Metaprogramming
INR

Advanced Statistical Programming
for Data Science, Analysis and Finance

Thomas Mailund

APress’

Metaprogramming
in R

Thomas Mailund

Apress-

Metaprogramming in R: Advanced Statistical Programming for Data Science,
Analysis and Finance

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 978-1-4842-2880-7 ISBN-13 (electronic): 978-1-4842-2881-4
DOI 10.1007/978-1-4842-2881-4

Library of Congress Control Number: 2017943347
Copyright © 2017 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether

the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms
or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr

Editorial Director: Todd Green

Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Technical Reviewer: Massimo Nardone

Coordinating Editor: Mark Powers

Copy Editor: Kim Wimpsett
Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in
this book is available to readers on GitHub via the book’s product page, located at
Www.apress.com/9781484228807. For more detailed information, please visit
WWW.apress.com/source-code.

Printed on acid-free paper

Contents at a Glance

About the Author ... ———— vii
About the Technical REVIEWETccssssmsssssssssmssessassamsssssmssnssassassansas ix
Introduction........cnnmnmmmnn i ——————————— Xi
Chapter 1: Anatomy of a Functionusssssssssssssssssssssssssssssssssnnnss 1
Chapter 2: Inside a Function Call........cussesssssssnnnmssssssssssssansssssssnnns 17
Chapter 3: Expressions and Environments.........cuusensnmsssnsssssssenns 35
Chapter 4: Manipulating EXpressions.....cccussmssessmsssssssssssssnsssssssnnns 57
Chapter 5: Working with Substitutionscccoinmmmmmnsssseesnnnnm. 77
Y 1 1 . 99
IN@X.csiieersmsssmsansnsssnnsssnssssnsssnssssnnssnssssnsnsnnsssnnssnssssunssnnsnsannsansssannses 101

iii

Contents

About the AUthOrcccvimsmsnmmmsss s —————— vii
About the Technical ReVIeWErcuicssssssssssssssassssssanssssssssssssssasssasssnssns ix
Introductioncuicssssessssssmsansssnssssasssssssnssssnssssnsssassnnnnssanssnnnnnsansssannsansn Xi
Chapter 1: Anatomy of a FUNCHionccccssmmmnmmmmmsmssnsssnssssnnsssssnssnnnns 1
Manipulating FUNCHONS........cccvevrvrre s ses s ne e 1
L0111 1
FUNCLION BOGIES ...t s 3
FUNCLION ENVIFONMENTS ...ttt 6
Calling @ FUNCLION........ccccvverererrssessssssesesssssssssssssssesnssesessssssssssasssssssssanns 6
Modifying FUNCHONS ..ot 9
Constructing FUNCHIONS ..o e 13
Chapter 2: Inside a Function Call........cuccsusmimssmsssmssnssissmmsnsssnsnsnnn 17
Getting the Components of the Current Function..........ccoccvvcennicrscnnas 17
Accessing Actual Function Parameters.........ccccveevvmninnrnnssessssssssnesannns 20
Accessing the Calling SCOPE ... 28
Chapter 3: Expressions and Environments........cusussnsssssassassassassans 35
EXPIESSIONS ..cuveireecerceeserre et s e ae s snssar e s sre s sne e rn s e n e e e nn s 35
Chains of Linked ENvironments..........ccocccenmemnmnessssssesssessssssesessssnsens 36
Environments and Function Calls.........c.ccovienrnincnssnncnsscsesescnens 44
Manipulating Environments........cccoccvveeiiniminnsessnsssssisssssssssesssssssssssneas 48

CONTENTS

Explicitly Creating EnvVironments........c.cccveeviennenmieesinnnssssssesssessesssssssnns 51
Environments and Expression Evaluationcccccoveeviveniensesieniennienns 54

