


Copyright © 2012 by the President and Fellows of Harvard College
All rights reserved
Jacket designer: Tim Jones

Jacket art: Artwork by Sanzio Raffacllo, 15th century, ink, courtesy of
Photoservice Electa/Getty Images

Library of Congress Cataloging-in-Publication Data

Lockhart, Paul.
Measurement / Paul Lockhart.
p. cm.
Includes index.
ISBN 978-0-674-05755-5 (hardcover : alk. paper)
. Geometry. I. Title.
QA447.1L.625 2012

516—dc23 2012007726



CONTENTS

Reality and Imagination
On Problems

Part One: Size and Shape

In which we begin our investigation of abstract geometrical figures.
Symmetrical tiling and angle measurement. Scaling and proportion.
Length, area, and volume. The method of exhaustion and its
consequences. Polygons and trigonomeiry. Conic sections and

projective geometry. Mechanical curves.

—  Part Two: Time and Space

- Containing some thoughts on mathematical motion. Coordinate
systems and dimension. Motion as a numerical relationship. Vector
representation and mechanical relativity. The measurement of
velocity. The differential calculus and its myriad uses. Some final
words of encouragement to the reader.

Acknowledgments
Index



REALITY AND IMAGINATION

There are many realities out there. There 1s, of course, the physical
reality we find ourselves in. Then there are those imaginary universes
that resemble physical reality very closely, such as the one where
everything 1s exactly the same except I didn 't pee in my pants 1n fifth
grade, or the one where that beautiful dark-haired girl on the bus
turned to me and we started talking and ended up falling in love.
There are plenty of those kinds of imaginary realities, believe me.
But that’s neither here nor there.

I want to talk about a different sort of place. I’'m going to call it
“mathematical reality.” In my mind’s eye, there 1s a universe where
beautiful shapes and patterns float by and do curious and surprising
things that keep me amused and entertained. It’s an amazing place,
and I really love it.

The thing 1s, physical reality 1s a disaster. It’s way too
complicated, and nothing 1s at all what 1t appears to be. Objects
expand and contract with temperature, atoms fly on and off. In
particular, nothing can truly be measured. A blade of grass has no
actual length. Any measurement made in this universe 1s necessarily
a rough approximation. It’s not bad; 1t’s just the nature of the place.
The smallest speck 1s not a point, and the thinnest wire 1s not a line.

Mathematical reality, on the other hand, 1s imaginary. It can be as
simple and pretty as I want it to be. I get to have all those perfect
things I can’t have in real life. I will never hold a circle in my hand,
but I can hold one in my mind. And I can measure it. Mathematical
reality 1s a beautiful wonderland of my own creation, and I can
explore it and think about 1t and talk about i1t with my friends.

Now, there are lots of reasons people get interested in physical
reality. Astronomers, biologists, chemists, and all the rest are trying
to figure out how 1t works, to describe it.

I want to describe mathematical reality. To make patterns. To
figure out how they work. That’s what mathematicians like me try to



do.
The point 1s I get to have them both—physical reality and

mathematical reality. Both are beautiful and interesting (and
somewhat frightening). The former 1s important to me because I am
in 1t, the latter because 1t 1s in me. I get to have both these wondertul
things in my life and so do you.

My 1dea with this book 1s that we will design patterns. We’ll make
patterns of shape and motion, and then we will try to understand our
patterns and measure them. And we will see beautiful things!

But T won’t lie to you: this 1s going to be very hard work.
Mathematical reality 1s an infinite jungle full of enchanting
mysteries, but the jungle does not give up its secrets easily. Be
prepared to struggle, both intellectually and creatively. The truth 1s, I
don’t know of any human activity as demanding of one’s
Imagination, intuition, and ingenuity. But I do 1t anyway. I do 1t
because I love i1t and because I can’t help it. Once you’ve been to the
jungle, you can never really leave. It haunts your waking dreams.

So I invite you to go on an amazing adventure! And of course, |
want you to love the jungle and to fall under its spell. What I’ve tried
to do 1n this book 1s to express how math feels to me and to show you
a few of our most beautiful and exciting discoveries. Don’t expect
any footnotes or references or anything scholarly like that. This 1s
personal. 1 just hope I can manage to convey these deep and
fascinating ideas in a way that 1s comprehensible and fun.

Still, expect 1t to be slow going. I have no desire to baby you or to
protect you from the truth, and I’'m not going to apologize for how
hard 1t 1s. Let 1t take hours or even days for a new 1dea to sink in—it
may have originally taken centuries!

[’m going to assume that you love beautiful things and are curious
to learn about them. The only things you will need on this journey are
common sense and simple human curiosity. So relax. Art 1s to be
enjoyed, and this is an art book. Math is not a race or a contest; it’s
just you playing with your own imagination. Have a wonderful time!



ON PROBLEMS

What 1s a math problem? To a mathematician, a problem 1s a
probe—a test of mathematical reality to see how 1t behaves. It 1s our
way of “poking 1t with a stick” and seeing what happens. We have a
piece of mathematical reality, which may be a configuration of
shapes, a number pattern, or what have you, and we want to
understand what makes it tick: What does it do and why does 1t do 1t?
So we poke it—only not with our hands and not with a stick. We
have to poke 1t with our minds.

