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INTRODUCTION

I could start this book by telling you that maths is everywhere

and yammer on about how important it is. This is true, but I
suspect you’ve heard that one before and it’s probably not the
reason you picked this book up in the first place.

[ could start by saying that being numerate and good at
mathematics is an enormous advantage in the job market,
particularly as technology plays an increasingly dominant

role in our lives. There are great careers out there for
mathematically minded people, but, to be honest, this book
isn’t going to get you a job.

[ want to start by telling you that skill in mathematics can
be learnt. Many of us have mathematical anxiety. This is like
a disease, since we pick it up from other people who have
been infected. Parents, friends and even teachers are all
possible vectors, making us feel that mathematics is only for
a select group of people who are just lucky, who were born
with the right brain. They do mathematics without any effort
and generally make the rest of us feel stupid.

This is not true.

Anyone can learn mathematics if they want to. Yes, it takes
time and effort, like any skill. Yes, some people learn it faster
than others, but that’s true of most things worth learning. I
know you’re busy, so the premise here is that you want some
easily digestible snippets. You can learn them piecemeal, each
building on the one before, so that without too much effort



you can take on board the concepts that really do explain the
world around us.

I've divided the book up into several sections. You’ll
remember doing a lot of the more basic stuff at school, but
my aim is to cover this at a brisk pace to get to the really
tasty bits of mathematics that maybe you didn’t see. You can
work through the book from start to finish, or dip in and out
as and when the mood takes you - a six-course meal and a
buffet at the same time!

['ve also included lots of anecdotes to spice things up -
stories of how discoveries were made, who discovered them
and what went wrong along the way. As well as being
interesting and entertaining, these serve to remind us that
mathematics is a field with a vibrant history that tells us a lot
about how our predecessors approached life. It also shows
that the famous, genius mathematicians had to work hard to
get where they got, just like we do.

Prepare yourself for a feast. I hope you’re hungry.



1
NUMBER




Chapter 1

TYPES OF NUMBER

Sixty-four per cent of people have access to a supercomputer.

[n 2017, according to forecasts, global mobile phone
ownership was set to reach 4.8 billion people, with world
population hitting 7.5 billion. As the Japanese American
physicist Michio Kaku (b. 1947) put it: ‘Today, your cell phone
has more computer power than all of NASA back in 1969,
when it placed two astronauts on the moon.’

At a swipe, each of us can do any arithmetic we need on our
phones - so why bother to learn arithmetic in the first place?

[t’s because if you can perform arithmetic, you start to
understand how numbers work. The study of how numbers
work used to be called arithmetic, but nowadays we use this
word to refer to performing calculations. Instead,
mathematicians who study the nature of numbers are called
number theorists and they strive to understand the
mathematical underpinnings of our universe and the nature
of infinity.

Hefty stuff.

I'd like to start by taking you on a trip to the zoo.

Humans first started counting things, starting with one
thing and counting up in whole numbers (or integers). These
numbers are called the natural numbers. If I were to put these
numbers into a mathematical zoo with an infinite number of



enclosures, we’d need an enclosure for each one:

1,2,3,4,5,6...

The ancient Greeks felt that zero was not natural as you
couldn’t have a pile of zero apples, but we allow zero into the
natural numbers as it bridges the gap into negative integers -
minus numbers. If I add zero and the negative integers to my
z0o, it will look like this:

...=6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6 ...

My zoo now contains all the negative integers, which when
combined with the natural numbers make up the group of
numbers called, imaginatively, the integers. As each positive
integer matches a negative one, my zoo needs twice as many
enclosures as before, with one extra room for zero. However,
my infinite mathematical zoo does not need to expand, as it is
already infinite. This is an example of the hefty stuff I
referred to earlier.

There are other types of numbers that are not integers. The
Greeks were happy with piles of apples, but we know an apple
can be divided and shared among a number of people. Each
person gets a fraction of the apple and I'd like to have an
example of each fraction in my zoo.

If I want to list all the fractions between zero and one, it
would make sense to start with halves, then thirds, then
quarters, etc. This methodical approach should ensure I get
all the fractions without missing any. So, you can see that I'm
going to have to go through all the natural numbers as
denominators (the numbers on the bottom of the fraction).
For each different denominator, I'll need all the different



numerators (the numbers on the top of the fraction), starting

<

from one and going up to the value of the denominator.

e

Fractions

Fractions show numbers that are between whole integers and are
written as one number (the numerator) above another (the
denominator) separated by a fraction bar. For example, a half
looks like:

1

2

One is the numerator, two is the denominator. The reason it is
written this way is that its value is one divided by two. It tells you

what fraction of something you get if you share one thing between

3
two people. 1 is three things shared between four people — each

Qraon gets three quarters. /

Once I've worked out all the fractions between zero and

one, I can use this to fill in all the fractions between all the
natural numbers. If I add one to all the fractions between zero
and one, this will give me all the tractions between one and
two. If I add one to all of them, I'll have all the fractions
between three and four. I can do this to fill in the fractions
between all the natural numbers, and I could subtract to fill
in all the fractions between the negative integers too.