Chapter 4: Manipulating EXpressions......cccsmmssmssenmssnssssssassssassss 57

The BasiCs 0f EXPreSSiONS..........cvveeerreerssrseersessesmsessnsssssssssessassssssasssas 58
Accessing and Manipulating Control StrUCLUrESocvvvevevevevevevererevesesesesesesenees 58
Accessing and Manipulating FUnction CallS.........cccvvrvnivniennennnnennnnssessenssennn 60

Expression Simplification..........ccccvoeveeecerrerieneeseesee s sneenens 62

Automatic Differentiationccocevrrrenmeneesssese e 69

Chapter 5: Working with Substitutionscccusummmmmnssnmsssminn 77

A Little More on QUOLES.......ccvnmimimmmis . 77
Parsing and Deparsing.......ccccuvivrnrirmisniniessssersssssssssssssssssss s sssssssees 78
SUDSHIUION ... ————— 79
Substituting Expressions Held in Variablescccvvvivininninnninnnnsnnsnnsnsnennns 81
Substituting FUnction Arguments ... 83
Nonstandard Evaluation ... 85
Nonstandard Evaluation from Inside FUNCHions.........ccoonnininnnnininnnns 87
Writing Macros With NSE...........cooiicn bbb eens 88
Modifying Environments in Evaluations..........ccoceevevnicnnnnnnssnnsecsesssessssessesennas 92
Accessing Promises Using the pryr Package........coccuenieiesiesessesnsnens 93

Y (= T 1 R | |

1L R R—— | | } |

vi

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus
University, Denmark. His background is in math and computer science, but for
the last decade his main focus has been on genetics and evolutionary studies,
particularly comparative genomics, speciation, and gene flow between emerging
species.

vii

About the Technical
Reviewer

/

Massimo Nardone has more than 22 years of
experience in security, web/mobile development,
the cloud, and IT architecture. His true IT
passions are security and Android.

He has been programming and teaching how
to program with Android, Perl, PHP, Java, VB,
Python, C/C++, and MySQL for more than 20 years.

He holds a master of science degree in
computing science from the University of Salerno,
Italy.

He has worked as a project manager, software
engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor,
and senior lead IT security/cloud/SCADA architect for many years.

He currently works as a chief information security officer (CISO) for
Cargotec Oyj.

He was a visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University), and he
holds four international patents (PKI, SIP, SAML, and proxy areas).

Massimo has reviewed more than 40 IT books for different publishing
companies, and he is the coauthor of Pro Android Games (Apress, 2015).

ix

Introduction

/

Welcome to Metaprogramming in R. 1 am writing this book, and my books on

R programming in general, to help make more advanced teaching material
available beyond the typical introductory level most textbooks on R have. This
book covers some of the more advanced techniques used in R programming
such as fully exploiting functional programming, writing metaprograms (code
for actually manipulating the language structures), and writing domain-specific
languages to embed in R.

This book introduces metaprogramming. Metaprogramming is when you
write programs that manipulate other programs; in other words, you treat code
as data that you can generate, analyze, or modify. R is a very high-level language
where all operations are functions, and all functions are data that you can
manipulate.

There is great flexibility in how function calls and expressions are evaluated.
The lazy evaluation semantics of R mean that arguments to functions are passed
as unevaluated expressions, and these expressions can be modified before they
are evaluated, or they can be evaluated in other environments than the context
where a function is defined. This can be exploited to create small domain-
specific languages and is a fundamental component in the “tidy verse” in
packages such as dplyr or ggplot2 where expressions are evaluated in contexts
defined by data frames.

There is some danger in modifying how the language evaluates function
calls and expressions, of course. It makes it harder to reason about code. On
the other hand, adding small embedded languages for dealing with everyday
programming tasks adds expressiveness to the language that far outweighs the
risks of programming confusion, as long as such metaprogramming is used
sparingly and in well-understood (and well-documented) frameworks.

In this book, you will learn how to manipulate functions and expressions
and how to evaluate expressions in nonstandard ways. Prerequisites for reading
this book are familiarity with functional programming, at least familiarity with
higher-order functions, that is, functions that take other functions as an input or
that return functions.