As an example, let’s say you’ve been playing around with
triangles, chopping them up into other triangles and so forth, and you
happen to make a discovery:

When you connect each corner of a triangle to the middle of the
opposite side, the three lines seem to all meet at a point. You try this
for a wide variety of triangles, and 1t always seems to happen. Now
you have a mystery! But let’s be very clear about exactly what the
mystery 1s. It’s not about your drawings or what looks like 1s
happening on paper. The question of what pencil-and-paper triangles
may or may not do 1s a scientific one about physical reality. If your
drawing 1s sloppy, for example, then the lines won’t meet. I suppose
you could make an extremely careful drawing and put it under a
microscope, but you would learn a lot more about graphite and paper
fibers than you would about triangles.

The real mystery 1s about imaginary, too-perfect-to-exist triangles,
and the question 1s whether these three perfect lines meet in a perfect



point 1n mathematical reality. No pencils or microscopes will help
you now. (This 1s a distinction I will be stressing throughout the
book, probably to the point of annoyance.) So how are we to address
such a question? Can anything ever really be known about such
imaginary objects? What form could such knowledge take?

Before examining these 1ssues, let’s take a moment to simply
delight 1n the question itself and to appreciate what 1s being said here
about the nature of mathematical reality.

1 5

What we’ve stumbled onto 1s a conspiracy. Apparently, there is
some underlying (and as yet unknown) structural interplay going on
that 1s making this happen. I think that 1s marvelous and also a little
scary. What do triangles know that we don’t? Sometimes 1t makes me
a little queasy to think about all the beautiful and profound truths out
there waiting to be discovered and connected together.

So what exactly 1s the mystery here? The mystery 1s why. Why
would a triangle want to do such a thing? After all, 1f you drop three
sticks at random they usually don’t meet at a point; they cross each
other 1n three different places to form a little triangle 1in the middle.
Isn’t that what we would expect to happen?

What we are looking for i1s an explanation. Of course, one reason
why an explanation may not be forthcoming 1s that it simply 1sn’t
true. Maybe we fooled ourselves by wishful thinking or clumsy
drawing. There’s a lot of “fudging’ 1n physical reality, so maybe we
just couldn’t see the little triangle where the lines cross. Perhaps it



was so small that 1t got lost among all the smears and pencil crumbs.
On the other hand, 1t’s certainly the kind of thing that could be true. It
has a lot of elements that mathematicians look for: naturalness,
elegance, simplicity, and a certain inevitable quality. So it’s probably
true. But again, the question 1s why.

Now here’s where the art comes in. In order to explain we have to
create something. Namely, we need to somehow construct an
argument—a piece of reasoning that will satisty our curiosity as to
why this behavior 1s happening. This 1s a very tall order. For one
thing, 1t’s not enough to draw or build a bunch of physical triangles
and see that it more or less works for them. That 1s not an
explanation; 1t’s more of an “approximate verification.” Ours is a
much more serious philosophical 1ssue.

Without knowing why the lines meet at a common point, how can
we know that they actually do? In contrast with physical reality,
there’s nothing to observe. How will we ever know anything about a
purely imaginary realm? The point 1s, it doesn’t matter so much what
1s true. It matters why it’s true. The why is the what.

Not that [ am trying to minimize the value of our ordinary senses
—far from 1t. We desperately need any and all aids to our intuition
and 1magination: drawings, models, movies, whatever we can get.
We just have to understand that ultimately these things are not really
the subject of the conversation and cannot really tell us the truth
about mathematical reality.

So now we really are in a predicament. We have discovered what
we think may be a beautiful truth, and now we need to prove it. This
1s what mathematicians do, and this 1s what I hope you will enjoy
doing yourself.

Is this such an extraordinarily difficult thing to do? Yes, 1t 1s. Is
there some recipe or method to follow? No, there 1sn’t. This 1s
abstract art, pure and simple. And art 1s always a struggle. There 1s no
systematic way to create beautiful and meaningful paintings or
sculptures, and there 1s also no method for producing beautiful and
meaningful mathematical arguments. Sorry. Math 1s the hardest thing
there 1s, and that’s one of the reasons I love it.

So no, I can’t tell you how to do it, and I’'m not going to hold your
hand or give you a bunch of hints or solutions 1n the back of the
book. If you want to paint a picture from your heart, there 1s no



“answer painting” on the back of the canvas. If you are working on a
problem and you are stuck and in pain, then welcome to the club. We
mathematicians don’t know how to solve our problems either. If we
did, they would no longer be problems! We’re always working at the
edge of the unknown, and we’re always stuck. Until we have a
breakthrough. And I hope you have many—it’s an incredible feeling.
But there 1s no special procedure for doing mathematics. You just
have to think a lot and hope that inspiration comes to you.

But I won’t just drop you into the jungle and leave you there. Your
intelligence and your curiosity you will have to supply yourself—
these are your machete and your canteen. But maybe I can provide
you with a compass 1n the form of a few general words of advice.

