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1 Representation and Computation

Studying the Mind

Have you ever wondered how your mind works? Every day, people accom-
plish a wide range of mental tasks: solving problems at their work or
school, making decisions about their personal life, explaining the actions
of people they know, and acquiring new concepts like cell phone and Inter-
net. The main aim of cognitive science is to explain how people accom-
plish these various kinds of thinking. We want not only to describe
different kinds of problem solving and learning, but also to explain how
the mind carries out these operations. Moreover, cognitive science aims to
explain cases where thinking works poorly—for example, when people
make bad decisions.

Understanding how the mind works is important for many practical
activities. Educators need to know the nature of students’ thinking in order
to devise better ways of teaching them. Engineers and other designers need
to know what potential users of their products are likely to be thinking
when they use their products effectively or ineffectively. Computers can
be made more intelligent by reflecting on what makes people intelligent.

Politicians and other decision makers can become more successful if they
understand the mental processes of people with whom they interact.

But studying the mind is not easy, since we cannot just pop one open
to see how it works. Over the centuries, philosophers and psyvchologists
have used a variety of metaphors for the mind, comparing it, for example,
to a blank sheet on which impressions are made, to a hydraulic device with
various forces operating in it, and to a telephone switchboard. In the last
fifty years, suggestive new metaphors for thinking have become available
through the development of new kinds of computers. Many but not all
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cognitive scientists view thinking as a kind of computation and use com-
putational metaphors to describe and explain how people solve problems
and learn.

What Do You Know?

When students begin studying at a college or university, they have much
more to learn than course material. Undergraduates in different programs
will have to deal with very different subject matters, but they all need to
acquire some basic knowledge about how the university works. How do
you register for courses? What time do the classes begin? What courses are
good and which are to be avoided? What are the requirements for a degree?
What is the best route from one building to another? What are the other
students on campus like? Where is the best place to have fun on Friday
night?

Answers to these questions become part of the minds of most students,
but what sort of part? Most cognitive scientists agree that knowledge in
the mind consists of mental representations. Everyone is familiar with non-
mental representations, such as the words on this page. I have just used
the words “this page” to represent the page that you are now seeing. Stu-
dents often also use pictorial representations such as maps of their cam-
puses and buildings. To account for many kinds of knowledge, such as
what students know about the university, cognitive scientists have pro-
posed various kinds of mental representation including rules, concepts,
images, and analogies. Students acquire rules such as If I want to graduate,
then I need to take ten courses in my major. They also acquire concepts involv-
ing new terms such as “bird” or “Mickey Mouse” or “gut,” all used to
describe a particularly easy course. For getting from building to building,
a mental image or picture of the layout of the campus might be very useful.
After taking a course that they particularly like, students may try to find
another similar course to take. Having interacted with numerous students
from different programs on campus, students may form stereotypes of the
different kinds of undergraduates, although it may be difficult for them to
say exactly what constitutes those stereotypes.

The knowledge that students acquire about college life is not acquired
just for the sake of accumulating information. Students face numerous
problems, such as how to do well in their courses, how to have a decent



Representation and Computation 5

social life, and how to get a job after graduation. Solving such problems
requires doing things with mental representations, such as reasoning that
you still need five more courses to graduate, or deciding never to take
another course from Professor Tedium. Cognitive science proposes that
people have mental procedures that operate on mental representations to
produce thought and action. Different Kinds of mental representations
such as rules and concepts foster different kinds of mental procedures.
Consider different ways of representing numbers. Most people are famil-
iar with the Arabic numeral representation of numbers (1, 2, 3, 10, 100,
etc.) and with the standard procedures for doing addition, multiplication,
and so on. Roman numerals can also represent numbers (I, II, III, X, C),
but they require different procedures for carrying out arithmetic opera-
tions. Try dividing CIV (104) by XXVI (26).

Part 1 of this book surveys the different approaches to mental represen-
tations and procedures that have developed in the last four decades of cog-
nitive science research. There has been much controversy about the merits
of different approaches, and many of the leading cognitive science theo-
rists have argued vehemently for the primacy of the approach they prefer.
My approach is more eclectic, since I believe that the different theories of
mental representation now available are more complementary than com-
petitive. The human mind is astonishingly complex, and our understand-
ing of it can gain from considering its use of rules such as those described
above as well as many other kinds of representations including some not
at all familiar. The latter include “connectionist” or “neural network” rep-
resentations that are discussed in chapter 7.

Beginnings

Attempts to understand the mind and its operation go back at least to the
ancient Greeks, when philosophers such as Plato and Aristotle tried to
explain the nature of human knowledge. Plato thought that the most
important knowledge comes from concepts such as virtue that people know
innately, independently of sense experience. Other philosophers such as
Descartes and Leibniz also believed that knowledge can be gained just
by thinking and reasoning, a position known as rationalism. In contrast,
Aristotle discussed knowledge in terms of rules such as All humans are
mortal that are learned from experience. This philosophical position,
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defended by Locke, Hume, and others, is known as empiricism. In the eigh-
teenth century, Kant attempted to combine rationalism and empiricism by
arguing that human knowledge depends on both sense experience and the
innate capacities of the mind.