Xi

CHAPTER 1

Anatomy of a Function Y

Everything you do in R involves defining functions or calling functions. You cannot
do any action without evaluating some function or other. Even assigning values to
variables or subscripting vectors or lists involves evaluating functions. But functions
are more than just recipes for how to perform different actions; they are also data
objects in themselves, and there are ways of probing and modifying them.

Manipulating Functions

If you define a simple function like the following, you can examine the
components it consists of:

f <- function(x) x

There are three parts to a function: its formal parameters, its body, and the
environment it is defined in. The functions formals, body, and environment give
you these:

formals(f)

#H$x

body (f)

x

environment(f)

<environment: R_GlobalEnv>

Formals

The formal parameters are given as a list where element names are the
parameter names and values are default parameters.

© Thomas Mailund 2017 1
T. Mailund, Metaprogramming in R, DOI 10.1007/978-1-4842-2881-4_1

CHAPTER 1 © ANATOMY OF A FUNCTION

g <- function(x = 1, y =2, 2=3) x+y+z
parameters <- formals(g)
for (param in names(parameters)) {

cat(param, "=>", parameters[[param]], "\n")

}

x => 1
#y =>2
#Hz=>3

Strictly speaking, it is a so-called pairlist, but that is an implementation
detail that has no bearing on how you treat it. You can treat it as if it is a 1ist.

g <- function(x =1, y =2, z=3) x+y+z
parameters <- formals(g)
for (param in names(parameters)) {

cat(param, " => ", '"", parameters[[param]], '"', "\n", sep = "")
}
X => ||'1II
y :> |r2||
zZ => |r3||

For variables in this list that do not have default values, the list represents
the values as the empty name. This is a special symbol that you cannot assign to,
so it cannot be confused with a real value. You cannot use the missing function
to check for a missing value in a formals function (that function is useful only
inside a function call, and in any case there is a difference between a missing
parameter and one that doesn’t have a default value), but you can always check
whether the value is the empty symbol.

g <- function(x, y, z = 3) x +y + z
parameters <- formals(g)
for (param in names(parameters)) {
cat(param, " => ", '"", parameters[[param]], '"',
}

" (", class(parameters[[param]]), ")\n", sep = "")
x => "" (name)
#y = "" (name)
z => "3" (numeric)

Primitive functions (those that call into the runtime system, such as "+) do
not have formals. Only functions that are defined in R.

formals("+7)
NULL

CHAPTER 1 © ANATOMY OF A FUNCTION
Function Bodies
The function body is an expression. For f it is a simple expression.

body(f)
#t x

But even multistatement function bodies are expressions. They just evaluate
to the result of the last expression in the sequence.

g <- function(x) {

y <- 2%x
z <- x¥k2
X+Yy+2z
}
body(g)
#t {
#H y <- 2 ¥x
i zZ <- x"2
#Hit X+y+1z
}

When a function is called, R sets up an environment for it to evaluate this
expression in; this environment is called the evaluation environment for the
function call. The evaluation environment is first populated with values for
the function’s formal parameters, either provided in the function call or given
as default parameters, and then the body executes inside this environment.
Assignments will modify this local environment unless you use the <<- operator,
and the result of the function is the last expression evaluated in the body. This is
either the last expression in a sequence or an expression explicitly given to the
return function.

When you just have the body of a function as an expression, you don’t get
this function call semantics, but you can still try to evaluate the expression.

eval(body(f))
Error in eval(expr, envir, enclos): object 'x' not found

It fails because you do not have a variable x defined anywhere. If you had a
global x, the evaluation would use that and not any function parameter because
the expression here doesn’t know it is part of a function. If we call the function, the
expression will know about the function context, of course, but not when we simply
evaluate the function body like this. You can give it a value for x, though, like this:

eval(body(f), list(x = 2))
(1] 2

CHAPTER 1 © ANATOMY OF A FUNCTION

The eval function evaluates an expression and uses the second argument
to look up parameters. You can give it an environment, and the expression will
then be evaluated in it, or you can use a list. Chapter 3 covers how to work with
expressions and how to evaluate them; for now all you have to know is that
you can evaluate an expression using eval if the variables in the expression
are either found in the scope where you call eval or provided in the second
argument to eval.

