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Foreword

I'm excited to introduce this book to you, because it may be different from any math text you’ve read
before. It will change the way you look at the world and enlarge the way you think about mathematics.
No longer will you be just a spectator when people give you quantitative information—you will
become an active participant who can engage and contribute new insights to any discussion. Just
look at the verbs that underlie the chapter titles: measure, flow, connect, change, risk, decide!

Here’s what stands out to me when I read this book: there are many math books that will feed you
knowledge, but it is rare to see a book like this one that will help you cultivate wisdom.

There is a deep difference between knowledge and wisdom. A knowledgeable person may be armed
with facts, but a wise person considers how to act in light of those facts. A knowledgeable person may
think an answer is the end of an investigation, whereas a wise person considers the new questions that
result. And a knowledgeable person might ignore the human element of a problem that a wise person
deems essential to understand. As the authors illustrate, mathematics that pays attention to human
considerations can help you look at the world with a new lens, help you frame important questions,
and help you make wise decisions.

Sustainability asks: how can we be wise stewards of Earth’s resources? One way or another this
question will impinge on some aspect of your life, if it hasn’t already. Sustainability is an economic
concern because resources are limited. Sustainability is a moral concern, because any scarcity of
Earth’s resources will harm the weak and vulnerable first. And sustainability is a scientific concern,
because we may have the power to improve the lives of those who will be affected.

I know that each of the authors shares a deep vocational commitment in bringing this book to you,
and as evidence, I'll speak personally of the author I have the privilege to know as a friend: John
Roe, a man of deep grace and humility who made this book his highest professional priority while
battling a difficult illness. For him, this project grew out of a conviction and prayerful reflection that
his knowledge as a mathematician and an educator could be channeled into wise action on matters
that will impact us all.

The authors have poured their hearts into this remarkably important and timely book, and I hope
you will engage it with the same fervor. Because it concerns the world you live in, how you will need
to live in it, and the problems that you—yes YOU—can solve so that all of us can live in it well.

Francis Edward Su
Benediktsson-Karwa Professor of Mathematics, Harvey Mudd College
Past President, Mathematical Association of America

vii



Before We Begin. ..

0.1 To the Student

A Letter from the Authors

Dear Student,

The world that you are inheriting is full of bright possibilities—and also of big problems. Many
of the problems center on sustainability questions like “can this (key part of our social or economic
system) last?” or to put it in a way that has a little more math in it, “how long can this last?” For
example, modern society is a profligate consumer of energy, most of which is supplied by fossil fuels:
coal, oil, and natural gas. Fossil fuel supplies, though of vast and unknown size, are limited. How
long can they last? What’s more, there is a strong scientific consensus that the carbon dioxide gas
(also known as CQO;) released by burning fossil fuels is affecting Earth’s climate, making it more
unstable. How much more CO; can we emit before climate instability becomes dangerous? These are
big problems. Bright possibilities for addressing them include renewable energy sources like wind and
solar. No doubt you have heard all of these things before—as well as many other news stories about
“sustainability,” both positive and negative.

We started developing the “Mathematics for Sustainability” course, and writing this book, because
of three convictions:

e Many of the key choices that humans will have to make in the twenty-first century are rooted in
sustainability questions. These include choices that we must make together, as citizens, as well
as choices related to individual lifestyles.

e In a democracy, as many people as possible need to participate in well-informed discussion of
these sustainability questions. They are too important to be left to “experts.”

e We may engage with sustainability questions from a wide variety of perspectives, including
scientific, technological, political, ethical, and religious. For many of these discussions, we
need some knowledge of mathematics in order to participate in a well-informed way.

The aim of this book is to help you, the student, gain that mathematical knowledge and the ability
to apply it to sustainability questions.

You may not consider yourself a “math person.” Your studies may center on music or English or art
or education or architecture or agriculture.' But if you want to find out for yourself what “the numbers
say”’—not just to choose which “expert” you prefer to listen to—then this book is for you. Together,
we will find out how to model sustainability on local, regional, and global scales. We will learn about

!Students in all these majors have succeeded in the course on which this book is based.
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measurement, flow, connectivity, change, risk, and decision-making. Some of the topics we discuss
will probably be challenging, perhaps even unsettling. Whatever conclusions you reach, this book will
prepare you to think critically about your own and other people’s arguments and to support them with
careful mathematical reasoning.

As citizens in a democracy, you will ultimately be the ones whose decisions will guide your world
toward a sustainable future. We wish you the very best in your studies, and as you participate in
building the sustainable society of the future.

John Roe, Russ deForest, Sara Jamshidi
August 2017

Sustainability—The Key Idea

In spring 2017, our Earth’s human population surpassed 7% billion. Here’s a question. What do you
imagine was the population of Earth two thousand years ago, at the beginning of the Common Era?

Demographers (scientists and historians who study population) obviously don’t know an exact
answer to this question. But they are able to make some good estimates, which are in the range of
200 to 300 million people (Section 8.2). That is to say, the number of people on the whole planet
twenty centuries ago was roughly the same as the number in the United States (U.S.) today. Or, to put
it differently, the population of our Earth has increased by twenty-five times over that period.

That population increase has not been a steady one. Most of the growth has occurred in the last
century. And many other measures of human activity follow a similar pattern. Take a look at the
graphs in Figure 1, which are taken from a book by Will Steffen [308]. These graphs show a pattern
of accelerating increase that mathematicians call exponential growth.” This is important news: some
good (most societies have regarded large families and increased wealth as good, for example) and
some less so (Steffen’s book includes similar curves about pollution and overuse of resources, which
most would regard as bad). Both “goods” and “bads™ have been growing exponentially, especially over
the past two hundred years, since the Industrial Revolution got into gear. Can this pattern continue?
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Figure 1: Some measures of the “size” of humanity (from [308]).

Some think so. In July 2015, one presidential candidate declared that his objective for the United
States was “4 percent annual growth as far as the eye can see.” That is about the growth rate for the

2See Section 3.4 for more about this concept.
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curves in Figure 1. Others, though, look at similar data and see it differently. “[These] remarkable
charts...,” writes Gus Speth, former dean of the Yale School of Forestry and Environmental Studies,
“reveal the story of humanity’s impact on the natural earth. The pattern is clear: if we could speed up
time, it would seem as if the global economy is crashing against the earth—the Great Collision. And
like the crash of an asteroid, the damage is enormous.” [305]. “Societies are now traveling together
in the midst of unfolding calamity down a path that links two worlds,” he continues. “Behind is the
world we have lost, ahead is the world we are making. ... The old world, nature’s world, continues, of
course; but we are steadily closing it down, roping it off. It flourishes in our art and literature and in
our imaginations. But it is disappearing.”

The “old world” that Speth describes is a world in which
Earth appears to be huge, teeming with life, abundant, ex-
hilarating and dangerous. Humanity exists on the margin. In
the “old world,” to ask about humanity’s impact on nature
might seem absurd: much more important to worry about
nature’s impact on human beings (diseases? predators? food
shortages?) By contrast, the iconic image of the “new world”
is the Apollo astronaut’s view of Earth: the “blue marble”
(Figure 2), floating in space, gemlike and beautiful, yet cut
down to finite size by human achievement. In this finite world
it makes sense to ask: How long can we keep growing? Have
we already become too big? Can our complex society remain
diverse, active, and productive for an extended period of time?
Or could we overshoot the limits of our resources and then
decline, as many earlier civilizations have done [96]?

This is the sustainability question from which all other such
questions derive. We can put it another way by thinking of
the successive generations of humanity on this planet. Each Figure 2: The “blue marble.”
generation inherits Earth’s resources from its predecessors and
passes them on to its successors. In a lasting or sustainable
society, each generation would leave the world system in as good a shape as it found it; my
generation’s enjoyment of Earth’s bounty would not deprive the next generation (yours) of the
opportunity for similar enjoyment. Thus we arrive at the famous definition® given in the Brundtland
Report [255] as early as 1987:

Sustainability is the ability of a social, economic, or ecological system to meet the needs
of the present generation without compromising the ability of future generations to meet
their own needs. A process or practice is sustainable to the extent that it contributes to the
sustainability of the social, economic, or ecological systems in that it is embedded.

\ J

It is important to recognize that working for sustainability does not mean just trying to keep things
as they are. “Things as they are” include patterns of privilege and inequality that deprive many
members of the present generation of their basic needs. A sustainable world system must continue
to extend the provision of these needs to a growing share of its population—ultimately, to all—even

3The Bruntland Report in fact defines “sustainable development”; we have slightly modified its language to arrive at a
definition of “sustainability” itself.



Figure 3: Marine rescue operation in Galveston,
Texas, following Hurricane Harvey, August 31,

2017.
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as it also works to ensure that these needs can be provided in a way that doesn’t ask future generations
to pay the bill. This double challenge, we believe, will define the century that you live in.

We should also recognize that questions about sustainability and about the needs of the present
and future generations are inherently value-laden. Particularly when we approach these questions on
a global scale, we should expect to encounter different value judgments concerning how human well-
being is defined and what are the basic needs whose provision should be sustained.

r—@abom it. .. ~

The Brundtland definition of sustainability, Definition 1, was written in 1987. Yet such
ideas appear many years earlier in the thought of indigenous peoples around the world. For
instance, the Iroquois Confederacy’s “Great Law of Peace,” which is older than the U.S.
Constitution, contains a clause that is often paraphrased as, “In every deliberation, we must
consider the impact on the seventh generation. . . even if it requires having skin as thick as the
bark of a pine.” Thus, Westerners’ recent “discovery” of the notion of sustainability might
be more properly described as a “rediscovery” of ideas that are rooted in many traditions
(including some of our own). How do you feel about this? Why might Western society have
lost touch with the sustainability idea for part of its history?

Sustainability and Resilience

The time scale on which we ask sustainability questions is a
long one—many generations. Some changes to our world are not
perceptible unless we take such a long view. The rate at which
Earth’s climate is changing. measured by global average surface
temperature, is no more than a couple of hundredths of a degree
per year: of little consequence from one year to the next but (as we
will see) hugely significant on longer time scales. But change does
not always come in tiny steps: our world also experiences sudden,
extreme events. (Think of Hurricane Harvey, which flooded Houston
in August 2017, doing damage initially estimated at $60 billion.)
Extreme events are unavoidable: the question is not how to avoid
them, but how quickly we can bounce back from them. This “self-
healing” capacity is resilience.

Definition 2

Resilience is the ability of a social or economic system to absorb and respond to a sudden
shock without damage to its core functioning.

Sustainability and resilience are not the same, but they are closely related: a system that is already
near the limits of sustainability may be pushed to collapse by a shock that a more resilient system
would easily have survived. In the same way, an infection that a healthy person would shrug off may
be fatal for someone whose immune system is already compromised by malnutrition. Many historical
examples can be found in [96].

One way to think about the relationship between sustainability and resilience is through the idea of
control. It is tempting to believe that the more elements of our socio-ecological system we can bring
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under human control, the better we will be able to steer it on a safe path and so the more sustainable
it will be. For example, wildfire management in the Western U.S., and elsewhere, focused for many
years on fire suppression: bringing fires under human control. This seemingly allowed development in
wildfire-threatened areas to be lasting, or “sustainable.” Only recently has it become clear that these
measures, which indeed halted many local fires, also set the stage for huge buildups of fuel that make
the forests less resilient to the possibility of a catastrophic burn. Similar ideas apply to flood control
measures like overflow dams and levees. In Section 4.4 we will develop a mathematical perspective
on tipping points—situations in which a system lacks resilience because a small shock can produce
an overwhelming response.

Ecosystem Services

In Speth’s “new world” there is a tight connection between the economy, environmental quality,
human well-being, and the well-being of the entire community of living and nonliving things that we
call Earth’s ecosystem. This requires a significant change in our thinking. From the perspective of the
“old world,” Earth was simply a source of abundance: nature provided. Our “new world” perspective
requires a deeper understanding of what it is that nature provides, and indeed of the fact that human
activity can no longer be so neatly distinguished from “nature” at all. Economic activity and human
prosperity are embedded in the natural world, and they depend on and are ultimately constrained by
the productive capacity of the whole Earth ecosystem (Figure 4)—which itself is constrained by the
rate at which energy arrives from the Sun.
In Figure 4, we should therefore think of the outer-

most oval, which represents the entire ecosystem of the
Earth, as of more or less unchangeable size. That means /
the inner ones cannot grow too much. In other words,
the definition of a sustainable society implicitly involves
the uncomfortable idea of limits: limits on the “goods”
that are available to each generation and also limits on
the capacity of Earth’s ecosystem to absorb the “bads”
generated by human activities. The recognition that such
limits exist sets the stage for the mathematical tools we
develop throughout this book. We need to be able to \
interpret and use quantitative information to assess the
size and nature of such limits and so to reach well- Figure 4: Sustainability and limits. Redrawn from [65].
justified decisions about sustainability questions. If we
lack such tools, we’ll be tempted to believe either that there “are no limits” or that if limits exist, they
are so far off that they need be of no concern to us. That may be true in some cases, but in others we
may find that the limits are startlingly close.