The study of mind remained the province of philosophy until the nine-
teenth century, when experimental psychology developed. Wilhelm
Wundt and his students initiated laboratory methods for studying mental
operations more systematically. Within a few decades, however, experi-
mental psychology became dominated by behaviorism, a view that virtu-
ally denied the existence of mind. According to behaviorists such as J. B.
Watson (1913), psychology should restrict itself to examining the relation
between observable stimuli and observable behavioral responses. Talk of
consciousness and mental representations was banished from respectable
scientific discussion. Especially in North America, behaviorism dominated
the psychological scene through the 1950s.

Around 1956, the intellectual landscape began to change dramatically.
George Miller (1956) summarized numerous studies that showed that the
capacity of human thinking is limited, with short-term memory, for
example, limited to around seven items. (This is why it is hard to remem-
ber long phone or social security numbers.) He proposed that memory lim-
itations can be overcome by recoding information into chunks, mental
representations that require mental procedures for encoding and decoding
the information. At this time, primitive computers had been around for
only a few years, but pioneers such as John McCarthy, Marvin Minsky,
Allen Newell, and Herbert Simon were founding the field of artificial intel-
ligence. In addition, Noam Chomsky (1957, 1959) rejected behaviorist
assumptions about language as a learned habit and proposed instead to
explain people’s ability to understand language in terms of mental gram-
mars consisting of rules. The six thinkers mentioned in this paragraph can
justly be viewed as the founders of cognitive science.

The subsequent history of cognitive science is sketched in later chapters
in connection with different theories of mental representation. McCarthy
became one of the leaders of the approach to artificial intelligence based
on formal logic, which we will discuss in chapter 2. During the 1960s,
Newell and Simon showed the power of rules for accounting for aspects of
human intelligence, and chapter 3 describes considerable subsequent work
in this tradition. During the 1970s, Minsky proposed that conceptlike
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frames are the central form of knowledge representations, and other
researchers in artificial intelligence and psychology discussed similar struc-
tures called schemas and scripts (chapter 4). Also at this time, psycholo-
gists began to show increased interest in mental imagery (chapter 6). Much
experimental and computational research since the 1980s has concerned
analogical thinking, also known as case-based reasoning (chapter 5). The
most exciting development of the 1980s was the rise of connectionist the-
ories of mental representation and processing modeled loosely on neural
networks in the brain (chapter 7). Each of these approaches has con-
tributed to the understanding of mind, and chapter 8 provides a summary
and evaluation of their advantages and disadvantages.

Many challenges and extensions have been made to the central view that
the mind should be understood in terms of mental representations and
procedures, and these are addressed in part II of the book (chapters 9-14).
The 1990s saw a rapid increase in the use of brain scanning technologies
to study how specific areas of the brain contribute to thinking, and cur-
rently there is much work on neurologically realistic computational
models of mind (chapter 9). These models are suggesting new ways to
understand emotions and consciousness (chapters 10 and 11). Chapters 12
and 13 address challenges to the computational-representational approach
based on the role that bodies, physical environments, and social environ-
ments play in human thinking. Finally, chapter 14 discusses the future of
cognitive science, including suggestions for how students can pursue
further interdisciplinary work.

Methods in Cognitive Science

Cognitive science should be more than just people from different fields
having lunch together to chat about the mind. But before we can begin to
see the unifying ideas of cognitive science, we have to appreciate the diver-
sity of outlooks and methods that researchers in different fields bring to
the study of mind and intelligence.

Although cognitive psychologists today often engage in theorizing and
computational modeling, their primary method is experimentation with
human participants. People, usually undergraduates satisfying course
requirements, are brought into the laboratory so that different kinds
of thinking can be studied under controlled conditions. To take some
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In addition to descriptive questions about how people think, philosophy
concerns itself with normative questions about how they should think.
Along with the theoretical goal of understanding human thinking, cogni-
tive science can have the practical goal of improving it, which requires
normative reflection on what we want thinking to be. Philosophy of mind
does not have a distinct method, but should share with the best theoreti-
cal work in other fields a concern with empirical results.

[n its weakest form, cognitive science is merely the sum of the fields just
mentioned: psychology, artificial intelligence, linguistics, neuroscience,
anthropology, and philosophy. Interdisciplinary work becomes much more
interesting when there is theoretical and experimental convergence on
conclusions about the nature of mind. Later chapters provide examples of
such convergences that show cognitive science working at the intersection
of various fields. For example, psychology and artificial intelligence can be
combined through computational models of how people behave in exper-
iments. The best way to grasp the complexity of human thinking is to use
multiple methods, especially combining psychological and neurological
experiments with computational models. Theoretically, the most fertile
approach has been to understand the mind in terms of representation and
computation.

The Computational-Representational Understanding of Mind

Here is the central hypothesis of cognitive science: Thinking can best be
understood in terms of representational structures in the mind and com-
putational procedures that operate on those structures. Although there is
much disagreement about the nature of the representations and compu-
tations that constitute thinking, the central hypothesis is general enough
to encompass the current range of thinking in cognitive science, includ-
ing connectionist theories. For short, I call the approach to understanding
the mind based on this central hypothesis CRUM, for Computational-
Representational Understanding of Mind.

CRUM might be wrong. Part II of this book presents some fundamental
challenges to this approach that suggest that ideas about representation
and computation might be inadequate to explain fundamental facts about
the mind. But in evaluating the successes of different theories of knowl-
edge representation, we will be able to see the considerable progress in
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understanding the mind that CRUM has made possible. Without a doubt,
CRUM has been the most theoretically and experimentally successful
approach to mind ever developed. Not everyone in the cognitive science
disciplines agrees with CRUM, but inspection of the leading journals in
psychology and other fields reveals that CRUM is currently the dominant
approach to cognitive science.