The first 1s that the best problems are your own. You are the
intrepid mental explorer; 1t’s your mind and your adventure.
Mathematical reality 1s yours—it’s i your head for you to explore
any time you feel like 1t. What are your questions? Where do you
want to go? I’ve enjoyed coming up with some problems for you to
think about, but these are merely seeds I’ve planted to help you start
growing your own jungle. Don’t be afraid that you can’t answer your
own questions—that’s the natural state of the mathematician. Also,
try to always have five or six problems you are working on. It is very
frustrating to keep banging your head against the same wall over and
over. (It’s much better to have five or six walls to bang your head
against!) Seriously, taking a break from a problem always seems to
help.

Another important piece of advice: collaborate. 1If you have a
friend who also wants to do math, you can work together and share
the joys and frustrations. It’s a lot like playing music together.
Sometimes I will spend six or eight hours working on a problem with
a friend, and even 1f we accomplish next to nothing, we still had fun
feeling dumb together.

So let 1t be hard. Try not to get discouraged or to take your failures
too personally. It’s not only you that is having trouble understanding
mathematical reality; i1t’s all of us. Don’t worry that you have no
experience or that you’re not “qualified.” What makes a
mathematician is not technical skill or encyclopedic knowledge but
insatiable curiosity and a desire for simple beauty. Just be yourself
and go where you want to go. Instead of being tentative and fearing



failure or confusion, try to embrace the awe and mystery of it all and
joyfully make a mess. Yes, your i1deas won’t work. Yes, your
intuition will be flawed. Again, welcome to the club! I have a dozen
bad 1deas a day and so does every other mathematician.

Now, I know what you’re thinking: a bunch of fuzzy, romantic talk
about beauty and art and the exquisite pain of creativity is all very
well and good, but how on earth am I supposed to do this? I've never
created a mathematical argument in my life. Can’t you give me a
l1ittle more to go on?

Let’s go back to our triangle and the three lines. How can we begin
to cobble together some sort of an argument? One place we could
start 1s by looking at a symmetrical triangle.

This kind of triangle 1s also called equilateral (Latin for *“same
sides”). Now, I know this 1s an absurdly atypical situation, but the
1dea 1s that 1if we can somehow explain why the lines meet 1n this
special case, 1t might give us a clue about how to proceed with a
more general triangle. Or 1t might not. You never know, you just
have to mess around—what we mathematicians like to call “doing
research.”

In any event, we have to start somewhere, and 1t should at least be
easier to figure something out in this case. What we have going for us
in this special situation 1s tons of symmetry. Do not ignore symmetry!
In many ways, 1t 1s our most powerful mathematical tool. (Put it in
your backpack with your machete and canteen.)

Here symmetry allows us to conclude that anything that happens
on one side of the triangle must also happen on the other. Another
way to say this 1s that if we flipped the triangle across its line of
symmetry, it would look exactly the same.



In particular, the midpoints of the two sides would switch places,
as would the lines connecting them to their opposite corners.

But this means that the crossing point of these two lines can’t be
on one side of the line of symmetry, else when we flip the triangle it
would move to the other side, and we could tell that it got flipped!

,--——\

So the crossing point must actually be on the line of symmetry.
Clearly our third line (the one connecting the top corner to the middle
of the bottom side) 1s sitmply the line of symmetry itself, and so that
1s why all three lines meet at a point. Isn’t that a nice explanation?

This 1s an example of a mathematical argument, otherwise known
as a proof. A proof 1s simply a story. The characters are the elements
of the problem, and the plot 1s up to you. The goal, as in any literary
fiction, 1s to write a story that 1s compelling as a narrative. In the case
of mathematics, this means that the plot not only has to make logical
sense but also be simple and elegant. No one likes a meandering,
complicated quagmire of a proof. We want to follow along rationally



to be sure, but we also want to be charmed and swept off our feet
aesthetically. A proof should be lovely as well as logical.

Which brings me to another piece of advice: improve your proofs.
Just because you have an explanation doesn’t mean it’s the best
explanation. Can you eliminate any unnecessary clutter or
complexity? Can you find an entirely different approach that gives
you deeper i1nsight? Prove, prove, and prove again. Painters,
sculptors, and poets do the same thing.

Our proof just now, for instance, despite 1ts logical clarity and
simplicity, has a slightly arbitrary feature. Even though we made an
essential use of symmetry, there’s something annoyingly
asymmetrical about the proof (at least to me). Specifically, the
argument favors one corner. Not that it’s so very bad to pick one
corner and use its line as our line of symmetry, 1t’s just that the
triangle 1s so symmetrical; we shouldn’t have to make such an
arbitrary choice.

We could, for instance, use the fact that in addition to having flip-
symmetry, our triangle 1s also rotationally symmetric. That 1s, 1f we
turn 1t one-third of a full turn around, it looks exactly the same. This
means that our triangle must have a center.

Now, 1f we flip the triangle across any of its three lines of
symmetry (favoring none of them), the triangle doesn’t change, so its
center must stay put. This means that the center point lies on all three
lines of symmetry. So that’s why the lines all meet!

