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1.1 Introduction

It is difficult to think of western society today without modern technology. We have
witnessed in recent decades a proliferation of high-tech computers, mobile phones,
text messaging, the Internet, the World Wide Web and social media. Software is
pervasive, and it is an integral part of automobiles, airplanes, televisions and mobile
communication. The pace of change is relentless, and communication today is
instantaneous with technologies such as Skype, Twitter and WhatsApp.

Today, people may book flights over the World Wide Web as well as keeping in
contact with friends and family members around the world. In previous generations,
communication involved writing letters that often took months to reach the
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recipient. However, today’s technology has transformed the modern world into a
global village, and the modern citizen may make video calls over the Internet or
post pictures and videos on social media sites such as Facebook and Twitter. The
World Wide Web allows business to compete in a global market.

A computer is a programmable electronic device that can process, store and
retrieve data. It processes data according to a set of instructions or program. All
computers consist of two basic parts, namely, hardware and software. The hard-
ware is the physical part of the machine, and the components of a digital computer
include memory for short-term storage of data or instructions; an arithmetic/logic
unit for carrying out arithmetic and logical operations; a control unit responsible for
the execution of computer instructions in memory; and peripherals that handle the
input and output operations. Software is a set of instructions that tells the computer
what to do.

The original meaning of the word ‘computer’ referred to someone who carried
out calculations rather than an actual machine. The early digital computers built in
the 1940s and 1950s were enormous machines consisting of thousands of vacuum
tubes. They typically filled a large room but their computational power was a
fraction of the personal computers and mobile devices used today.

There are two distinct families of computing devices, namely, digital computers
and the historical analog computer. The earliest computers were analog not digital,
and these two types of computer operate on quite different principles.

The computation in a digital computer is based on binary digits, i.e. ‘0’ and ‘1°.
Electronic circuits are used to represent binary numbers, with the state of an
electrical switch (i.e. ‘on’ or ‘off’) representing a binary digit internally within a
computer.

A digital computer is a sequential device that generally operates on data one step
at a time, and the earliest digital computers were developed in the 1940s. The data
are represented in binary format, and a single transistor (initially bulky vacuum
tubes) is used to represent a binary digit. Several transistors are required to store
larger numbers.

An analog computer operates in a completely different way to a digital com-
puter. The representation of data in an analog computer reflects the properties of the
data that are being modelled. For example, data and numbers may be represented by
physical quantities such as electric voltage, whereas a stream of binary digits is used
to represent them in a digital computer.

1.2 Analog Computers

James Thompson (who was the brother of the physicist Lord Kelvin) did early
foundational work on analog computation in the nineteenth century. He invented a
wheel-and-disc integrator, which was used in mechanical analog devices, and he
worked with Kelvin to construct a device to perform the integration of a product of
two functions. Kelvin later described a general-purpose analog machine (he did not
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build it) for integrating linear differential equations. He built a tide predicting
analog computer that remained in use at the Port of Liverpool up to the 1960s.

The operations in an analog computer are performed in parallel, and they are
useful in simulating dynamic systems. They have been applied to flight simulation,
nuclear power plants and industrial chemical processes.

Vannevar Bush developed the first large-scale general-purpose mechanical
analog computer at the Massachusetts Institute of Technology. Bush’s differential
analyser (Fig. 1.1) was a mechanical analog computer designed to solve sixth-order
differential equations by integration, using wheel-and-disc mechanisms to perform
the integration. The mechanization allowed integration and differential equations
problems to be solved more rapidly. The machine took up the space of a large table
in a room and weighed about 100 tonnes.

It contained wheels, discs, shafts and gears to perform the calculations. It
required a considerable setup time by technicians to solve an equation. It contained
150 motors and miles of wires connecting relays and vacuum tubes.

Data representation in an analog computer is compact, but it may be subject to
corruption with noise. A single capacitor can represent one continuous variable in
an analog computer. Analog computers were replaced by digital computers shortly
after the Second World War.

Fig. 1.1 Vannevar Bush with the differential analyser
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1.3 Digital Computers

Early digital computers used vacuum tubes to store binary information, and a
vacuum tube may represent the binary value ‘0’ or “1°. These tubes were large and
bulky and generated a significant amount of heat. Air conditioning was required to
cool the machine, and there were problems with the reliability of the tubes.

Shockley and others invented the transistor in the late 1940s, and it replaced
vacuum tubes from the late 1950s onwards. Transistors are small and consume very
little power, and the resulting machines were smaller, faster and more reliable.

Integrated circuits were introduced in the early 1960s, and a massive amount of
computational power could now be placed on a very small chip. Integrated circuits
are small and consume very little power, and may be mass-produced to a very
high-quality standard. However, integrated circuits are difficult to modify or repair,
and are nearly always replaced on failure.

The fundamental architecture of a computer has remained basically the same
since von Neumann and others proposed it in the mid-1940s. It includes a central
processing unit which includes the control unit and the arithmetic unit, an input and
output unit, and memory.

1.3.1 Vacuum Tubes

A vacuum tube is a device that relies on the flow of an electric current through a
vacuum. Vacuum tubes (thermionic valves) were widely used in electronic devices
such as televisions, radios and computers until the invention of the transistor.

The basic idea of a vacuum tube is that the current passes through the filament,
which then heats it up so that it gives off electrons. The electrons are negatively
charged and are attracted to the small positive plate (or anode) within the tube.
A unidirectional flow is thus established between the filament and the plate. Tho-
mas Edison had observed this while investigating the reason for breakage of lamp
filaments. He noted an uneven blackening (darkest near one terminal of the fila-
ment) of the bulbs in his incandescent lamps and noted that current flows from the
lamp’s filament and a plate within the vacuum.

The first generation of computers used several thousand bulky vacuum tubes,
with several racks of vacuum tubes taking up the space of a large room. The
vacuum tube used in the early computers was a three-terminal device, and it con-
sisted of a cathode, a grid and a plate. It was used to represent one of two binary
states, i.e. the binary value ‘0’ or ‘1’.

The filament of a vacuum tube becomes unstable over time. In addition, if air
leaks into the tube then oxygen will react with the hot filament and damage it. The
size and unreliability of vacuum tubes motivated research into more compact and
reliable technologies. This led to the invention of the transistor in the late 1940s.

The first generation of digital computers all used vacuum tubes, e.g. the
Atanasoff-Berry computer (ABC) developed at the University of Iowa in 1942;
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Colossus developed at Bletchley Park, England in 1944; and ENIAC developed in
the United States in the mid-1940s.

1.3.2 Transistors

The transistor is a fundamental building block in modern electronic systems, and its
invention revolutionized the field of electronics. It was smaller, cheaper and more
reliable than the existing vacuum tubes.

The transistor is a three-terminal, solid-state electronic device. It can control
electric current or voltage between two of the terminals by applying an electric
current or voltage to the third terminal. The three-terminal transistor enables an
electric switch to be made which can be controlled by another electrical switch.
Complicated logic circuits may be built up by cascading these switches (switches
that control switches that control switches, and so on.).

These logic circuits may be built very compactly on a silicon chip with a density
of over a million transistors per square centimetre. The switches may be turned on
and off very rapidly (e.g. every 0.000000001 s). These electronic chips are at the
heart of modern electronic devices.

The transistor (Fig. 1.2) was developed at Bell Labs after the Second World
War. The goal of the research was to find a solid-state alternative to vacuum tubes,
as this technology was too bulky and unreliable. Three Bell Labs inventors
(Shockley, Bardeen and Brattain) were awarded the Nobel Prize in physics in 1956
in recognition of their invention of the transistor.

William Shockley was involved in radar research and anti-submarine operations
research during the Second World War, and after the war he led the Bell Labs
research group (that included Bardeen and Brattain) that aimed to find a solid-state
alternative to the glass-based vacuum tubes.

Bardeen and Brattain succeeded in creating a point-contact transistor in 1947
independently of Shockley who was working on a junction-based transistor.
Shockley believed that the points contact transistor would not be commercially
viable, and his junction point transistor was announced in 1951.

Shockley formed Shockley Semiconductor Inc. (part of Beckman Instruments)
in 1955. The second generation of computers used transistors instead of vacuum
tubes. The University of Manchester’s experimental Transistor Computer was one
of the earliest transistor computers. The prototype machine appeared in 1953, and
the full-size version was commissioned in 1955. The invention of the transistor is
discussed in more detail in (O’Regan 2018).

1.3.3 Integrated Circuits
Jack Kilby of Texas Instruments invented the integrated circuit in 1958. His

invention used a wafer of germanium, and Robert Noyce of Fairchild Semicon-
ductors did subsequent work on silicon-based integrated circuits. The integrated
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Fig. 1.2 Replica of transistor. Public domain

circuit was an effective solution to the problem of building a circuit with many
components, and the Nobel Prize in Physics was awarded to Kirby in 2000 for his
contributions to its invention.

An integrated circuit consists of a set of electronic circuits on a small chip of
semiconductor material, and it is much smaller than a circuit made from indepen-
dent components. Integrated circuits today are extremely compact and may contain
billions of transistors and other electronic components in a tiny area. The width of
each conducting line has got smaller and smaller over the years due to advances in
technology, and it is now measured in tens of nanometers.