So, I have infinity integers and I now need to build infinity
enclosures between each of them for the fractions. That
means I need infinity times infinity enclosures altogether.
Sounds like a big job, but luckily I still have enough
enclosures.



As the fractions can all be written as a ratio as well, the
fractions are called the rational numbers. I now have all the
rational numbers, which contain the integers (as integers can
be written as fractions by dividing them by one), which
contain the natural numbers in the zoo. Finished.

Just a moment - some mathematicians from India 2,500
years ago are saying that there are some numbers that can’t
be written as fractions. And when they say ‘some’, they
actually mean infinity. They discovered that there is no
number that you can square (multiply by itself) to get two, so
the square root of two is not a rational number. We can’t
actually write down the square root of two as a number
without rounding it, so we just show what we did to two by
using the radix symbol:v2 . There are other really important
numbers that are not rational that have been given symbols
instead as it is a bit of a faff to write down an
unwritedownable number: 7, e and ¢ are three examples that

we’ll look at later. We call such numbers irrational, and I need
to put these into the zoo as well. Guess how many irrational
numbers there are between consecutive rational numbers?
That’s right - infinity! However, I can still squeeze these into
my infinite zoo without having to build any more enclosures,
although Cantor might have a thing or two to say about that
(see here).

f

N

Squares and Square Roots

When you multiply a number by itself, we say the number has
been squared. We show this with a little two called a power or
iIndex:




3 x 3 =32

Three squared is nine. This makes three the square root of nine.
Square rooting is the opposite of squaring. The square root of
sixteen is four because four squared is sixteen:

V16 =4

Numbers like nine and sixteen are called perfect squares,
because their square root is an integer. Any number, including
fractions and decimals, can be squared. Any positive number can
be square rooted.

&For much more information about this, see here. j

When we put the irrational numbers together with the

rational numbers we have what mathematicians call the real
numbers. If you've spotted a pattern in what went before,
you’ll suspect that there are also not-real numbers and you’d
be right. However, I'm going to stop there and name my zoo
The Infinite Real Number Zoo. Most zoos sort their animals out
by type, so I could organize mine into overlapping groups of
types. The map might look like this, and I've put a few must-
sees in to help you plan your day out:

The Infinite Real Number Zoo

Key:

N Natural Numbers
/) Integers

@ Rational Numbers
[R Real Numbers




[ must own up to the fact that my zoo owes a lot to the
German mathematician David Hilbert (1862-1943). He made
great contributions to mathematics but is best known for his
advocacy and leadership of the subject. In 1900 he produced a
list of twenty-three unsolved problems - now known as the
Hilbert problems - for the International Congress of
Mathematicians, three of which are still unresolved to this
day. The thought experiment Hilbert’s Hotel, the source for my
z00, concerns Hilbert’s musings on a hotel with an infinite
number of rooms filled with an infinite number of guests.
Hilbert shows that we can still fit another infinite number of
guests into the hotel if we can persuade all the initial guests
to move to the room with a number double their current
room number. The current guests would all now be in even-
numbered rooms, leaving the odd-numbered rooms (of which
there are infinitely many) for the new arrivals.



Chapter 2

COUNTING WITH
CANTOR

Galileo Galilei (1564-1642) came up with a nice puzzle known

as Galileo’s paradox while under house arrest in Italy for his
heretical belief that the earth went around the sun.

[t says that while some natural numbers are perfect
squares (see here), most are not, so there must be more not-
squares than squares. However, every natural number can be
squared to produce a perfect square, so there must be the
same number of squares as natural numbers. Hence, a
paradox: two logical statements that cannot both be true.

Number theorists, as I've said, tackle the nature of infinity
and its bizarre arithmetic. Set theory, which is what we were
doing when we looked at the infinite mathematical zoo, was
invented by the German mathematician Georg Cantor (1845-
1918). He figured out that there are actually different types of
infinity. He worked on the cardinality of sets, which means
how many members of the set there are. For instance, if I
define set A as being the planets of the solar system, the
cardinality of set A is eight. (For more information about why
Pluto is no longer a planet, see here.)