You can also set x as a default parameter and use that when you evaluate the
expression.

f <- function(x = 2) x
formals ()

#H $x

#H[1] 2

eval(body(f), formals(f))
#H [1] 2

Things get a little more complicated if default parameters refer to each other.
This has to do with the way the evaluation environment is set up and not so
much with how expressions are evaluated, but consider the following example
where one default parameter refers to another:

f <- function(x =y, y = 5) x +y

Both parameters have default values, so you can call f without any
arguments.

()

[1] 10

You cannot, however, evaluate it just from the formal arguments without
providing values.

eval(body(f), formals(f))
Error in x + y: non-numeric argument to binary operator

In formals(f), x points to the symbol y, and y points to the numeric 5.
But y is not used in the expression, and if you simply look up x, you just get the
symbol y, and you don’t evaluate it further to figure out what y is. Therefore,
you get an error.

CHAPTER 1 © ANATOMY OF A FUNCTION

Formal arguments are not evaluated this way when you call a function. They
are transformed into so-called promises, which are unevaluated expressions
with an associated scope. This is how the formal language definition puts it:

When a function is called, each formal argument is
assigned a promise in the local environment of the call
with the expression slot containing the actual argument
(if it exists) and the environment slot containing the
environment of the caller. If no actual argument for

a formal argument is given in the call and there is

a default expression, it is similarly assigned to the
expression slot of the formal argument, but with the
environment set to the local environment.

This means that in the evaluating environment, R first assigns all variables
to these “promises.” The promises are placeholders for values but represented as
expressions you haven't evaluated yet. As soon as you access them, though, they
will be evaluated (and R will remember the value). For default parameters, the
promises will be evaluated in the evaluating environment, and for parameters
passed to the function in the function call, the promises will be evaluated in the
calling scope.

Since all the promises are unevaluated expressions, you don’t have to worry
about the order in which you assign the variables. As long as the variables exist
when you evaluate a promise, you are fine, and as long as there are no circular
dependencies between the expressions, you can figure out all the values when
you need them.

Don’t make circular dependencies. Don’t do something like this:

g <- function(x = 2%y, y = x/2) x +y

You can try to make a similar setup for f where you build an environment of
its formals as promises. You can use the function delayedAssign to assign values
to promises like this:

fenv <- new.env()

parameters <- formals(f)

for (param in names(parameters)) {
delayedAssign(param, parameters[[param]], fenv, fenv)

}
eval(body(f), fenv)
[1] 10

CHAPTER 1 © ANATOMY OF A FUNCTION

Here you assign the expression y to variable x and the value 5 to variable y.
Primitive values like a numeric vector are not handled as unevaluated
expressions. They could be, but there is no point. So before you evaluate the
body of f, the environment has y pointing to 5 and x pointing to the expression y,
wrapped as a promise that says that the expression should be evaluated in fend
when you need to know the value of y.

Function Environments

The environment of a function is the simplest of its components. It is just
the environment where the function was defined. This environment is used
to capture the enclosing scope and is what makes closures possible in R.
The evaluating environment will be set up with the function’s environment
when it is created such that variables not found in the local environment,
consisting of local variables and formal parameters, will be searched for in
the enclosing scope.

Calling a Function

Before continuing, it might be worthwhile to see how these components fit
together when a function is called. I explained this in some detail in Functional
Programming in R, but it is essential to understand how expressions are
evaluated. When you start to fiddle around with nonstandard evaluation, it
becomes even more important, so it bears repeating.