The number of transistors per unit area has been doubling (roughly) every
1-2 years over the last 30 years. This amazing progress in circuit fabrication is
known as Moore’s law after Gordon Moore (one of the founders of Intel) who
formulated the law in the mid-1960s (O’Regan 2018).

Kilby was designing micromodules for the military, and this involved con-
necting many germanium' wafers of discrete components together by stacking each
wafer on top of one another. The connections were made by running wires up the
sides of the wafers.

Kilby saw this process as unnecessarily complicated and realized that if a piece
of germanium was engineered properly that it could act as many components
simultaneously. That is, instead of making transistors one-by-one several transistors

'Germanium is an important semiconductor material used in transistors and other electronic
devices.
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could be made at the same time on the same piece of semiconductor. In other
words, transistors and other electric components such as resistors, capacitors and
diodes can be made by the same process with the same materials.

This idea led to the birth of the first integrated circuit and its development
involved miniaturizing transistors and placing them on silicon chips called semi-
conductors. The use of semiconductors led to third-generation computers, with a
major increase in speed and efficiency.

Users interacted with third-generation computers through keyboards and moni-
tors and interfaced with an operating system, which allowed the device to run
several applications at one time with a central program that monitored the memory.
Computers became accessible to a wider audience, as they were smaller and
cheaper than their predecessors.

1.3.4 Microprocessors

The Intel P4004 microprocessor was the world’s first microprocessor, and it was
released in 1971. It was the first semiconductor device that provided, at the chip
level, the functions of a computer.

The invention of the microprocessor happened by accident rather than design.
Busicom, a Japanese company, requested Intel to design a set of integrated circuits
for its new family of high-performance programmable calculators. Ted Hoff, an
Intel engineer, studied Busicom’s design and rejected it as unwieldy. He proposed a
more elegant solution requiring just four integrated circuits (Busicom required
twelve integrated circuits), and his design included a chip that was a
general-purpose logic device that derived its application instructions from the
semiconductor memory. This was the Intel 4004 microprocessor.

It provided the basic building blocks that are used in today’s microcomputers,
including the arithmetic and logic unit and the control unit. The 4-bit Intel 4004 ran
at a clock speed of 108 kHz and contained 2,300 transistors. It processed data in
4 bits, but its instructions were 8-bit long. It could address up to 1 Kb of program
memory and up to 4 Kb of data memory.

Gary Kildall of Digital Research was one of the early people to recognize the
potential of a microprocessor as a computer. He worked as a consultant with Intel,
and he began writing experimental programs for the Intel 4004 microprocessor. He
later developed the CP/M operating system for the Intel 8080 chip, and he set up
Digital Research to commercialize the operating system.

The development of the microprocessor led to the fourth generation of com-
puters with thousands of integrated circuits placed onto a single silicon
chip. A single chip could now contain all the components of a computer from the
CPU and memory to input and output controls. It could fit in the palm of the hand,
whereas first generation of computers filled an entire room.
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Table 1.1 von Neumann architecture

Component Description

Arithmetic The arithmetic unit can perform basic arithmetic operations

unit

Control unit The program counter contains the address of the next instruction to be

executed. This instruction is fetched from memory and executed. This is the
basic fetch-and-execute cycle (Fig. 1.4)
The control unit contains a built-in set of machine instructions

Input—output The input and output unit allows the computer to interact with the outside
unit world

Memory The one-dimensional memory stores all program instructions and data. These
are usually kept in different areas of memory
The memory may be written to or read from, i.e. it is random access memory
(RAM)
The program instructions are binary values, and the control unit decodes the
binary value to determine which instruction to execute

1.4 von Neumann Architecture

The earliest computers were fixed programs machines that were designed to do a
specific task. This proved to be a major limitation as it meant that a complex manual
rewiring process was required to enable the machine to solve a different problem.

The computers used today are general-purpose machines designed to allow a
variety of programs to be run on the machine. von Neumann and others (von
Neumann 1945) described the fundamental architecture underlying the computers
used today in the late 1940s. It is known as von Neumann architecture (Fig. 1.3).

The von Neumann architecture arose on work done by von Neumann, Eckert,
Mauchly and others on the design of the EDVAC computer (which was the suc-
cessor to ENIAC computer). von Neumann’s draft report on EDVAC (von
Neumann 1945) described the new architecture” (Table 1.1).

The architecture led to the birth of stored-program computers, where a single
store is used for both machine instructions and data. Its key components are as
follows:

The key approach to building a general-purpose device according to von
Neumann was in its ability to store not only its data and the intermediate results of
computation, but also to store the instructions or commands for the computation.
The computer instructions can be part of the hardware for specialized machines, but
for general-purpose machines the computer instructions must be as changeable as

’Eckert and Mauchly were working with him on this concept during their work on ENIAC and
EDVAC, but their names were removed from the final report due to their resignation from the
University of Pennsylvania to form their own computer company. von Neumann architecture
includes a central processing unit which includes the control unit and the arithmetic unit, an input
and output unit, and memory.
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Fig. 1.3 von Neumann
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the data that is acted upon by the instructions. His insight was to recognize that both
the machine instructions and data could be stored in the same memory.

The key advantage of the von Neumann architecture over the existing approach
was that it was much simpler to reconfigure a computer to perform a different task.
All that was required was to enter new machine instructions in computer memory
rather than physically rewiring a machine as was required with ENIAC. The lim-
itations of von Neumann architecture include that it is limited to sequential pro-
cessing and not very suitable for parallel processing.

1.5 Hardware and Software

Hardware is the physical part of the machine. It is tangible and may be seen or
touched, and includes punched cards, vacuum tubes, transistors and circuit boards,
integrated circuits and microprocessors. The hardware of a personal computer
includes a keyboard, network cards, a mouse, a DVD drive, hard disc drive, printers
and scanners and so on.

Software is intangible and consists of a set of instructions that tells the computer
what to do. It is an intellectual creation of a programmer (or a team of
programmers).
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Operating system software manages the computer hardware and resources and
acts as an intermediary between the application programs and the computer
hardware.

Application software refers to software programs that provide functionality for
users to exploit the power of the computer to perform useful tasks such as business
applications including spreadsheets and accountancy packages, financial applica-
tions, editors, compilers for programming languages, computer games, social media
and so on.

1.6 Review Questions

Explain the difference between analog and digital computers.

Explain the difference between hardware and software.

What is a microprocessor?

Explain the difference between vacuum tubes, transistors and integrated
circuits.

Explain the von Neumann architecture.

What are the advantages and limitations of the von Neumann architecture?
7. Explain the difference between a fixed program machine and a
stored-program machine.

= 50 1) =

S n

1.7 Summary

A computer is a programmable electronic device that can process, store and retrieve
data. It processes data according to a set of instructions or program. All computers
consist of two basic parts, namely, the hardware and software. The hardware is the
physical part of the machine, whereas software is intangible and is the set of
instructions that tells the computer what to do.

There are two distinct families of computing devices, namely, digital computers
and the historical analog computer. These two types of computer operate on quite
different principles. The earliest digital computers were built in the 1940s, and these
were large machines consisting of thousands of vacuum tubes. However, their
computational power was a fraction of what is available today.
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A digital computer is a sequential device that generally operates on data one step
at a time. The data are represented in binary format, and a single transistor in a
digital computer can store only two states, i.c. on and off. Several transistors are
required to store larger numbers.

The representation of data in an analog computer reflects the properties of the
data that is being modelled. Data and numbers may be represented by physical
quantities such as electric voltage, whereas a stream of binary digits represents the
data in a digital computer.

von Neumann architecture is the fundamental architecture used on digital
computers, and a single store is used for both machine instructions and data. Its
introduction made it much easier to reconfigure a computer to perform a different
task. All that was required was to enter new machine instructions in computer
memory rather than physically rewiring a machine as was required with ENIAC.
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2.1 Introduction

This chapter considers important foundational work done by Wilhelm Leibniz,
Charles Babbage, George Boole, Lady Ada Lovelace and Claude Shannon. Leibniz
was a seventeenth-century German mathematician, philosopher and inventor, and
he is recognized (with Isaac Newton) as the inventor of Calculus. He developed the
Step Reckoner calculating machine that could perform all four basic arithmetic
operations (i.e. addition, subtraction, multiplication and division), and he also
invented the binary number system (which is used extensively in the computer
field).
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Boole and Babbage are considered grandfathers of the computing field, with
Babbage’s Analytic Engine providing a vision of a mechanical computer, and
Boole’s logic providing the foundation for modern digital computers.

Babbage was a nineteenth-century scientist and inventor who did pioneering
work on calculating machines. He invented the Difference Engine (a sophisticated
calculator that could be used to produce mathematical tables), and he also designed
the Analytic Engine (the world’s first mechanical computer). The design of the
Analytic Engine included a processor, memory and a way to input information and
output results.

