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Preface

CrBO3b BonmeOHBIH putop Jlepenrvka . . .
Huronait 3abomonkuit

The portrayal of human thought has rarely been more powerful
and convincing than in Vermeer’'s Asironomer. The painting cre-
ates the illusion of seeing the movement of thought itself—as an
embodied action, as a physical process taking place in real space
and time.

I use the Astronomer as a visual metaphor for the principal aim
of the present book. I attempt to write about mathematical think-
ing as an objective, real-world process, something which is actually
moving and happening in our brains when we do mathematics. Of
course, it is a challenging task; inevitably, I have to concentrate on
the simplest, atomic activities involved in mathematical practice—
hence “the microscope” in the title.

Among other things,

e I look at simple, minute activities, like placing brackets in the
sum
a+b+ec+d+e.

e I analyze everyday observations so routine and self-evident that
their mathematical nature usually remains unnoticed: for ex-
ample, when you fold a sheet of paper, the crease for some rea-
son happens to be a perfectly straight line.

e [ use palindromes, like MADAM, I'M ADAM, to illustrate how
mathematics deals with words composed of symbols—and how
it relates the word symmetry of palindromes to the geometric
symmetry of solid bodies.

e Ieven discuss the problem of dividing 10 apples among 5 people!

xi



xii Preface

Why am I earnestly concerned with such ridiculously simple
questions? Why do I believe that the answers are important for
our understanding of mathematics as a whole?

In this book, I argue that we can-
not seriously discuss mathematical
thinking without taking into account
the limitations of the information-
processing capacity of our brains. In
our conscious and totally controlled
reasoning we can process about 16
bits per second. In activities related
to mathematics this miserable bit rate is further reduced to 12
bits per second in the addition of decimal numbers and to 3 bits in
counting individual objects. Meanwhile the visual processing mod-
ule of our brains easily handles 10,000,000 bits per second! (See
[211, pp. 138 and 143].) We can handle complex mathematical con-
structions only because we repeatedly compress them until we re-
duce a whole theory to a few symbols which we can then treat as
something simple, also because we encapsulate potentially infinite
mathematical processes, turning them into finite objects, which we
then manipulate on a par with other much simpler objects. On the
other hand, we are lucky to have some mathematical capacities di-
rectly wired into the powerful subconscious modules of our brains
responsible for visual and speech processing and powered by these
enormous machines.

As you will see, I pay special attention to order, symmetry, and
parsing (that is, bracketing of a string of symbols) as prominent
examples of atomic mathematical concepts or processes. I put such
“atomic particles” of mathematics at the focus of the study. My po-
gition is diametrically opposite to that of Martin Krieger who said
in his recent book Doing Mathematics [61] that he aimed at

We cannot seriously discuss mathemati-
cal thinking without taking into account
the limitations of our brains.

a description of some of the work that mathematicians
do, employing modern and sophisticated examples.

Unlike Krieger, I write about “simple things”. However, I freely
use examples from modern mathematical research, and my un-
derstanding of “simple” is not confined to the elementary-school
classroom. I hope that a professional mathematician will find in
the book sufficient non-trivial mathematical material.

The book inevitably asks the question, “How does the mathe-
matical brain work?” I try to reflect on the explosive development
of mathematical cognition, an emerging branch of neurophysiology
which purports to locate structures and processes in the human
brain responsible for mathematical thinking [159, 171]. However, I
am not a cognitive psychologist; I write about the cognitive mech-
anisms of mathematical thinking from the position of a practicing
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mathematician who is trying to take a very close look through the
magnifying glass at his own everyday work. I write not so much
about discoveries of cognitive science as of their implications for
our understanding of mathematical practice. I do not even insist on
the ultimate correctness of my interpretations of findings of cogni-
tive psychologists and neurophysiologists. With science developing
at its present pace, the current understanding of the internal work-
ing of the brain is no more than a preliminary sketch; it is likely to
be overwritten in the future by deeper works.

Instead, I attempt something much more speculative and risky.
I take, as a working hypothesis, the assumption that mathematics
is produced by our brains and therefore bears imprints of some of
the intrinsic structural patterns of our minds. If this is true, then
a close look at mathematics might reveal some of these imprints—
not unlike the microscope revealing the cellular structure of living
tissue.