When expressions are evaluated, they are evaluated in an environment.
Environments are chained in a tree structure. Each environment has a parent,
and when R needs to look up a variable, it first looks in the current environment
to see whether that environment holds the variable. If it doesn’t, R will look in
the parent. If it doesn’t find it there either, it will look in the grandparent, and
it will continue going up the tree until it either finds the variable or hits the
global environment and sees that it isn’t there, at which point it will raise an
error. You call the variables that an expression can find by searching this way
its scope. Since the search always picks the first place it finds a given variable,
local variables overshadow global variables, and while several environments on
this parent-chain might contain the same variable name, only the innermost
environment, the first you find, will be used.

When a function, f, is created, it gets associated with environment(f). This
environment is the environment where f is defined. When f is invoked, R creates
an evaluation environment for f; let's call it evalenv. The parent of evalenv is
set to environment(f). Since environment (f) is the environment where f is
defined, having it as the parent of the evaluation environment means that the
body of f can see its enclosing scope if f is a closure.

CHAPTER 1 © ANATOMY OF A FUNCTION

After the evaluation environment is created, the formals of f are added to it
as promises. As you saw from the language definition earlier, there is a difference
between default parameters and parameters given to the function where it is
called in how these promises are set up. Default parameters will be promises
that should be evaluated in the evaluation scope, evalenv. This means they
can refer to other local variables or formal parameters. Since these will be put
in evalenv and since evalenv’s parent is environment(f), these promises can
also refer to variables in the scope where f was defined. Expressions given to f
where it is called, however, will be stored as promises that should be called in
the calling environment. Let’s call that callenv. If they were evaluated in the
evalenv, they would not be able to refer to variables in the scope where you call
f; they would be able to refer only to local variables or variables in the scope
where f was defined.

You can see it all in action in the following example:

enclosing <- function() {
zZ <-2
function(x, y = x) {
X+Yy+2z
}
}

f <- enclosing()

calling <- function() {
W<-5
f(x = 2 *w)

}

calling()
[1] 22

You start out in the global environment where you define enclosing to be
a function. When you call enclosing, you create an evaluation environment
in which you store the variable z and then return a function that you store in
the global environment as f. Since this function was defined in the evaluation
environment of enclosing, this environment is the environment of f.

Then you create calling, store that in the global environment, and call
it. This creates, once again, an evaluation environment. In this, you store the
variable w and then call f. You don’t have f in the evaluation environment, but
because the parent of the evaluation environment is the global environment, you
can find it. When you call f, you give it the expression 2 * was parameter x.

CHAPTER 1 © ANATOMY OF A FUNCTION

Inside the call to f, you have another evaluation environment. Its parent is
the closure you got from enclosing. Here you need to evaluate f’'sbody:x + y + z.
However, before that, the evaluation environment needs to be set up. Since x
and y are formal parameters, they will be stored in the evaluation environment
as promises. You provided x as a parameter when you called f, so this promise
must be evaluated in the calling environment (the environment inside
calling), while y has the default value, so it must be evaluated in the evaluation
environment. In this environment, it can see x and y and through the parent
environment z. You evaluate x, which is the expression 2 * win the calling
environment, where w is known, and you evaluate y in the local environment,
where x is known. So, you can get the value of those two variables and then get z
from the enclosing environment.

You can try to emulate all this using explicit environments and
delayedAssign to store promises. You need three environments since you don’t
need to simulate the global environment for this. You need the environment
where the f function was defined; you call it defenv. Then you need the
evaluating environment for the call to f, and you need the environment in which
f is called.

defenv <- new.env()
evalenv <- new.env(parent = defenv)
callenv <- new.env()

Here, defenv and calling have the global environment as their parent, but
you don’t need to worry about that. The evaluating environment has defend as
its parent.