Lady Ada Lovelace was introduced into Babbage’s ideas on the analytic engine
at a dinner party. She was fascinated and predicted that such a machine could be
used to compose music, produce graphics, as well as solving mathematical and
scientific problems. She explained how the Analytic Engine could be programmed,
and she wrote what is considered the first computer program.

Boole was a nineteenth-century English mathematician who made important
contributions to mathematics, probability theory and logic. Boole’s logic provides
the foundation for digital computers.

Shannon was the first person to apply Boole’s logic to switching theory, and he
showed that this could simplify the design of circuits and telephone routing
switches. It provides the perfect mathematical model for switching theory and for
the subsequent design of digital circuits and computers.

2.2 Step Reckoner Calculating Machine

Leibniz (Fig. 27.6) was a German philosopher, mathematician and inventor in the
field of mechanical calculators. He developed the binary number system used in
digital computers, and he invented the Calculus independently of Sir Isaac Newton.
He became familiar with Pascal’s calculating machine, the Pascaline, while in Paris
in the early 1670s. He recognized its limitations as the machine could perform
addition and subtraction operations only.

He designed and developed a calculating machine that could perform addition,
subtraction, multiplication, division and the extraction of roots. He commenced
work on the machine in 1672, and the machine was completed in 1694. It was the
first calculator that could perform all four arithmetic operations, and it was called
the Step Reckoner (Fig. 2.2). It allowed the common arithmetic operations to be
carried out mechanically (Fig. 2.1).

The operating mechanism used in his calculating machine was based on a
counting device called the stepped cylinder or ‘Leibniz wheel’. This mechanism
allows a gear to represent a single decimal digit from zero to nine in just one
revolution, and this remained the dominant approach to the design of calculating
machines for the next 200 years. It was essentially a counting device consisting of a
set of wheels that were used in calculation. The Step Reckoner consisted of an
accumulator which could hold 16 decimal digits and an 8-digit input section. The
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Fig. 2.1 Replica of step reckoner at Technische Sammlungen Museum, Dresden

eight dials at the front of the machine set the operand number, which was then
employed in the calculation.

The machine performed multiplication by repeated addition and division by
repeated subtraction. The basic operation is to add or subtract the operand from the
accumulator as many times as desired. The machine could add or subtract an 8-digit
number to the 16-digit accumulator to form a 16-digit result. It could multiply two
8-digit numbers to give a 16-digit result, and it could divide a 16-bit number by an
8-digit number. Addition and subtraction are performed in a single step, with the
operating crank turned in the opposite direction for subtraction. The result is stored
in the accumulator.

2.3 Binary Numbers

Arithmetic has traditionally been done using the decimal notation,' and Leibniz was
one of the first to recognize the potential of the binary number system. This system
uses just two digits, namely, ‘0’ and ‘1°, with the number two represented by 10, the

'The sexagesimal (or base-60) system was employed by the Babylonians ¢. 2000 BC. Indian and
Arabic mathematicians developed the decimal system between 800 and 900 AD.
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Table 2.1 Binary number system

Binary Dec. Binary Dec. Binary Dec. Binary Dec.
0000 0 0100 4 1000 8 1100 12
0001 1 0101 5 1001 9 1101 13
0010 2 0110 6 1010 10 1110 14
0011 3 0111 7 1011 11 1111 15

number four by 100 and so on. Leibniz described the binary system in Explication
de 'Arithmétique Binaire (Leibniz 1703), which was published in 1703. A table of
values for the first 15 binary numbers is given in Table 2.1.

Leibniz’s (1703) paper describes how binary numbers may be added, subtracted,
multiplied and divided, and he was an advocate of their use. The key advantage of
the use of binary notation is in digital computers, where a binary digit may be
implemented by an on/off switch, with the digit 1 representing that the switch is on,
and the digit O representing that the switch is off.

The use of binary arithmetic allows more complex mathematical operations to be
performed by relay circuits, and Boole’s Logic (described in a later section) is the
perfect model for simplifying such circuits and is the foundation underlying digital
computing.

The binary number system (base 2) is a positional number system, which uses
two binary digits 0 and 1, and an example binary number is 1001.01, which
represents | x 20+ 0x 22 +0x 2+ 1 x2°4+0x2 '+ 1x22=1x2+1
x 2%+ 1 x272=8+1+025=925.

The decimal system (base 10) is more familiar for everyday use, and there are
algorithms to convert numbers from decimal to binary and vice versa. For example,
to convert the decimal number 25 to its binary representation 11001, we proceed as
follows (Fig. 2.2):

The base 2 is written on the left, and the number to be converted to binary is
placed in the first column. At each stage in the conversion, the number in the first
column is divided by 2 to form the quotient and remainder, which are then placed
on the next row. For the first step, the quotient when 25 is divided by 2 is 12 and the
remainder is 1. The process continues until the quotient is 0, and the binary rep-
resentation result is then obtained by reading the second column from the bottom
up. Thus, we see that the binary representation of 25 is 11001,.

o = WL N
e e =

Fig. 2.2 Decimal to binary conversion
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Similarly, there are algorithms to convert decimal fractions to binary represen-
tation (to a defined number of binary digits as the representation may not terminate),
and the conversion of a number that contains an integer part and a fractional part
involves converting each part separately and then combining them.

The octal (base 8) and hexadecimal (base 16) are often used in computing, as the
bases 2, 8 and 16 are related bases and easy to convert between, as to convert
between binary and octal involves grouping the bits into groups of three on either
side of the point. Each set of 3 bits corresponds to one digit in the octal repre-
sentation. Similarly, the conversion between binary and hexadecimal involves
grouping into sets of 4 digits on either side of the point. The conversion from octal
to binary or hexadecimal to binary is equally simple and involves replacing the
octal (or hexadecimal) digit with the 3-bit (or 4-bit) binary representation.

Numbers are represented in a digital computer as sequences of bits of fixed
length (e.g. 16 bits, 32 bits). There is a difference in the way in which integers and
real numbers are represented, with the representation of real numbers being more
complicated.

An integer number is represented by a sequence of (usually 2 or 4) bytes where
each byte is 8 bits. For example, a 2-byte integer has 16 bits with the first bit used as
the sign bit (the sign is 1 for negative numbers and O for positive integers), and the
remaining 15 bits represent the number. This means that 2 bytes may be used to
represent all integer numbers between —32768 and 32767. A positive number is
represented by the normal binary representation discussed earlier, whereas a neg-
ative number is represented using 2’s complement of the original number (i.e.
0 changes to 1 and 1 changes to 0 and the sign bit is 1). All the standard arithmetic
operations may then be carried out (using modulo-2 arithmetic).

The representation of floating-point real numbers is more complicated, and a real
number is represented to a fixed number of significant digits (the significand) and
scaled using an exponent in some base (usually 2). That is, the number is repre-
sented (approximated) as

significand x base*Pome™

The significand (also called mantissa) and exponent have a sign bit. For
example, in simple floating-point representation (4 bytes), the mantissa is generally
24 bits and the exponent 8 bits, whereas for double precision (8 bytes) the mantissa
is generally 53 bits and the exponent 11 bits. There is an IEEE standard for
floating-point numbers (IEEE 754).

2.4 The Difference Engine

Babbage (Fig. 2.3) is considered (along with Boole) to be one of the grandfathers of
the computing field. He contributed to several areas including mathematics,
statistics, astronomy, calculating machines, philosophy, railways and lighthouses.
He founded the British Statistical Society and the Royal Astronomical Society.
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Fig. 2.3 Charles Babbage

Babbage was interested in accurate mathematical tables for scientific work.
However, there was a high error rate in the existing tables due to human error
introduced during calculation. He became interested in finding a mechanical
method to perform calculation to eliminate the errors introduced by humans. He
planned to develop a more advanced machine than the Pascaline or the Step
Reckoner, and his goal was to develop a machine that could compute polynomial
functions.

He designed the Difference Engine (No. 1) in 1821 for the production of
mathematical tables. This was essentially a mechanical calculator (analogous to
modern electronic calculators), and it was designed to compute polynomial func-
tions of degree 4. It could also compute logarithmic and trigonometric functions
such as sine or cosine (as these may be approximated by polynomials).”

The accurate approximation of trigonometric, exponential and logarithmic
functions by polynomials depends on the degree of the polynomials, the number of
decimal digits that it is being approximated to, and on the error function. A higher
degree polynomial is generally able to approximate the function more accurately.

Babbage produced prototypes for parts of the Difference Engine, but he never
actually completed the machine. The Swedish engineers, Georg and Edvard
Scheutz, built the first working Difference Engine (based on Babbage’s design) in
1853 with funding from the Swedish government. Their machine could compute

*The power series expansion of the Sine function is given by Sin(x) =x — £131+ 5150 —
x'[1! + ---. The power series expansion for the Cosine function is given by Cos(x) = | — x%
21 + x*/41 = x%6! + ---. Functions may be approximated by interpolation and the approximation of
a function by a polynomial of degree n requires n + 1 points on the curve for the interpolation.
That is, the curve formed by the polynomial of degree n that passes through the n + 1 points of the
function to be approximated is an approximation to the function. The error function also needs to
be considered.
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Table 2.2 Analytic engine

Part Function
Store | This contains the variables to be operated upon as well as all those quantities, which
have arisen from the result of intermediate operations

Mill The mill is essentially the processor of the machine into which the quantities about to
be operated upon are brought

polynomials of degree 4- on 15-digit numbers, and the 3rd Scheutz Difference
Engine is on display at the Science Museum in London.

