V' can be obtained by a linear combination
of vectors in .A. These vectors are special vectors, and in the following, we will
characterize them.

2.6.1 Generating Set and Basis

Definition 2.13 (Generating Set and Span). Consider a vector space V =
(V,+,-) and set of vectors A = {x1,..., @} C V. If every vector v € V can
be expressed as a linear combination of @1, . .., xk, A is called a generating set
of V. The set of all linear combinations of vectors in A is called the span of A. If
A spans the vector space V', we write V' = span[A] or V = span[x, ..., xy].

Generating sets are sets of vectors that span vector (sub)spaces, i.e., every
vector can be represented as a linear combination of the vectors in the generating
set. Now we will be more specific and characterize the smallest generating set
that spans a vector (sub)space.

Definition 2.14 (Basis). Consider a vector space V' = (V,+.-) and A C V. A
generating set A of V' is called minimal if there exists no smaller set A C A C V

that spans V. Every linearly independent generating set of V' is minimal and is
called a basis of V.

Let V = (V,+,-) be a vector space and B C V, B # (). Then, the following
statements are equivalent:

m s a basis of V.

m 3 is a minimal generating set.

m 3 is a maximal linearly independent set of vectors in V/, i.e., adding any other
vector to this set will make it linearly dependent.

m Every vector & € V is a linear combination of vectors from B, and every linear
combination is unique, i.e., with

ke k
x=> Abi=> b (2.77)
i=1 i=1

and A\;,v; € R, b; € Bitfollows that \; =, i =1,..., k.

generating set

span

minimal

basis

A basis is a minimal
generating set and a
maximal linearly
independent set of
veclors.
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Example 2.16

m In R?, the canonical/standard basis is

1] [o] [o
5 = 0],(1].1]0 (2.78)
0 0] |1
m Different bases in R? are
1 1 1 0.5] [1.8] [-22
B, = O, |1(,]1 , Ba = 0.8],(03],(-1.3 . (2.79)
0 0 1 0.4] (0.3 S5
m The set
1 2 1
2 -1 1
A= al'lol |0 (2.80)
4 2 —4

is linearly independent, but not a generating set (and no basis) of R*: For
instance, the vector [1,0,0,0] " cannot be obtained by a linear combination
of elements in A.

Remark. Every vector space V' possesses a basis 5. The preceding examples
show that there can be many bases of a vector space V/, i.e., there is no unique
basis. However, all bases possess the same number of elements, the basis vectors.

%

We only consider finite-dimensional vector spaces V. In this case, the
dimension of V is the number of basis vectors of V/, and we write dim(V').
If U C V is a subspace of V, then dim(U) < dim(V') and dim(U) = dim(V)
if and only if U = V. Intuitively, the dimension of a vector space can be thought
of as the number of independent directions in this vector space.

Remark. The dimension of a vector space is not necessarily the number of
elements in a vector. For instance, the vector space V = span[[(l)]] is one-
dimensional, although the basis vector possesses two elements.

Remark. A basis of a subspace U = span|zy,...,x,| C R™ can be found by

executing the following steps:

1. Write the spanning vectors as columns of a matrix A.
2. Determine the row-echelon form of A.
3. The spanning vectors associated with the pivot columns are a basis of U.
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forall &,y € V and A € R. We can summarize this in the following definition:

Definition 2.15 (Linear Mapping). For vector spaces V., W, a mapping ¢ :
V' — W is called a linear mapping (or vector space homomorphism/linear
transformation) if

Va,y € VYN & € R: d(\a + vy) = \D(x) + vd(y). (2.87)

It turns out that we can represent linear mappings as matrices (Section 2.7.1).
Recall that we can also collect a set of vectors as columns of a matrix. When
working with matrices, we have to keep in mind what the matrix represents: a lin-
ear mapping or a collection of vectors. We will see more about linear mappings
in Chapter 4. Before we continue, we will briefly introduce special mappings.

Definition 2.16 (Injective, Surjective, Bijective). Consider a mapping ® : V —
W, where V, W can be arbitrary sets. Then < is called

m Injectiveif Y,y eV :®(x)=2(y) = z=uy.
m Surjective if ®(V) = W.
m Bijective if it is injective and surjective.

If @ is surjective, then every element in W can be “reached” from V using ®.
A bijective ® can be “undone,” i.e., there exists a mapping ¥ : W — V so that
¥ o &(x) = x. This mapping W is then called the inverse of ® and normally
denoted by &,

With these definitions, we introduce the following special cases of linear map-
pings between vector spaces V" and TW:

m [somorphism: ® : V — W linear and bijective

m Endomorphism: ® : 'V — V linear

m Automorphism: ® : V' — V linear and bijective

m We define idy : V — V, @ — « as the identity mapping or identity automor-
phismin V.