Cantor looked at infinite sets too. The natural numbers are



infinite, but Cantor said that they are countably infinite
because as we count upwards from one, we are moving

towards infinity, making progress. We’ll never get to infinity,

but we can approach it. Cantor defined the set of natural
numbers as having a cardinality of aleph-zero, or &, (aleph

being the first letter of the Hebrew alphabet). Any other set of
numbers where you can make progress also has cardinality
Ko. So if I include the negative integers with the natural

numbers, I can still make progress counting through them, so
the set of integers also has cardinality of {,,.

[f my set were all the rational numbers from zero to one, I
could start on zero and try to work through all the fractions
towards one. If I consider all the possible denominators for
these fractions, I get the natural numbers again. The
numerators would also be various parts of the natural
numbers, so even the rational numbers from zero to one have
a cardinality of X,. This can be extended to show that the set

of all the rational numbers has cardinality X,,.

Going back to Galileo’s paradox, we can see that the set of
natural numbers and the set of perfect squares both have
cardinality X, and hence are, in fact, the same size. Paradox

no more - thanks, Cantor!
Essentially, sets with cardinality &, can be methodically

listed, even if that list is infinitely long. Cantor was able to
think of sets which cannot be methodically listed when he
considered the irrational numbers. His diagonal argument
showed that if you write down all the irrational numbers as
decimals, you can always make a new irrational number out
of the ones you’ve written down. When you add this to the
set, you can make a new irrational number from the new set.



This loop means that you can never list all the irrational
numbers methodically, as you keep finding ones that have
been left out. Cantor said that sets like this were uncountably
infinite and said their cardinality was ;.

Cantor, and many subsequent mathematicians, spent a lot
of time trying to work out the relationship between &, and X;.

Cantor proposed the continuum hypothesis, which states that
there is no set with a cardinality that is between &, and &, -

there is nothing between countable and uncountable sets. It
has since been shown that the continuum hypothesis cannot
be proved, or disproved, using set theory.

What can be proved is that Cantor took a concept (infinity)
that had only been considered seriously by philosophers and
theologians up to that point and kick-started a new way of
thinking about the very foundations of mathematics.
However, the disagreements and arguments his ideas
provoked caused Cantor great distress and provoked bouts of
depression that plagued him for the second half of his life. We
can only hope that the continuum hypothesis’ inclusion as a
Hilbert problem (see here) gave him some awareness of the
greatness he had achieved. Certainly the idea that even
infinities have differences is awe-inspiring stuff.



Chapter 3

ARITHMETIC

I'm going to work on the principle that you know how to count.

[’ve never met an adult who could not count. It is the first part of

mathematics that we learn, often before we go to school. Many
small children can even parrot off the numbers from one to ten by

rote before they have any understanding of what numbers are.
One way of looking at mathematics would be to say that it is
based on understanding certain principles which can then be used
to achieve certain results. Understanding and processes. However,
many of us never quite get the understanding part (or it may not
be offered to us in the first place) and we are left with only the
process to learn. The problem with this is that, like any skill, it
gets worse with neglect. Understanding also fades, but not in the
same way. What I love about mathematics is that I, an
unremarkable human who lives on a small island in the northern
hemisphere, am at the apex of a pyramid of understanding that
goes back through thousands of years, people and cultures. There

are many people whose maths pyramid is far taller than mine, but
[ have chosen to spend my career helping other people build up
their pyramids. And I know from experience that it doesn’t matter
how good you are at memorizing facts, algorithms and processes.
Without the understanding as a foundation, at some point your
pyramid is going to fall over.

Before we look at paper methods of arithmetic, I'd like to take a
brief look at the dual nature of the symbols + and -. These were
first introduced to the Western world in Germany from the late



1400s onwards. Johannes Widmann (c. 1460-98) wrote a book
called, in English, Neat and Nimble Calculation in All Trades in 1489
which is the earliest printed use of these symbols. From the
beginning, the symbols had two meanings each, which some
people struggle to differentiate.

Each symbol can be either an operation, to add or subtract, or a

sign to denote positive or negative. They are simultaneously an
instruction and a description, a verb and a noun. +3 can mean ‘add
three’ or ‘positive three’ - how do you know which is meant?

[t’s fairly common in mathematics education to introduce the
concept of a number line - an imaginary line that helps you to
perform mental arithmetic and to understand the concepts of
‘ereater than’ and ‘less than’. I often ask my students whether
they see their number line as horizontal or vertical and which
direction the numbers go in. I am sure that there could be some
very interesting research here! For the sake of my analogy, our
number line will be vertical like a thermometer.