The notion of ecosystem services [342] provides one way to conceptualize this dependence of
human activity on the planet’s ecosystems.

Earth’s Ecosystem

Human Society

Economy

Sustainability

Definition 3

Ecosystem services are benefits that human society obtains from Earth’s ecosystems. These
services range from pollination of food plants and provisioning of freshwater and other
resources to climate regulation, soil production, and recreational opportunities.

Specific ecosystem services are not fixed once and for all: human activity may enhance or degrade
the capacity of Earth’s ecosystems to provide these services. Moreover, many ecosystem services
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(such as clean air, clean water, climate regulation) are public goods—they cannot be “owned” in any
practical sense. While some ecosystem services are local or regional (think of the services provided by
a community park or a state forest), many are global in nature (like the pollution-absorbing capacity of
the atmosphere): effective management and stewardship therefore require international cooperation. In
Chapter 6 we develop mathematical tools to study such cooperation. This will allow us to understand
some of the pitfalls and difficulties in reaching mutually beneficial agreements.

@abom it. .. \

Gaylord Nelson, former U.S. senator for Wisconsin and founder of Earth Day, wrote in
2002:

The economy is a wholly owned subsidiary of the environment, not the other

way around.
What do you think he means? Do you agree?

About This Book

A few words about the structure of this book. Part I is the longest part of the text. In it, we develop
mathematical tools and apply them to short examples. It is organized into six chapters corresponding
to key concepts that arise in the mathematical study of sustainability: measuring, flowing, connecting,
changing, risking, and deciding. Here is an overview of those concepts:

Chapter 1: Measuring. In this chapter we discuss how to measure, and how to express how big
some quantity is. From the point of view of sustainability, the kind of answer that matters is often not
some absolute number, but a comparison or a level of importance, so we’ll talk about how we might
judge whether some quantity represents something important, and how we might make a decision on
how to respond.

Chapter 2: Flowing. It’s common to talk about the halance of nature. But this image of a “balance”
can suggest something that is static, unchanging. That is not the way natural ecosystems operate.
Individual components of the system are constantly changing, even as the system as a whole maintains
its equilibrium. For example, consider a mountain lake. The water level in the lake may stay the same,
but the actual water in the lake today is not the same as the water that was there yesterday: new water
has arrived through rain and snowmelt, old water has left through runoff and evaporation. It’s the
balance between these various flow processes that keeps the water level—the stock—constant. This
chapter is devoted to exploring these concepts of flow and stock in detail.

Chapter 3: Connecting. Our lives are more interconnected now than at any time in history, and
not just through social media. Rather than most of our food being grown close to where we live, for
example, we have gotten used to obtaining food from supermarkets that are supplied by a production
and transportation network that reaches all over the globe. Energy supply, too, is a vast and complex
network of tanker routes, pipelines, electrical grid connections, and truck deliveries, to mention only
a few. Human-made networks like these are not the only ones: we have also grown much more aware
of the complexity of the natural networks that connect the web of life on earth. In this chapter we will
study the mathematical language that is used to understand these various kinds of networks.

Chapter 4: Changing. In this chapter we will look at examples in which stock-flow systems are
out of equilibrium—that is, how they respond to change. Although we start by studying a simple
model of continuous growth or decay, from the point of view of sustainability the important questions
arise when growth is limited by some external factor (such as the fact that we live on a finite planet).
We’ll study how the strength of feedbacks governs a system’s response to change, and how this leads
to the key idea of a tipping point—a moment when the system “flips” suddenly to a new state. Some
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scientists are concerned that Earth’s climate system might be approaching one or more tipping points.
We’ll ask how it might be possible to tell.

Chapter 5: Risking. Any kind of realistic thinking about sustainability must consider likelihoods or
risks. Nuclear power generation does not produce any greenhouse gas emissions, and it is constant and
reliable, but what about the possibility of a catastrophic accident? This question asks us to balance the
near-certainty of a steady benefit against a small risk of disaster. It is hard to do so without numbers.
How likely are you to die from a nuclear reactor meltdown? The math involved in working with these
sorts of questions is called probability and statistics. In this chapter, we are going to learn about these
techniques and how they can help us make good decisions when faced with limited knowledge and
uncertain outcomes.

Finally, Chapter 6: Deciding is where the rubber meets the road. In the end, you and your
generation are going to have to make some sustainability decisions. These will range from the
personal, through the local, to the national and global. Human behavior does not always follow the
“rational” principles discussed in Chapter 5. Even if mine always did, I am not the only person
involved. Other people’s decisions interact with mine in a complicated way—we are in fact a
network of decision-makers, with no final authority. This decision-making interaction can be studied
mathematically, which we will do. The chapter concludes, however, with an extended reflection
on how our sustainability decisions can never be purely mathematical, but must also engage our
fundamental personal and ethical commitments.

In Part II (Chapter 7) of the book we provide a collection of Case Studies in which we apply
the mathematical tools developed in Part I to answer particular questions related to sustainability and
to explore extended examples. We believe that it is important that you, the student, learn to write
extended pieces of this sort, and a student writing requirement has been a major part of the course
on which this book is based. Why? This is how you build the ability to assess, develop, and present
quantitative evidence in support of your own ideas. These skills are vital to you as a future leader, as
an engaged citizen, and as an effective advocate for the things you care about. We don’t want you just
to learn mathematical techniques but also to be able to incorporate them in extended and persuasive
written pieces—pieces that might be published in a course blog, in a student or hometown newspaper,
or even on a national platform.

Finally, Part III (Chapter 8) of the book contains reference material: suggestions for further
reading, tables of useful data, and the list of figures, bibliography, and index. We suggest checking
Part III regularly, especially if you need some numerical information (such as the heat capacity of
water, or the amount of sunlight that falls on Earth, or the planet’s estimated coal reserves) to help you
answer one of the exercises or formulate an argument in one of your more extended written pieces.
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Online Resources

BEFORE WE BEGIN

This book has a website, http://math-for-sustainability.com, as well as an email address for
comments and suggestions, comments@math-for-sustainability.com. On the website you will
find many different kinds of supporting materials:

e Hints and solutions to selected exercises.

e Online calculators and examples. Especially later in the book we will describe many models for

sustainability-related processes that change over time (such models are called dynamic). The
best way to visualize such a model is also dynamic, like a video clip rather than a collection of
snapshots. That can’t be done on paper, but it can be done online, and the website uses several
different modeling tools to help you see the way our dynamic models evolve over time.

Extended discussions of particular topics (refreshing the case studies in part Il of the book,
some of which may become outdated as technology advances or the environment changes).
If you publish a written piece in a newspaper somewhere, please write to us (using the email
address above) and tell us! We’ll be happy to link to your writing from the book’s website.

Corrections or updates. We’ve tried hard to make this the best book possible. But there are
bound to be some mistakes left. What’s more, some information will simply become outdated.
We’ll keep a list of corrections or updates on the website. Again, if you notice an apparent

mistake, please email us. You’ll be helping many future students by doing so.

Conclusion

Figure 5: Pope Francis has said: “These ancient
stories...bear witness to a conviction which we
today share: that everything is interconnected, and
that genuine care for our own lives and our rela-
tionships to nature is inseparable from ... justice
and faithfulness to others™ [123].

We hope that through this book you will gain a clearer under-
standing of the sustainability issues that we humans face and of
some choices that we need to make. But let’s be clear: mathematics
cannot make these choices for us. As remarked above, the choices
human beings make on such fundamental questions reflect their
deepest ethical and personal commitments (compare Figure 5).
What mathematics can do, though, is to inform our choices by
making their likely consequences clearer. It can help us prioritize
issues by ranking them in terms of the relative size of the risk
they pose and the relative severity of their potential outcomes.
Understanding mathematics can help us avoid falling for some
plausible-looking “solutions™ that really don’t achieve much or
are even harmful. Finally, mathematics carries its own values also,
like communicating clearly, reasoning logically, and considering
all possibilities. These values, as well as the specific content of
mathematics, can help us all in the decisions that we will all have
to make together.
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Summary of Ideas: To the Student <

» Sustainability refers to the ability of a social or economic system to keep functioning
without degrading its environment—to provide for its own needs and also preserve
the ability of future generations to provide for their needs.

s Resilience refers to the ability of a social or economic system to “self-heal”—to
recover from a disruptive event.

o Ecosystem services refer to the benefits that society receives from Earth’s ecosys-
tems.

e Many questions about sustainability and resilience involve measurement, change,
connection, and risk, all of which can be expressed in the language of mathematics.

e This book introduces some of the mathematical ideas that are helpful in making
decisions that involve sustainability.




Xviii BEFORE WE BEGIN

0.2 To the Instructor

If you want to make a course interesting, then you should study something of interest
[356].

This text supports a course that is aimed at college students—many thousands of them, in our large
universities—who would not describe themselves as “mathematicians” or “scientists” but who need
to take at least one course that supports quantitative literacy as part of their degree requirements.
Often such students have found themselves steered into courses in the precalculus sequence: courses
that may be excellent preparation for future scientists and engineers, but that fail to catch a student’s
attention as their last experience of mathematics. One of us sometimes asks such students, “Would
you rather learn the quadratic formula or would you rather save the world?” This book is for those
students who would like to save the world, or at least take a step in that direction. Similarly, it is for
those instructors who would like to “teach as if life matters™ [328], or at least take a step toward using
the mathematics classroom to help students think more clearly about some of the issues that are only
going to become of increasing importance over the twenty-first century.

Each instructor will, of course, use this book in the way that they see fit. However, one of
our primary goals is to advance student skill in quantitative literacy. A required student writing
component has played an essential role in accomplishing this goal and has accounted for over one-
third of the total grade in the course as we have taught it. The Association of American Colleges and
Universities provides the following definition for quantitative literacy [249]:

Quantitative Literacy (QL) is a “habit of mind,” competency, and comfort working
with numerical data. Individuals with strong QL-skills possess the ability to reason
and solve quantitative problems from a wide array of authentic contexts and everyday
life situations. They understand and can create sophisticated arguments supported by
quantitative evidence and they can clearly communicate those arguments in a variety
of formats.

Because of its intended audience, the book does not require any mathematics beyond high school
algebra; the most complicated idea that appears is a fourth root, which shows up in a few places in
Section 2.4. In particular, no calculus is required to read and study this book. If the instructor does
know calculus, though, they will find that it provides background to the chapters on “Flowing” and
“Changing,” and may even find it helpful—for themselves, not for the students—to investigate how
our presentation can be translated into the classical language of differential equations.

Nor does the book require (from you, the instructor) a great deal of sustainability-specific
mathematical background. Naturally, the more you know, the more you will be able to help your
students, but in the end what we’re presenting in Part I of the book is a self-contained set of
mathematical techniques, and if you learn about them from the text, that will be fine. Should you
wish to pursue the material further, the reading suggested in Section 8.1 gives some possible starting
points.

The book’s website is at http://math-for-sustainability.com. As well as the student-
oriented material described in the previous section, this website contains additional resources and
suggestions specifically for instructors. These include a quite specific description of the writing
component of the course as we have taught it. You’re welcome to use this model exactly as it is,
to adapt it, or to do something entirely different. We do believe, however, that this book will be
most effective if it is used in conjunction with a requirement for some student response in the form
of extended writing. Our experience suggests that most students are glad to have the opportunity
to integrate their mathematical learning with social and environmental concerns and to express
themselves in this way.
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CHAPTER ].

Measuring

Think about this quotation from a BBC news broadcast:

Archaeologists announced Friday that they have discovered human footprints in England
that are between 800,000 and I million years old—the most ancient found outside Africa,
and the earliest evidence of human life in northern Europe [188].

We know 1 million years is a long time, but “a long time” is
subjective. Your friend might say that she sat in traffic for “a long
time” because she drove 20 miles in one hour, but one hour does
not compare to 1 million years. Now suppose your friend instead
said it took her one hour to travel 3 million centimeters. How do
we interpret that? Was that a large or small distance to traverse in
that amount of time?