Much of CRUM’s success has been due to the fact that it employs a fertile
analogy derived from the development of computers. As chapter 5
describes, analogies often contribute to new scientific ideas, and compar-
ing the mind with computers has provided a much more powerful way of
approaching the mind than previous metaphors such as the telephone
switchboard. Readers with a background in computer science will be famil-
iar with the characterization of a computer program as consisting of data
structures and algorithms. Modern programming languages include a
variety of data structures including strings of letters such as “abc,” numbers
such as 3, and more complex structures such as lists (A B C) and trees.
Algorithms—mechanical procedures—can be defined to operate on various
kinds of structures. For example, children in elementary school learn an
algorithm for operating on numbers to perform long division. Another
simple algorithm can be defined to reverse a list, turning (A B C) into (C
B A). This procedure is built up out of smaller procedures for taking an
element from one list and adding it to the beginning of another, enabling
a computer to build a reversed list by forming (A), then (B A), then (C B
A). Similarly, CRUM assumes that the mind has mental representations
analogous to data structures, and computational procedures similar to
algorithms. Schematically:

Program Mind

data structures + algorithms mental representations + computational
= running programs procedures = thinking

This has been the dominant analogy in cognitive science, although it has
taken on a novel twist from the use of another analog, the brain. Con-
nectionists have proposed novel ideas about representation and computa-
tion that use neurons and their connections as inspirations for data
structures, and neuron firing and spreading activation as inspirations for
algorithms. CRUM then works with a complex three-way analogy among
the mind, the brain, and computers, as depicted in figure 1.1. Mind, brain,
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Figure 1.1
Three-way analogy between minds, computers, and brains.

and computation can each be used to suggest new ideas about the others.
There is no single computational model of mind, since different Kinds of
computers and programming approaches suggest different ways in which
the mind might work. The computers that most of us work with today are
serial processors, performing one instruction at a time, but the brain and
some recently developed computers are parallel processors, capable of
doing many operations at once.

[f yvou already know a lot about computers, thinking about the mind
computationally should come fairly naturally, even if you do not agree that
the mind is fundamentally like a computer. Readers who have never
written a computer program but have used cookbooks can consider
another analogy. A recipe usually has two parts: a list of ingredients and a
set of instructions for what to do with them. A dish results from applying
cooking instructions to the ingredients, just as a running program results
from applying algorithms to data structures such as numbers and lists, and
just as thinking (according to CRUM) results from applying computational
procedures to mental representations. The recipe analogy for thinking is
weak, since ingredients are not representations and cooking instructions
require someone to interpret them. Chapters 2-7 provide simple examples
of computational procedures that map much more directly onto the oper-
ations of mind.
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Theories, Models, and Programs

Computer models are often very useful for theoretical investigation of
mental processes. Comprehension of cognitive science models requires
noting the distinctions and the connections among four crucial elements:
theory, model, program, and platform. A cognitive theory postulates a set
of representational structures and a set of processes that operate on these
structures. A computational model makes these structures and processes
more precise by interpreting them by analogy with computer programs
that consist of data structures and algorithms. Vague ideas about repre-
sentations can be supplemented by precise computational ideas about data
structures, and mental processes can be defined algorithmically. To test
the model, it must be implemented in a software program in a program-
ming language such as LISP or Java. This program may run on a variety
of hardware platforms such as Macintoshes, Sun Workstations, or IBM PCs,
or it may be specially designed for a specific kind of hardware that has
many processors working in parallel. Many kinds of structures and
processes can be investigated in this way, from the rules and search strate-
gies of some traditional sorts of artificial intelligence, to the distributed
representations and spreading activation processes of newer connection-
ist views.

Suppose, for example, that you want to understand how children learn
to add numbers together in problems such as 13 + 28 = ? A cognitive theory
would postulate how children represent these numbers and how they
process the representations to accomplish addition. The theory would
propose whether 13 is to be represented by a single structure, a combined
structure such as 10 plus 3, or by a complex of neuronlike structures. The
theory would also propose processes that operate on the structures to
produce a result such as 41, including the carrying operation that somehow
turns 30-plus-11 into 41. A computational model would specify the nature
of the representations and processes more precisely by characterizing pro-
grammable structures and algorithms that are intended to be analogous to
the mental representations and processes for addition. To evaluate the
theory and model, we can write a computer program in a computer lan-
guage such as LISP, running the program to compare its performance with
human adders and checking that the program not only gets the same right
answers as the humans but also makes the same kind of mistakes. Our
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program might run on any number of different platforms such as PCs, or
it might be specially tailored to a particular kind of computer such as one
that mimics the neuronal structure of the brain.

The analogy between mind and computer is useful at all three stages of
the development of cognitive theories: discovery, modification, and eval-
uation. Computational ideas about different kinds of programs often
suggest new kinds of mental structures and processes. Theory develop-
ment, model development, and program development often go hand in
hand, since writing the program may lead to the invention of new Kinds
of data structures and algorithms that become part of the model and have
analogs in the theory. For example, in writing a computer program to sim-
ulate human addition, a programmer might think of a kind of data struc-
ture that suggests new ideas about how children represent numbers.
Similarly, evaluation of theory, model, and program often involves all
three, since our confidence in the theory depends on the model’s validity
as shown by the program’s performance. If the computer program for
doing addition cannot add, or if it adds more perfectly than humans, we
have reason to believe that the corresponding cognitive theory of addition
is inadequate.