Here we can see the use of + and - in their descriptive form,
telling us whether the number is positive or negative. We don’t
usually include the descriptive + on positive numbers, but I've put
them on here to highlight the positive part of the number line.
Zero, we can see, is exactly in the middle and so is neither positive
or negative.

Now, imagine you are the captain of a mathematical hot-air
balloon. You have two ways of changing the height of the balloon
- changing the amount of heat in the balloon and changing the
amount of ballast in the balloon. We’'ll treat the heat as positive as
it makes the balloon go upwards. You can change the amount of
heat in the balloon in two ways. You can add more by using the
burner, or take some away by opening a vent at the top of the



balloon, allowing hot air to escape. We’ll treat the ballast as
negative as it makes the balloon go downwards. You can change
the amount of ballast in the balloon by throwing some over the
side or by having your friend with a drone deliver some more to
your basket. We can represent each of these four ideas with a
mathematical operation:

Action Effect Balloon goes. ..
Use Burner Add Heat T
+ +
Add Ballast Afd Ballast 1
Drop Ballast Subtract Ballast ,,T\

~ y

Hindu-Arabic Numerals

Our way of writing numbers is called the Hindu-Arabic system as it
combines several breakthroughs from both these cultures. An Indian
astronomer called Aryabhata (475-550) was among the first to use a
place-value system from about 500 CE, specifying a decimal system
where each column was worth ten times the previous. Another Indian
astronomer, Brahmagupta (598—-670), embellished the system by using
nine symbols for the numbers and a dot to represent an empty column,
which went on to evolve into our symbol for zero: 0.

The efficiency of calculation that the new system allowed made it
popular and it spread across the world. By the ninth century it reached
an Arabic mathematician called Muhammad al-Khwarizmi (¢. 780 to c.
850) — from whose name we get the word ‘algorithm’ — who wrote a
treatise on it. This was subsequently translated into Latin, which gave
the Western world access to these numbers for the first time.

Sadly, the system didn’t gain much traction in Europe. Leonardo of
Pisa (c. 1175 to ¢. 1240), aka Fibonacci, who was educated in the
Arabic world, used it in his book Liber abaci in 1202. The book was




influential in persuading shopkeepers and mathematicians away from
using the abacus for calculation and towards the awesome potential of
the Hindu-Arabic system. However, it too was written in Latin, which
excluded many people from understanding it. In 1522, Adam Ries
(1492-1559) wrote a book in his native German explaining how to use
these numerals, which finally enabled literate but not classically

Qiucated folk to exploit the system. /

The last row of the table is one that many people accept (or have

learnt by rote) but don’t really understand why - hopefully the
balloon analogy is some help!

We have now sorted out how to make our balloon go up and
down, what mathematicians call an operation. If we want to
calculate our altitude, our position on the number line, we need to
do a calculation, which combines our current place on the number
line with an operation. The first number in the calculation tells us
our current altitude, and the rest of the calculation tells us what
action to take. For example, we could translate -4 + 3 as:

. o
1) O
+3
-3
w 3

-4
-4 + add (+) 3 = -1
Current 3 blasts
altitude of heat
is -4

Clearly, this means the balloon will go up three places on the
number line, from -4 to -1.! Therefore:-4 + 3 = -1

A slightly trickier example, with lots of negatives in it, would be
-1 - -6, which we can translate as:



+6

-1 - -6
Current subtract 6 bags of
altitude ballast

15 -1

Il
L

Dropping six bags of ballast over the side is going to make the
balloon go up six, so:-1--6=5

Now that we know when your balloon will go up and when it will
go down, we can look at more complicated arithmetic and the rest
of the four operations.



Chapter 4

ADDITION AND
MULTIPLICATION

When it comes to doing addition with larger numbers on

paper, the methods we use all rely on the information
encoded in the number by place value. We know that the
number represented by the digits 1234 is one thousand, two
hundred and thirty-four. This is because each position in the
number has a corresponding value. From the right, these are
ones (usually called units), tens, hundreds, thousands, tens of
thousands, etc., getting ten times bigger every step to the left.
So the number 1234 is four units (4), three tens (30), two
hundreds (200) and one thousand (1000). I can write 1234 as:

1234 =4 + 30 + 200 + 1000

This is called expanded form by maths teachers and it’s
really helpful for understanding how sums work. Imagine the
sum 1234 + 5678. If [ write each number in expanded form
thus:

1234 =4 + 30 + 200 + 1000
5678 =8 + 70 + 600 + 5000



[ can then add each matching value together easily:

1234 + 5678 : 4 + 8 = 12 (units)
30 + 70 = 100 (tens)
200 + 600 = 800 (hundreds)
1000 + 5000 = 6000 (thousands)

From here I can see that 1234 + 5678 = 12 + 100 + 800 + 6000 =
6912.
The way we were taught at school is merely a shorthand of

this process. We set up the sum with the columns matching
and add through, right to left:

The first calculation is 4 + 8 = 12. We can’t write 12 in the
one-digit answer box but 12 = 10 + 2, so we leave the 2 in that
box and carry the 10 to the next calculation:

1
1 2 3 -
' 7 &
2

Technically, the next column addition is 10 + 30 + 70 = 110,
but as we are working in the tens column we can just look at
how many tens we have: 1 + 3 + 7 =11 tens altogether. So
again we have too many digits to fit in. 11 = 10 + 1, so we write
a 1in the tens column and carry 1 into the hundreds column:



1 Z
100 + 200 + 600 = 900:

1 2 3 4
- 5 6 3
9 1 2z

And finally, 1000 + 5000 = 6000:
1 2 3 4
+ = 6 / 8
G 9 1 z

Multiplication is a quick way of doing repeated addition. 12 x
17 asks the question: ‘how much is twelve lots of seventeen?’ I
could work out the answer by adding twelve seventeens
together, or seventeen twelves, but multiplying is much
faster, provided you have learned your times tables in
advance.

Imagine I had a lot of counters. I could solve the 12 x 17
problem by putting out twelve rows of seventeen counters,
and then counting them:



However, if I think about 12 as 10 + 2and 17 as 10 + 7 then I
can group the counters:

As I know my times tables, I know how many counters must
be in each subdivision:



10 7

10x 7=

10 10 x 10 = 100 20

2 2x10=20 2x7=14

So now I know that 12 x 17 = 100 + 70 + 20 + 14 = 204. This
method (minus putting out 204 counters) is called the grid
method. Here’s a slightly more advanced version for solving
293 x 157

200 90 3
100 100 x 200 = 20000 100x90= 9000 100x 3= 300
50 50x 200= 10000 50x90= 4500 S0x3= 150

7 7= 200 = 1400 7 %90 = 630 I1x3= 21
11400 14130 471

You might be asking how I did all the multiplications in my
head when they are much larger than what we find in our
times tables. Well, there’s a nifty hack for that. Every time I
multiply an integer by ten, I add a zero to the end of the
number. For 100 x 200, I know that 100 must be 1 x 10 x 10 and

that 200 must be 2 x 10 x 10. If I put this all together:

f

Decimals

It's worth noting that | can extend the idea of place value in both
directions. Going to the right of the units column, the columns get
ten times smaller each time, giving me tenths, hundredths,
thousandths and so on. | use a decimal point to show that the
right-most digit is no longer the units. This means | can use the
same rules as above to add decimal numbers eg 45.3 + 27.15:




4 5 . 3 [
+ z Fi . 1 5
/ 2 . 4 L

Notice that | put a zero on the end of 45.3 to make the columns
match up, making the calculation clearer (and it's particularly
important for subtraction). | can do this as 45.3 is the same as
45.30: three tenths add zero hundredths is still just three tenths.
For this reason, mathematicians say 45.30 as forty-five point three

Kzero rather than forty-five point thirty. /

100 x 200 =1x10x10%x2x10 % 10
=1x2x10x10%x 10 x 10
=2x10x10x10x 10

Remembering that every ‘x10” means putting a zero after
the 2,1 get 100 x 200 = 20000. I don’t go through this entire
process whenever I'm doing a grid multiplication. I just
multiply the front digits and then add however many zeroes
there are in the calculation to the right of it. So for 50 x 200,
my thought process was 5 x 2 = 10, and then put three zeroes
on. Therefore 50 x 200 = 10000. Bingo.

Back to my grid - you can see I've totalled each column. My
final answer is 31400 + 14130 + 471, which I'll do an addition
sum for:

3 1 il 0 0
1 4 1 3 0
+ 4 / 1
4 G 0 0 1



Final answer: 293 x 157 = 46001.

There are other methods, including long multiplication,
but as long as you have a working method then stick to it.
Let’s move on to addition and multiplication’s alter egos,
subtraction and division.