The most basic mathematical question we can ask is: how big?
But there is (or ought to be) an immediate comeback in any real-
world situation: compared to what? Is a million a big number?
A million dollars is a lot of dollars for an ordinary person. But
a million molecules of carbon dioxide is a tiny amount for most
purposes, and even a million dollars is a rounding error if you are
thinking about the total of the U.S. federal budget. What about
a million centimeters? Could you walk that far in a day? In a
week? In a month? Not just the numbers but also the units matter:
a million centimeters might be a manageable distance to walk Figure 1: Measuring instruments.
(we’ll see!), but we can be quite sure that a million miles is not.

In this chapter we will review basic information about numbers,
units, measurements, and comparisons. We will study scientific notation, which is a convenient way to
work with very large and very small numbers, and we will look at some of the most effective ways to
communicate numerical information in human terms. We’ll also learn some of the skills of estimation:
how to get a useful rough idea of the size of some quantity, even when an exact answer is not available.

Wlathematical and Surveging Instruments
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4 CHAPTER 1. MEASURING

1.1 Units and Measurement

- ~

I can identify the number part and the unit part of a physical measurement.

I can keep track of units throughout a calculation.
I can work with pure numbers and their percentage equivalents.
I am familiar with standard units of time, distance, weight (or mass), and temperature.

I can convert the same measurement into different units.

O O o o O O

I can communicate the meaning of a measurement by relating it to everyday human
experience.

1.1.1 Number Part and Unit Part
Let’s consider some simple examples of measurements:
(a) The fuel tank of my car holds 13 gallons.
(b) We need 5 pounds of potatoes.
(c) Today’s high temperature is predicted to be 91 degrees Fahrenheit.
(d) The distance by road from New York City to San Francisco is about 2900 miles.
(e) Abraham Lincoln took approximately 2 minutes to deliver the Gettysburg Address.
(f) The Hoover Dam is 726 feet high.
(g) The area of Lake Mead (the lake impounded by the Hoover Dam) is 640 square kilometers.
As you can see from these examples, a physical measurement is made up of two parts:
e the number part—like “13” or *5” or “726™;
e the unit part—"gallons” or “pounds” or “feet.”

It is only the number and the unit part fogether that make a complete measurement. If my gas tank
has a 13-gallon capacity, and I for some reason decide to measure in teaspoons instead, I could say
that my tank holds about 10,000 teaspoons. Both “13 gallons” and “10,000 teaspoons” are complete
measurements, though the first version is much more useful for most purposes. But it would make no
sense just to say “The capacity of my gas tank is 13.” Without the unit part (gallons), the number part
(13) does not tell us anything.

/C ritical Thinkiné_ﬁt

When you read an article that gives numerical information, always ask, “What are the
units?” If no units are given, the information is meaningless.
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Problem 1: Identify the number part and the unit part in the following
measurements:

(i) The radius of the Earth is approximately 4,000 miles.

(ii) At full takeoff power a Boeing 747 burns over 3 gallons of jet fuel
per second.

(iii) The current U.S. population is about 320 million.

Figure 2: Boeing 747 at takeoff.

Solution: In example (i) it is clear that the number part is 4,000 and the unit part is “miles.”

In example (ii), the number part is 3, but what are the units? The “3” refers to a rate of fuel
consumption, and the units in which this is measured are “gallons per second,” which we may
abbreviate as “gal/sec.” Notice that the units are nor gallons alone, or seconds alone, but the
combination “gallons per second.” !

Example (iii) looks at first as though it does not have any units. To see what the units are, try to
expand the statement a bit: ask yourself, “the current U.S. population of what are we describing?”
Clearly the answer is “human beings,” and that tells us the unit part of our measurement: “human
beings” or “people.”

Remark 1: When describing the unit part of a measurement, we don’t distinguish between singular
and plural. Thus, in both “1 inch™ and “2 inches,” the units are “inches”; in “1 person” and “300
people” the units are “people” (or “persons” if you prefer). Some units have standard abbreviations:
for example, “2 inches” can also be written “2in.”

1.1.2 The Unit-Factor Method

Suppose that my car’s gas mileage is 33 miles per gallon. And suppose also that, as in the first example
above, my car’s tank holds 13 gallons. How far can I travel on a full tank?

You probably know that to obtain the answer, we need to multiply 13 by 33. But did you know that
the multiplication can be done with the units as well? Like this:

13 ga x 3133':[' — 13 % 33 mi = 429 mi.

Using the abbreviations “mi” for miles and “gal” for gallons, the tank capacity is 13 gal, and the fuel

33
consumption is 33 mi/ gal, which we write as a fraction ] mll. When we multiply these two together
a

the gallons cancel, leaving the answer (with the correct units) as 429 mi, that is, 429 miles.
This is an example of the unit-factor method.

Definition 1

Using the unit-factor method, whenever we multiply or divide physical quantities, we must
multiply or divide their number parts and their unit parts.

The unit-factor method is valuable in many kinds of problems. It’s especially helpful when we deal
with problems involving unit conversions, like the one below.

"You may also see this abbreviated as * gal sec™!” in some books; this notation is not wrong, but we’ll try to avoid it.
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Problem 2: There are 1,760 yards in a mile, and there are 36 inches in a yard. Using this information,
express one million inches in miles.

Solution: The key idea is that conversion problems can be expressed in terms of “multiplying by 1”
in different ways—and that multiplying a quantity by 1 does not change that quantity. For example,
the statement “there are 36 inches in a yard,” part of the information given in the problem, can be
re-expressed as

lyd 36in

— =1 or — =

36in 1yd
Both ways of writing the fraction are correct; we have to figure out which way will be more helpful to
us. Now a million inches multiplied by 1 is still a million inches; but if we multiply a million inches
by the left-hand expression for 1 in the display (labeled (1)) above, we get the useful fact that

lyd _ 1,000,000yd

1. (1)

1,000,000 in = 1,000,000, = ~ 27,780 yd.
AT O S 36 Y
(The symbol “~” means “is approximately equal to.”) We can use the same idea a second time to
1 mi
convert from yards to miles, using the fraction I,Tr?)lyd e
27,780 yd — 27,780y x —m_ _ ZT780mI s g i,

1,760yd 1,760

The answer to our problem, therefore, is approximately 15.8 miles. If we wanted to shorten our work,
we could combine two steps into one and write

1 mi 1,000,000

1 yd
1,000,000 in = 1,000,000 : . i~ 15.8 mi.
AR 000 S ™ 1760y~ 36 % 1,760 ™ m

This is also a correct solution.

The unit-factor method is a great help in conversion problems because keeping track of the units
automatically lets us know when to multiply and when to divide. For instance, in the first line of our
solution we multiplied by 1yd/36in = 1 to convert our measurement from inches to yards. Only this
form of the conversion factor allows the “inches” to cancel, and that cancellation is the signal that tells
us we are heading in the right direction. Watch how this works in our next example:

Problem 3: Beefy Acres is an imaginary cow/calf farming operation located in the Southeast, used
as an example in a pamphlet published by the Natural Resources Conservation Service (a division of
the U.S. Department of Agriculture) [235]. Beefy Acres has 20 acres of pastureland, and each acre
produces, on average, 9,500 pounds of forage per year. To thrive, each cow requires approximately
17,500 pounds of forage per year. What is the maximum number of cows that can be supported
sustainably on Beefy Acres?

Solution: We have three items of information given to us. Let’s express these in terms of number part
and unit part, where our basic units are “acres” (of pastureland), “cows™ (this is a very reasonable
unit for working this problem—units do not have to be just mathy things), “pounds” (of forage; for
historical reasons the abbreviation for pounds is “1b”), and “years.” Then our information is the pasture

area (20 ac), the amount of forage production per acre per year (9,500——), and the amount of
ac yr

forage consumption per cow per year (17.50007). We need to combine these quantities using
COW yr

multiplication and division to get an answer whose units are cows; the acres, pounds, and years have
to cancel. There is only one way to do this:
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1 2
cowyr 95008 . 9,500x20

= ~11 .
17,5006 " Tac yr 17.500 oW I oows

The answer is approximately 11 cows.
How do we arrive at the correct way to arrange this computation? We start by remembering that our
objective is to arrive at a solution whose units are cows. Only one of the data involves the unit “cow”

at all, and that is the grazing requirement 17,500 . But this piece of information has “cow” in
T

cow
the denominator (the “downstairs” part of the fraction), whereas to get an answer in units of cows we

are going to need “cow” in the numerator (the “upstairs” part). So we consider the reciprocal
1 cow yr
17,5001b
This has “cow” in the numerator as we wanted, but it also involves units of pounds and years, which

we will need to cancel by multiplying by other pieces of information. If we multiply by the yield per
acre, the pounds and years will cancel:

1 cow yr y 9,50045 9,500 cow
17,5008~ lac yr ©17.500ac

This is a meaningful quantity—it tells us how many cows can graze on any given acreage of land,
with units “cows per acre”—but it is not our final answer, whose units must be “cows.” To cancel the
“acre” unit, we multiply by the land area, thus arriving at the final answer

1 cow yr 9,500,[5>< 20¢ — 9,500 x 20

= ~ 11 S.
17,5000~ Lac yr 17,500 ° coms

1.1.3 Standard Units

We already have some knowledge of the standard units for time and distance, area and volume, and
other common physical measurements. Let’s review them.

Units of Time

Each of us is familiar with the idea of time. In the introduction we saw how sustainability questions
can explicitly involve the measurement of time (“how long can this last?""). Table | lists some common
units of time.

Table 1: Units of Time

Unit (abbr) | Definition | Example

Second (s) - Snapping your fingers

Minute (min) | 60 s Singing five verses of “Row, Row, Row Your Boat”

Hour (hr) 60 min About the time you spend during a casual lunch

Day (day) 24 hr Time between one sunrise and the next

Week (wk) 7 day About the time it takes to ship a package by regular mail
from the U.S. to Europe

Year (yr) 365 day The time from one birthday to the next

Century 100 yr About 4 generations in a family (from you to your great-
grandmother)
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Units of Length

Units of length come from one of two systems of measurement: the U.S. system and the metric
system (used in much of the rest of the world). We will review both systems of measurement and
discuss how to go back and forth between the two systems.

First, let us list some U.S. measurements of length. These measurements will be more familiar to
you if you grew up in the United States.

Table 2: Units of Length (U.S.)

Unit (abbr) ‘ Definition ‘ Example

Inch (in) - About the length of a paper clip
Foot (ft) 12in About the length of a large human foot
Yard (yd) 3ft About the width of a single (twin) bed

Mile (mi) 1,760 yd About the distance traveled walking for 20 minutes

If you grew up outside the United States, you will be more familiar with metric units of length.
Some of these are listed in the table below.

Table 3: Units of Length (Metric)

Unit (abbr) | Definition | Example

Micron ( (tm) m m | Size of a small bacterium

Millimeter (mm) ﬁ m About the width of a pencil tip

Centimeter (cm) ]—éﬂj m About the length of a carpenter ant

Meter (m) - A little more than the width of a single (twin) bed
Kilometer (km) 1000 m About the distance traveled walking for 12 minutes

Notice that the metric units all are related by powers of 10, like 10, 100, 1000 and their reciprocals
,l—o, ﬁ ﬁ Moreover, the names of the units all have a standardized form, made up of a prefix
applied to the basic unit “meter.” You can find a more extensive list of these prefixes, and the powers
of 10 that they represent, in the “Useful Data” section of this book (Table 2 on page 486).

Problem 4: Use the information in the tables to determine how long would it take you to walk 3
million centimeters.

Solution: From the data in Table 3, we know that it takes about 12 minutes to walk 1 kilometer. We
can express this rate of progress as
12 min
lkm

We want to use this information to find out how long it takes to travel 3 million centimeters. Since
our rate-of-progress information uses kilometers rather than centimeters, we convert one to the other,
using the conversion information 1cm = ﬁ m and 1km = 1,000 m provided by the table. As we
learned in the solution to Problem 2 on page 6, the way to do this is to re-express the conversions as

fractions equal to 1 (such as = 1, for example). Thus we can obtain the travel time:

m
100 cm

15:4 Lkm  12min

— 360 min.
100.cnr 1000 < iy So0min

3,000,000 ca1
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I m
11t I'm 1 m?
Lfe| | 162

Figure 3: Illustrating the formation of units of area.

Our answer 1s 360 minutes. That’s a lot of minutes, and it will be easier to understand if we convert it
to hours, using the fact that 60 minutes make 1 hour:

1 hr _
60mim

Based on our work above, then, it would take about 6 hours to walk 3 million centimeters. This is
an example of expressing a measurement in human terms—that is, by reference to familiar human
experience. Instead of the mysterious “3 million centimeters,” we can now communicate the same
information by saying “about six hours’ walk.” This alternative way of expressing our measurement
can be grasped directly, without scientific knowledge.”