The running program can contribute to evaluation of the model and
theory in three ways. First, it helps to show that the postulated represen-
tations and processes are computationally realizable. This is important,
since many algorithms that seem reasonable at first glance do not scale up
to large problems on real computers. Second, in order to show not only
the computational realizability of a theory but also its psychological plau-
sibility, the program can be applied qualitatively to various examples of
thinking. Our addition program, for example, should be able to get the
same kinds of right and wrong answers as children. Third, to show a much
more detailed fit between the theory and human thinking, the program
can be used gquantitatively to generate detailed predictions about human
thinking that can be compared with the results of psychological experi-
ments. If there are psychological experiments that show that children get
a certain percentage of a class of addition problems right, then the com-
puter program should get roughly the same percentage right. Cognitive
theories by themselves are normally not precise enough to generate such
quantitative predictions, but a model and program may fill the gap
between theory and observation.
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take into account how efficient the computation is. Imagine a procedure
that takes only a second to be applied once, but twice as long the second
time, and twice as long as that the third time, and so on. Then twenty
applications would take 2* seconds, which are more seconds than there
have been in the approximately 15 billion years since the universe was
formed. Both naturally and artificially intelligent systems need to have suf-
ficient speed to work effectively in their environments.

When people solve a problem, they are usually able to learn from the
experience and thereby solve it much more easily the next time. For
example, the first time that students register for classes is usually very con-
fusing since they do not know what procedures to follow or how to go
about choosing good classes. Subsequently, however, registering typically
gets a lot easier. Part of being intelligent involves being able to learn from
experience, so a theory of mental representation must have sufficient com-
putational power to explain how people learn. In discussing different
approaches to mental representation, we will encounter diverse kinds of
human learning, ranging from the acquisition of new concepts such as reg-
istration and rules such as Never sign up for an 8:30 class to more subtle kinds
of adjustment in performance,

In addition to problem solving and learning, a general cognitive theory
must account for human language use. Ours is the only species on Earth
capable of complex use of language. General principles of problem solving
and learning might account for language use, but it is also possible that
language is a unique cognitive capacity that must be dealt with specially.
At least three aspects of language use need to be explained: people’s ability
to comprehend language, their ability to produce utterances, and chil-
dren’s universal ability to learn language. Different approaches to knowl-
edge representation provide very different answers to how these work.

If artificial intelligence is viewed as a branch of engineering, it can
develop computational models of problem solving, learning, and language
that ignore how people accomplish these tasks; the question is just how
to get computers to do them. But cognitive science has the goal of under-
standing human cognition, so it is crucial that a theory of mental repre-
sentation not only have a lot of representational and computational
power, but also be concerned with how people think. Accordingly,
the third criterion for evaluating a theory of mental representation is
psychological plausibility, which requires accounting not just for the
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qualitative capacities of humans but also for the quantitative results of
psychological experiments concerning these capacities. Relevant experi-
ments include ones dealing with the same high-level tasks that were dis-
cussed under the heading of computational power: problem solving,
learning, and language. The difference between this criterion and the last
is that a cognitive theory of mental representation must not only show
how a task is possible computationally, but also try to explain the partic-
ular ways that humans do it.

Similarly, since human thought is accomplished by the human brain, a
theory of mental representation must at least be consistent with the results
of neuroscientific experiments. Until recently, neurological techniques
such as recording EEGs of brain waves seemed too crude to tell us much
about high-level cognition, but the past two decades have brought new
scanning techniques that can identify where and when in the brain certain
cognitive tasks are performed. Cognitive neuroscience has thereby become
an important part of reflection on the operations of mind, so we should
try to assess each approach to knowledge representation in terms of neu-
rological plausibility, even though information about how the brain pro-
duces cognition is still limited (see chapter 9).

The fifth and final criterion for evaluating theories of mental represen-
tation is practical applicability. Although the main goal of cognitive
science is to understand the mind, there are many desirable practical
results to which such understanding can lead. This book considers what
each of the approaches to knowledge representation has to tell us about
four important kinds of application: education, design, intelligent systems,
and mental illness. For educational purposes, cognitive science should be
able to increase understanding of how students learn, and also to suggest
how to teach them better. Design problems, such as how to make com-
puter interfaces that people like to use, should benefit from an under-
standing of how people are thinking when they perform such tasks.
Developing intelligent systems to act either as stand-alone experts or as
tools to support human decisions can directly benefit from computational
ideas about how humans think. Different theories of mental representa-
tion have given rise to very different sorts of expert computer systems,
including rule-based, case-based, and connectionist tools. Other potential
practical applications of cognitive science include understanding and treat-
ment of mental illness.
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As we will see, no single approach to mental representation fully satis-
fies all these criteria. Moreover, there are aspects of human thinking such
as perception (sight, hearing, touch, smell, taste), emotion, and motor
control that are not included in these criteria (see chapters 10-12). Never-
theless, the criteria provide a framework for comparing and evaluating
current theories of mental representation with respect to their accom-
plishments as well as their shortcomings.