It was the first machine to compute and print mathematical tables mechanically.
The machine was accurate, and it showed the potential of mechanical machines as a
tool for scientists and engineers.

The machine is unable to perform multiplication or division directly. Once the
initial value of the polynomial and its derivative are calculated for some value of x,
the difference engine may calculate any number of nearby values using the
numerical method of finite differences. This method replaces computational inten-
sive tasks involving multiplication or division, by an equivalent computation that
just involves addition or subtraction.

The British government cancelled Babbage’s project in 1842. He designed an
improved difference engine No.2 (Fig. 2.4) in 1849. It could operate on
seventh-order differences (i.e. polynomials of order 7) and 31-digit numbers. The
machine consisted of 8 columns with each column consisting of 31 wheels.
However, it was over 150 years later before it was built (in 1991) to mark the two
hundredth anniversary of his birth. The Science Museum in London also built the
printer that Babbage designed, and both the machine and the printer worked cor-
rectly according to Babbage’s design (after a little debugging).

2.5 The Analytic Engine—Vision of a Computer

The Difference Engine was designed to produce mathematical tables, but it required
human intervention to perform the calculations. Babbage recognized its limitations,
and he proposed a revolutionary solution by outlining his vision of a mechanical
computer. His plan was to construct a new machine that would be capable of
executing all tasks that may be expressed in algebraic notation. His vision of such a
computer (Analytic Engine) consisted of two parts (Table 2.2).

Babbage intended that the operation of the Analytic Engine would be analogous
to the operation of the Jacquard loom.” The latter is capable of weaving (i.e.
executing on the loom) a design pattern that has been prepared by a team of skilled

*The Jacquard loom was invented by Joseph Jacquard in 1801. It is a mechanical loom which used
the holes in punch cards to control the weaving of patterns in a fabric. The use of punched cards
allowed complex designs to be woven from the pattern defined on the punched cards. Each
punched card corresponds to one row of the design, and the cards were appropriately ordered. It



20 2 Foundations of Computing

‘llllilltl

ili=

Fig. 2.4 Difference engine no. 2. Photo public domain

artists. The design pattern is represented by a set of cards with punched holes,
where each card represents a row in the design. The cards are then ordered, placed
in the loom and the loom produces the exact pattern.

The use of the punched cards in the Analytic Engine allowed the formulae to be
manipulated in a manner dictated by the programmer. The cards commanded the
analytic engine to perform various operations and to return a result. Babbage dis-
tinguished between two types of punched cards:

—  Operation Cards
—  Variable Cards.

Operation cards are used to define the operations to be performed, whereas the
variable cards define the variables or data that the operations are performed upon.
His planned use of punched cards to store programs in the Analytic Engine is
similar to the idea of a stored computer program in Von Neumann architecture.
However, Babbage’s idea of using punched cards to represent machine instructions

was very easy to change the pattern of the fabric being weaved on the loom, as this simply
involved changing cards.
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Fig. 2.5 Lady Ada Lovelace

and data was over 100 years before digital computers. Babbage s Analytic Engine
is therefore an important milestone in the history of computing.

Babbage intended that the program be stored on read-only memory using punch
cards and that the input and output would be carried out using punch cards. He
intended that the machine would be able to store numbers and intermediate results
in memory that could then be processed. There would be several punch card readers
in the machine for programs and data. He envisioned that the machine would be
able to perform conditional jumps as well as parallel processing where several
calculations could be performed at once.

The Analytic Engine was designed in 1834 as the world’s first mechanical
computer (Babbage and Menabrea 1842). It included a processor, memory and a
way to input information and output results. However, the machine was never built,
as Babbage was unable to secure funding from the British Government.

2.5.1 Applications of Analytic Engine

Lady Augusta Ada Lovelace (nee Byron)* (Fig. 2.5) was a mathematician who
collaborated with Babbage on applications for the analytic engine. She is consid-
ered the world’s first programmer, and the Ada programming language is named in
her honour.

She was introduced to Babbage at a dinner party in 1833, and she visited
Babbage’s studio in London, where the prototype Difference Engine was on

*Lady Ada Lovelace was the daughter of the poet, Lord Byron.
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display. She recognized the beauty of its invention, and she was fascinated by the
idea of the analytic engine. She communicated regularly with Babbage with ideas
on its applications.

Lovelace produced an annotated translation of Menabrea’s ‘Notions sur la
machine analytique de Charles Babbage’ (Babbage and Menabrea 1842). She
added copious notes to the translation,” which were about three times the length of
the original memoir, and considered many of the difficult and abstract questions
connected with the subject. These notes are regarded as a description of a computer
and software.

She explained in the notes how the Analytic Engine could be programmed and
wrote what is considered to be the first computer program. This program detailed a
plan be written for how the engine would calculate Bernoulli numbers. Lady Ada
Lovelace is therefore considered to be the first computer programmer, and Babbage
called her the ‘enchantress of numbers’.

She saw the potential of the analytic engine to fields other than mathematics. She
predicted that the machine could be used to compose music, produce graphics, as
well as solving mathematical and scientific problems. She speculated that the
machine might act on other things apart from numbers, and be able to manipulate
symbols according to rules. In this way, a number could represent an entity other
than a quantity.

2.6 Boole’s Symbolic Logic

George Boole (Fig. 2.6) was born in Lincoln, England in 1815. His father (a
cobbler who was interested in mathematics and optical instruments) taught him
mathematics and showed him how to make optical instruments. Boole inherited his
father’s interest in knowledge, and he was self-taught in mathematics and Greek.
He taught at various schools near Lincoln, and he developed his mathematical
knowledge by working his way through Newton’s Principia, as well as applying
himself to the work of mathematicians such as Laplace and Lagrange.

He published regular papers from his early 20s, and these included contributions
to probability theory, differential equations and finite differences. He developed
Boolean algebra, which is the foundation for modern computing, and he is con-
sidered (along with Babbage) to be one of the grandfathers of computing. His work
was theoretical, and he never actually built a computer or calculating machine.
However, Boole’s symbolic logic was the perfect mathematical model for switching
theory and for the design of digital circuits.

Boole became interested in formulating a calculus of reasoning, and he pub-
lished “‘Mathematical Analysis of Logic’ in 1847 (Boole 1848). This work devel-
oped novel ideas on a logical method, and he argued that logic should be considered

There is some controversy as to whether this was entirely her own work or a joint effort by
Lovelace and Babbage.
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Fig. 2.6 George Boole

as a separate branch of mathematics, rather than as a part of philosophy. He argued
that there are mathematical laws to express the operation of reasoning in the human
mind, and he showed how Aristotle’s syllogistic logic could be reduced to a set of
algebraic equations. He corresponded regularly on logic with Augustus De
Morgan.6

His paper on logic introduced two quantities ‘0’ and ‘1°. He used the quantity 1
to represent the universe of thinkable objects (i.e. the universal set), and the quantity
0 represents the absence of any objects (i.e. the empty set). He then employed
symbols, such as x, y, z, etc., to represent collections or classes of objects given by
the meaning attached to adjectives and nouns. Next, he introduced three operators
(+, — and x) that combined classes of objects.

The expression xy (i.e. x multiplied by y or x x y) combines the two classes x,
v to form the new class xy (i.e. the class whose objects satisfy the two meanings
represented by class x and class y). Similarly, the expression x + y combines the
two classes x, y to form the new class x + y (that satisfies either the meaning
represented by class x or class y). The expression x — y combines the two classes x,
y to form the new class x — y. This represents the class (that satisfies the meaning
represented by class x but not class y). The expression (1 — x) represents objects that
do not have the attribute that represents class x.

Thus, if x =black and y = sheep, then xy represents the class of black
sheep. Similarly, (1 — x) would represent the class obtained by the operation of
selecting all things in the world except black things; x (1 — y) represents the class of
all things that are black but not sheep; and (I — x) (1 — y) would give us all things
that are neither sheep nor black.

“De Morgan was a nineteenth-century British mathematician based at University College London.
De Morgan’s laws in Set Theory and Logic state that (A U B)=A° N B° and
-(AVB) = =A A —B.
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He showed that these symbols obeyed a rich collection of algebraic laws and
could be added, multiplied, etc., in a manner that is like real numbers. These
symbols may be used to reduce propositions to equations, and algebraic rules may
be employed to solve the equations. The rules include the following:

1. x+0=x (Additive identity)
2. x+(y+2=k+y +z (Associative)

3. X+y=y+x (Commutative)

4. x+(l—-x=1

5. x-l=x (Multiplicative identity)
6. x-0=0

7. x+1=1

8. Xy = yx (Commutative)

9. x(yz) = (xy)z (Associative)

10. xX(y +2) =Xy + 2z (Distributive)

11. xX(y —z)=xy —xz (Distributive)

12. X =x (Idempotent)

These operations are similar to the modern laws of set theory with the set union
operation represented by ‘+’, and the set intersection operation is represented by
multiplication. The universal set is represented by ‘1’ and the empty by ‘0’. The
associative and distributive laws hold. Finally, the set complement operation is
given by (1 — x).