360-min x 6hr.

Remark 2: We separated out the various conversions when we used the unit-factor method in the
above solution. It would be equally correct, however, to combine them all in one line:

|5 Lkt 12mm 1 hr

3,000,000 =
o D0t 1,000~ Lk 60mi

as we did in the solution to Problem 3 on page 6.

Units of Area and Volume

Area is a unit of measurement created from length. Units like “square feet” ( ft*) and “square meters”
(m?) refer to the area made by multiplying the dimensions. Figure 3 is a diagram demonstrating this
idea. From any unit for length, we can get a corresponding unit for area.

Let’s work some problems involving unit conversions for areas. As we’ll see, we will need to take
the squares of the conversion ratios to make the units come out right. This works because conversions
in the unit-factor method are simply ways of expressing the number 1, and the square of 1 is just 1
again.

Problem 5: What is a square foot in square inches?

121
Solution: There are 12 inches in a foot; in terms of the unit-factor method, l—flt = 1. So how many

square inches in a square foot, 1 ft*> = 1 ft x 1 ft? We can work this out by the unit-factor method

12i 12
1fix 1 ft— (l/ffx ]/;?) x (l,ffx 1;) — 12in x 12in = 144in’.

2We’ll develop this idea further in Section 1.1.5.
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. Lo . ) 2in
A shorter way to approach this calculation is to take the square of the conversion ratio, ( ) =

11t
(12in)2
(1ft)2

. This is still equal to 1 (because the square of 1 is still 1), so we can write

12in)? 144 in?
e — 1w U207 g 10T,

(1ft)? Le

getting the same answer as before. Look carefully at both approaches to make sure you understand
why they give the same result.

Problem 6: Express 15 square centimeters in square meters.

Solution: Working as in the problem above,

1 m)? 1 m?2
15em? = 15em? x — ™" jse? ™ 00015 m?,

(100 cm)? 10,000.er”

The answer is 0.0015 square meters.

There are a couple of additional units of area that are worth knowing. These are particularly
associated with agriculture.

Table 4: U.S. Units of Area

Unit (abbr) | Definition | Example

Acre 4840 yd? Roughly the area of a (U.S.) football field, without the
end zones.
Hectare 10* m? About 2.5 acres

Volume is also a unit of measurement created from length. This time, though, we are considering
cubes instead of squares (Figure 4). Units like “cubic inches” (in3) and “cubic meters” (m3 ) refer to
measurement of volume. The technique for carrying out conversions is the same.

Problem 7: What is 1200 cubic inches in cubic feet?

1ft
Solution: We now need to take the cube of the conversion factor 2in = 1. We obtain

1 ft 1t
1.200in® = 1.200in’ x(i 20067 % ~0.710.

(12in) 1,728 /H-ﬁ

The answer is approximately (.7 cubic feet.

Example 1: As well as the “cubic” units for volume, traditional systems of measurement have come
up with many other volume units, often specialized to a particular trade or profession: bushels of
wheat, gallons of milk, hogsheads of ale, and so on. Table 5 on the opposite page gives a few such
volume units worth knowing

Problem 8: How many gallons are in a cubic foot?
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Vit /
1m

Figure 4: Illustrating the formation of units of volume.

Table 5: Units of Volume

Unit (abbr) . Definition | Example

Gallon ( gal) 231in’ Large container of milk

Pint ( pt) % gal Glass of beer

Barrel, of oil (bbl) | 42 gal Barrel about 3 ft high, 1 % ft diameter

Teaspoon (tsp) 9]—6 pt The smallest spoon in a set of ordinary silverware
Liter (L) 1000 cm? or 0.0001 m? | A little over 2 pints

Solution: One gallon is equal to 231 cubic inches (as defined above), and one cubic foot is equal to
123 = 1,728 cubic inches. Therefore,

L6 — 17285 x &4
1

231Li%

=~ 7.5 gal.

Problem 9: Approximately how many cubic centimeters make a teaspoon?

Solution: This problem requires us to relate the U.S. and metric systems of measurement for volume.
We can use the unit-factor method and the information in the table above:

1 1 L¥  1,000cm? 3
ltsp= —ptr —pfx —x —— =~ 5cm’
P = 5 Pt~ g Pl 20 K om

Thus, a teaspoon is approximately equal to 5 cubic centimeters.

Units of Weight or Mass

Table 6: Units of Mass (U.S.)

Unit (abbr) | Definition | Example

Ounce (0z) - About the mass of an AA battery
Pound (1b) 160z About the mass of a small bottle of soda
Ton (t) \ 2.0001b About the mass of a subcompact car




12 CHAPTER 1. MEASURING

In this text, we are going to use the terms “weight” and “mass” interchangeably. Strictly speaking
this is not accurate—the “mass” of an object refers to the amount of “stuff” (matter) that it is made
of, and “weight” refers to the amount of pull that gravity exerts on that mass. But so long as we stay
on the surface of the earth, gravity is pretty much constant, and therefore the two terms “weight”” and
“mass” can be taken to refer to the same thing. As earthbound people, then, we will not sweat the
distinction.

Like distances, masses have two unit systems: a U.S. system and a metric system. If you grew up
in the United States, you may be more familiar with the mass units in Table 6 on the previous page.
But if you grew up outside of the United States, you are likely more familiar with the measurements
in Table 7 instead.

Table 7: Units of Mass (Metric)

Unit (abbr) | Definition | Example

Gram (g) - About the mass of a paper clip
Kilogram (kg) | 1,000¢ About the mass of a hardback book
Tonne (T) 1,000kg About the mass of a subcompact car

Notice that a U.S. “ton” and a metric “tonne” are not quite the same. But they are pretty close
(within about 10 percent)—close enough that the difference will not matter for most of our purposes.

Unit Conversions

There are many situations in which we may need to convert a measurement from one unit to another.
These conversions could be within one unit system (for example, expressing 3 million centimeters
as 30 kilometers) or from one unit system to another (for example, expressing 30 kilometers as just
under 19 miles).

Here is a table of some useful conversions. (More extensive and precise tables can be found in
Section 8.2.)

Table 8: Unit Conversions

Metric Unit ‘ U.S. Conversion || U.S. Unit | Metric Conversion

lcm 0.39in lin 2.54cm
Im 33ft 1ft 0.3m

I km 0.62 mi 1 mi 1.61km
lg 0.035 0z loz 28¢g
lkg 2.21b 11b 0.45kg
1T 1.1t 1t 091T

1 gal 3.8L 1L 0.26 gal

We have already seen how the unit-factor method allows us to handle these conversions efficiently.
Let’s do a couple more examples as a reminder.

Problem 10: The weight limit for a checked bag on Untied Airlines is 50 1b. If my bag weighs 32 kg,
will I be able to check it without paying the overweight charge?

Solution: The fact that 32 is less than 50 does not answer this question! We must converft 32 kg to
pounds. To do this, we use the fact (from Table 8) that 1 kg equals 2.2 1b. Using the unit-factor method

we express this by saying that the fraction

equals 1. Therefore,
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2.21b
32kg = 32kE X —0 =~ 701b.
g =32kg x kg

It looks as though I definitely will have to pay an overweight charge!

Problem 11: I am pulled over on the freeway for driving at a speed of 100 feet per second. If the
speed limit is 65 miles per hour, was I speeding or not?

Solution: We need to express 100 feet per second in miles per hour. Using Tables 1 and 2 (pages 7-8),

i—woﬁxlidx Imi_ 60sec 60mim _ 100 x60x60mi _ . mi
sec  sec  3f  1,760yd  Lleim ~ 1hr  3x1,760hr hr’

So I was speeding, though not by very much.

100

The moral is: be mindfil of your units! Forgetting to convert to the appropriate unit system is an easy
mistake that can lead to disastrous results—such as the loss of a spacecraft! According to news reports
from the late 1990s, “NASA lost a $125 million Mars orbiter because a Lockheed Martin engineering
team used English units of measurement while the agency’s team used the more conventional metric
system for a key spacecraft operation” [199].

Here’s a slightly different example

Problem 12: Write the height “5 feet 7 inches” in centimeters.
Solution: 5 feet 7 inches” means an addition: five feet plus seven inches. But when we want to add

two quantities, they must be expressed in the same units. In this example, we need to re-express the
five feet in units of inches before we add the seven inches:

12i
Sft+7in= (s,ffx l—;) +7in=60in+7in = 67in.
Now that we have expressed the length in units of inches, we can convert to centimeters:
lcm
674 x —— ~ 170cm.
X 3~ 170Cm

Remark 3: A calculator will give 67/0.39 as 171.7048.... So why did we “round off” the answer
above to “approximately 170 centimeters”? To understand this, take a look at the discussion of
precision in Section 1.3.1.

Units of Temperature

Our final example of unit conversions concerns the measurement of temperature. In the United States,
temperatures are measured using the Fahrenheit scale. On this scale, the freezing point of water is
32°F and the boiling point of water is 212 °F, so that there are 180 Fahrenheit degrees between
freezing and boiling.

In most other countries, the Celsius scale is used. On the Celsius scale, the freezing point of water
is 0 °C and the boiling point of water is 100 °C. Thus there are 100 Celsius degrees between freezing
and boiling.

Remark 4: Converting between temperature scales is more complicated than converting between unit
systems for the other kinds of measurements (length, time, mass, and so on) that we have discussed
so far. The reason is that not only do the units have different sizes (one Celsius degree represents
more of a temperature jump than one Fahrenheit degree) but also the zero points of the two scales are
different. That problem does not come up for other sorts of measurements: zero feet and zero meters
both represent the same length, zero! The differences between Fahrenheit and Celsius are illustrated
in Figure 5.
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What’s more, neither the Celsius nor the Fahrenheit scales have their zero points
. rooted in any fundamental physical reality. (According to legend, 0 °F was simply
BOILING POINT the coldest temperature that Fahrenheit could reach using the technology available

220
100(—100°C ~ 212°F — 210

10

1

CELSIUS

oFwaer |20 to him at the time.) Modern physics tells us, though, that heat is the result of the
170 disordered motion of atoms and molecules, and this means that there is truly a
e “coldest possible” temperature, when all atoms and molecules would be at rest.
10 This absolute zero of temperature is much colder than anything in our ordinary
% experience: it is about —273°C, or —460 °F. In physics calculations the Kelvin

s temperature scale is used: Kelvin temperature is simply equal to Celsius temperature
FREEZING POINT 50

o — 0o - 32oF — plus 273, so that absolute zero is 0 K, water freezes at 273 K, and water boils at

20

I 373 K. Table 9 gives the algebraic formulas for converting between these three
- temperature scales.

OF WATER

Table 9: Temperature Scale Conversions

FAHRENHEIT

Figure 5: Celsius and ” B | 5 | B

Fahrenheit comparison. °C c—cC c— %(F _32) C—K—273
°F F=32+%C F=F F=2K—460
K K=C+273 K = §F +255 K=K

For instance, if you want to convert a temperature from Fahrenheit to Celsius, let the Fahrenheit
temperature be . Look in the table to the intersection of the °F column and the °C row, where you
will find the algebraic formula C = %(F —32). This tells you how to compute the Celsius temperature
C in terms of the Fahrenheit temperature.

Problem 13: Normal human body temperature is about 98 °F. Express this on the Kelvin scale.
Solution: Looking in the table above, we see the formula K = 3 F 4 255 to convert from Fahrenheit
to Kelvin. Plugging in F = 98 °F, we obtain

~ 5x%x98
9

K +255 2~ 55+255=320K

for the Kelvin equivalent.

1.1.4 Percentages and Other Pure Numbers

We’ve stressed that physical quantities have both a number part and a unit part, but we sometimes
have a use for pure numbers. These are numerical quantities that have no unit. The most familiar
example is a percentage.

Example 2: In 2015 the population of California was estimated to be 39 million people while the
population of the United States as a whole was 320 million people [261]. Let’s express the California
population as a percentage of the total U.S. population. A percentage is a proportion; we divide the
population of California by the total population,

39,000,000 peepte 12

~0.12 = — = 12%.
320,000,000 peoplc 100 ’

The units (people) cancel, leaving us with the pure number 0.12, which we can also write as 12%
(read as 12 percent).



1.1. UNITS AND MEASUREMENT 15

Remark 5: Percent comes from the Latin per centum, meaning out of a hundred; 12 out of every 100
people in the U.S. live in California. Notice how you can think of the identity 0.12 = 12% as another
example of the unit-factor method:

0.12=0.12 x 100% = 12%,

since 100% is another way of writing 1, and multiplying by 1 makes no difference!