Now, I’'m not trying to say that this argument 1s so much better or
even all that different. (And 1n fact, there are lots of other ways to
prove it.) All I’'m saying 1s that deeper insight and understanding can
be gained by coming at a problem in more than one way. In
particular, the second proof not only tells me that the lines meet, it
tells me where—namely, at the center of rotation. Which makes me
wonder, where exactly 1s that? Specifically, how far up an equilateral




triangle 1s 1ts center?

Throughout the book, questions like this will come up. Part of
becoming a mathematician 1s learning to ask such questions, to poke
your stick around looking for new and exciting truths to uncover.
Problems and questions that occur to me I will put in boldface type.
Then you can think about them and work on them as you please and
hopetully also come up with problems of your own. So here’s your
first one:

Where is the center of an equilateral triangle?

Now going back to the original problem, we see that we have
barely made a dent. We have an explanation for why the lines meet in
an equilateral triangle, but our arguments are so dependent on
symmetry, 1t’s hard to see how this will help in the more general
situation. Actually, I suppose our first argument still works 1f our
triangle has two equal sides:

The reason 1s that this kind of triangle, known as isosceles (Greek
for “same legs™), still possesses a line of symmetry. This 1s a nice
example of generalization—getting a problem or an argument to
make sense 1n a wider context. But still, for the average asymmetrical
triangle, our arguments clearly won’t work.

This puts us 1n a place that 1s all too familiar to mathematicians.
It’s called stuck. We need a new 1dea, preferably one that doesn’t
hinge so much on symmetry. So let’s go back to the drawing board.



Is there something else we can do with these characters? We have
a triangle, the midpoints of the sides, and the lines drawn to them
from the corners.

Here’s a thought. What if we connect the midpoints? Does
anything interesting happen? This 1s the kind of thing you have to do
as a mathematician: try things. Will they work? Will they yield useful
information? Usually not. But you can’t just sit there staring at some
shapes or numbers. Try anything and everything. As you do more
math, your intuition and your instincts will sharpen, and your i1deas
will get better. How do you know which 1deas to try? You don’t. You
just have to guess. Experienced mathematicians have a great deal of
sensitivity to structure, and so our guesses are more likely to be right,
but we still have to guess. So guess.

The important thing is not to be afraid. So you try some crazy idea,
and 1t doesn’t work. That puts you in some pretty good company!
Archimedes, Gauss, you and I-—we’re all groping our way through
mathematical reality, trying to understand what 1s going on, making
guesses, trying out 1deas, and mostly failing. And then every once in
a while, you succeed. (Perhaps more frequently 1f you are
Archimedes or Gauss.) And that feeling of unlocking an eternal
mystery 1s what keeps you going back to the jungle to get scratched
up all over again.

So 1magine you’ve tried this 1dea and that idea, and one day it
occurs to you to connect the midpoints.



What do we notice? Well, we’ve divided the original triangle into
four smaller ones. In the symmetrical case, they are clearly 1dentical.
What happens in general?

Are the triangles all the same? Actually, 1t looks like three of them
might just be smaller (half-scale) versions of the original triangle.
Could that be true? What about the middle one? Could it also be the
same, only rotated upside down? What exactly have we stumbled
onto here?

We’ve stumbled onto a glimmer of truth, pattern, and beauty,
that’s what. And maybe this will lead to something wholly
unexpected, possibly having nothing to do with our original problem.
So be 1t. There’s nothing sacred about our three lines problem; 1t’s a
question like any other. If your thoughts on one problem lead you to
another, then good for you! Now you have two problems to work on.
My advice: be open-minded and flexible. Let a problem take you
where it takes you. If you come across a river in the jungle, follow it!

Are these four triangles identical?

Let’s suppose this 1s true. And that, by the way, 1s a perfectly fine
thing to do. Mathematicians are always supposing things and seeing
what would happen (the Greeks even had a word for 1t—they called 1t
analysis). There are thousands of apparent mathematical truths out
there that we humans have discovered and believe to be true but have
so far been unable to prove. They are called conjectures. A
conjecture 1s simply a statement about mathematical reality that you
believe to be true (usually you also have some examples to back it
up, so it 1s a reasonably educated guess). I hope that you will find
yourself conjecturing all over the place as you read this book and do
mathematics. Maybe you will even prove some of your conjectures.
Then you get to call them theorems.

Supposing that our conjecture about the four triangles 1s true (and,



of course, we still want a nice proof of this), the next question would
be whether this helps us solve our original problem. Maybe 1t will,
maybe 1t won’t. You just have to see 1f anything comes to you.
Essentially, engaging in the practice of mathematics means that
you are playing around, making observations and discoveries,
constructing examples (as well as counterexamples), formulating
conjectures, and then—the hard part—proving them. I hope you will
find this work fascinating and entertaining, challenging, and
ultimately deeply rewarding.

So I will leave the problem of the triangle and its intersecting lines
In your capable hands.