4 N

Napier's Bones

John Napier (1550-1617) was a Scottish mathematician,
astronomer and alchemist who invented a set of rods, known as
Napier’s bones, for doing multiplication. These contained a rod for
each times table — for instance, the three-times-table rod would
look like this:




ANANENANEANEENANAN G

If you wanted to calculate,
the three-, seven- and one-ii
across the ninth row, which

ylale

You then add together the numbers in each diagonal stripe,
starting from the right. If the total is more than nine, | carry into the
next stripe:

ahce, 9 x 371, you would set
e rods side by side and read
K like this:




Hence 9 x 371 = 33309.

Napier was rumoured to dabble in sorcery, having a black
rooster as his familiar. He would periodically command his
servants to enter a room alone with the bird and stroke it, saying
that this would allow the bird to sense the servant's honesty. In
fact, Napier put soot on the bird’s feathers. Anyone with a guilty
conscience would not stroke the bird, their hands would remain

Qc}tlees and they would be found guilty by the cunning Napier. j/




Chapter 5

SUBTRACTION AND
DIVISION

Subtraction works very similarly to addition. For instance,
6543 - 5678 1s:

6543 - 5678 : 3-8 =-5
40 -70=-30
500 - 600 = -100
6000 - 5000 = 1000

This leaves me with -5 + -30 + =100 + 1000 = -135 + 1000 =
865. We can use our column method again, but whereas in
addition we used carrying to cope with having too much in a
column, we face the opposite problem with subtraction. If I

proceed as I did above:

This doesn’t make a lot of sense. To find the correct answer
[ need to use borrowing, although one of my students pointed
out that since the borrowed amount never gets returned,



stealing might be a better word for it. When I notice that 3 - 8
will give me a negative, I boost the 3 by borrowing from the
next column. I cross out the 4 and reduce it by one. The ‘one’ I

have borrowed is actually worth ten, so it increases my 3 to
13.13 -8 =5:

The next column again would leave a negative result as 3 -
7 = -4. Again I borrow one of the hundreds from next door.

One hundred is ten tens, boosting my 3 tens up to 13 tens so
that I can proceed:

1 | -
L -

6 5 A '3
— 5 b 7 &
b 2

Yet another borrow required for the hundreds column

before I can carry on, and I can see that my thousands column
will be zero:

&
.

B 5 A 3
. 3] 7
L) & b

So we can now see that 6543 - 5678 = 865.



We saw in the previous section that addition and
multiplication are closely related. The same is true of
subtraction and division. The calculation 3780 + 15 is asking
us ‘how many times does fifteen go into 37807, i.e. ‘how many
times can I subtract fifteen from 37807’ Indeed, this way of
thinking is the key to a method of division called chunking. In
it, I keep subtracting multiples of the divisor until I get down
to zero.

In the first place, I know that 2 x 15 = 30, so 200 x 15 must be
3000. I'll start by subtracting this from 3780:

3 / o 0
— 3 U U U 200
/ 8 0

This leaves 780. Thinking about fifteen, I can see that 4 x 15
= 60, so 40 x 15 = 600. I'll take this off next:

3
- 3

0
200

40
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Finally, I'll take off a further twelve fifteens in two goes:

- 200

40
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Now I know that I took away 200 + 40 + 10 + 2 = 252 lots of
15, so 3780 + 15 = 252. You can see that the better you are at
multiplying, the fewer steps you can chunk in.

The feared method of long division works along very similar
principles. I set up the problem in what I call a bus stop:

15/3 7 8 0

[ start from the left. As 15 has two digits, I look at the 3 and
the 7 - how many times does 15 go into 377 Twice, giving 30,
and I calculate the remainder using subtraction:

)
1513 7
_ 3 0

=

s U

[ now shift my attention to the 7 I have just calculated and
the 8, which I'll rewrite alongside the 7. Fifteens into 787
Well, five fifteens are 75 ...

15 | 3
- 3
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Finally, I bring the zero down alongside and consider how
many fifteens are in 30:
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Short division is the same as long division except that we
calculate the remainders in our heads and write them in as
carries. Short division is handy for converting fractions into

2

decimals. If I want to know what “g" is as a decimal, I can
calculate 5 + 8:

8 | 5

Eight goes into 5 zero times with a remainder of 5. I don’t
have anywhere to write this remainder until I write a decimal
point and another zero. I'm allowed to do this because 5 = 5.0,
and I'll write a matching decimal point above:

0.
B 5. ~B

Eight into 50 goes 6, remainder 2 (I can keep adding zeroes
after the decimal point as needed):

0. 6
B 5. %0

Eight into 20 goes twice, remainder 4:



0. 6 2
(5 ~0 <0 70

Eight into 40 goes five times exactly:

., B E 3
815 0 0 0

5
So we now know that g =5+8=0.625. This method works

with any fraction, although you may wish to use long division
for harder ones. In the next section we’ll take a look at some

fractions that don’t work out quite so nicely.