Remark 6: In the previous example, we used the unit “people,” but we could have chosen “million
people” as our unit without changing the result:

39 millioa-people
SORPEPE ~0.12 = 12%.
320 mi ple
If a calculation yields a pure number (or percentage) result, then all the unit parts must cancel. That

means we will get the same answer whatever units we use in the numerator and denominator (as long
as we use the same units for both).

Definition 2

A numerical quantity without a unit is called a pure number. A ratio % of two quantities
2
Q1 and Q3 having the same units will produce a pure number.

Example 3: The mathematical constant & = 3.14, which is the ratio of a circle’s circumference to
its diameter, is a pure number. It appears (among many other places) in the formula for the area of a
circle, 12, where r is the radius.

Example 4: The conversion factors in Section 1.1.3 are also pure numbers. For example,

lyd 36

=—— =36
lin L

is a pure number.

Example 5: A concentration is a pure number: when we say “the concentration of oxygen in the
atmosphere by volume is about 21%.” we are referring to the ratio

Volume of atmospheric oxygen

Volume of entire atmosphere

The units cancel, giving us a pure number, about 0.21 = 21%.
A percentage is a multiple of ﬁ, as we said earlier. Very small (or trace) concentrations may be
expressed not as percentages but as parts per million ( ppm, that is, multiples of m) or even as
parts per billion ( ppb, that is, multiples of M). For example, the preseﬁt concentration of
CO; in the atmosphere is about 0.04%. We typically express this in parts per million. To do so, use

the unit-factor method again: 1,000,000 ppm = 1, so
1
0.04% = 0.04% > 1,000,000 ppm = 0.04 x 100 % 1,000,000 ppm = 400 ppm,

that is, 400 parts per million (by volume).
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Remark 7: In Example 5 on the previous page, we expressed the concentration of atmospheric carbon
dioxide in parts per million by volume. Trace concentrations are also frequently expressed in parts per
million (ppm) or parts per billion (ppb) by weight. In the case of atmospheric CO;, 400 parts per
million by volume corresponds to about 600 parts per million by weight. The weight of a carbon
dioxide molecule is about 1.5 times the weight of an average air molecule and this accounts for the
difference in these two measures.

For concentrations of CO; and other trace gasses in the atmosphere ppm is almost always intended
as parts per million by volume, while for concentrations of trace substances in soil and water ppm
is usually intended to mean parts per million by weight. To avoid confusion we will usually use the
abbreviation ppmv when referring to parts per million by volume.

Example 6: Toluene is a byproduct of gasoline production that is used as a solvent in paint thinners
and in industrial applications. Toluene is present in the discharge from petroleum refineries and poses
a concern for groundwater and drinking water supplies. The U.S. Environmental Protection Agency
(EPA) enforces a limit of 1 ppm for toluene in drinking water [20].

1 kilogram (kg) is 1,000 grams and 1 gram is equivalent to 1,000 milligrams (mg). A concentration
of 1 ppm (by weight) is thus equivalent to 1 mg/kg:

lmg 1 granr 1 ke 1,000,000 ppm
1,000,000 ppm = PPy
kg 1,000mg 1,000 gramr 0 PP 600,000

ppm
See Exercise 18 on page 60 for examples expressing ppm and ppb in more familiar terms.

Problem 14: Suppose that your electric bill is $70 each month. After following the advice contained
in the EPA’s Energy Saving Tips for Renters [17], you manage to cut your electric bill by 15%. How
much money are you saving each month?

Solution: The amount we save is 15% of $70, that is,

1
15% % $70 = 15 x 100 x $70 = $10.50.

Problem 15: Alcohol concentration, ABV, or alcohol by volume, is reported as a percent. Suppose a
particular brand of beer has an ABV of 5%. How much alcohol is in a 12 oz beer of this brand?

Solution: Using the same idea as in the previous solution, we get

1
5% x 120z =15x% 100 x 120z = 0.60 0z,

or a little more than half an ounce.
There are many circumstances in which a percentage may be the most meaningful way of measuring

some kind of change (for more about why this might be, see Section 4.1.1). For example, changes in
population or the size of the economy are usually reported as percentages.
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According to recent estimates, roughly 10 million tons of plastic makes its way into the
oceans each year to become “marine plastic debris.” Although the U.S. generates more
plastic waste overall than most other countries, it is responsible for only 1% of plastic
flowing into the oceans each year [170], because a much smaller proportion of U.S. plastic
waste is “mismanaged” than plastic waste generated in less well-off countries. How much
responsibility does the U.S. share, in your opinion, for dealing with the problem of plastic
pollution in the world’s oceans and with the global management of plastic waste more
generally?

1.1.5 Measurements in Human Terms

A measurement, as we have seen, has both a number part and a unit part. But we human beings
are not always able to grasp the significance of very large or very small numbers, or of units of
measurement that don’t relate to a familiar scale. If we can express a measurement in terms of more
familiar quantities, it can help us a lot. Let’s make the following definition.

Definition 3

We say that a measurement is expressed in human terms if it is expressed in a way
that allows us to relate it directly to our shared everyday experience, without requiring
specialized scientific knowledge.

Some units of measurement are intrinsically “in human terms.” For example, one foor originally
was just the length of your foot! Here are two simple rules for keeping measurements in human terms:

-

Rule 1: Human Terms Measurement Rules 5

To express a measurement in human terms, try, if possible, to follow both of the rules
below:

e Choose units to keep the number part reasonably close to 1; say, between 0.01 and
1,000.

e Use “human scale” units (like feet, inches, hours).

>

When these rules both apply, it is not hard to express something in human terms. For instance,
the spacing of the studs in standard house framing (in the U.S.) is 16 inches. That is a small number
and a “human scale” unit. It would be foolish to express this spacing as 406,400,000 nanometers or as
0.0002525 miles. Even though both of these conversions are technically correct, they both violate both
of the rules above: the numbers are huge or tiny (violating the first rule) and the units of measurement
(nanometers, miles) are far from human scale (violating the second).
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Problem 16: The mass of a full-grown elephant is about 4 tons. How
should I express this in human terms?

Solution: There is no single correct answer to a question like this.
We could refer to Table 6 on page 11 to say that the mass of the
elephant is the same as that of 4 compact cars. Or we could look
up the average mass of a U.S. American (about 180 pounds; see
Section 8.2) and say that the elephant has the mass of

. 2,0001b 1 American

e P T

~2 45 Americans.

Figure 6: A grown elephant can weigh 4 tons.

Notice that the notion of “human terms” depends explicitly on whose
shared everyday experience is taken as a reference point. In expressing the mass of the elephant in
terms of a number of compact cars, we are assuming that compact cars are familiar and elephants are
unfamiliar. In a different society, where elephants were abundant but automobiles were rare, one might
reverse the process and express the mass of a compact car in terms of a fraction of an elephant—and
this would be a “human terms” measurement too.

Example 7: Here’s another example from a recent real-life sustainability discussion. In August 2015,
President Obama addressed a meeting of Arctic nations in Anchorage, Alaska. In his remarks [244]
he used the following example to illustrate the shrinking of Arctic ice:

Since 1979, the summer sea ice in the Arctic has decreased by more than 40 percent—a
decrease that has dramatically accelerated over the past two decades. One new study
estimates that Alaska’s glaciers alone lose about 75 gigatons—that’s 75 billion tons—of
ice each year.

To put that in perspective, one scientist described a gigaton of ice as a block the size of the
National Mall in Washington—from Congress all the way to the Lincoln Memorial, four
times as tall as the Washington Monument. Now imagine 75 of those ice blocks. That’s
what Alaska’s glaciers alone lose each year.

For anyone who has visited Washington, DC, the image of a giant ice block “the size of the National
Mall, four times as tall as the Washington Monument™ is both striking and accessible, and this speech
is an effective example of putting a very large quantity in human terms. For those who aren’t so
familiar with Washington, though, perhaps not so much. As we said in the previous example, the
notion of “human terms” depends very much on whose experience is our reference point.

More difficult situations arise in which we can’t follow both parts of the Human Terms Measure-
ment Rules at the same time. For example, consider the following data relating to the volume of water
on Earth (Section 8.2). “Fresh surface water” refers to fresh water in lakes, rivers, and streams, as well
as in mountain snow, glaciers, ice caps, and ice sheets, but not underground freshwater (as in aquifers)
nor atmospheric freshwater (as in clouds).

Table 10: Volume of Water on Earth

Type of Water | Volume (cubic meters)

All Water 1,400,000,000,000,000,000
Fresh Surface Water | 100,000,000,000,000

A cubic meter can perhaps be considered as a “human terms” unit (you can envisage a cube of water
one meter on each side, or just think about the amount of water it might take to fill an average hot tub),
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Solution: The energy delivery rate from the gas pump is

120,000,000 J

= 12,000,000 J /sec.
10sec /

The corresponding rate for the electrical outlet is 3,000 J/sec. Thus the ratio of the energy delivery

rates is
12,000,000.9 /sec
3,0004/sec

that is, the gas pump delivers energy 4,000 times faster than the domestic electrical outlet. Or to put
the matter in terms of time, the gas pump delivers in one second the same amount of energy that
the electrical outlet takes 4,000 seconds (a little over an hour) to supply. Or again, we can convert
to teaspoons (as in the previous problem) and say that the domestic outlet takes over five seconds to
supply the energy equivalent of a teaspoon of gas. All of these can be thought of as simple rescalings.

A more striking “rescaling” is to express the matter in the following way: if the hose of the gas
pump were shrunk to the diameter of a drinking straw, it would deliver energy at the same rate as the
electrical outlet. The striking image of gasoline dribbling slowly out of a ten-foot hose as thin as a
drinking straw certainly reinforces the contrast between the gas and electric “pumps,” and highlights a
major issue for the acceptance of electric cars: it is extremely difficult to achieve the same “refueling
rates” with electricity as the ones gasoline has gotten us accustomed to. For the details of how the
rescaling is calculated, see Exercise 22 on page 60 at the end of the chapter.

= 4.000;

Example 11: The Sagan Planet Walk, a public sculpture in Ithaca, NY,
is a marvelous example of the power of rescaling to convey an important
idea in dramatically visual terms. The Sagan Walk is a scale model,
scale 1 : 5,000,000,000, of our solar system and of the various objects
(the Sun and planets) that are parts of it. It cuts the huge size of the Solar
System down to something that we can appreciate visually.

In Figure 8 you can see the circular opening in the granite obelisk,
almost 11 inches in diameter, that represents the Sun to scale. In each
of the other obelisks in the sculpture, representing the planets, there is a
Sun-sized opening that has a glass window into which the model of the
corresponding planet is embedded. This allows the viewer to experience
directly how much bigger the Sun is than even the largest planets.

You can see the Mercury monolith just above the boy’s hand in
Figure 8, to the right of the Sun monolith. It is just over 10 yards away
from the Sun, and another 10 yards will get you to Venus and another
10 more to our Earth. The first four planets are really close together,
no further than the trees in our picture. What’s more, the models of
the corresponding planets are tiny, the size of a pea or smaller. Then,
suddenly, the scale starts to grow. It will take you ten minutes of brisk Figuit 8: Standiig by the- St oil the Sagan
walking to get to Neptune from the Sun, passing on the way by Jupiter, Planet Walk.
the largest planet—model size 2.9 cm, greater than an inch but not quite
the size of a Ping-Pong ball. The Planet Walk honors Carl Sagan’s work in science communication by
giving visitors a direct sensory engagement with the size and shape of the solar system.

In 2012 the Planet Walk was expanded. A monolith at the Astronomy Center of the University
of Hawai’i now represents the nearest star to Earth—Alpha Centauri—on the same scale. Imagine
walking the distance from Ithaca to Hilo, Hawai’i (where the Astronomy Center is located), to get
some idea of the difficulties of interstellar travel compared to the journeys of our various spacecraft
within the solar system.
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If you want to learn more about the Planet Walk and the rescaling involved, we encourage you to
read a beautiful article by mathematician Steve Strogatz, titled “Visualizing Vastness™ [313].

Summary of Ideas: Units and Measurement \

e A measurement, such as “3.2 million centimeters” consists of a number part, 3.2
million, and a unit part, centimeters.

e There are two main systems of units: the U.S. system and the metric system. Some
examples of U.S. units are feet, pounds, gallons. Some examples of metric units are
meters, kilograms, liters.

e We can use the conversion tables in this chapter to convert units within each system
and between them.

e To help us with these conversions, we can use the unit-factor method to make sure
that units cancel out. This tells us which numbers to divide and which to multiply: for

example,
0.62 mi

Lk

e The ratio of two quantities having the same units or dimensions is a pure number.
Pure numbers can also be expressed as percentages.