Which brings me to my next bit of advice: critique your work.
Subject your arguments to scathing criticism by yourself and by
others. That’s what all artists do, especially mathematicians. As I’'ve
said, for a piece of mathematics to fully qualify as such, it has to
stand up to two very different kinds of criticism: 1t must be logically
sound and convincing as a rational argument, and 1t must also be
elegant, revelatory, and emotionally satisfying. I’'m sorry that these
criteria are so painfully steep, but that 1s the nature of the art.

Now, aesthetic judgments are obviously quite personal, and they
can change with time and place. Certainly that has happened with
mathematics no less than with other human endeavors. An argument
that was considered beautiful a thousand or even a hundred years ago
might now be looked upon as clumsy and inelegant. (A lot of
classical Greek mathematics, for example, appears quite dreadful to
my modern sensibilities. )

My advice 1s not to worry about trying to hold yourself to some
impossibly high standard of aesthetic excellence. If you like your
proof (and most of us are fairly proud of our hard-won creations),
then 1t 1s good. If you are dissatisfied in some way (and most of us
are), then you have more work to do. As you gain experience, your
taste will grow and develop, and you may find later that you are
unhappy with some of your earlier work. That is as it should be.

I think the same could be said for logical validity as well. As you
do more mathematics, you will literally get smarter. Your logical
reasoning will become tighter, and you will begin to develop a
mathematical “nose.” You will learn to be suspicious, to sense that
some important details have been glossed over. So let that happen.




Now, there 1s a certain obnoxious type of mathematician who
simply cannot allow false statements to be made at any time. I am not
one of them. I believe in making a mess—that’s how great art
happens. So your first essays in this craft are likely to be logical
disasters. You will believe things to be true, and they won’t be. Your
reasoning will be flawed. You will jump to conclusions. Well, go
ahead and jump. The only person you have to satisty 1s yourself.
Believe me, you will discover plenty of errors in your own deduction.
You will declare yourself a genius at breakfast and an 1diot at lunch.
We’ve all done 1it.

Part of the problem 1s that we are so concerned with our 1deas
being simple and beautiful that when we do have a pretty idea, we
want so much to believe 1t. We want 1t to be true so badly that we
don’t always give it the careful scrutiny that we should. It’s the
mathematical version of “rapture of the deep.” Divers see such
beautiful sights that they forget to come up for air. Well, logic 1s our
air, and careful reasoning 1s how we breathe. So don’t forget to
breathe!

The real difference between you and more experienced
mathematicians 1s that we’ve seen a lot more ways that we can fool
ourselves. So we have more nagging doubts and therefore insist on a
much higher standard of logical rigor. We learn to play the devil’s
advocate.

Whenever I am working on a conjecture, I always entertain the
possibility that it 1s false. Sometimes I work to prove it, other times I
try to refute it—to prove myself wrong. Occasionally, I discover a
counterexample showing that I was indeed misled and that I need to
refine or possibly scrap my conjecture. Still other times, my attempts
to construct a counterexample keep running into the same barrier,
and this barrier then becomes the key to my eventual proof. The point
1s to keep an open mind and not to let your hopes and wishes
interfere with your pursuit of truth.

Of course, as much as we mathematicians may ultimately insist on
the most persnickety level of logical clarity, we also know from
experience when a proof “smells right,” and it is clear that we could
supply the necessary details if we wished. The truth of the matter 1s
that math 1s a human activity, and we humans make mistakes. Great
mathematicians have “proved” utter nonsense, and so will you. (It’s



another good reason to collaborate with other people—they can raise
objections to your arguments that you might overlook.)

The point 1s to get out there 1n mathematical reality, make some
discoveries, and have fun. Your desire for logical rigor will grow
with experience; don’t worry.

So go ahead and do your mathematical art. Subject 1t to your own
standards of rationality and beauty. Does 1t please you? Then great!
Are you a tormented struggling artist? Even better. Welcome to the
jungle!



PART ONE

SIZE AND SHAPE



Here Is a nice pattern.

Let me tell you why | find this kind of thing so attractive. First
of all, it involves some of my favorite shapes.

| like these shapes because they are simple and
symmetrical. Shapes like these that are made of straight lines
are called polygons (Greek for “many corners”). A polygon
with all its sides the same length and all its angles equal is
called regular. So | guess what I'm saying is, | like regular
polygons.

Another reason why the design is appealing is that the
pieces fit together so nicely. There are no gaps between the
tiles (I like to think of them as ceramic tiles, like in a mosaic),
and the tiles don't overlap. At least, that's how it appears.
Remember, the objects that we're really talking about are
perfect, imaginary shapes. Just because the picture looks good
doesn’'t mean that's what is really going on. Pictures, no matter
how carefully made, are part of physical reality; they can't



possibly tell us the truth about imaginary, mathematical
objects. Shapes do what they do, not what we want them to
do.

S0 how can we be sure that the polygons really do fit
perfectly? For that matter, how can we know anything about
these objects”? The point is, we need to measure them—and
not with any clumsy real-world implements like rulers or
protractors, but with our minds. We need to find a way to
measure these shapes using philosophical argument alone.