I try to bridge the gap between
mathematics and mathematical cog-

nition by pointing to structures and
processes of mathematics which are
sufficiently non-trivial to be interest-

Mathematics is the study of mental ob-
Jjects with reproducible properties.

ing to a mathematician, while being
deeply integrated into certain basic
structures of our minds and which
may lie within reach of cognitive science. For example, I pay spe-
cial attention to Coxeter Theory. This theory lies at the very heart
of modern mathematics and could be informally described as an
algebraic expression of the concept of symmetry; it is named af-
ter H. S. M. Coxeter who laid its foundations in his seminal works
[336, 337]. Coxeter Theory provides an example of a mathematical
theory where we occasionally have a glimpse of the inner work-
ing of our minds. I suggest that Coxeter Theory is so natural and
intuitive because its underlying cognitive mechanisms are deeply
rooted in both the visual and verbal processing modulesg of our
minds. Moreover, Coxeter Theory itself has clearly defined geo-
metric (visual) and algebraic (verbal) components which perfectly
match the great visual/verbal divide of mathematical cognition.
However, in paying attention to
the “microcosm” of mathematics, I

try not to lose the large-scale view
of mathematics. One of the principal
points of the book is the essential ver-

tical unity of mathematics, the natu- es:

One of the principal points of the book is
the essential vertical unity of mathemat-

ral integration of its simplest objects
and concepts into the complex hierar-
chy of mathematics as a whole.
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The Astronomer is, again, a useful metaphor. The celestial globe,
the focal point of the painting, boldly places it into a cosmological
perspective. The Astronomer is reaching out to the Universe—but,
according to the widely held attribution of the painting, he is Ver-
meer’s neighbor and friend Antonij van Leeuwenhoek, the inventor
of the microscope and the discoverer of the microcosm, a beauti-
ful world of tiny creatures which no one had ever seen before. Van
Leeuwenhoek also discovered the cellular structure of living organ-
isms, the basis of the unity of life.

Microstructure of nerve fibers: a drawing by Antonij van Leeuwen-
hoek, circa 1718. Public domain.

The next principal feature of the book is that I center my dis-
cussion of mathematics as a whole—in all its astonishing unity—
around the thesis, due to Davis and Hersh [21], that mathematics
is

the study of mental objects with reproducible properties.

In this book, the Davis—Hersh thesis works at three levels.

First, it allows us to place mathematics in the wider context of
the evolution of human culture. Chapter 11 of the book is a brief
diversion into memetics, an emerging interdisciplinary area of re-
search concerned with the mechanisms of the evolution of human
culture. The term meme, an analogue of “gene”, was made popu-
lar by Richard Dawkins [167] and was introduced into mainstream
philosophy and cultural studies by Daniel Dennett [25]. It refers to
elementary units of cultural transmission. I discuss the nature and
role of “mathematical” memes in detail sufficient, I hope, for mak-
ing the claim that mathematical memes play a crucial role in many
meme complexes of human culture: they increase the precision of
reproduction of the complex, thus giving it an evolutionary advan-
tage. Remarkably, the memes may remain invisible, unnoticed for
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centuries and not recognized as rightly belonging to mathematics.
In this book, I argue that this is a characteristic property of “math-
ematical” memes:

If a meme has the intrinsic property that it increases the
precision of reproduction and error correction of the meme
complexes it belongs to and if it does that without resorting
to external social or cultural restraints, then it is likely to
be an object or construction of mathematics.

So far research efforts in mathematical cognition have been
concentrated mostly on brain processes during quantification and
counting (I refer the reader to the book The Number Sense: How
the Mind Creates Mathematics by Stanislas Dehaene [171] for a
first-hand account of the study of number sense and numerosity).
Important as they are, these activities occupy a very low level
in the hierarchy of mathematics. Not surprisingly, the remark-
able achievements of cognitive scientists and neurophysiologists
are mostly ignored by the mathematical community. This situation
may change fairly soon, since conclusions drawn from neurophysi-
ological research could be very attractive to policymakers in math-
ematics education, especially since neurophysiologists themselves
do not shy away from making direct recommendations. I believe
that hi-tech “brain scan” cognitive psychology and neurophysiology
will more and more influence policies in mathematics education. If
mathematicians do not pay attention now, it may very soon be too
late; we need a dialogue with the neurophysiological community.
The development of neurophysiol-
ogy and cognitive psychology has

reached the point where mathemati-

cians should start some initial dis-
cussion of the issues involved. Fur-
thermore, the already impressive
body of literature on mathematical
cognition might benefit from a criti-
cal assessment by mathematicians.