12 ket

=~ 7.4 mi.

e To communicate clearly, it helps to express measurements or comparisons in human
terms. This means that we express them in a way that is relatable to ordinary human
experience without requiring scientific knowledge.
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1.2 Scientific Notation

[0 I can explain why scientific notation is used.

[J I can convert numbers between decimal and scientific notation.

[J T can recognize different ways of writing the same number using scientific notation,
including in standard form.

(1 I can add, subtract, multiply, and divide numbers written in scientific notation.

1.2.1 Scientific Notation

In the last section we dealt with some very big numbers. When numbers become very large or very

small, the standard way of expressing them (called decimal notation) takes up a lot of space and

becomes hard to read. That is because very large and small numbers are mostly made up of zeros!
For example, two large volumes appeared in Example 10 on page 20:

e 1,400,000,000,000,000,000 cubic meters (the total volume of water on Earth), and
e 100,000,000,000,000 cubic meters (the volume of fresh surface water).

‘What matters most about these numbers is that the first is in the millions of trillions and the second
is in the hundreds of trillions. To see that, however, you have to carefully count the number of zeros
appearing in each expression. The commas help, but couldn’t we find some more straightforward way
to convey this information?

The key to doing so is to use the idea of powers of 10. Remember that 10 raised to a certain power,
say n, means multiplying 10 by itself that number (n) of times. Thus, for example,

10! = 10,

10 = 10 x 10 = 100,

10° = 10 x 10 x 10 = 100 x 10 = 1,000,

10 = 10 x 10 % 10 x 10 = 1,000 x 10 = 10,000,

Another way of saying this is that 10" can be written as the digit 1 followed by n zeros. So, if we are
given the number 10°, we know our number is 1 followed by 9 zeros; that is a billion. Similarly, 10°
is a million, and 10'2 is a trillion.

The number 7,000,000,000,000 is written as the digit 7 followed by 12 zeros—7 trillion. We can
write that as 7 times 1 trillion, or 7 x 10'2. This technique of using a power of 10 to keep track of the
zeros is known as scientific notation. Here is a definition.
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Definition 1 -

A number is written in scientific notation if it is expressed as the product of two parts:

e an ordinary decimal number called the significand (like 7 in the example above), and

o apower of 10 (like 10'? in the example above). The power to which 10 is raised (the
12 in the example) is called the exponent.

Example 1: The expression below represents the number 120,000,000,000,000 in scientific notation.

1.2x 104

;

significand exponent
The significand in this expression is 1.2 and the exponent is 14.

Remark 1: The same number in the example above could be expressed in several different ways. For
instance
12x10%=12x10x 10" =12x 10,

because 1.2 x 10 = 12. By shifting the exponent in this way, we can multiply or divide the significand
by 10—that is, we can move the decimal point to the left or right. Usually we choose to move the
decimal point so that the significand is between® 1 and 10. When this has been done, the number is
said to be expressed in standard form. Thus 1.25 x 10'* and 12.5 x 10'3 represent the same number,
but the first expression is in standard form and the second is not.

Conversion from Decimal to Scientific Notation

Let’s look at some examples of converting quantities to scientific notation and standard form.

Problem 1: Write 2,000,000.000,000,000,000 in scientific notation, standard form.
Solution: The number 2,000,000,000,000,000,000 has 18 zeros, so we can write it as 2 x 1018,
Problem 2: Write 150,000,000,000,000,000,000 m? in scientific notation, standard form.

Solution: This quantity has a number part and a unit part (see Section 1.1.1). In converting to scientific
notation we re-express only the number part; the unit part should remain unchanged. Now in this
example the number part 150,000,000,000,000,000,000 is 15 with 19 zeros. So we could write it as
15 % 10, This is a correct expression, but notice that 15 is not between 1 and 10, so this expression
is not in standard form. Instead, we write the number part as 1.5 x 10%°, which is in standard form.
The answer to the complete problem (including the unit part) is therefore

1.5 % 102" m?,

also in standard form.

3We allow |1 but not 10 for a significand in standard form: the standard form of 1,000 is 1 x 10, not 10 x 10%.
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Remark 2: When we express a physical measurement in scientific notation (as in the previous
problem), it is only the number part of the measurement that we are working with. The unit part
remains unaffected, and must appear in our final solution. Thus, in the last example, the solution is
1.5 % 102 m3, not just 1.5 x 1020,

You can think of these calculations with powers of 10 in terms of “moving the decimal point.” First,
imagine your number written in decimal notation (if it is a whole number, imagine a decimal point to
the right of the ones place, so that you would think of 127 as 127.0). Then moving the decimal point
one step to the left corresponds to dividing by 10 (e.g., 12.7 = 127/10). This gives us a simple rule
for putting a number greater than 1 into standard form .

g Rulc ~

To express a number greater than 1 in standard form, move the decimal point to the
left until you obtain a number between 1 and 10. What you obtain is the significand
(in standard form), and the number of steps to the left that you moved the decimal
point is the exponent.

. J

For example, to express the number 127 in standard form we move the decimal point 2 steps to the
left to get a significand of 1.27 and an exponent of 2:

127.0 ..
Al giving us 127 = 1.27 x 10%.
2 steps

Problem 3: The distance from the Earth to the Sun is approximately 93 million miles. Convert this to
inches, and express your answer in scientific notation using standard form.

Solution: Using the unit-factor method we can calculate
1,760 yd y 36in
Lari Lyd

Moving the decimal point 12 steps to the left gives us 5.9, so the answer in standard form is 5.9 x
102 in.

93,000,00081 x ~ 5,900,000,000,000 in.

These examples show how to write large numbers using scientific notation. But we can also write
small numbers in the same way. To do this, we need to remember about negative powers of 10. Just as
the positive powers of 10 are obtained by successively multiplying by 10, so the negative powers are
obtained by successively dividing by 10:

10°=1,
1
_17_:
10 =70 0.1,
1
-2 _ _
1 ’10><10’0'0"
10*3—;—0001
T 10x10x10

Thus 107" 1s
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Remark 4: Whatever notation we use, it is important to remember that a+b # b--a. So when dividing
numbers in standard form, be careful to carry out the operations in the correct order!
Now, let us look at some more worked problems.

Problem 7: Calculate (9.5 x 10%) x (4.1 x 10%),

Solution:

(9.5 10%) x (4.1 x 10%) = (9.5 x 4.1) > 10%+* = 38.95 x 10'® ~ 3.9 10"7.

Problem 8: Calculate (3.2 x 10%) = (4.5 x 10%).

Solution:

(3.2x10%) + (4.5x10%) = (3.2+4.5) x 10" ¥) = 0.71 x 1074 = 7.1 x 107>,

If units are involved, we multiply the number parts according to Rule 3 on the previous page, and
the unit parts according to the unit-factor method (Section 1.1.2).

Problem 9: According to [136], a cow emits about 0.3 kilograms of methane per day.* There are
thought to be about 1.2 x 10° cows on Earth. Compute the total mass of methane emitted by cows
over one year, expressing your answer in scientific notation.

The mass of the entire atmosphere is about 5 x 10'® kg (see Section 8.2). Methane lasts about 8
years in the atmosphere before breaking down to other gases. What proportion (by mass) of the whole
atmosphere is made up of bovine methane emissions?

Solution: We solve the first problem using the unit-factor method:
k ays k k
03— (12 10°)cowsx 365555 ~ 130 % 10° X8 _ 1 3% 101 K8,
cowsdays yr yr yr
Bovine methane emissions are about 1.3 x 10" kg / yr.
For the second problem, the atmosphere contains about 8 years worth of bovine methane. That is,
8yrx (1.3x 10" kg/yr~ 10 x 10" kg = 10" kg.
Since the mass of the whole atmosphere is about 5 x 10'8 kg, the proportion of bovine methane (which
is a pure number) is

1012 1
_107kg =-x10%=02x10%=2x10",
5x108ks 5

or 0.2 parts per million. Though this is a small number, it is in fact a substantial fraction of the total
amount of methane in the atmosphere (which is about 1 part per million by weight).

Addition and subtraction

Now we will think about adding and subtracting numbers in scientific notation. There is one situation
in which we can do this directly:

40Often referred to as “cow farts” online, though [136] showed that the great majority of the methane is burped rather than
farted.
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’_m B

In order to directly add (or subtract) two numbers in scientific notation, they need
to have the same exponent. Once two numbers have the same exponent, we add (or
subtract) their significands.

\, J

The two numbers below can be added automatically because they have the same exponent, 8.
(2.32x 10%) + (3.1 x 10%) = (2.32+3.1) x 10® = 5.42 x 10%.

But you won’t always be adding two numbers with the same exponent. Suppose, for example, that
you need to compute the following sum:

(2% 10%) + (4.3 x 10'0).

These numbers do not have the same exponent and therefore cannot be added together directly. We
must rewrite one number to have the same exponent as the other. Let’s rewrite 2 x 10° to have an
exponent of 10. We’ve already seen how to do this in the previous section; let’s express it by rules.

o For every increase in the exponent, we have to move the decimal point in the
significand to the left.

e For every decrease in the exponent, we have to move the decimal point in the
significand to the right.
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This means that 2 x 10° = 0.2 x 10'°. Now we can add using Rule 4:
(0.2x 10" 4 (4.3x 10" = 4.5 x 10'°.

Alternatively, we could have rewritten 4.3 x 10'°, moving the decimal point in the other direction to
write 4.3 x 10! as 43 x 10°. If we add using this approach, we get another situation in which we can
apply Rule 4:

(2% 10%) + (43 % 10”) = 45 x 10°.

This is equal to 4.5 x 101, the same answer as before. Notice that depending on how we choose to
perform the calculation, we may need to re-express our final answer to make sure that it is in standard
form.

—

’Cn'tical Thinking

What does the method we’ve illustrated here have in common with the method we used to
solve Problem 12 on page 137

Here are some more worked examples.
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Problem 10: Calculate 9.5 x 108 +4.1 x 108,

Solution:
9.5%10%+4.1 x 10° =13.6 x 10% = 1.36 x 10°.

Problem 11: Calculate 8.1 x 107 — 3 x 10°.

Solution:

8.1 10" —3x10°=8.1%10"+03x 10" = (8.1—-3)x 10’ =7.8 x 10".

Problem 12: Calculate 5.75 x 10%7 +2 x 10%.

Solution:

5.75 % 10*7 +2 % 10% =5.75 x 10%7 +0.02 x 10*” = (5.75 +0.02) x 10* = 5.77 x 10*’.

Problem 13: Calculate
4.23 % 10% —9.1 x 10°.

Solution:
423 % 102 —9.1 x 10° =~ 4.23 x 10%.

Although we might consider 9.1 x 10® = 9,100,000 to be a large number, it is tiny compared to
4.23 x 10?3, which is
423,000,000,000,000,000,000,000

A value in the millions has little impact on a number that is in the thousands of sextillions. So the
subtraction is a negligible change.

@abom it...

A student suggests that the rule for adding two numbers in scientific notation should be
“add the significands and add the exponents.” How will you convince this student that he is
wrong? Avoid appeal to authority (“The textbook says that you should do it this other way™)
and try to find an approach, maybe by means of examples, that helps the student understand
why the correct rule makes sense, whereas his proposal does not.
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the flow arrows stand for whatever process controls the rate of the corresponding flow. Finally, the
“cloud” symbol (gray) signifies a source (arrow coming out of the cloud) or sink (arrow going into
the cloud) of material that is outside the scope of the system currently being discussed.

Remark 2: A “cloud,” which indicates a stock “outside the system,” is not an absolute thing, but is
relative to the specific system that we are trying to understand. Later, we might perhaps return and
consider that specific system (maybe call it “A”) as a part of some larger system “B.” For instance, if
we were looking at a wastewater recycling system for a home in an arid climate, the “cloud” to which
the drain leads in Figure 3 might be replaced by another “stock,” the contents of a wastewater holding
tank. On a larger scale, the stock-flow system for the whole house is part of the larger system that
represents the hydrological cycle for the whole neighborhood, which itself is part of the water cycle
for the whole planet.

Think about it. . .

The second of Barry Commoner’s “four laws of ecology” (from [68]) is “Everything must
go somewhere. There is no away.” What do you think this slogan means? Relate it to the
discussion of “clouds” in the preceding remark. Do you agree that “there is no away? ”

Charge in battery s Current flow e .

Figure 4: Stock-flow system for a primary cell, such as an AA battery.