He applied the symbols to encode Aristotle’s Syllogistic Logic, and he showed
how the syllogisms could be reduced to equations. This allowed conclusions to be
derived from premises by eliminating the middle term in the syllogism. He refined
his ideas on logic further in ‘An Investigation of the Laws of Thought’ which was
published in 1854 (Boole 1958). This book aimed to identify the fundamental laws
underlying reasoning in the human mind and to give expression to these laws in the
symbolic language of a calculus.

He considered the equation x” = x to be a fundamental law of thought. It allows
the principle of contradiction to be expressed as (i.e. for an entity to possess an
attribute and at the same time not to possess it)

2

X =x
=2x—x2=0
=x(l—-x)=0

For example, if x represents the class of horses then (1 — x) represents the class
of ‘not-horses’. The product of two classes represents a class whose members are
common to both classes. Hence, x (1 — x) represents the class whose members are at
once both horses and ‘not-horses’, and the equation x (1 — x) = 0 expresses that fact
that there is no such class. That is, it is the empty set.
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Fig. 2.7 Binary AND

operation j 1

Boole contributed to other areas in mathematics including differential equations,
finite differences’ and to the development of probability theory. Des McHale has
written an interesting biography of Boole and Des McHale (1985). Boole’s logic
appeared to have no practical use, but this changed with Claude Shannon’s (1937)
Master’s Thesis, which showed its applicability to switching theory and to the
design of digital circuits.

2.6.1 Switching Circuits and Boolean Algebra

Claude Shannon’s Master’s Thesis showed that Boole’s algebra provided the
perfect mathematical model for switching theory and for the design of digital
circuits. It may be employed to optimize the design of systems of electromechanical
relays, and circuits with relays solve Boolean algebra problems. The use of the
properties of electrical switches to process logic is the basic concept that underlies
all modern electronic digital computers. Digital computers use the binary digits 0
and 1, and Boolean logical operations may be implemented by electronic AND, OR
and NOT gates. More complex circuits (e.g. arithmetic) may be designed from these
fundamental building blocks.

Modern electronic computers use billions of transistors that act as switches and
can change state rapidly. A high voltage represents the binary value 1 with low
voltage representing the binary value (. A silicon chip may contain billions of tiny
electronic switches arranged into logical gates. The basic logic gates are AND, OR
and NOT. These gates may be combined in various ways to allow the computer to
perform more complex tasks such as binary arithmetic. Each gate has binary value
inputs and outputs.

The example in Fig. 2.7 is that of an ‘AND’ gate which produces the binary
value 1 as output only if both inputs are 1. Otherwise, the result will be the binary

"Finite Differences are a numerical method used in solving differential equations.
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Fig. 2.8 Binary OR operation

Fig. 2.9 NOT operation

value 0. Figure 2.8 shows an ‘OR’ gate which produces the binary value 1 as output
if any of its inputs is 1. Otherwise, it will produce the binary value 0.

Finally, a NOT gate (Fig. 2.9) accepts only a single input which it inverts. That
is, if the input is *1’ the value ‘0’ is produced and vice versa.

The logic gates may be combined to form more complex circuits. The example
in Fig. 2.10 is that of a half adder of 1 + 0. The inputs to the top OR gate are 1 and
0 which yields the result of 1. The inputs to the bottom AND gate are 1 and 0 which
yields the result 0, which is then inverted through the NOT gate to yield binary 1.
Finally, the last AND gate receives two 1’s as input and the binary value 1 is the
result of the addition. The half adder computes the addition of two arbitrary binary
digits, but it does not calculate the carry. It may be extended to a full adder that

provides a carry for addition.
@ 1
l
0

Fig. 2,10 Half adder

v
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Fig. 2.11 Claude Shannon

2.7 Application of Symbolic Logic to Digital Computing

Claude Shannon (Fig. 2.11) was the first person8 to see the applicability of Boole’s
algebra to simplify the design of circuits and telephone routing switches. He
showed that Boole’s symbolic logic was the perfect mathematical model for
switching theory and for the subsequent design of digital circuits and computers.

His influential Master's Thesis is a key milestone in computing, and it shows
how to lay out circuits according to Boolean principles. It provides the theoretical
foundation of switching circuits, and his insight of using the properties of electrical
switches to do Boolean logic is the basic concept that underlies all electronic
digital computers.

Shannon realized that you could combine switches in circuits in such a manner
as to carry out symbolic logic operations. This allowed binary arithmetic and more
complex mathematical operations to be performed by relay circuits. He designed a
circuit, which could add binary numbers, and he later designed circuits that could
make comparisons and thus capable of performing a conditional statement. This
was the birth of digital logic and the digital computing age.

#*Victor Shestakov at Moscow State University also proposed a theory of electric switches based on
Boolean algebra (published in Russian in 1941 whereas Shannon’s were published in 1937).
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Vannevar Bush (Regan 2013) was Shannon’s supervisor at MIT, and Shannon’s
initial work was to improve Bush’s mechanical computing device known as the
Differential Analyser. This machine had a complicated control circuit that was
composed of 100 switches that could be automatically opened and closed by an
electromagnet. Shannon’s insight was his realization that an electronic circuit is
similar to Boolean algebra, and he showed how Boolean algebra could be employed to
optimize the design of systems of electromechanical relays used in the analog com-
puter. He also realized that circuits with relays could solve Boolean algebra problems.

His Master’s thesis ‘A Symbolic Analysis of Relay and Switching Circuits’
(Shannon 1937) showed that the binary digits (i.e. 0 and 1) can be represented by
electrical switches. This allowed binary arithmetic and more complex mathematical
operations to be performed by relay circuits, and provided electronics engineers
with the mathematical tool that they needed to design digital electronic circuits and
provided the foundation for the field.

The design of circuits and telephone routing switches could be simplified with
Boole’s symbolic algebra. Shannon showed how to lay out circuits according to
Boolean principles, and his Master’s thesis became the foundation for the practical
design of digital circuits. These circuits are fundamental to the operation of modern
computers and telecommunication systems, and his insight of using the properties
of electrical switches to do Boolean logic is the basic concept that underlies all
electronic digital computers.

2.8 Review Questions

Explain the significance of binary numbers in the computing field.
Explain the importance of Shannon’s Master Thesis.

Explain the significance of the Analytic Engine.

Explain why Ada Lovelace is considered the world’s first programmer.
Explain the significance of Boole to the computing field.

Explain the significance of Babbage to the computing field.

Explain the significance of Leibniz to the computing field.

S &N Eg= 89 9 =

29 Summary

This chapter considered foundational work done by Leibniz, Babbage, Boole, Ada
Lovelace and Shannon. Leibniz developed a calculating machine (the Step
Reckoner) that could perform the four basic arithmetic operations. He also invented
the binary number system, which is used extensively in the computer field.
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Babbage did pioneering work on calculating machines. He designed the Dif-
ference Engine (a sophisticated calculator that could be used to produce mathe-
matical tables), and he also designed the Analytic Engine (the world’s first
mechanical computer).

Lady Ada Lovelace was introduced to Babbage’s ideas on the analytic engine,
and she predicted that such a machine could be used to compose music, produce
graphics, as well as solving mathematical and scientific problems.

Boole was a nineteenth-century English mathematician who made important
contributions to mathematics, and his symbolic logic provides the foundation for
digital computers.

Shannon was a twentieth-century American mathematician and engineer, and he
showed that Boole’s symbolic logic provided the perfect mathematical model for
switching theory and for the subsequent design of digital circuits and computer.
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3.1 Introduction

This chapter introduces essential mathematics for computing and discusses fun-
damental concept such as sets, relations and functions. Sets are collections of
well-defined objects; relations indicate relationships between members of two sets
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In this example, even(x) is a predicate that is true if x is even and false otherwise.
In general, A = {x € E | P(x)} denotes a set A formed from a set E using the
predicate P to restrict membership of A to those elements of E for which the
predicate is true.

The elements of a finite set S are denoted by {x;, x-, ... x,,}. The expression x €
S denotes that the element x is a member of the set S, whereas the expression x ¢
S indicates that x is not a member of the set S.

A set S is a subset of a set T (denoted § C T) if whenever s € Sthen s € T, and in
this case the set T is said to be a superset of S (denoted T 2 §). Two sets S and T are
said to be equal if they contain identical elements, i.e. S = Tif and only if § C T and
T C 8. A set Sis a proper subset of a set T (denoted S C 7) if § C T and S # T. That
is, every element of S is an element of T and there is at least one element in T that is
not an element of S. In this case, T is a proper superset of S (denoted 7 D S).