Second, the Davis—Hersh thesis
puts the underlying cognitive mech-
anisms of mathematics into the focus
of the study.

Cognitive psychology and neurophysi-
ology will more and more influence poli-
cies in mathematics education. If math-
ematicians do not pay atfention now,

it may very soon be too late; we need
a dialogue with the neurophysiological
community.

Finally, the Davis—Hersh thesis is useful for understanding the
mechanisms of learning and teaching mathematics: it forces us to
analyze the underlying processes of interiorization and reproduc-
tion of the mental objects of mathematics.

In my book, I try to respond to the sudden surge of interest in
mathematics education which can be seen in the mathematical re-
search community. It appears that it has finally dawned on us that
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Alexandre Borovik,
aged 11

we are a dying breed, that the very reproduction of mathematics as
a social institution and a professional community is under threat. I
approach the problems of mathematical education from this view-
point which should not be easily set aside: what kind of mathemat-
ics teaching allows for the production of future professional math-
ematicians? What is it that makes a mathematician? What are the
specific traits which need to be encouraged in a student if we want
him or her to be capable of a rewarding career in mathematics? 1
hope that my observations and questions might be interesting to
all practitioners and theorists of general mathematical education.
But I refrain from any critique of, or recommendations for, school
mathematics teaching.

The unity of mathematics means that there are no
boundaries between “recreational”, “elementary”, “under-
graduate”, and “research” mathematics; in my book, I freely
move throughout the whole range. Nevertheless, I try to
keep the book as non-technical as possible. I hope that the
book will find readers among school teachers as well as stu-
dents.

In a few instances, the mathematics used appears to be
more technical. This usually happens when I have to re-
sort to metamathematics, a mathematical description of the
structure and role of mathematical theories. But even in
such cases, mathematical concepts are no more than a pre-
sentation tool for a very informal description of my observa-
tions.

Occasionally I could not resist the temptation to include
some comments on matters of my own professional interest;
however, such comments are indicated in the text by smaller print.

Photographs in this book

I come from childhood as from a homeland.
Antoine de Saint-Exupéry, Pilot de guerre

I tried to place in the margins of the book a photograph of
every living mathematician/computer scientist/historian of math-
ematics/philosopher of mathematics/scholar of mathematics men-
tioned or quoted in the book. The catch is, I am using childhood
photographs. In my book, I write a lot about children and early
mathematical education, and I wish my book to bear a powerful re-
minder that we all were children once. I hope that the reader agrees
that the photographs make a fascinating gallery—and my warmest
thanks go to everyone who contributed his or her photograph.
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I tried to place a photograph of a particular person in that sec-
tion of the book where his/her views had some impact on my writ-
ing. The responsibility for my writing is my own, and including a
photograph of a person should not be construed as his or her tacit
endorsement of my views.

Apologies

This book may need more than one preface, and
in the end there would still remain room for doubt
whether anyone who had never lived through
similar experiences could be brought closer

to the experience of this book by means of prefaces.
Friedrich Nietzsche

I hope that the reader will forgive me that the book reflects
my personal outlook on mathematics. To preempt criticism of my
sweeping generalizations (and of the even greater sin of using in-
trospection as a source of empirical data), [ quote Sholom Aleichem:

Man’s life is full of mystery, and everyone tries to compare it
to something simple and easier to grasp. I knew a carpenter,
and he used to say: “A man is like a carpenter. Look at the
carpenter; the carpenter lives, lives and then dies. And so
does a man.”