Chapter 6

FRACTIONS AND
PRIMES

We just saw how to work out a fraction as a decimal. Let’s

1
take a look at 3~ - something interesting happens:

. 3 & 5, —
3 13 M 0 M

We quickly notice that a loop has formed - three into ten is
three, remainder one — which will repeat for ever. Decimals
that do this are called recurring and we use a dot to represent
the digit that repeats:

==-0.3

The sevenths are even more interesting:

B. % ¥ 2. B 8P I T ZTBETESFE TS e
?IL VN9 D O0CYIEANYTOOYYYNY N DD

Here I get a repeating sequence of digits. I can show this by
using a pair of dots at the beginning and end of the sequence:

—=0.142857



What is more, every seventh uses the same sequence, just
with different start and end points:

=-0.285714
= =0.428571
= =0.571428
= =0.714285
==0.857142

If you fancy a challenge, take a look at the nineteenths!

By looking at the denominator of a fraction I can tell
whether it will recur or terminate. It all depends on whether I
can take the denominator and multiply it by something to
make it into a power of ten (10, 100, 1000, etc.). If I can, I can
get it to sit nicely in the decimal columns when I convert it.

Before we do this, it’s worth taking a look at a very
important mathematical concept called the equivalence of
fractions. It says that we can have different fractions with the
same value. One way of thinking about it is with pizza. If we

share a pizza, half each, we might each cut our pizza into a
different number of slices, but we still have the same amount
of pizza. Likewise, we all pick up the idea fairly early on at
school that a half is two quarters, which is also three sixths,
and so on:

1l 2.3
2 4 — b

You’ll have probably been told ‘whatever you do to the top,
do to the bottom’ by a maths teacher at some stage. What

they may not have said is that this preserves equivalence.



This does give me another way to convert some fractions

. . . 51 . .
into decimals. For instance, 55 is not something I fancy

doing the division for. However, if I multiply the numerator
and denominator by four, I get:

51 51 % 4 204 .
250 — 250x4 1000 0.204

Job done. The next thing to ponder is how can I tell
whether I'll be able to multiply the denominator to get a
power of ten?

To examine this, you need to understand the concept of
prime numbers. These have fascinated mathematicians for a
long time. To put it succinctly, a prime number is a natural
number with exactly two factors. Eight, for instance, is
divisible by one, two, four, and eight itself; four factors mean
it is not prime. Five has two factors, one and five, so is prime.
One has one factor - one - so is not prime. Forget that
nonsense about ‘a number divisible only by itself and one’ for
this very reason. So the first few prime numbers are 2, 3, 5, 7,
11,13, 17, 19, 23.

One of the reasons that prime numbers are so awesome is
called the fundamental theorem of arithmetic, which says that
every natural number can be written as the product of prime
numbers, but only in one way. E.g.:

30=2x3x%x5

There is no other combination of prime numbers
multiplied together that will make thirty. Two, three and five
are called the prime factors of thirty. For me, this makes prime
numbers like mathematical DNA - every number is unique,
and in numbers we don’t have twins or clones to worry about!



Even a huge number like 223,092,870 can only be made up one
way with prime numbers (it's 2x3 x5 x7 x11 x 13 x 17 x 19 x
23, in fact).

How does this help me with fractions? Well, I said that for a
fraction to terminate I must be able to convert its
denominator into a power of ten. The prime factors of ten are
given by:

10=2x5

To get the prime factors of one hundred, it helps if I
recognize that:

100 =10 x 10
=2x5x2x5

So the prime factors of ten are two and five, and the same
for one hundred (just more of them). We can see that the only
prime factors of any power of ten will be two and five.
Therefore, ift my denominator’s prime factors are some
combination of twos or fives, there will be a way to multiply it
to get a power of ten. My example above had a denominator
of 250, and:

250=2%x5x5x%x5
So only twos and fives. I multiplied by four above, which is
2 x 2, to get 1000. If the denominator had been 240:

240 =2%x2x2%x2x3x%x5
This time we have a three in there, so any fraction in its
simplest form that has a denominator of 240 will recur. E.g.:

FE ‘ ;
L _ 0.30416

On the other hand:



120 120:120 1
730 = 2a0+120 = 2 = U.o

This fraction, in its simplest form, no longer has a
denominator with something other than two or five, so
terminates.