Example 2: Consider a system that includes an AA battery as an energy source. If this is a non-
rechargeable type,' then the system diagram for the battery (by itself) is very simple (see Figure 4).
In this instance, the flow of electrical current out of the battery is measured in amperes (sometimes
abbreviated to “amps”) or milliamperes (10~ of an ampere). An ampere is a measure of the rate
of flow of electrical charge—it is in fact a speed, even though it does not have a “per hour” or “per
second” in its name to remind you of that fact. Correspondingly, the electrical capacity of the battery,
the stock that corresponds to the flow of current, is measured in ampere-hours—current multiplied
by time. For example, we would expect a battery with a capacity of 1500 mAh (milliampere-hours),
which is fairly typical for an AA, to be able to supply 150 mA for ten hours, or 30 mA for fifty hours,
or 500 mA for three hours, and so on.

Remark 3: The “cloud” in Figure 4 could be replaced, on a larger view, by a diagram containing
the other components of the electrical system that the battery supplies. However, it is useful to look
at the very simple diagram in Figure 4 by itself. A diagram that looks like this—with outflow but
no inflow—will arise whenever we are dealing with a nonrenewable resource, a finite quantity of
some commodity that we can use or mine or capture while it exists, but that is not replenished to a
significant extent on any human time scale. The oil in a particular oilfield, the mineral deposit in a
mine, even the water in a deep aquifer like the Ogallala aquifer [196] that supplies irrigation for much
of the farmland of the Great Plains, can be regarded as nonrenewable resources. When the battery has
run down, the oil wells have run dry, or the mineral deposit has been mined out, their usefulness is
exhausted. Abandoned mines and oil fields around the world testify that this is a real possibility.

! Also sometimes called a single-use battery or primary cell.
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2.1.2 Equilibrium

Example 3: Figure 5, which is taken from NASA’s Earth Observatory, illustrates the carbon cycle
of planet Earth. This is in fact a system diagram with stocks and flows, though the graphics are more
lively than the spigots and pipes that we have been drawing so far.

surface
ocean (1,000)

mitrobial respiration respiration &

& decomposition decomposition
soil carbon (2,300)

ocean sediments

ocean (37,000)
fossil carbon (10,000)

reactive sediments (6,000)

Figure 5: The Earth’s carbon cycle from [271]. The white numbers in the figure refer to stock levels, measured in gigatons
(billions of tons) of carbon. The yellow numbers refer to natural flows, in billions of tons of carbon per year. The red numbers
refer to human-caused flows, or human-caused changes to the natural flows.

The figure contains seven different carbon stocks, as well as many different flows between them. It
is much more typical for a system diagram to contain multiple stocks and flows like this; the single-
stock diagrams we looked at in the previous two examples were especially simple ones.

Problem 1: From the carbon cycle diagram, compute the total inflow of carbon into the atmosphere,
and the total outflow, in the absence of human-caused contributions.

Solution: The diagram contains three natural inflows of carbon to the atmosphere, labeled “plant
respiration” (60 GT per year), “air-sea gas exchange” (90 GT per year), and “microbial respiration and
decomposition” (60 GT per year). (For this calculation we are ignoring the red figures like “human
emissions.”) These total 210 GT per year.

There are also two natural outflows: “photosynthesis” (120 GT per year) and “air-sea gas exchange”
(90 GT per year). These also total 210 GT per year. Thus, in the absence of human-caused
contributions, the total carbon stock in the atmosphere does not change over time.

The balance between inflows and outflows that we see in this example is so important that there is
a special name for it.
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Figure 6: Simple stock-flow model of radon concentration in a home.

The U.S. Environmental Protection Agency (EPA) estimates [16] that radon exposure is the second
biggest source of lung cancer deaths in the U.S. after smoking, being responsible for something like
20,000 deaths per year. New homes in high radon areas are typically equipped with active ventilation
systems that extract the gas from underneath the foundation slab and vent it to the outside air before

it can enter the home and do harm.

Remark 6: Polonium is also a highly radioactive element, though it is less dangerous than radon
because it emits a different kind of radioactivity and is a solid rather than a gas. However, a more
thorough modeling of radiation risks would have the “radioactive decay” spigot running to a second
stock, the stock of polonium, which itself would then decay and run to a third stock, and so on. .. You

can see how these models can quickly become complicated!

2.1.3 Residence Time

Imagine a stock-flow system in equilibrium. If we consider a particular
stock S there are two important numbers related to it:

e The quantity of § that is present in the system. (Because we
are assuming that the system is in equilibrium, this quantity is
a constant—it does not change with time.)

e The total flow rate of § in the system. (We can consider either
the total inflow to S or the total outflow from S; because we are
assuming equilibrium, these must be the same.)

Example 4: Consider a college as a stock-flow system, with a “stock”
of students flowing in through admission and flowing out through
graduation. The equilibrium “stock™ might be 20,000 students, and the
flow rate (admissions or graduations) might be 4,000 students per year.

In general, the “stock™ will be measured in certain units (students in
the above example) and the “flow” will be measured in “stock™ units

Figure 7: A student ready to graduate. “Res-
idence time” in college is the average length
of time from matriculation to graduation.

divided by “time” units (students per year in the example). If we divide the stock by the flow we will
therefore get a time, which is called the residence time associated with the particular stock:
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Definition 5 -

The residence time associated with a stock that is at equilibrium in a stock-flow system is

Level of the stock

Flow rate of the stock through the system

The residence time is the average amount of time that a unit of the stock will spend between
inflow and outflow.

\ J

In the example above, the residence time of the students is 20,000 (students) divided by 4,000
(students per year), which equals 5 years. Using the unit-factor method we would write this calculation
as follows:

lyr -
20,000 students x 2,000 studens 5yr.

That doesn’t mean that each student will take exactly this length of time to graduate: some will
graduate in 4 years, some in 6 or more. Five years is the average amount of time spent by a student as
an undergraduate at this college.

Problem 4: We open the faucet of the bathtub of Example 1 on page 70, to deliver 2.2 gallons of water
per minute, and we also open the drain. The tub fills until the rate of outflow via the drain equals the
rate of inflow via the faucet. At this point of dynamic equilibrium, the tub contains 24 gallons of water.
Find the residence time of water in the tub.

Solution: The residence time is obtained by dividing the stock level by the flow rate

1 min

24ﬁ/6fxmmllmin.

This tells us that, on average, a molecule of water spends about 11 minutes in the bathtub before going
down the drain. However, any individual water molecule arriving through the faucet may run down
the drain instantly, or may stay in the tub for hours!

Remark 7: In Problem 4 we did not specify where the water came from, or where it went; this
information is not part of the concept “residence time in the bathtub.” We could even imagine that the
waste water is recirculated to the faucet via some kind of pump. In that case the same water would
stay in the bathtub forever. Nevertheless, we would still say that the residence time was 11 minutes:
that would be the average length of time a water molecule spent in the tub before being recirculated
via the pump. Be sure you have this picture clear before moving on to the next example.

Problem 5: Estimate the residence time of carbon in the atmosphere, using data from the NASA
carbon cycle diagram (Figure 5 on page 72).

Solution: Not all the numbers in the diagram are needed for this calculation. What matters is the total
stock of carbon in the atmosphere (about 800 gigatons, from the diagram) and the flow rate in (and
out) of the atmosphere (about 210 gigatons per year, as we calculated in answering Problem 1 on
page 72). Thus the residence time is about 800/210 =~ 4 years.

Question 1: We’ve just shown that the residence time for carbon in the atmosphere is about 4 years;
yet carbon dioxide emissions from the burning of fossil fuels and emissions from other human sources
are expected to impact the climate for thousands of years to come. How can these two things be
simultaneously true?
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Figure 9: The Wason four-card task.

What if we do not obtain a good match? Then the model must be modified, or perhaps rejected
entirely. The scientific method demands that all models must pass the test of reality; when applied
to a real situation, they must describe it accurately. Scientists “stress test” their models by applying
them to many different real situations; the more such tests a model passes, the more confidence we
can have in it. (Section 5.4 describes this process of assimilating new information in greater detail.)

Question 2: “Stress testing” means that having formed a model—a picture of how reality works—we
should look for evidence that might disconfirm it, which might prove our model incorrect. Many of us
find it intuitively difficult to do this; we are biased to look for evidence that will confirm our ideas. A
famous demonstration of this is the so-called Wason 4-card task [341]. You are shown four cards on
a table as in Figure 9. You want to test the following model: if there is a vowel on one side of the card,
then there is an even number on the other side. (You could think of this as a stock-flow model if you
like, with input stock the letters recorded on one side of the card, the flow being some process that
converts numbers to letters, which are the output stock recorded on the other side. And your model is
that if vowels go in to the process, then even numbers come out.) Question, then: Which cards should
you flip in order to “stress test” your model as quickly as possible?

Answer: You should flip the cards labeled A and 3. The model predicts that the A card should have
an even number on the other side. But the model also predicts that the 3 card should have a consonant
on its other side. Indeed, if you flipped the 3 card and saw a vowel, the proposed model would be
invalidated—because it claims that a vowel “input” should always produce an even “output.”

Many people faced with the Wason task immediately suggest flipping the A card and the 6 card.
But flipping the 6 card cannot disconfirm the model. If you flipped the 6 and saw an E, that would
agree with the model, true. But if you flipped the 6 and saw an F, that would not disconfirm the model:
the model does not say anything about the “output” that consonants may produce. The Wason task is
contrived, of course, but it is helpful in thinking about the scientific mind-set of always stressing your
model as much as possible.

Suppose though that a model (say the radon model that we were talking about before) has passed
many “stress tests.” Then we can cautiously begin to use it for the second function described above,
that of prediction. In the case of the radon model, we might use it to predict the radon concentration in
a new house before it is built, based on information about the house’s construction, the local geology,
and so on. We can have some confidence that the predictions will be accurate, because they are based
on a model that has been tested in a wide variety of real situations. Again in the radon example,
a builder might use the information provided by the model to determine whether to install a radon
mitigation system during construction. (This will help save money and time—if it is later discovered
that a mitigation system is needed, retrofitting one in an already-built home is going to be much more
complicated and expensive.)
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Stocks, Flows, and Public Discussion

While the distinction between stocks and flows may seem clear, public discussion on human-caused
climate change and other topics often confuses them. Thus, such discussions present an important
opportunity for critical thinking. Here are some examples.

,—<:f(7?rir£cal Thinkinf___:\\ <

Consider the following quotation from Representative Michele Bachmann from her 2009
Earth Day speech on the House floor. Can you identify any stock/flow confusion in this
statement?
“What part of human activity creates carbon dioxide? If carbon dioxide is a
negligible gas and it’s only three percent of Earth’s atmosphere, what part is
human activity?

“Human activity contributes perhaps three percent of the three percent. In other
words, human activity is maybe 3 percent contributing to the 3 percent of
carbon dioxide that’s in Earth’s atmosphere. It’s so negligible—it’s a fraction
of a fraction of a fraction of a percent—that it can hardly be quantified.”

It is indeed true that human-caused flows of carbon are small compared with natural flows (see
Figure 5 on page 72 again). However this ignores the fact that the natural inflows and outflows are
equal and therefore lead to no change in the stock (dynamic equilibrium). The human-caused flows,
even if small, disturb this equilibrium and cause an increase in the stock of atmospheric carbon dioxide
which accumulates over time. This increase can be quantified and, as we have seen (Figure 18 on
page 50), can be measured quite directly.

< Criica Tink
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Consider the following quotation from President Barack Obama from a press conference in
2012. Can you identify any stock/flow confusion in this statement?

“Now, in my first term, we doubled fuel efficiency standards on cars and trucks.

That will have an impact. That will take a lot of carbon out of the atmosphere.”

Increasing fuel efficiency standards will mean that cars and trucks will generate less carbon dioxide
per mile. In other words, the rate of flow of CO; into the atmosphere will decrease. But that is not
the same as “taking carbon out of the atmosphere™ (reducing the stock). The stock will continue to
increase, just less quickly than it otherwise would have.
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Definition 1

Mechanical work is done when something (like the handle of the rowing machine) is
moved against a resisting force. The amount of work is the product of the force and the
distance moved.

With each stroke, the handle of the rowing machine is moved about 3 feet against a resistance of
maybe 50 pounds of force. This means that about 3 x 50 = 150 feot-pounds of work is done. Foot-
pounds is a unit of energy, though as we will see there are other units that are more common and
useful.

Definition 2

Energy is the capacity to do work.