Example 2.19 (Homomorphism)
The mapping ® : R? — C, ®(x) = 1 + iz, is a homomorphism:

® ([i;] + [g;]) = (x1 + ) +i(z2 + y2) = 1 +ix2 + 31 + iy
sl (FIE()
P (). [i;D = Ay + Niza = A(z1 + iz3) = AD ([ZD ,

(2.88)
This also justifies why complex numbers can be represented as tuples in R?:
There is a bijective linear mapping that converts the elementwise addition
of tuples in R? into the set of complex numbers with the corresponding
addition. Note that we only showed linearity, but not the bijection.

linear mapping
vector space
homomorphism

linear transformation

injective
surjective

bijective

isomorphism
endomorphism

automorphism

identity mapping
identity
automorphism
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Theorem 2.17 (Theorem 3.59 in Axler (2015)). Finite-dimensional vector
spaces V and W are isomorphic if and only if dim(V') = dim(W).

Theorem 2.17 states that there exists a linear, bijective mapping between two
vector spaces of the same dimension. Intuitively, this means that vector spaces of
the same dimension are kind of the same thing, as they can be transformed into
each other without incurring any loss.

Theorem 2.17 also gives us the justification to treat R™*" (the vector space
of m x m-matrices) and R™™ (the vector space of vectors of length mn) the
same, as their dimensions are mn, and there exists a linear, bijective mapping
that transforms one into the other.

Remark. Consider vector spaces V, W, X. Then:

m For linear mappings ® : V. — Wand ¥ : W — X, the mapping Vo ® : V —
X is also linear.

m If & : V — W is an isomorphism, then ® ! : W — V is an isomorphism,
too.

mIfd:V - W ¥ :V — W are linear, then & + ¥ and A\®, A\ € R, are
linear, too.

¢

2.7.1 Matrix Representation of Linear Mappings

Any n-dimensional vector space is isomorphic to R™ (Theorem 2.17). We con-

sider a basis {by, ..., b, } of an n-dimensional vector space V. In the following,
the order of the basis vectors will be important. Therefore, we write
B=(by,...,by) (2.89)

and call this n-tuple an ordered basis of V.

Remark (Notation). We are at the point where notation gets a bit tricky. There-

fore, we summarize some parts here. B = (by,...,b,) is an ordered basis,
B = {by,...,b,} is an (unordered) basis, and B = [by,...,b,] is a matrix
whose columns are the vectors by, ....b,. O

Definition 2.18 (Coordinates). Consider a vector space V' and an ordered basis
B = (b1,...,b,) of V. For any & € V, we obtain a unique representation
(linear combination)

r=ab +...+a,b, (2.90)
of @ with respect to B. Then o1, . .., a,, are the coordinates of x with respect to
B, and the vector

aq
a=|.|eR"” (2.91)
Oy
is the coordinate vector/coordinate representation of x with respect to the
ordered basis B.
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€3

€]

A basis effectively defines a coordinate system. We are familiar with the Carte-
sian coordinate system in two dimensions, which is spanned by the canoni-
cal basis vectors e;,es. In this coordinate system, a vector & € R? has a
representation that tells us how to linearly combine e; and e» to obtain x.
However, any basis of RR2 defines a valid coordinate system, and the same vector
x from before may have a different coordinate representation in the (by, bs)
basis. In Figure 2.8, the coordinates of a with respect to the standard basis
(e1,es) is [2,2]T. However, with respect to the basis (b, by) the same vector
x is represented as [1.09, 0.72]T, i.e., = 1.09b; + 0.72b>. In the following
sections, we will discover how to obtain this representation.

Example 2.20

Let us have a look at a geometric vector € R? with coordinates [2, 3] "
with respect to the standard basis (e;, e2) of R?. This means, we can write
x = 2e; + 3ez. However, we do not have to choose the standard basis to
represent this vector. If we use the basis vectors by = [1,—1]T by = [1,1] T,
we will obtain the coordinates 1[—1,5] " to represent the same vector with
respect to (by, b) (see Figure 2.9).

Remark. For an n-dimensional vector space V' and an ordered basis B of V, the
mapping @ : R" — V, ®(e;) = b;, i = 1,...,n, is linear (and because of
Theorem 2.17 an isomorphism), where (e1, ..., e, ) is the standard basis of R".

&

Now we are ready to make an explicit connection between matrices and linear
mappings between finite-dimensional vector spaces.