Summary

Researchers in psychology, artificial intelligence, neuroscience, linguistics,
anthropology, and philosophy have adopted very different methods for
studying the mind, but ideally these methods can converge on a common
interpretation of how the mind works. A unified view of cognitive science
comes from seeing wvarious theoretical approaches as all concerned
with mental representations and procedures that are analogous to the
representations and procedures familiar in computer programs. The
Computational-Representational Understanding of Mind operates with
the following kind of explanation schema:

Explanation target

Why do people have a particular kind of intelligent behavior?
Explanatory pattern

People have mental representations.

People have algorithmic processes that operate on those represen-
tations.

The processes, applied to the representations, produce the behavior.

The words in boldface are placeholders, indicating that to explain various
kinds of intelligent behavior, various kinds of representations and
processes can be considered. Currently, there are six main approaches to
modeling the mind, involving logic, rules, concepts, analogies, images, and
neural connections. These can be evaluated according to five criteria: rep-
resentational power, computational power, psychological plausibility, neu-
rological plausibility, and practical applicability.

The fundamental presuppositions that have guided the writing of this
book are:
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1. The study of mind is exciting and important. It is exciting for theoret-
ical reasons, since the attempt to investigate the nature of mind is as chal-
lenging as anything attempted by science. It is also exciting for practical
reasons, since knowing how the mind works is important for such diverse
endeavors as improving education, improving design of computers and
other artifacts, and developing intelligent computational systems that can
aid or replace human experts.

2. The study of mind is interdisciplinary. It requires the insights that have
been gained by philosophers, psychologists, computer scientists, linguists,
neuroscientists, anthropologists, and other thinkers. Moreover, it requires
the diversity of methodologies that these fields have developed.

3. The interdisciplinary study of mind (cognitive science) has a core: the
Computational-Representational Understanding of Mind (CRUM). Think-
ing is the result of mental representations and computational processes
that operate on those representations.

4. CRUM is multifarious. Many kinds of representations and computa-
tions are important to understanding human thought, and no single
computational-representational account now available does justice to the
full range of human thinking. This book reviews (in chapters 2-8) the
six major current approaches to understanding the mind in terms of
representations and computation.

5. CRUM is successful. The computational-representational approach has
exceeded all previous theories of mind in its theoretical ability to account
for psychological performance and its practical ability to improve that
performance,

6. CRUM is incomplete. Not all aspects of human thought and intelligence
can be accounted for in purely computational-representational terms. Sub-
stantial challenges have been made to CRUM that show the necessity of
integrating it with biological research (neuroscience) and with research on
social aspects of thought and knowledge.

Discussion Questions

1. What are additional examples of things that students learn when they
go to college or university?

2. Why have researchers in different fields adopted different methods for
studying the mind?
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3. Can you think of any alternatives to the computational-representa-
tional understanding of mind?

4. What aspects of human thinking are most difficult for computers to
perform or model? What would it take to convince you that a computer
is intelligent?

5. Are theories and models in cognitive science like theories and models
in physics and other fields?

6. Are there additional criteria that you would want a theory of mental
representation to meet?

Further Reading

Three recent reference works contain valuable articles on many aspects of
cognitive science: The MIT Encyclopedia of the Cognitive Sciences (Wilson and
Keil 1999), A Companion to Cognitive Science (Bechtel and Graham 1998),
and Encyclopedia of Cognitive Science (Nadel 2003).

On the history of cognitive science, see Gardner 1985 and Thagard 1992,
chap. 9. Other introductions to cognitive science include Johnson-Laird
1988, Stillings et al. 1995, Dawson 1998, and Sobel 2001. General collec-
tions of articles include Polk and Seifert 2002 and Thagard 1998.

Textbooks on cognitive psychology include Anderson 2000, Medin, Ross,
and Markman 2001, and Sternberg 2003. For introductions to artificial
intelligence, see Russell and Norvig 2003 and Winston 1993. Graham 1998
and Clark 2001 provide introductions to the philosophy of mind and cog-
nitive science. An introductory linguistics text is Akmajian et al. 2001. For
accessible introductions to cognitive neuroscience, see LeDoux 2002 and
Kosslyn and Koenig 1992; Churchland and Sejnowski 1992 present a more

computational approach. D’Andrade 1995 provides an introduction to cog-
nitive anthropology.

Web Sites

Note: Live links to all the sites mentioned in this book can be found at my
own Web site, http://cogsci.uwaterloo.ca/courses/resources.html.

Artificial Intelligence in the news (American Association for Artificial Intel-
ligence): http://www.aaai.org/AlTopics/html/current.html
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Aristotle’s discovery of how to analyze syllogisms purely in terms of
their form, ignoring their content, has had a major influence on logic.
The discovery’s usefulness, however, has been challenged from a psycho-
logical perspective, as we will see below in the section on psychological
validity.

The syllogism is a form of deductive inference, in which the conclusion
follows necessarily from the premises: if the premises are true, the con-
clusion is true also. Inductive inference is more dangerous since it intro-
duces uncertainty. If all the students you know are overworked, you might
inductively infer that all students are overworked. But your conclusion
might well be erroneous—for example, if there are basket-weaving majors
you do not know who take it easy.