In the definition environment, you save the value of z.

defenv$z <- 2
In the calling environment, you save the value of w.
callenvw <- 5

In the evaluation environment, you set up the promises. The delayedAssign
function takes two environments as arguments. The first is the environment
where the promise should be evaluated, and the second is where it should be
stored. For x you want the expression to be evaluated in the calling environment,
and for y you want it to be evaluated in the evaluation environment. Both
variables should be stored in the evaluation environment.

delayedAssign("x", 2 * w, callenv, evalenv)
delayedAssign("y", x, evalenv, evalenv)

CHAPTER 1 © ANATOMY OF A FUNCTION

In the evalenv you can now evaluate f.

f <- function(x, y = x) x +y + z
eval(body(f), evalenv)
#Ho[1] 22

There is surprisingly much going on behind a function call, but it all follows
these rules for how arguments are passed along as promises.

Modifying Functions

You can do more than just inspect functions. The three functions for inspecting
also come in assignment versions, and you can use those to change the three
components of a function. If you go back to the simple definition of f

f <- function(x) x
.F
function(x) x

you can try modifying its formal arguments by setting a default value for x

formals(f) <- list(x = 3)
.F

function (x = 3)

##H x

where, with a default value for X, you can evaluate its body in the
environment of its formals.

eval(body(f), formals(f))
[1] 3

I will stress again, though, that evaluating a function is not quite as simple
as evaluating its body in the context of its formals. It doesn’t matter that you
change a function’s formal arguments outside of its definition when the function
is invoked. The formal arguments will still be evaluated in the context where the
function was defined.

If you define a closure, you can see this in action.

nested <- function() {
y <- 5
function(x) x

}

f <- nested()

CHAPTER 1 © ANATOMY OF A FUNCTION

Since f was defined inside the evaluating environment of nested, its
environment(f) will be that environment. When you call it, it will, therefore, be
able to see the local variable y from nested. It doesn't refer to that, but you can
change this by modifying its formals.

formals(f) <- list(x = quote(y))
.F

function (x = y)

x

<environment: 0x7fc0f8c85908>

Here, you have to use the function quote to make y a name. If you didn’t, you
would get an error, or you would get a reference to a y in the global environment. In
function definitions, default arguments are automatically quoted to turn them into
expressions, but when you modify formals, you have to do this explicitly.

If you now call f without arguments, x will take its default value as specified
by formals(f). That s, it will refer to y. Since this is a default argument, it will
be turned into a promise that will be evaluated in f’s evaluation environment.
There is no local variable named y, so R will look in environment (f) for y and
find it inside the nested environment.

()
[1] 5

Just because you modified formals(f) in the global environment, you do
not change in which environment R evaluates promises for default parameters.
If you have a global y, the y in f's formals still refer to the one in nested.

y <- 2
()
[1] 5

Of course, if you provide y as a parameter when calling f, things change.
Now it will be a promise that should be evaluated in the calling environment, so
in that case, you get a reference to the global y.

f(x = y)
#H [1] 2

You can modify the body of f as well. Instead of having its body refer to x,
you can, for example, make it return the constant 6.

10

CHAPTER 1~ ANATOMY OF A FUNCTION
body(f) <- 6
.F

function (x = y)
6
<environment: 0x7fc0f8c85908>

Now it evaluates that constant, six, when we call it, regardless of what x is.

()

#t (1] 6
f(x = 12)
#t [1] 6

You can also try making f's body more complex and make it an actual
expression.

body(f) <- 2 * y

()
[1] 4

Here, however, you don’t get quite what you want. You don’t want the body
of a function to be evaluated before you call the function, but when you assign
an expression like this, you do evaluate it before you assign. There is a limit to
how far lazy evaluation goes. Since y was 2, you are in effect setting the body of
T to 4. Changing y afterward doesn’t change this.

y <-3
()
[1] 4

To get an unevaluated body, you must, again, use quote,

body(f) <- quote(2 * y)

.F

function (x = y)

#H2*y

#Ht <environment: 0x7fc0f8c85908>

Now, however, you get back to the semantics for function calls, which means
that the body is evaluated in an evaluation environment whose parent is the
environment inside nested, so y refers to the local and not the global parameter.

()

#H [1] 10
y <- 2
()

[1] 10
11