Adding and Subtracting Fractions

While we are on the subject of fractions, a recap of their
arithmetic is in order. To add or subtract, we need to convert
the fractions so that they have the same denominator. To do
this most efficiently, we look for the lowest number that both
denominators are factors of — the lowest common multiple. For
example, if I want to add five-eighths and seven-twelfths, I
need to identify the lowest number that eight and twelve
both go into. We quickly spot that twenty-four is on both the
eight and the twelve times table:

5. 7

B T2
5X3 PP,

= "8x3 T 12x2
15 14
= 24 T 23
29
= ﬁ

This is a top-heavy or improper fraction as the numerator is
larger than the denominator. This, for some reason, is
unacceptable in mathematics until you reach A Level or
equivalent. I believe this is because mixed fractions are easier

to understand at a glance, though improper fractions are

easier to perform calculations with. To convert an improper

24
fraction to a mixed number, I need to recognise that 5 =1.



This means that:

2 2, 5 .5
77 — 33 + 73 = 173

Subtraction works in a similar way:

5 1 : ;
i 3 36 is the lowest common denominator
_2X4 1x9 Use equivalence to convert to 36ths
= 9%x4 & 4x9
_20 32
=36 36

Multiplying and Dividing Fractions
Multiplying is straightforward - I multiply the numerators
and I multiply the denominators. For example:

31 3

= §5x2 — 10

3 s 1
Nk A
5 2

[t’s worth noting that when you multiply by a fraction the
total gets smaller. Also, I chose a half here to highlight

something that helps us divide fractions. We see above that
multiplying by a half is the same as dividing by two, and
likewise multiplying by a third would be the same as dividing
by three. This relationship is called a reciprocal. Two and a
half are reciprocals of each other, and it is clear if I write two
as a fraction exactly how it works:

, o _ 2
= Is the reciprocal of =~

This is really handy, as it means that dividing by a number
is the same as multiplying by its reciprocal:

5+3=5x%7



[ can use this to divide fractions:

1
Fifteen’s prime factors are three and five and so 1775 will be

recurring as a decimal.

Finding Prime Numbers

One of the reasons prime numbers have received a lot of
attention from mathematicians, apart from the fundamental
theorem of arithmetic, is that no one has discovered a pattern
or formula for the prime numbers yet. Many have tried. For
instance, the French priest Marin Mersenne (1588-1648)
calculated a sequence of numbers using this formula:

M, = 2N — 1

You find the first number by setting n as one, the second by
setting n as two, and so on. This gives you:

1,3, 7,15, 31, 63, 127, 255, 511, 1023, 2047 . . .

Mersenne noticed that some of the numbers given by the
formula are prime numbers, such as 3, 7, 31 and 127, which
are the second, third, fifth and seventh numbers in the
sequence. Two, three, five and seven are prime numbers



themselves, so it seems that if you use a prime number for n,
you get a prime number from the formula. But the next prime
number after seven is eleven, and the formula gives M, =

2047, which is not a prime as 2047 = 23 x 89.
It is difficult to identify large prime numbers by hand. For
instance, M7 is a 33-digit number, so it is very time-

consuming to check whether anything divides into it and
therefore is a factor.

Enter the digital age with computers that can calculate
flawlessly and tirelessly. In the 1950s early computers were
finding Mersenne primes, as they are known, with hundreds
of digits. In 1999 the first million-digit Mersenne prime was
discovered. The current record is over 22 million digits for

M74 207,281

f

\

Looong Multiplication

At a lecture in 1903, the American mathematician Frank Nelson
Cole (1861-1926) wrote the following fact about Mg7, which

was believed to be prime:

147,573,952,589,676,412,927 = 193,707,721 x
761,838,257,287

He then proceeded to multiply this out, by hand, to prove the
result. This took him an hour and was conducted in total
silence. At the end of his ‘lecture’ Cole returned wordlessly to

Khis seat while receiving a standing ovation from his peers. J

Why bother? Well, mathematicians will always investigate

anything for the sheer love of their subject. But prime



numbers are also the backbone of modern-day encryption
methods. If I want to transmit a number, such as my credit
card details, across the internet, it is easy for people who
know what they are doing to intercept this number and spend
my money.

To avoid this, the internet uses a method of encryption
where a public key is used to change the number being
transmitted. This key is a combination of very large,
apparently random numbers that are, in fact, created from
very large prime numbers. Only the intended recipient, who
has the private key, can reverse the process in any sort of
sensible time frame.

The ‘https’ at the beginning of web addresses means that
the website uses Hypertext Transfer Protocol with Transport
Layer Security (the ‘s’ on the end) to encrypt the information
going to and from your computer. So you can happily order
things online thanks to some very clever mathematics.