Although the syllogism dominated discussions of formal logic for two
thousand years, it is not sufficient to represent all inferences. Syllogisms
are fine for simple predicates like “is a student” but they can not handle
relations such as take in sentences like “Students who take courses get
credit for them.” Here take is a relation between a student and a course.
Modern logic began in 1879 with the work of the German mathematician
Gottlob Frege (1960), who devised a formal system of logic much more
general than Aristotle’s. Subsequently, Bertrand Russell and many other
logicians have found ways of increasing the representational and deduc-
tive power of formal logic.

The early theory of computation was developed by logicians such as
Alonzo Church and Alan Turing. In the 1930s, Church, Turing, and others
developed mathematical schemes for specifying what could be effectively
computed. These schemes turned out to be mathematically equivalent to
each other, providing support for the thesis that the intuitive concept of
effective computability can be identified with well-defined mathematical
concepts such as Turing-machine computability. When digital computers
became available in the late 1940s and 1950s, the mathematical theory of
computability provided a powerful tool for understanding their operations.
It is not surprising that, when artificial intelligence began in the mid-
1950s, mathematically trained researchers such as John McCarthy took
logic to be the most appropriate tool. We shall see, however, that other
pioneers such as Allen Newell, Herbert Simon, and Marvin Minsky pre-
ferred different approaches.
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Representational Power

Modern formal logic has the resources to represent many kinds of deduc-
tive inferences. The simplest system of formal logic is propositional logic,
in which formulas like “p” and “q” are used to stand for sentences such as
“Paula is in the library” and “Quincy is in the library.” Simple formulas
can be combined into more complex ones using symbols such as “&" for
“and,” “v” for “or,” and “=" for “if-then.” For example, the sentence

If Paula is in the library, then Quincy is in the library.

becomes

pP—q.

Such if-then sentences are called conditionals, consisting of antecedents
(the “if” part) and consequents (the “then” part). To express negation, “not-
p" can be written ~p. From these building blocks we can construct for-

malizations for complex statements such as “If Paula or Quincy is in the
library, then Debra is not,” which can be formalized as

(pvq — ~d.

Here, “p” stands for “Paula is in the library,” “4" stands for “Quincy is in
the library,” and “d” stands for “Debra is in the library.”

More complicated logics have been developed that allow different kinds
of propositional operators. Modal logic adds operators for necessity and
possibility, so that we can represent statements such as “It is possible that
Paula is in the library.” Epistemic logic adds operators for knowledge and
belief, so that Kp represents “It is known that p.” Deontic logic represents
moral ideas such as that p is permissible or forbidden.

Propositional logic requires treating statements such as “Paula is a
student” as an indivisible whole, but predicate logic allows us to break
them down. Predicate calculus distinguishes between predicates such as “is
a student” and constants referring to such individuals as Paula or Quincy.
In the version of predicate calculus usually taught in philosophy courses,
“Paula is a student” is formalized as “S(p),” where “p” now stands for Paula
rather than a whole proposition. Computer scientists tend to express this
more mnemonically as “is-student (paula).” In addition to simple proper-
ties, predicates can be used to express relations between two or more
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things. For example, “Paula takes Philosophy 256" becomes: “takes (Paula,
Phil256)."”

Predicate calculus can formalize sentences with quantifiers such as “all”
and “some” by using variables such as “x” and “y.” For example, “All stu-
dents are overworked” becomes

(for-all x) (student(x) — overworked (x)).

Literally, this says “For any x, if x is a student, then x is overworked,” which
is equivalent to saving that all students are overworked. The sentence “Stu-
dents who take courses get credit for them” could be formalized as

(for-all x) (for-all y) [(student (x) & course (y) & take (x, y)) — get-credit-
for (x, y)]

This looks complicated, but what it is saying in English is “For any x
and y, if x is a student, y is a course, and x takes y, then x gets credit
for y.”

Readers whose interest lies predominantly in human psychology might
now be asking, why are you throwing these mathematical symbols at me?
The answer is that some rudiments of formal logic are required for under-
standing much current work in cognitive science, including some propos-
als about how humans do deduction. At a minimum, we have to notice
that people can comprehend such statements as “Students who pass
courses get credit for them” and use them to make inferences. Predicate
logic, unlike some other approaches to representation we will discuss, has
sufficient representational power to handle this example.

Although predicate logic is useful for many purposes, it has limitations
that become obvious as soon as we try to translate a natural language text.
For example, try to put the last paragraph into logical form. Its first sen-
tence includes the word “now,” and extending predicate logic to deal with
time is not an easy matter. It also contains the word “you,” which the
reader can figure out refers to Paul Thagard, the author of this book, but
it is not obvious how to express this in logic. Moreover, the structure of
this sentence includes the relation “asks,” which involves both an asker
and the proposition that is asked, so that we need to be able to embed a
proposition within a proposition, which is not naturally done in the usual
formalism for predicate logic. If translation from language to logical for-
malism were easier, we could have greater confidence that formal logic cap-
tures everything that is necessary for mental representation.
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Propositional and predicate logic work well for making assertions that
" take statements to be true or false, but they provide no means to deal with
uncertainty, as in “Paula is probably in the library.” For such assertions,
formal logic can be supplemented with probability theory, which assigns
numbers between 0 and 1 to propositions. We can then write “P(p) = 0.7"
to symbolize that the probability that Paula is in the library is 0.7.