Do you see that in this case what we need to measure are
the angles? In order to check that a mosaic pattern like this will
work, we need to make sure that at every corner (where the
tiles meet) the angles of the polygons add up to a full turn. For
iInstance, the ordinary square tiling works because the angles
of a square are quarter turns and it takes four of them to make
a full turn.

By the way, | like to measure angles as portions of a full turn
Instead of using degrees. It seems simpler to me and more
natural than using an arbitrary division of a turn into 360 parts
(of course you may do as you please). So I’'m going to say that
a square has a corner angle of 1/4.

One of the first things people discovered about angles is the
surprising fact that for any triangle (no matter what shape) the
sum of the angles is always the same, namely a half turn (or
180 degrees if you must be vulgar).
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To get a feel for this, you might want to make some paper
triangles and cut off their corners. When you join them
together, they will always form a straight line. What a beautiful
discovery! But how can we really know that it is true?

One way to see it is to view the triangle as being sandwiched
between two parallel lines.

Notice how these lines form Z shapes with the sides of the
triangle. (I suppose you might call the one on the right side a
backward Z, but it doesn’t really matter.) Now, the thing about
Z shapes is that their angles are always equal.

This is because a Z shape is symmetrical: it looks exactly the
same If you rotate it a half turn around its center point. That
means the angle at the top must be the same as the angle at
the bottom. Does that make sense? This is a typical example
of a symmetry argument. The invariance of a shape under a
certain set of motions allows us to deduce that two or more
measurements must be the same.

Going back to our triangle sandwich, we see that each angle
at the bottom corresponds to an equal angle at the top.



This means that the three angles of the triangle join together
at the top to form a straight line. So the three turns add up to a
half turn. What a delightful piece of mathematical reasoning!

This 1s what it means to do mathematics. To make a
discovery (by whatever means, including playing around with
physical models like paper, string, and rubber bands), and then
to explain it in the simplest and most elegant way possible.
This is the art of it, and this is why it is so challenging and fun.

One consequence of this discovery is that if our triangle
happens to be equilateral (that is, regular) then its angles are
all equal, so they must each be 1/6. Another way to see this is
to imagine driving around the perimeter of the triangle.

We make three equal turns to get back to where we started.
Since we end up making one complete turn, each of these
must be exactly 1/3. Notice that the turns we've made are
actually the outside angles of the triangle.



Since the inside and outside angles combine to make a half
turn, the Inside angles must be
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In particular, six of these triangles will fit together at a corner.

Hey, this makes a regular hexagon! So as a bonus, we get
that the angles of a regular hexagon must be twice those of the
triangle, in other words 1/3. This means that three hexagons fit
together perfectly.

S0 It Is possible to have knowledge about these shapes after



This time we have squares and triangles, but instead of lying
flat, they are arranged to form a sort of ball shape. This kind of
object is called a polyhedron (Greek for “many sides”). People
have been playing around with them for thousands of years.
One approach to thinking about them is to imagine unfolding
them flat onto a plane. For example, one corner of my shape
would unfold to look like this:

Here, we have two squares and two triangles around a point,
but they leave a gap so that the shape can be folded up into a
ball. So in the case of polyhedra, we need the angles to add up
to less than a full turn.

What happens if the angle sum is more than a
full turn?

Another difference between polyhedra and flat mosaics is
that the design involves only a finite number of tiles. The
pattern will still go on forever (in a sense), but it will not extend
Indefinitely into space. Naturally, I'm curious about these
patterns, too.

What are all the symmetrical polyhedra?

In other words, what are all the different ways to make
polyhedra out of regular polygons so that at each corner we
see the same pattern? Archimedes figured out all of the
possibilities. Can you?

Of course, the most symmetrical kind of polyhedron would
be one where all the faces are identical, like a cube. These are
called regular polyhedra. It is an ancient discovery that there
are exactly five of these (the so-called Platonic solids). Can



you find all five?

What are the five regular polyhedra?

2

What is measuring? What exactly are we doing when we
measure something? | think it is this: we are making a
comparison. We are comparing the thing we are measuring to
the thing we are measuring it with. In other words, measuring
Is relative. Any measurement that we make, whether real or
Imaginary, will necessarily depend on our choice of measuring
unit. In the real world, we deal with these choices every day—a
cup of sugar, a ton of coal, a thing of fries, whatever.

The question is, what sort of units do we want for our
Imaginary mathematical universe? For instance, how are we
going to measure the lengths of these two sticks?
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Let’'s suppose (for the sake of argument) that the first stick is
exactly twice as long as the second. Does it really matter how
many inches or centimeters they come out to be? | certainly
don’t want to subject my beautiful mathematical universe to
something mundane and arbitrary like that. For me, it's the
proportion (that 2:1 ratio) that's the important thing. In other
words, I'm going to measure these sticks relative to each other.

One way to think of it is that we simply aren’t going to have
any units at all, just proportions. Since there isn't a natural
choice of unit for measuring length, we won’'t have one. So
there. The sticks are just exactly as long as they are. But the
first one is twice as long as the second.