The empty set (denoted by & or {}) represents the set that has no elements.
Clearly, @ is a subset of every set. The singleton set containing just one element x is
denoted by {x}, and clearly x € {x} and x # {x}. Clearly, y € {x} if and only if
X=y.

Example 3.2

i {1, 2} C {12 3}
(i) JCcNCcZcQcRcC.

The cardinality (or size) of a finite set S defines the number of elements present
in the set. It is denoted by |S|. The cardinality of an infinite" set S is written as
S| = eo.

Example 3.3

(i) Given A = {2, 4, 5, 8, 10} then |A| = 5.
(i) Given A={x € Z: x> =09} then |A| = 2.
(iii) Given A={x € Z:x”=-9} then |A| = 0.

“The natural numbers, integers and rational numbers are countable sets (i.e. they may be put into a
one-to-one correspondence with the Natural numbers), whereas the real and complex numbers are
uncountable sets.
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3.2.1 Set-Theoretical Operations

Several set-theoretical operations are considered in this section. These include the
Cartesian product operation, the power set of a set, the set union operation, the set
intersection operation, the set difference operation and the symmetric difference
operation.

Cartesian Product

The Cartesian product allows a new set to be created from existing sets. The
Cartesian’ product of two sets S and T (denoted S x T) is the set of ordered pairs
{(s, )]s €S, teT} Clearly, S x T# T x S and so the Cartesian product of two
sets is not commutative. Two ordered pairs (sy, #;) and (s,, t,) are considered equal
if and only if 5; = 5, and #; = t,.

The Cartesian product may be extended to that of n sets Sy, Sa, ..., S,. The
Cartesian product §; x S, x - x S, is the set of ordered n-tuples {(sy, 52, ..., 5,)) |
51 € 81,52 €8, ...,5, €8,}. Two ordered n-tuples (sy, s2, ..., 5,) and (s, 52 ...,
s,") are considered equal if and only if s; = 51/, 52, = 52/, ..., 5, = 5,

The Cartesian product may also be applied to a single set S to create ordered
n-tuples of S, ie. 8" =8 x § x -+ x § (n times).

Power Set

The power set of a set A (denoted PA) denotes the set of subsets of A. For example,
the power set of the set A = {1, 2, 3} has eight elements and is given by

PA = {@,{1},{2}, {3}, {1,2}.{1,3}, 2,3}, {1.2.3}}.

There are 2° = 8 elements in the power set of A = {1, 2, 3} where the cardinality
of A is 3. In general, there are 2lAl elements in the power set of A.

Theorem 3.1 (Cardinality of Power Set of A) There are 241 elements in the power
set of A.

Proof Let |A| = n, then the cardinalities of the subsets of A are subsets of size 0, 1,

..., n. There are (n subsets of A of size k.° Therefore, the total number of subsets

k
of A is the total number of subsets of size 0, 1, 2, ... up to n. That is,

(1)

k=0

The Binomial Theorem states that

*Cartesian product is named after René Descartes who was a famous seventeenth-century French
mathematician and philosopher. He invented the Cartesian coordinates system that links geometry
and algebra and allows geometric shapes to be defined by algebraic equations.

®Permutations and combinations are discussed in Chap. 8.
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(14x)" = Z} (z)ﬂ

Therefore, putting x = 1 we get that

2 = (1+1)" (z)lk — |PA

Union and Intersection Operations
The union of two sets A and B is denoted by A U B. It results in a set that contains
all of the members of A and of B and is defined by

AUB = {rlreAorr e B}.

For example, suppose A = {1,2,3} and B = {2,3,4} then A U B = {1, 2,3, 4}.
Set union is a commutative operation, i.e. A U B=B U A. Venn Diagrams are
used to illustrate these operations pictorially.

A B A B
AUB ANB

The intersection of two sets A and B is denoted by A N B. It results in a set
containing the elements that A and B have in common and is defined by

ANB = {rlreAandr € B}.

Suppose A = {1,2,3}and B = {2,3,4) then A N B = {2, 3}. Set intersection is
a commutative operation, i.e. A N B=8B N A.

Union and intersection may be extended to more generalized union and inter-
section operations. For example,

U’ A; denotes the union of n sets.
NP ,A; denotes the intersection of n sets.

Set Difference Operations

The set difference operation A\B yields the elements in A that are not in B. It is
defined by

A\B = {ala € Aanda ¢ B}



3.2 Set Theory 37

For A and B defined as A = {1, 2} and B = {2, 3}, we have A\B = {1} and
B\A = {3]. Clearly, set difference is not commutative, i.e. AAB # B\A. Clearly,
A = @ and A\D = A.

The symmetric difference of two sets A and B is denoted by A A B and is given

by
AAB=A\BUB\A

The symmetric difference operation is commutative, i.e. A A B =B A A. Venn
diagrams are used to illustrate these operations pictorially.

A B A B A B
A\B B\A4 AAB

The complement of a set A (with respect to the universal set U) is the elements in
the universal set that are not in A. It is denoted by A° (or A") and is defined as

A°={ulue Uandu ¢ A} = U\A

0 i

The complement of the set A is illustrated by the shaded area.

3.2.2 Properties of Set-Theoretical Operations

The set union and set intersection properties are commutative and associative. Their
properties are listed in Table 3.1.

These properties may be seen to be true with Venn diagrams, and we give a
proof of the distributive property (this proof uses logic which is discussed in
Chaps. 15-17).

Proof of Properties (Distributive Property) ToshowA N (B U C)=(A N B) U
Anao
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Table 3.1 Properties of set operations

Property Description

Commutative Union and intersection operations are
commutative, i.e.
SUT=TuUS
SNT=TnNS

Associative Union and intersection operations are

associative, i.e.
RUSUD=RUSHUT
RNEND=RNSHNT

Identity The identity under set union is the empty set
&, and the identity under intersection is the
universal set U
SUg=guSs=S
SNU=UNSsS=S

Distributive The union operator distributes over the
intersection operator and vice versa
RNSUD=RNSHURND
RUSND=RUSSNRUTD

De Morgan’s (De Morgan’s law is named The complement of § U T is given by
after Augustus De Morgan, a SunD'=8SnTtT
nineteenth-century English mathematician The complement of § N T is given by
who was a contemporary of George Boole) SNDN=85uUT
law

Suppose

x € AN(BUC)then

xeAAxe (BUCQ)
=xeAAN(xeBVxe(C)

= (x€AAxEB)V(xeAAxe()
=xe(ANB)Vxe (ANC)
=xe(ANB)UANC)

Therefore, AN (BU C)CANB)UMANO
Similarly AN B) U A NC)CANBUO
Therefore, A N (B U C)=(ANB)UANO

3.2.3 Russell’s Paradox

Bertrand Russell (Fig. 3.1) was a famous British logician, mathematician and
philosopher. He was the co-author with Alfred Whitehead of Principia Mathe-
matica, which aimed to derive all the truths of mathematics from logic. Russell’s
Paradox was discovered by Bertrand Russell in 1901 and showed that the system of
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3.3 Relations

A binary relation R(A, B) where A and B are sets is a subset of A X B, i.e. RC A X
B. The domain of the relation is A, and the co-domain of the relation is B. The
notation aRb signifies that (a, b) € R.

A binary relation R(A, A) is a relation between A and A (or a relation on A). This
type of relation may always be composed with itself, and its inverse is also a binary
relation on A. The identity relation on A is defined by a isa for all a € A.

Example 3.4 There are many examples of relations:

(i) The relation on a set of students in a class where (a, b) € R if the height of
a is greater than the height of b.

(ii) The relation between A and B where A = {0, 1, 2} and B = {3, 4, 5} with
R given by

R =1{(0,3),(0,4),(1,4)}

(iii)  The relation less than (<) between and R and R is given by
{(x,y) € R? : x<y}

(iv) A bank may represent the relationship between the set of accounts and the set
of customers by a relation. The implementation of a bank account may be a
positive integer with at most eight decimal digits.

The relationship between accounts and customers may be done with a
relation R € A x B, with the set A chosen to be the set of natural numbers,
and the set B chosen to be the set of all human beings alive or dead. The set

A could also be chosen to be A = {n € N:n < 10%}

A relation R(A, B) may be represented pictorially. This is referred to as the graph
of the relation, and it is illustrated in the diagram below. An arrow from x to y is
drawn if (x, y) is in the relation. Thus, for the height relation R given by {(a, p), (a,
r), (b, @)} an arrow is drawn from a to p, from a to r and from b to ¢ to indicate that
(a, p), (a, r) and (b, g) are in the relation R.
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The pictorial representation of the relation makes it easy to see that the height of
a is greater than the height of p and r; and that the height of b is greater than the
height of q.

An n-ary relation R (A, A,, ... A,) is a subset of (4, x A, x --- x A,). However,
an n-ary relation may also be regarded as a binary relation R(A, B) with A = A; x
Ar X -+ x A,—; and B = A,.

3.3.1 Reflexive, Symmetric and Transitive Relations

(i) A binary relation on A may have additional properties such as being
reflexive, symmetric or transitive. These properties are defined as a relation
on a set A is reflexive if (a, a) € R for all a € A.
(i) A relation R is symmetric if whenever (a, b) € R then (b, a) € R.
(iii) A relation is transitive if whenever (a, b) € R and (b, ¢) € R then (a, ¢) € R.