Computational Power

Representations by themselves do nothing. To support thinking, there
must be operations on the representations. To derive a conclusion in logic,
we apply rules of inference to a set of premises. Two of the most common
rules of inference make it possible to draw conclusions using conditionals
(if-then sentences):

Modus ponens
P—q

P
Therefore, q.

Modus tollens

pP—q
not-q

Therefore, not-p.

From the conditional “If Paula is in the library, then Quincy is in the
library” and the information that Paula is in the library, modus ponens
enables us to infer that Quincy is in the library. From the information that
Quincy is not in the library, it follows by modus tollens that Paula is not
in the library.

In predicate logic, there are rules of inference for dealing with the quan-
tifiers “all” and “some.” For example, the rule of universal instantiation
allows the derivation of an instance from a general statement, licensing
the inference from (for-all x)(cool (x)) to cool(Paula), that is, from “Every-
thing is cool” to “Paula is cool.” A more complicated application applies
the generalization that all students are overworked: (for-all x) (student(x)
— overworked (x)). Applyving this to Mary, we get the conclusion that if
Mary is a student, she is overworked: student (Mary) — overworked (Mary).
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Abstract rules of inference such as modus ponens are not in themselves
processing operations. To produce computations, they need to be part of
a human or machine system that can apply them to sentences with the
appropriate logical form. From a logical perspective, deductive reasoning
consists of applying formal inference rules that consider only the logical
form of the premises.

Problem Solving

Planning Many planning problems are open to solutions that employ
logical deduction. Suppose Tiffany is a student who wants to get a degree
in psychology. Her college or university catalog tells her that she needs to
take ten psyvchology courses, including two statistics courses, Statistics 1
and Statistics 2. The first of these is a prerequisite for the other, and the
second is a prerequisite for Research Methods, which is also required for
the degree. From the general description in the catalog, Tiffany can infer
by the inference rule universal instantiation the conditionals that apply to
her, including

take (Tiffany, Statl) — can-take (Tiffany, Stat2)

can-take (Tiffany, Stat2) & open (Stat2) — take (Tiffany, Stat2)

take (Tiffany, Stat2) — can-take (Tiffany, RM)

can-take (Tiffany, RM) & open (RM) — take (Tiffany, RM)

take (Tiffany, RM) & take (Tiffany, Statl) & take (Tiffany, Stat2) & take

(Tiffany, seven-other-courses) — graduate-with (Tiffany, psychology-
degree).

The last conditional is a somewhat awkward formalization of the state-
ment that if Tiffany takes Research Methods, the two statistics courses, and
seven other courses, then she can graduate with a psychology degree.
Tiffany can use these conditionals and the inference rule modus ponens
to derive a plan, which in logical terms is a deduction from her initial state,
where she has taken no psychology courses, to the goal state, where she
graduates. Tiffany can construct the deductive plan that she can take Sta-
tistics 1, and then Statistics 2, and then Research Methods, and then seven
other courses, and finally graduate with a psychology degree.

For planning to be computationally realizable, deduction must be
more constrained than the general set of inference rules found in formal
logic. For example, propositional logic contains the following conjunction
rule:
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niques have been developed for keeping probabilistic reasoning computa-
tionally tractable (Neapolitan 1990; Pearl 1988, 2000). A different issue
treated below is whether people’s normal decision making uses
probabilities.

Explanation Whereas in a planning problem you are trying to figure out
how to accomplish a goal, in an explanation you are trying to understand
why something happened. Suppose that Sarah was expecting to meet Frank
at the student bar, but he did not show up. She would naturally try to gen-
erate an explanation for his absence. Like plans, explanations can some-
times be viewed as logical deductions: you can try to deduce what you
want to explain for what you know. Someone might tell Sarah that Frank
is studying for an exam, and that whenever he studies he forgets about
social engagements. From this information Sarah can deductively explain
why Frank did not show up.

The view that explanations are logical deductions was developed and
defended by the philosopher of science Carl Hempel (1965). Especially
in mathematical areas of science such as physics, explanations can be
described as logical deductions. We shall see in later chapters, however,
that not all explanations are deductive. Moreover, not all deductions are
explanations. For example, we can deduce the height of a flagpole from
information about its shadow along with trigonometry and laws of optics,
but it seems odd to say that the length of a flagpole’s shadow explains the
flagpole’s height.

In rare cases, the reason Frank did not show up could be deduced—for
example if he is a rigid person who misses appointments if and only if he
is sick. Sarah could then apply modus ponens: if Frank misses an appoint-
ment, he is sick; Frank missed an appointment; therefore Frank is sick.
But normally there will more than one explanation available. Just like a
planner constructing multiple paths to a goal, Sarah might be able to con-
struct several deductive explanations based on conditionals such as

If Frank is sick, then he will not arrive.

If Frank has had a car accident, then he will not arrive,

If Frank has fallen in love with someone else, then he will not arrive.

If Sarah did not actually know that Frank is sick, or that he has had a car
accident, or that he has fallen in love, then she would not immediately be
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able to deduce that he will not arrive. But the three conditionals just given
can be used to form hypotheses about what happened: maybe he’s sick, or
maybe he had a car accident, or maybe he has fallen in love. This kind of
inference, where you form a hypothesis in order to generate an explana-
tion, was called abduction by the nineteenth-century American philosopher
Charles Peirce (1992). Sarah may abduce that Frank is sick because this
hypothesis, in conjunction with the rule that if Frank is sick he will not
arrive, allows her to deductively explain why Frank did not arrive. Abduc-
tive inference is a risky but powerful kind of learning.