Definition 2.19 (Transformation Matrix). Consider vector spaces V, W with cor-
responding (ordered) bases B = (by,...,b,) and C' = (¢cy,..., ¢, ). Moreover,
we consider a linear mapping ® : V' — W.For j € {1,...,n},

I
‘I)(bj) =oiC1 + -+ QmiCm = Z Gy
i=1
is the unique representation of ®(b;) with respect to C'. Then, we call the m x n-
matrix Ag, whose elements are given by

Adﬁ(i’aj) - aija

(2.92)

(2.93)

Figure 2.8 Two
different coordinate
systems defined by
two sets of basis
vectors. A vector @
has different
coordinate
representations
depending on which
coordinate system is
chosen.

Figure 2.9 Different
coordinate
representations of a
vector @, depending
on the choice of basis.

T = 2e; + 3e,
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the transformation matrix of ® (with respect to the ordered bases B of V" and
C of W).

The coordinates of ®(b;) with respect to the ordered basis C' of W are the jth
column of Ag. Consider (finite-dimensional) vector spaces V, W with ordered
bases B, C and a linear mapping ® : V' — W with transformation matrix Ag.
If & is the coordinate vector of @ € V with respect to B and g the coordinate
vector of y = ®(x) € W with respect to C, then

i = Asi. (2.94)

This means that the transformation matrix can be used to map coordinates with
respect to an ordered basis in V' to coordinates with respect to an ordered basis
in W.

Example 2.21 (Transformation Matrix)
Consider a homomorphism ® : V' — W and ordered bases B =
{bl,...,bg) of Vand C' = (Cl,...,C4) of W. With
(I)(bl) = (&5 = &y =F 363 — Cy
®(by) = 2¢; + 3 + Tes + 2¢4 (2.95)
‘I)(bs,) =3¢ +c3 + 4ey

the transformation matrix Ag with respect to B and C satisfies ®(b;.) =

S qige; fork =1,...,3 and is given as
1 20
-1 1 3
Ag = [0, 0, 3] = 3 7 1" (2.96)
-1 2 4

where the o, 7 = 1,2, 3, are the coordinate vectors of ®(b;) with respect
to C.

Example 2.22 (Linear Transformations of Vectors)
We consider three linear transformations of a set of vectors in R? with the
transformation matrices

4, = [eos(3) —sin(%)} A, [? 0] A=l [3 :1] . (2.97)

sin(§)  cos(%) 01 21 -1

Figure 2.10 gives three examples of linear transformations of a set of
vectors. Figure 2.10(a) shows 400 vectors in R?, each of which is repre-
sented by a dot at the corresponding (1, 23)-coordinates. The vectors are
arranged in a square. When we use matrix A; in (2.97) to linearly transform
each of these vectors, we obtain the rotated square in Figure 2.10(b). If we
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apply the linear mapping represented by A5, we obtain the rectangle in
Figure 2.10(c) where each x;-coordinate is stretched by 2. Figure 2.10(d)
shows the original square from Figure 2.10(a) when linearly transformed
using Aj, which is a combination of a reflection, a rotation, and a stretch.

(a) Original data (b) Rotation by 45°  (¢) Stretch along the hor- (d) General linear map-
izontal axis ping
Figure 2.10 Three examples of linear transformations of the vectors shown as dots in (a);
(b) rotation by 45°; (c) stretching of the horizontal coordinates by 2; and (d) combination of
reflection, rotation, and stretching.

2.7.2 Basis Change

In the following, we will have a closer look at how transformation matrices of
a linear mapping & : V' — W change if we change the bases in V' and W.
Consider two ordered bases

B=(by,....b,), B=(by,....by) (2.98)
of V' and two ordered bases
C=(c1,....cp), C=(€.....¢p) (2.99)

of W. Moreover, Ag € R™*" is the transformation matrix of the linear mapping
d : V — W with respect to the bases B and (', and Ag € R™*" is the corre-
sponding transformation mapping with respect to B and C. In the following, we
will investigate how A and A are related, i.e., how/whether we can transform
Ag into Ay if we choose to perform a basis change from B, C' to B, C.

Remark. We effectively get different coordinate representations of the identity
mapping idy . In the context of Figure 2.9, this would mean to map coordinates
with respect to (e, e3) onto coordinates with respect to (b1, by) without chang-
ing the vector x. By changing the basis and correspondingly the representation
of vectors, the transformation matrix with respect to this new basis can have a
particularly simple form that allows for straightforward computation. &

Example 2.23 (Basis Change)
Consider a transformation matrix

2 1
A= L 2] (2.100)

with respect to the canonical basis in R?. If we define a new basis

B:(m , [ 11]) (2.101)