A relation that is reflexive, symmetric and transitive is termed an equivalence
relation.

Example 3.5 (Reflexive Relation) A relation is reflexive if each element possesses
an edge looping around on itself. The relation in Fig. 3.2 is reflexive.

Example 3.6 (Symmetric Relation) The graph of a symmetric relation will show
for every arrow from a to b an opposite arrow from b to a. The relation in Fig. 3.3 is
symmetric, i.e. whenever (a, b) € R then (b, a) € R.

Example 3.7 (Transitive relation) The graph of a transitive relation will show that
whenever there is an arrow from a to b and an arrow from b to ¢ that there is an
arrow from a to ¢. The relation in Fig. 3.4 is transitive, i.e. whenever (a, b) € R and
(b, ¢) € R then (a, ¢) € R.

Example 3.8 (Equivalence relation) The relation on the set of integers Z defined
by (a, b) € Rif a — b =2 k for some k € Z is an equivalence relation, and it
partitions the set of integers into two equivalence classes, i.e. the even and odd
integers.

Domain and Range of Relation

The domain of a relation R (A, B) is given by {a € A|3b € Band (a, b) € R}. Itis
denoted by dom R. The domain of the relation R = {(a, p), (a, 1), (b, )} is {a, b}.

The range of a relation R (A, B) is given by {b € B |Ja € A and (g, b) € R}. Itis
denoted by rng R. The range of the relation R = {(a, p), (a, 1), (b, @)} is {p, q, r}.
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Fig. 3.2 Reflexive relation

Fig. 3.3 Symmetric relation

Fig. 3.4 Transitive relation

Inverse of a Relation

Suppose R C A x B is a relation between A and B then the inverse relation R'C
B x A is defined as the relation between B and A and is given by

bR aif and only ifaRb

That is,

R ' ={(h,a) e BxA:(ab)€R}

Example 3.9 Let R be the relation between Z and Z* defined by mRn if and only if

m>=n. Then R=1{(m, n) € Zx Z*: m*=n} and R ' ={(n, m) € Z'x 7 :
2

m” =n}.

For example, =3 R 9, -4 R 16, 0 R0, 16 R™' —4, 9 R™' -3, elc.



44 3 Overview of Mathematics in Computing

Partitions and Equivalence Relations

An equivalence relation on A leads to a partition of A, and vice versa for every
partition of A there is a corresponding equivalence relation.

Let A be a finite setand let A, A,, ..., A, be subsets of A;  gsgorani,a, N A =&
ifizjandA= U7 A=A, UA U ... UA,

The sets A; partition the set A, and these sets are called the classes of the partition
(Fig. 3.5).

Theorem 3.2 (Equivalence Relation and Partitions) An equivalence relation on A
gives rise to a partition of A where the equivalence classes are given by Class
(a) = (x| x € A and (a, x) € R]. Similarly, a partition gives rise to an equivalence
relation R, where (a, b) € R if and only if a and b are in the same partition.

Proof Clearly, a € Class(a) since R is reflexive and clearly the union of the
equivalence classes is A. Next, we show that two equivalence classes are either
equal or disjoint.

Suppose Class(a) N Class(h) # &. Let x € Class(a) N Class(b) and so (a, x)
and (b, x) € R. By the symmetric property (x, b) € R and since R is transitive from
(a, x) and (x, b) in R we deduce that (a, b) € R. Therefore b € Class(a). Suppose y is
an arbitrary member of Class (b) then (b, y) € R; therefore, from (a, b) and (b, y) in
R we deduce that (a, v) is in R. Therefore, since y was an arbitrary member of Class
(a) we deduce that Class(b) C Class(a). Similarly, Class(a) C Class(b) and so Class
(a) = Class(b).

This proves the first part of the theorem and for the second part we define a
relation R such that (a, b) € R if @ and b are in the same partition. It is clear that this
is an equivalence relation.

3.3.2 Composition of Relations
The composition of two relations R,(A, B) and R»(B, C) is given by R, o R; where

(a, ¢) € R> o R, if and only there exists b € B such that (a, b) € Ry and (b, ¢) € R;.
The composition of relations is associative, i.e.

(R3 ORQ) ORl = R30 (R2 ORl)

Fig. 3.5 Partitions of A
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Example 3.10 (Composition of Relations) Consider a library that maintains two
files. The first file maintains the serial number s of each book as well as the details
of the author « of the book. This may be represented by the relation R| = sRa. The
second file maintains the library card number ¢ of its borrowers and the serial
number s of any books that they have borrowed. This may be represented by the
relation R; = ¢ Rys.

The library wishes to issue a reminder to its borrowers of the authors of all books
currently on loan to them. This may be determined by the composition of R, 0 R;,
i.e. ¢ R0 R, a if there is book with serial number s such that ¢ R, s and s R; a.

Example 3.11 (Composition of Relations) Consider sets A = {a, b, ¢}, B = {d, e,
f}, C={g, h, i} and relations R(A, B) = {(a, d), (a, f), (b, d), (¢, )} and S(B,
C) = {(d, h), (d, i), (e g), (e, h)}. Then, we graph these relations and show how to
determine the composition pictorially.

S 0 R is determined by choosing x € A and y € C and checking if there is a route
from x to y in the graph. If so, we join x to y in S o R. For example, if we consider
a and h we see that there is a path from a to d and from d to / and therefore (a, h) is
in the composition of S and R (Fig. 3.6).

The union of two relations R(A, B) and R»(A, B) is meaningful (as these are both
subsets of A x B). The union R; U R, is defined as (@, b) € R, U R, if and only if
(a, b) € R, or (a, b) € R,.

SoR

Similarly, the intersection of R, and R, (R; N R;) is meaningful and is defined
as (@, b) € Ry N R, if and only if (@, b) € R, and (a, b) € R,. The relation R, is a
subset of R, (R; C R,) if whenever (a, b) € R, then (a, b) € R».

Fig. 3.6 Composition of relations S o R
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Fig. 3.7 Edgar Codd

The basic relational building block is the domain or data type (often called just
type). Each row of the table represents one n-tuple (one tuple) of the relation, and
the number of tuples in the relation is the cardinality of the relation. Consider the
PART relation taken from Date (1981), where this relation consists of a heading
and the body. There are five data types representing part numbers, part names, part
colours, part weights and locations where the parts are stored. The body consists of
a set of n-tuples, and the PART relation in Fig. 3.8 is of cardinality six.

There is more detailed information on the relational model and databases in
O’Regan (2018).

PName Colour Weight
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

Fig. 3.8 PART relation
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3.4 Functions

A function f: A —B is a special relation such that for each element a € A there is
exactly (or at most)8 one element b € B. This is written as fla) = b.

A B

S

A function is a relation but not every relation is a function. For example, the
relation in the diagram below is not a function since there are two arrows from the
element a € A.

R

The domain of the function (denoted by dom f) is the set of values in A for
which the function is defined. The domain of the function is A if fis a total function.
The co-domain of the function is B. The range of the function (denoted rng f) is a
subset of the co-domain and consists of

rngf = {r|r € Bsuch thatf(a) = rfor somea € A}.

Functions may be partial or total. A partial function (or partial mapping) may be
undefined for some values of A, and partial functions arise regularly in the com-
puting field (Fig. 3.9). Total functions are defined for every value in A, and many
functions encountered in mathematics are total.

Example 3.13 (Functions) Functions are an essential part of mathematics and
computer science, and there are many well-known functions such as the trigono-
metric functions sin(x), cos(x) and tan(x); the logarithmic function In(x); the
exponential functions ¢"; and polynomial functions.

(i) Consider the partial function f: R —R fix) = '/x (where x # 0).

Then, this partial function is defined everywhere except for x = 0.

(i) Consider the function f: R —RR where f{x) = X

Then this function is defined for all x € R

¥We distinguish between total and partial functions. A total function is defined for all elements in
the domain, whereas a partial function may be undefined for one or more elements in the domain.
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Fig. 3.9 Domain and range

of a partial function A B
dom mng

Partial functions often arise in computing as a program may be undefined or fail
to terminate for several values of its arguments (e.g. infinite loops). Care is required
to ensure that the partial function is defined for the argument to which it is to be
applied.

Consider a program P that has one natural number as its input and which fails to
terminate for some input values. It prints a single real result and halts if it termi-
nates. Then P can be regarded as a partial mapping from N to R.

P:N—R

Example 3.14 How many total functions f: A — B are there from A to B (where
A and B are finite sets)?

Each element of A maps to any element of B, i.e. there are |B| choices for each
element a@ € A. Since there are |A| elements in A the number of total functions is

given by

[B| [B|...|B| (|Al|times)
= [B[A total functions between A and B.

Example 3.15 How many partial functions f: A — B are there from A to B (where
A and B are finite sets)?