And to ward off another sort of criticism, I should state clearly
that I understand that, by writing about mathematics instead of
doing mathematics, I am breaking a kind of taboo. As G. H. Hardy
famously put it in his book A Mathematician’s Apology [45, p. 611:

The function of a mathematician is to do something, to
prove new theorems, to add to mathematics, and not to
talk about what he or other mathematicians have done.
Statesmen despise publicists, painters despise art-critics,
and physiologists, physicists, mathematicians have similar
feelings; there is no scorn more profound, or on the whole
justifiable, than that of the men who make for the men
who explain. Exposition, criticism, appreciation is work for
second-rate minds.

Having broken a formidable taboo of my own tribe, I can only
apologize in advance if I have disregarded, inadvertently or through
ignorance, any sacred beliefs of other disciplines and professions.
To reduce the level of offence, I ask the discerning reader to treat
my book not so much as a statement of my beliefs but as a list of
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gquestions which have puzzled me throughout my professional ca-
reer in mathematics and which continue to puzzle me.

Perhaps, my questions are naive. However, I worked on the book
for several years and kept the text on the Web, returning to it from
time to time to add some extra polish or to correct the errors. So
far, the changes in the book were limited to expanding and refining
the list of questions, not inserting answers—I cannot find any in
the existing literature. This is one of the reasons why I believe that
perhaps at least some of my questions deserve a thorough discus-
sion in the mathematical, educational, and cognitive science com-
munities.

My last apology concerns the use of terminology. Some terms
and expressions which attained a specialized meaning in certain
mathematics-related disciplines are used in this book in their (orig-
inal) wider and vaguer sense and therefore are more friendly to the
readers. To fend off a potential criticism from nit picking special-
ists, I quote a fable which I heard from one of the great mathemati-
cians of our time, Israel Gelfand:

A student corrected an old professor in his lecture by
pointing out that a formula on the blackboard should con-
tain cotangent instead of tangent. The professor thanked
the student, corrected the formula and then added:

“Young man, I am old and no longer see much difference
between tangent and cotangent—and I advise that you do
so as well.”

Indeed, when mathematicians informally discuss their work,
they tend to use a very flexible language—exactly because the prin-
cipal technical language of their profession is exceptionally precise.
I follow this practice in my book; I hope it allows me to be friendly
towards all my readers and not only my fellow mathematicians.
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1

A Taste of Things to Come

This is the opening chapter of the book, and I use it to set the tone of
my narrative: I start with some simple mathematical observations
and briefly discuss what they possibly say about the inner workings
of our minds. Surprisingly, this discussion very naturally involves
some non-trivial ideas and results from the frontier of mathemati-
cal research. But it is better to see it for yourself.

1.1 Simplest possible example

Simplicity, simplicity, simplicity!

1 say, let your affairs be as two or three,

and not a hundred or a thousand;

instead of a million count half a dozen,

and keep your accounts on your thumb-nail.

Henry David Thoreau, Walden

In my account, I am not afraid to be very personal, almost sen-
timental, and have decided to start the discussion of the “simple
things” of mathematics by turning to my memories from my school
years.

I had my most formative mathe-
matical experiences at the tender age

of thirteen, when I still lived in my
home village on the shores of Lake
Baikal in Siberia. I learned elemen-
tary calculus from two thin booklets

Always test a mathematical theory on
the simplest possible example—and ex-
plore the example to its utmost limifs.

sent to me from a mathematics corre-
spondence school: The Method of Co-
ordinates [266] and Functions and Graphs [267]. Much later in my
life I met one of the authors of the books, the famous mathemati-
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cian Israel Gelfand, and had a chance to do some mathematics with
him.

Once I mentioned to Gelfand that I read his Functions and
Graphs; in response, he rather sceptically asked me what I had
learned from the book. He was delighted to hear my answer: “The
general principle of always looking at the simplest possible exam-
ple”. “Yes!” exclaimed Gelfand in his usual manner, “yes, this is my
most important discovery in mathematics teaching!” He proceeded
by saying how proud he was that, in his famous seminars, he al-
ways pressed the speakers to provide simple examples, but, as a
rule, he himself was able to suggest a simpler one. !

So, let us look at the principle in more detail:

Always test a mathematical theory on the simplest possible
example. ..

This is a banality, of course. Everyone knows it; therefore almost
no one follows it. So let me continue:

...and explore the example to its utmost limits.