The other way to go is to say that since the units don't
matter, we’ll choose whatever unit is convenient. For example,
| could choose the second stick to be my unit, or ruler, so that
the lengths come out nice. The first stick has length 2, the
second stick has length 1. | could just as easily say the lengths



are 4 and 2, 6 and 3, or 1 and 1/2. It just doesn’t matter. When
we make shapes or patterns and measure them, we can
choose any unit that we want to, keeping in mind that what we
are really measuring is a proportion.

| guess a simple example would be the perimeter of a
square. If we choose our unit to be the side of the square (and
why not?), then the perimeter would obviously be 4. What that
really means is that for any square, the perimeter is four times
as long as the side.

This business of units is related to the idea of scale. If we
take some shape and blow it up by a certain factor, say 2, then
all of our length measurements on the big shape will come out
just as if we were measuring the original shape with a half-size
ruler.

Let's call the process of blowing up (or shrinking down)
scaling. So the second shape is obtained from the first by
scaling by a factor of 2. Or, if we like, we could say that the first
shape is the second one scaled by a factor of 1/2.

Two figures related by a scaling are called similar. All I'm
really trying to say here is that if two shapes are similar, related
by a certain scaling factor, then all corresponding length
measurements are related by that same factor. People say that
such things are “in proportion.” Notice that scaling doesn’t
affect angles at all. The shape stays the same, only the size
changes.

If two triangles have the same angles, are they
necessarily similar? How about four-sided
shapes?



Show that if a right triangle is chopped into two
smaller ones, they must both be similar to the
original triangle.

The nice thing about not having arbitrary units and always
choosing to measure relative proportions is that it makes all
our questions scale independent. To me, this Is the simplest
and most aesthetically pleasing approach. And given the fact
that your shapes are in your head and mine are in mine, |
really don’t see any other alternative. Is your imaginary circle
bigger or smaller than mine? Does that question even have
any meaning?

But before we can begin to go about measuring something,
we need to know precisely what object it is that we are talking
about.

Let’'s suppose | have a square.

Now, there are some things | know about this shape right off
the bat, such as the fact that it has four equal sides. The thing
about information like this is that it is not really a discovery, nor
does it require any explanation or proof. It's simply part of what
| mean by the word square. Whenever you create or define a
mathematical object, it always carries with it the blueprint of its
own construction—the defining features that make it what it is
and not some other thing. The questions we are asking as
mathematicians then take this form: If | ask for such and such,



what else do | get as a consequence? For example, if | ask for
four equal sides, does that force my shape to be a square?
Clearly, it doesn't.

It could be a diamond shape with equal sides, a so-called
rhombus (Greek for “spinning top”). In other words, the
prescription of having four equal sides contains a certain
amount of wiggle room. So one thing to always be aware of is
whether you've pinned down your objects enough to get any
Information out of them. We can’t precisely measure the angles
of an arbitrary rhombus, because that description still allows
the shape the freedom to squirm around and change its
angles. We need to be clear about the extent to which we have
specified our objects so that we can ask well-posed,
meaningful questions.

Are the opposite sides of a rhombus always
parallel? Are the diagonals perpendicular?

Suppose we ask that the angles of our rnombus all be right
angles. That certainly forces our shape to be a square,
because that's what the word square means! Now is there any
room left for it to wiggle around? There is in fact one more
degree of freedom remaining, which is that it could change its
size. (This would be relative, of course, to some other object
we are considering. If all we had were a square, then size
would have no meaning.)



Suppose we cut a triangle from one corner to the
middle of the opposite side. Does the area get
cut in half?

Some areas are relatively easy to measure. For example,
suppose we have a 3 by 5 rectangle.

It is easy to see that we can chop this rectangle into fifteen
identical pieces, each of which is a unit square. So the area of
the rectangle is 15. That is, it takes up exactly fifteen times as
much space as a unit square does. |In general, if the sides of a
rectangle are nice whole numbers, say m and n, then the area
Is simply their product, mn. We can just count the m rows of n
squares each.

But what if the sides don't come out even? How can we
measure the area of a rectangle if we can’t chop it up nicely
iInto unit squares?

Here are two rectangles of the same height.

| like to think of the second one as a “stretched” version of
the first. Is it clear that their areas are in the same proportion
as their lengths? Stretching in one direction is called dilation.
What we're saying is that dilation of a rectangle by a certain
factor multiplies its area by that factor.

In particular, we can think of a rectangle with sides a and b
as a unit square that has been dilated twice: by a factor of a in



one direction and by b in another. This means that the area of
the unit square will get multiplied, first by a and then by b. In
other words, it gets multiplied by ab. So the area of a rectangle
Is Just the product of its sides. It doesn’'t matter whether the
sides come out even or not.

What about the area of a triangle”? My favorite way to think
about it Is to Imagine a rectangular box built around the
triangle. It turns out that the area of the triangle is always half
that of the rectangle. Do you see why?

Why does a triangle take up exactly half of its
box?

What happens to the area of the triangle as we
slide the tip horizontally? What if it goes past the
sides of the box?

Show that when we connect the midpoints of the
sides of any four-sided shape, it forms a
parallelogram. What is its area?

Can a polygon always be chopped into pieces
and reassembled to form a square?