Each element of A may map to any element of B or to no element of B (as it may
be undefined for that element of A). In other words, there are [B| + 1 choices for
each element of A. As there are |A| elements in A, the number of distinct partial
functions between A and B is given by

(B|+1)(IB|+1)...(B|+1) (|A|times)
= (Bl+ "
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Two partial functions f and g are equal if

1. dom f= dom g
2. fla) = g(a) for all a € dom f.

A function f'is less defined than a function g (f C g) if the domain of f'is a subset
of the domain of g, and the functions agree for every value on the domain of f.

1. dom f C dom g
2. fla) = g(a) for all @ € dom f.

The composition of functions is similar to the composition of relations. Suppose
f:A—Bandg:B — Cthengof: A — Cisafunction, and it is written as g o f
(x) or g(fix)) for x € A.

The composition of functions is not commutative and this can be seen by an
example. Consider the function f: R — R such that fix) = x” and the function g :
R — R such that g(x) = x + 2. Then

gof(x) = g(xz) =x*+2.
fogx) =f(x+2) = (x+2)" =X +4x+4.

Clearly, g o fix) # f 0 g(x) and so composition of functions is not commutative.
The composition of functions is associative, as the composition of relations is
associative and every function is a relation. Forf: A - B,g:B — C,and h: C —
D we have

ho(gof) = (hog)of

A function f: A —B is injective (one to one) if

flay) = flaz) = a1 = as.

For example, consider the function f : R — R with f (x) = x°. Then
f(3)=f(=3) =9 and so this function is not one to one.

A function f: A —B is surjective (onto) if given any b € B there exists ana € A
such that fla) = b. Consider the function f: R — R with f{ix) = x + 1. Clearly, given
any r € R then f(r — 1) = r and so fis onto (Fig. 3.10).

A function is bijective if it is one to one and onto (Fig. 3.11). That is, there is a
one-to-one correspondence between the elements in A and B, and for each
b € B there is a unique a € A such that f{a) = b.

The inverse of a relation was discussed earlier, and the relational inverse of a
function f: A —B clearly exists. The relational inverse of the function may or may
not be a function.
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A B A B

Yy
o

—»

-1, Not Onto Onto, Not 1-1

Fig. 3.10 Injective and surjective functions

/

Fig. 3.11 Bijective function (one to one and onto)

However, if the relational inverse is a function it is denoted by f' : B —A.
A total function has an inverse if and only if it is bijective whereas a partial function
has an inverse if and only if it is injective.

The identity function 15 : A —A is a function such that 15(a) = a for all a € A.
Clearly, when the inverse of the function exists then we have that f~ Yo f=14and

fofl'=ls.
Theorem 3.3 (Inverse of Function) A total function has an inverse if and only if it
is bijective.

Proof Suppose f: A —B has an inverse f'. Then we show that f is bijective.

We first show that f is one to one. Suppose fix,) = flx,) then

f_'(f(xl)) :f_](f(IZ))
Tof(a)=f"of(x)
élA(xl) La ( 2)
= X| = X2
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z =sqrp/sqrq

sqrk =k k
p=a+b
g=a-—>b
a=10
b=>5

The scope of a formal parameter (e.g. the parameter k above in the function sqr)
is limited to the definition of the function in which it occurs.

One of the most common data structures used in Miranda is the list. The empty
list is denoted by [ |, and an example of a list of integers is given by [1, 3, 4, 8].
Lists may be appended to by using the ‘++° operator. For example,

[1,3,5]+ +[2,4]is[1,3,5,2,4].
The length of a list is given by the ‘#’ operator:
#[1,3] =2

The infix operator “:” is employed to prefix an element to the front of a list. For
example,

5:[2,4,6]is equal to [5,2,4, 6]
The subscript operator ‘!” is employed for subscripting: For example,
Nums = [5,2,4,6] then Nums!Ois5.

The elements of a list are required to be of the same type. A sequence of ele-
ments that contains mixed types is called a tuple. A tuple is written as follows:

Employee = (“‘Holmes’’, “221B Baker St.London’’, 50, “Detective’”)

A tuple is similar to a record in Pascal, whereas lists are similar to arrays. Tuples
cannot be subscripted but their elements may be extracted by pattern matching.
Pattern matching is illustrated by the well-known example of the factorial function:

facO =1
fac(n+1) = (n+1) = fac n

The definition of the factorial function uses two equations, distinguished by
using different patterns in the formal parameters. Another example of pattern
matching is the reverse function on lists:
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reverse | |

]

=
reverse (a : X) = reverse X + + [a]

Miranda is a higher order language, and it allows functions to be passed as
parameters and returned as results. Currying is allowed and this allows a function of
n-arguments to be treated as n applications of a function with 1-argument. Function
application is left associative, i.e. f X y means (f x) y. That is, the result of applying
the function fto x is a function, and this function is then applied to y. Every function
with two or more arguments in Miranda is a higher order function.

3.6 Number Theory

Number theory is the branch of mathematics that is concerned with the mathe-
matical properties of the natural numbers and integers. These include properties
such as the parity of a number, divisibility, additive and multiplicative properties,
whether a number is prime or composite, the prime factors of a number, the greatest
common divisor and least common multiple of two numbers, and so on.

Number theory has many applications in computing including cryptography and
coding theory. For example, the RSA public-key cryptographic system relies on its
security due to the infeasibility of the integer factorization problem for large
numbers.

There are several unsolved problems in number theory and especially in prime
number theory. For example, Goldbach’s'® Conjecture states that every even
integer greater than two is the sum of two primes, and this result has not been
proved to date. Fermat’s'® Last Theorem (Fig. 4.12) states that there is no integer
solution to x" + y" = 7" for n > 2, and this result remained unproved for over 300
years until Andrew Wiles finally proved it in the mid-1990s.

The natural numbers N consist of the numbers {1, 2, 3, ...}. The integer
numbers Z consist of {..., =2, —1, 0, 1, 2, ...}. The rational numbers () consist of
all numbers of the form {”/, where p and g are integers and g # 0}. The real
numbers R are defined to be the set of converging sequences of rational numbers
and they are a superset of the rational numbers. They contain the rational and
irrational numbers. The complex numbers C consist of all numbers of the form
{a + bi where a, b € R and i = V=1}.

“Goldbach was an eighteenth-century German mathematician and Goldbach’s conjecture has
been verified to be true for all integers n < 12 * 107

"SPierre de Fermat was a seventeenth-century French civil servant and amateur mathematician. He
occasionally wrote to contemporary mathematicians announcing his latest theorem without
providing the accompanying proof and inviting them to find the proof. The fact that he never
revealed his proofs caused a lot of frustration among his contemporaries, and in his announcement
of his famous last theorem he stated that he had a wonderful proof that was too large to include in
the margin. He corresponded with Pascal, and they did some early work on the mathematical rules
of games of chance and early probability theory.
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Pythagorean triples are combinations of three whole numbers that satisfy
Pythagoras’s equation x> + y* = z>. There are an infinite number of such triples,
and an example of such a triple is 3, 4, 5 since 32+ 47 =52

The Pythagoreans discovered the mathematical relationship between the har-
mony of music and numbers, and their philosophy was that numbers are hidden in
everything from music to science and nature. This led to their philosophy that
‘everything is number’. We will discuss number theory in more detail in Chap. 5
and show how it is applied to the field of cryptography in Chap. 10.

3.7 Automata Theory

Automata Theory is the branch of computer science that is concerned with the study
of abstract machines and automata. These include finite-state machines, pushdown
automata, and Turing machines. Finite-state machines are abstract machines that
may be in one of a finite number of states. These machines are in only one state at a
time (current state), and the input symbol causes a transition from the current state
to the next state. Finite-state machines have limited computational power due to
memory and state constraints, but they have been applied to several fields including
communication protocols, neurological systems and linguistics.

Warren McCulloch and Walter Pitts published early work on finite-state auto-
mata in 1943. They were interested in modelling the thought process for humans
and machines. Moore and Mealy developed this work further, and their finite-state
machines are referred to as the ‘Mealy machine’ and the ‘Moore machine’. The
Mealy machine determines its outputs through the current state and the input,
whereas the output of Moore’s machine is based upon the current state alone.

Finite-state automata can compute only very primitive functions, and so they are
not adequate as a model for computing. There are more powerful automata such as
the Turing machine that is essentially a finite automaton with a potentially infinite
storage (memory). Anything that is computable is computable by a Turing machine.

A finite-state machine can model a system that has a finite number of states, and
a finite number of inputs/events that can trigger transitions between states. The
behaviour of the system at a point in time is determined from the current state and
input, with behaviour defined for the possible input to that state. The system starts
in an initial state.

Pushdown automata have greater computational power, and they contain extra
memory in the form of a stack from which symbols may be pushed or popped. The
state transition is determined from the current state of the machine, the input symbol
and the element on the top of the stack. The action may be to change the state
and/or push/pop an element from the stack.

The Turing machine is the most powerful model for computation, and this
theoretical machine is equivalent to an actual computer in the sense that it can
compute the same set of functions. The memory of the Turing machine is a tape that
consists of a potentially infinite number of one-dimensional cells. The Turing