This book contains a number of examples pushed to their in-
trinsic limits. See, in particular, Section 2.6 and the discussion of
Figure 2.11 on page 40 for some examples from the theory of Cox-
eter groups and mirror systems. What could be simpler than that?

But it is even more instructive to look at an example from Func-
tions and Graphs.

What is the simplest graph of a function? Of course, that of a
linear function,

y = ax +b.

But what are the simplest non-linear elementary functions? The
apparent answer is quadratic polynomials. Well, Functions and
Graphs suggests something different. The simplest non-linear func-
tion is the magnitude, or absolute value, y = |x|.

N

0

v = |z

Indeed, it allows

e easy plotting and interpolation;



1.3 Choiceless computation

I claim that the difference between the “switch” and “flow”
modes of computation is felt and recognized by almost every math-
ematician. Most undergraduate students of mathematics in their
second or third year of study can judge—and with a surprising
degree of certainty and immediacy in their answers—what kind
of mathematics is more suitable for them, discrete or continuous.
They just know, even if they have never before given any thought to
the issue. Perhaps, we should tell them that there is a difference.?

Not being a professional neurophysiologist, I can only conjec-
ture that the two types of mathematical activities should be re-
flected in two different patterns of brain activity, perhaps even eas-
ily noticeable with the help of modern brain scan techniques. Mean-
while, within mathematics itself the two modes of calculation are
recognized as being intrinsically different and are analyzed to con-
siderable depth. In the next section I briefly describe the findings
of mathematicians.

1.3 Choiceless computation

We choose our joys and sorrows long before we experience them.
Kahlil Gibran

So, we started with the absolute value function y = |z| as an
example of “the simplest possible example” and are now moving to
a mathematical description of the difference between the “switch”
and “flow” modes of computation.

As I will frequently do in this book, I use a concept from com-
puter science as a pointer to possible structures of human cognition
responsible for particular ways of manipulating mathematical ob-
jects. In this case, a possible indicator is the concept of choiceless
polynomial time computation [313].

Some terminology ought to be explained.

1.3.1 Polynomial time complexity

An algorithm is said to have polynomial time complexity (of de-
gree d) if, when working with inputs of size I, it requires O(I?) el-
ementary operations (see the endnote * for an explanation of O( )-
notation). Let us look, for example, at the addition of two integers.
The input size here is the number of digits required to write the in-
tegers down; if both summands are smaller than n, then each needs
at most
I = [logyg(n)] +1

digits (here, [log,,(n)|] denotes log,,(n) rounded down to the near-
est integer). To add the integers, we need, in each position, to add
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despite the immense complexity and power of the brain, the men-
tal processes of mathematics appear to be surprisingly resource-
limited. Therefore I have a feeling that branches of logic developed
for the needs of complexity theory might provide better metaphors
than the general theory of computation.

1.4 Analytic functions and the inevitability of
choice

AEROFLOT flight attendant: “Would you like a dinner?”
Passenger: “And what’s the choice?”
Flight attendant: “Yes—or no.”

We have mentioned at the beginning of our discussion that |z|
is a non-analytic function. It can be written by a single algebraic

formula
x| = Va2,

with the only glitch being that of the two values of the square root
+v/2% we have to choose the positive one, namely, V22,

One may argue that in the case of the absolute value function
the choice is artificial and is forced on us by the function’s awkward
definition. But let us turn to solutions of algebraic equations, which
give more natural examples of the inevitability of choice.

The classical formula

—b+b? — dac
Ty = ———————
J 2a

for the roots of the quadratic equation is the limit of what
we can do with analytic functions without choosing branches
of multivalued analytic functions—but even here, beware of
complications and read an interesting comment from Chris
Hobbs.” Recall that the inverse of the square function z =
y? is a two-valued function y = 4./ whose graph has two
branches, positive y = /= and negative y = —+/x. Similarly,
the cube root function y = /x has three distinct branches,
but they become visible only in the complex domain, since

Chris Hobbs only one cube root of a real number is real; the other two are
aged 6 ? obtained from it by multiplying it by complex factors
1 3
0
2 2