As we said, energy comes in various forms. Let’s hope the athlete on the rowing machine had a
good breakfast. By doing so, she stored up chemical energy in her body. During her workout, she
is converting that chemical energy to mechanical energy in moving the handle of the machine. The
handle then spins a resistance fan inside the body of the machine, stirring and warming the nearby
air. The mechanical energy is converted to heat energy (and a little sound energy as well). In fact,
the whole system (athlete plus rowing machine) is a stock-flow system of the kind we looked at in the

previous section, as shown in Figure 11.
==———=N( Mechanical Energy

Chemical energy

‘Waste Heat

Body heat

Figure 11: Energy stock-flow diagram for athlete and rowing machine.

The chemical energy stored in the athlete’s body is transformed to mechanical energy in the rowing
machine, which is transformed to heat by the fan. Notice that we have also shown a direct transfer of
chemical energy to heat. When you work out, you warm up!

Remark 1: Why have we shown the heat as a “cloud” rather than as another stock? As we will see a
little later, this kind of “waste” heat is an example of low-grade energy—it is there in the room, but
it is virtually impossible to gather it together for a useful purpose. That’s in contrast to the athlete’s
chemical energy (which can lift weights or move the rowing machine) or even the spinning flywheel’s
mechanical energy (which could be used, for example, to generate electricity—in fact, the rowing
machine’s on-board computer is powered in exactly this way.) For more about this see Section 2.2.4
below, “The Laws of Thermodynamics.”
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2.2.3 Units of Energy and Power

We are going to learn about the units that are used to express energy and power. Remember from
Section 1.1.3 that in the U.S. two different unit systems are commonly used: the metric system and
the U.S. conventional system. The most important energy measure is the one that belongs to the metric
system. It is called the joule (denoted by the letter J).

Since the fundamental metric units are meters (for distance), kilograms (for mass), and seconds (for
time), the joule must be defined in terms of these. In fact, a joule can be defined as the kinetic energy of
a two-kilogram mass moving at a speed of one meter per second. However, a formal definition of this
sort is not too important to us. Much more relevant is to have an idea of how large various everyday
quantities of energy are, in joules. Some examples are contained in Table 1 on the previous page.

As you can see from the table, one joule is a rather small quantity of energy. Because the joule is a
metric unit, we can make larger units by adding the standard prefixes. Kilojoules (10% 1), megajoules
(10° J) and even gigajoules (10° J) are useful.

Remark 2: The energy (about 10 joules) needed to raise 1 kg through 1 m, which is the same as the
energy released when 1 kg falls through 1 m, is a measure of the strength of the Earth’s gravity. It is
sometimes called the gravitational constant and denoted by g.

The U.S. conventional system does not have a single standard unit of energy. Instead, it has a variety
of different units that were developed and used for different purposes. Some of these units are listed
in the table below, together with their approximate equivalents in joules, which allow you to convert
energy measurements from conventional units to metric units or vice versa.

Table 2: Conventional Units of Energy

Unit | Equivalent | Definition

Foot-pound 1.4] Work done in moving a distance of one foot against
resistance of one pound

British thermal unit (Btu) | 1050 J Energy needed to heat 1 pound of water through 1
degree Fahrenheit

Food calorie (Cal) 4200 ) Energy needed to heat 1 kilogram of water through 1
degree Celsius

Kilowatt-hour (kWh) 3.6 x 100 ] Energy that flows for 1 hour at a rate (power) of 1

‘ kilowatt

Quad About 10'8 J A quadrillion British thermal units (used only for

national-scale data)

Finally, let us discuss units of power. Power is the rate of transfer of energy—it is the rate of flow
corresponding to the energy stock. The fundamental metric unit of power will therefore be a flow rate
of one joule per second. This unit is so important that it has a special name.

Definition 4

A power (rate of flow of energy) of one joule per second is called one watt (W).

You are probably familiar with the way light bulbs and other electrical appliances are rated in terms
of the number of watts they consume. The computer on the rowing machine can show the athlete how
many watts of energy she is expending. The rate of production as well as consumption of energy can
be measured in watts. For example, the electrical power output of the Hoover Dam generators is about
2 gigawatts (2 x 10° W). A large coal-fired or nuclear generating station has a similar output.
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for one day. The most stressful moment occurs when their subject decides to take an electrically
powered instant-heat shower. This consumes a lot of energy rather quickly (in other words, it requires
a lot of power), and as a result it’s “all hands on deck™ for the cycling team. See the video at [39].

Remark 3: Remember that the 120-watt figure is a 24-hour average: the power output of the body
will be higher during vigorous exercise and lower during sleep or rest. Even during exercise, not all of
the body’s power output will be available as mechanical power (that is, available to do work); some
will inevitably be lost as heat. Modern competitive cyclists carefully measure their mechanical power
output [195]; an elite cyclist might produce 350 watts for a 1-hour period of intense exercise.

2.2.4 The Laws of Thermodynamics

VCTUBER - 25 CENIS
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T, Heat is a special form of energy. As we have seen in examples,
See pose 26 whenever we do work, some, and eventually all, of the energy that is
expended ends up as low-grade heat, a form in which we can no longer
exploit it. On the other hand, high-grade heat is a significant component of
many of our energy production processes. In eighteenth-century Britain,
James Watt burned wood or coal to boil water and used the steam pressure
to do mechanical work. The fuel in a modern nuclear power plant is very
different, but it is still used to produce high-grade heat, which is then
converted to useful energy by boiling water and using the resulting steam
to drive turbines. This two-way relationship between heat and other forms
of energy is therefore involved in all the energy processes of our modern
world—both those that generate useful energy and those that consume it.
The laws of thermodynamics govern the two-way relationship between
energy and heat. They set limits on what we can and can’t do with
energy. One thing these laws tell us is that the universe does not provide
a “free lunch” in the energy sector: to the disappointment of generations
Figure 14: Perpetual Motion by Norman of inventors, there is no way to build a “perpetual motion machine”—
Rockwell. the name given to a mythical gadget that would go through a cycle (like
turning a wheel) allowing energy to be continually extracted and yet return
to its starting position at the end of the cycle. See Figure 14 for Norman Rockwell’s vision of one such
disappointed inventor (his “invention,” called the overbalanced wheel, has in fact been “discovered”

several times in the fruitless history of perpetual motion).

The first law of thermodynamics is also called the law of conservation of energy. It states that
energy cannot be created or destroyed, merely transformed from one form to another. This idea is
implicit in the way we model energy systems as stock-flow systems: the total amount of energy does
not change, it just flows from one stock to another.

Rule 2: First Law of Thermodynamic \

e Energy can be neither created nor destroyed, although it can be changed from one
form to another.

e Heat is a form of energy.

Remark 4: Energy can be neither created nor destroyed—that is what scientists mean by saying that
energy is “conserved.” But when environmentalists or people in the media discuss the importance
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of “conserving energy,” they are talking about something different: keeping energy in a usable form.
When, for example, cars or light bulbs produce motion or light from chemical or electrical energy, that
energy ultimately ends up as low-grade heat: still there, but no longer usable by us. So “conserving
energy” is about keeping as much energy in a usable (high-grade) form as possible.

The money analogy is helpful here. If you use money to buy a meal or a textbook or a gallon of
gas, that money has not disappeared, but it is no longer usable by you; it is in the seller’s pocket. If
your bank charges you a fee every time you use your credit card, that money becomes unavailable to
you too—it is a “loss,” something like the waste heat from a car or from human exertion. It wasn’t
destroyed; it was transferred to the bank and is no longer available to you. Conserving energy (in the
ordinary day-to-day sense) is like reducing expenses and transaction fees and keeping as much money
in the bank as possible.

As far as the first law of thermodynamics is concerned, all forms of energy are on the same level.
The distinction between “high-grade™ and “low-grade” energy is the province of the second law of
thermodynamics. This has a precise mathematical formulation [113], but for now we’ll be content to
state the second law in a quite informal way:

Rule 3: Second Law of Thermodynamics

e Energy comes in high-grade and low-grade forms.

e In any energy transformation, the overall grade goes down.

Let’s say a bit more about this business of high-grade versus low-grade. First we agree to classify all
kinds of energy except heat energy (that includes mechanical, electrical, electromagnetic, chemical,
nuclear energy, and so on) as high-grade.

To understand the “grade” of a quantity of heat energy is more complicated.
The key principle is this: there needs to be a temperature difference between an
object and its surroundings in order for heat energy contained in the object to
do useful work. One of the clearest examples of this is given by thermoelectric
materials [159]: materials that can convert heat directly into electricity. In order
for a thermoelectric material to function, it needs a temperature difference
between its “hot side” and “cold side,” and the amount of energy produced
depends on this temperature difference. See Figure 15, which shows the nuclear-
thermoelectric power system for NASA’s Mars rover undergoing tests at Idaho
National Laboratory. The heat on the “hot side” of the thermoelectric material
is provided by the radioactive decay of plutonium, and the “cold side” is at the
temperature of Mars’s atmosphere. If both sides were hot, the device would not
work.

Plutonium-powered space vehicles are rather exotic, but James Watt’s steam
engine illustrates the same principle. The “hot side” is provided by the furnace,

A B R : Figure 15: Nuclear thermoelec-
which turns water into steam. The “cold side” is provided by the atmosphere, (¢ power system for Mars

where steam condenses back to water. We make this a definition: rover.
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“One of these things is not like the other.” Conventional and hybrid cars are powered by
gasoline, but fully electric cars are powered by electricity, which must itself be generated
from other sources—often from burning fossil fuels. Table 3 does not take into account the
efficiency of generating electricity from its primary sources. Do you find this misleading?
Try to figure out how the numbers would change if this information were also included in
the calculation.

L ~

The engine in a gasoline-powered car is a complicated machine, but from the point of view of
thermodynamics it, like the steam turbine or the thermoelectric generator, is simply a device for
turning heat (generated by the exploding gasoline-air mixture in the cylinders) into usable energy
(mechanical in this case). There is a general name for such devices:

Definition 7

A heat engine is any energy process that produces usable energy out of the temperature
difference between a hot object and its cooler surroundings.

Our discussion of the second law of thermodynamics (Rule 3 on page 89) has so far taken a
qualitative form: the greater the temperature difference, the higher the “grade” of the heat energy
in the hot object and so the more efficiently we can expect to extract useful work from it. Sometimes,
though, we need to know the quantitative form of this law: exactly #ow does the efficiency depend on
the temperatures? The answer is called the Carnot limit:

R ~

Consider a heat engine that has a “hot side” and a “cold side.” Let T}, equal the
temperature of the hot side of the engine and 7, the temperature of the cold side,
both measured in kelvins (see page 13). Then the efficiency with which the engine
converts heat energy into useful work can be no greater than the fraction

T, —T.
T, ’

which is called the Carnot limit for the given temperatures 7}, T.

. )

The Carnot limit is the theoretical maximum possible efficiency: actual efficiencies will be less.

Problem 2: What is the Carnot limit on the efficiency of a coal-fired power plant? Assume that
the superheated steam enters the turbines at a temperature of 800 K. (This is a reasonable figure in
practice.)

Solution: From the data of the question we have 7, = 800 K. The “cool side” temperature 7, will be
the temperature of the cooling water, roughly equal to the surface temperature of the Earth, which is
about 15°C = 288 K, let us say (near enough) 300 K. Thus the Carnot limit on efficiency is
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Figure 18: Energy flows in the U.S. in 2016.

as perceived by the eye, and we can convert to watts of light energy by using the luminous coefficient
which is approximately 683 lumens per watt (see Case Study 7.7). The efficiency of the bulb is

therefore
Light power output 1690 lusmens LW

Power input  100W " 683 lumens

The efficiency of the bulb is about 2% percent. We’ll look at alternative, more efficient kinds of lighting
in Case Study 7.7.

~0.025.

Example 2:

A great many of the concepts that we’ve introduced so far are illustrated in the flow chart (Figure 18)
produced by the Lawrence Livermore National Laboratory [191]—see the bibliography for a link to
an enlargeable graphic. We see, for instance, that the total U.S. energy consumption for the year 2016
was 97.3 quads—remember from Table 2 on page 86 that a “quad” is a quadrillion Btu, or about 10'8
joules. Of this, 30.8 quads went to “energy services,” that is, useful energy, and 66.4 quads went to
“rejected energy,” that is, waste. The overall efficiency of U.S. energy use is therefore

30.8 _—

973 > 100% = 32%.
Looking at the left of the chart, we see that fossil fuels (coal, oil, natural gas) account for 14.2 +
35.94-28.5 = 78.6 of the total 97.3 quads, or about 81% (notice also, by the way, that the next biggest
source of energy is nuclear power). As explained in Section 2.2.2, fossil fuel consumption is deeply
embedded in our present way of life, but in its present form it is not sustainable. That fundamental
tension is something that humanity will have to resolve very soon.