One interesting feature of area is the way it behaves with
respect to scaling. We can think of a scaling as being the result
of two dilations by the same factor. |If we have a square, and



we scale it by a factor of r, then its area will get multiplied by r.
For example, if you blow up a square by a factor of 2, its
perimeter will double, but its area will quadruple.

As a matter of fact, this will be true for any shape. The effect
of scaling on area is to multiply by the square of the scaling
factor, no matter what shape you're dealing with. A nice way to
see this Is to imagine a square with the same area as your
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After scaling by a factor of r, their areas will still be equal—
the two shapes enclose the same amount of space whether or
not | change my ruler. Since the area of the square gets
multiplied by r?, so must the area of the other shape.

There Is also the question of three-dimensional size. This is
usually called volume. Naturally, we can take as our unit of
volume that of a cube with unit sides. The first question is how
to measure a simple three-dimensional box.

How does the volume of a box depend on the
lengths of its sides?

What is the effect of scaling on volume?

4

The study of size and shape is called geometry. One of the
oldest and most influential problems in the history of geometry
IS this one: How long is the diagonal of a square?



Naturally, what we are really asking about is the proportion
of diagonal to side. For convenience, let's take the side of the
square to have length 1, and write d for the length of the
diagonal. Now look at this design.

We have four unit squares coming together to make a 2 by 2
square. Notice that their diagonals also form a square. This
square has sides of length d, so we can think of it as a unit
square scaled by a factor of d. In particular, its diagonal must
be d times as long as that of a unit square, so it must have
length d?. On the other hand, just looking at the design we can
see that its diagonal has length 2. This means that whatever d
is, d? must be equal to 2. Another way to see this is to notice
that the d by d square takes up exactly half the area of the big
square. Since the area of the big square is 4, this again says
that o = 2.

So what is d? A good guess might be 1-1/2. But no,

0

5 X 3 =3, which is greater than 2. This means d must
actually be a little smaller. We can try other numbers: 7/5 is too
small, 10/7 is too big, 17/12 is very close but still not quite right.

So what are we going to do, keep trying numbers till the
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cows come home? What we are looking for is a proportion —

b
such that

{ a
Ixd=7
b b

The only way this can happen is if the top number a when
multiplied by itself is exactly twice as big as the bottom number
b multiplied by itself. In other words, we need to find two whole
numbers a and b so that

a? = 2b2.

Since we’re only interested in the ratio 'Tt there is no point in
looking at numbers a and b that are both even (we could just
cancel any common factors of 2). We can also rule out the
possibility that a is odd: if a were an odd number, then a2
would also be odd, and there would be no way for it to be
double the size of b?.

Why is the product of two odd numbers always
odd?

d

So the only numbers 7, we need to consider are those where

a is even and b is odd. But then a2 is not only even but twice
an even (that is, divisible by 4). Do you see why?

Why is the product of two even numbers always
divisible by 4?

Now, since b is odd, b2 must also be odd, and so 2b%2 is
twice an odd. But we need a? to be equal to 2b%. How can
twice an even be twice an odd? It can't.

What does this mean? It means that there simply aren’t any
whole numbers a and b with a4 = 2b2. In other words, there is
no fraction whose square is 2. Our diagonal to side proportion
d cannot be expressed as a fraction in any way—no matter
how many pieces we divide our unit into, the diagonal will
never come out evenly.



The amazing discovery Is this: the big square takes up
exactly as much area as the two smaller squares put together.
No matter what shape the rectangle has, its sides and diagonal
will always conspire to make these squares add up this way.

But why on earth should that be true? Here is a pretty way to
see It using mosaic designs.

The first one uses the two smaller squares, together with
four copies of the triangle, to make one big square. The
second design uses the larger square (the one built on the
diagonal) and those same four triangles to make another big
square. The point is that these two big squares are identical;
they both have sides equal to the two sides of the rectangle
added together. In particular, this means that the two mosaics
have the same total area. Now, if we remove the four triangles
from each, the remaining areas must also match, so the two
smaller squares really do take up exactly as much space as
the larger one.
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Let’s call the sides of the rectangle a and b and the diagonal
c. Then the square of side a together with the square of side b
has the same total area as the square of side c. In other words,

a’ + b? = c?.

This is the famous Pythagorean theorem relating the
diagonal and sides of a rectangle. It's named after the Greek
philosopher Pythagoras (circa 500 BcC), although the discovery
Is actually far older, dating back to the ancient Babylonian and
Egyptian civilizations.

For example, we find that a 1 by 2 rectangle has a diagonal
of length V5. As usual, this number is hopelessly irrational.
Generally speaking, a rectangle whose sides are nice whole
numbers will almost always have an irrational diagonal. This is
because the Pythagorean relation involves the square of the
diagonal rather than the diagonal itself. On the other hand, a 3
by 4 rectangle has a diagonal of length 5, since 32 + 42 = 52,
Can you find any other nice rectangles like that?

Which rectangles have whole number sides and
diagonals?

How about the three-dimensional version? Instead of a
rectangle, we can ask about a rectangular box.