The classical formula—which can be traced back to Gerolamo Car-
dano (1501-1576) and Niccold Tartaglia (1499-1557 )—for the roots
of the cubic equation



1.4 Analytic functions and the inevitability of choice

11

* fax® fbr+c=0

gives its three roots as

_\q/—Qa‘* + 9ab — 27c + +/(2a® — 9ab + 27¢)* + 4(a* + 3b)?

a
3 54

N \q/—Qa.E‘ +9ab — 27c — \/(2a® — 9ab + 27¢)? + 4(a? + 3b)3
54 ’

a+—1 — i3 i/—?aa +9ab — 27c + \/(2a® — 9ab + 27¢)? + 4(a? + 3b)3
3 2 54

—1+iV3 azas +9ab — 27c — \/(2a® — 9ab + 27¢)? + 4(a? + 3b)3
2 54 ’

a n —1 13 \J/—Q(zs + 9ab — 27c + \/(2a® — 9ab + 27¢)? + 4(a? + 3b)3
2

3 54

—1-iV3 {/—2@3 +9ab — 27c — \/(2a® — 9ab + 27¢)2 + 4(a2 + 3b)?
2 54 '

Please notice the carefully choreographed choice of the branches of
the square root ,/ and the cube root function g/, the rhythmic dance
of pluses and minuses. Without that choice, Cardano’s formula pro-
duces too many values, only three of which are true roots.

Indeed, if we work with multivalued functions without making
any distinction between their branches, we have to accept that the
superposition of an m-valued function and an n-valued function
has mn values. We cannot collect like terms: an innocent looking

expression like
VI + Vox

defines, if we interpret “\/z ” as two-valued, a function with four
branches

£vr £ V9 = { —4vx, -2z, 2z, 4/x }.

It is a rigorous mathematical fact [307] that solutions of equa-
tions of degree higher than two cannot be analytically expressed
by choiceless multivalued formulae (even if we allow for more so-
phisticated analytic functions than radicals); see a discussion of the
topological nature of this fact by Vladimir Arnold [3, p. 38].

This last observation is especially interesting in the historic
context. At the early period of development of symbolic algebra,
mathematicians were tempted to introduce functions more general
than roots. The following extract from Pierpaolo Muscharello’s Al-
gorismus from 1478 is taken from Jens Hgyrup [54]:
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Oh yes, do it.

Pronic root is as you say, 9 times 9 makes 81. And now take
the root of 9, which is 3, and this 3 is added above 81, so that
the pronic root of 84 is said to be 3.

In effect, Muscharello wanted to introduce the inverse of the func-
tion
2 2t 4 2

Arnold’s theorem explains why such tricks could not lead to an easy
solution of cubic and quadric equations and why it had been aban-
doned.

1.5 You name it—we have it

This section is more technical and can be skipped.

As I have already said on several occasions, this book is about
simple atomic objects and processes of mathematics. However,
mathematics is huge and immensely rich; even the simplest ob-
servations about its simplest objects may already have been de-
veloped into sophisticated and highly specialized theories. Mathe-
matics” astonishing cornucopian richness and its bizarre diversity
are not frequently mentioned in works on philosophy and method-
ology of mathematics—but this point has to be emphasized, since
its makes the question about unity of mathematics much more in-
teresting.

In this section, I will briefly describe a “mini-mathematics”, a
mathematical theory concerned with a close relative of the abso-
lute value function, the maximum function of two variables

z = max(z, y).
Of course, the absolute value function |z| can be expressed as
|z| = max(z, —x).

Similarly, the maximum max(z,y) can be expressed in terms of
the absolute value |z| and arithmetic operations—I leave it to the

The theory is known by the name of {ropical mathematics.
The strange name has no deep meaning: the adjective “tropical”
was coined by French mathematicians in honor of their Brazil-
ian colleague Imre Simon, one of the pioneers of the new disci-
pline. Tropical mathematics works with the usual real numbers
but uses only two operations: addition, = + y, and taking the
maximum, max(z,y)—therefore it is one of the extreme cases of
“switch-flipping”, choice-based mathematics. Notice that addition
is distributive with respect to taking maximum:

reader as an exercise.

a + max(b, ¢) = max(a + b,a + c).
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