Learning

Intelligent systems should be able not only to solve various kinds of prob-
lems but also to use experience to improve their performance. How can
we improve planning, decision making, and explanation? Little work has
been done within the logical approach on direct improvements to problem
solving, but logical representations are useful for describing some kinds of
learning programs.

Consider the learning problem faced by students first arriving on
campus. They usually start with little knowledge about the kinds of course
offerings available or the kinds of people they will meet. But they quickly
accumulate information about particular examples of courses or types of
people and naturally proceed to make inductive generalizations about them.
Crude generalizations might include such statements as that philosophy
classes are fun (or boring, as the case may be) and that statistics classes are
demanding. These generalizations are inductive in that they involve uncer-
tainty, a leap from what is definitely known to what is at best probable,
Students who have taken two philosophy classes might be prepared to gen-
eralize from information that could be expressed in logical form as follows:

fun (Phil100)

fun (Phil200)

Therefore, (for-all x) (philosophy-course (x) — fun (x)).

The conclusion is that all philosophy courses are fun. But it is obviously
possible that these two courses might be fun whereas other philosophy
courses (e.g., Philosophy of Basket Weaving) are boring.

Computer programs for inductive generalization do not always use
logical representations for input. One of the most widely used learning
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programs is Quinlan’s (1983) ID3 program. It can be classified as within
the logical approach because it uses probabilities to form generalizations
from sets of instances. For example, it could be given a sample of students
from different sections of a university along with a description of their
traits. It could then start to form generalizations concerning how students
from such areas as arts, sciences, and engineering differ with respect to per-
sonal, social, and intellectual characteristics.

Like inductive generalization, but unlike deduction, abduction is obvi-
ously a very risky sort of inference. There may be all sorts of reasons
unknown to Sarah that explain why Frank did not show up for an appoint-
ment with her. But abduction is indispensable in science and everyday life,
whether paleontologists are trying to generate explanations of why the
dinosaurs became extinct or students are trying to understand their friends’
behavior. Since abduction’s purpose is to generate explanations, and expla-
nations can sometimes be understood in terms of logical deduction, it is
natural to treat abduction within a logical framework (e.g., Konolige 1992).
Later chapters describe alternative ways of thinking about abduction.

Sarah does not want to find just some explanation of why Frank did not
arrive, she wants to find the best explanation. From a logical perspective,
assessing the best explanation involves probabilities. Sarah will want to be
able to assess the conditional probability of Frank being sick, given that
he did not arrive, as well as the conditional probabilities of all the other
hypotheses. A theorem of the probability calculus, Bayes's theorem, is
potentially very useful. In words, it says that the probability of a hypoth-
esis given the evidence is equal to the result of multiplying the prior prob-
ability of the hypothesis, P(h), by the probability of the evidence given the
hypothesis, all divided by the probability of the evidence. For Sarah, the
prior probability that Frank is sick is her estimate of how likely he is to be
sick in general, without considering his failure to arrive. To apply Bayes’s
theorem, she also needs to consider the probability of his failure to arrive,
assuming he is sick. Probabilistic approaches to the problem of how to
choose explanatory hypotheses have been popular in both artificial intel-
ligence (Pearl 1988, 2000) and philosophy (Howson and Urbach 1989;
Glymour 2001). But alternative approaches are available, as we will see in
chapter 7.

The term “induction” can be very confusing, since it has both a broad
and a narrow sense. The broad sense covers any inference that, unlike
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deduction, introduces uncertainty. The narrow sense covers only inductive
generalization, in which general conclusions are reached from particular
examples. Abduction (forming explanatory hypotheses) is induction in the
broad sense but not in the narrow one. My practice in this book is to use
“learning” for the broad sense of induction and “inductive generalization”
for the narrow sense. Additional computational accounts of learning will
be encountered in later chapters.

Language

Linguists have sometimes taken formal logic to be a natural tool for under-
standing the structure of language. There are even two editions of a book
called Evervthing That Linguists Have Always Wanted to Know about Logic—
But Were Ashamed to Ask (McCawley 1993). The philosopher Richard Mon-
tague (1974) contended that there are no important theoretical differences
between natural languages and the artificial languages of logicians. Most
linguists and psychologists would disagree with this claim, however, and
formal logic has played a minor role in the understanding of human lan-
guage. Stabler (1992) has used logic to formalize some of Chomsky's recent
ideas about language, which include the postulation of a level of “logical
form” at which meaning is most explicitly represented (Chomsky 1980).
Later chapters discuss how other kinds of representation, particularly
rules and concepts, have been used to describe and explain human use of
language.

Psychological Plausibility

Historically, logicians have disagreed about the mutual relevance of logic
and psychology. Some early writers on logic, such as John Stuart Mill, saw
an intimate connection between human psychology and logic, which was
construed as the art and science of reasoning. In contrast, the founders of
modern formal logic, Gottlob Frege and Charles Peirce, emphatically dis-
tanced their work from psychology. Today, we can distinguish at least three
positions concerning the relations and relative merits of formal logic and

psychology:
1. Formal logic is an important part of human reasoning.

2. Formal logic is only distantly related to human reasoning, but the dis-
tance does not matter, since the role of logic in philosophy and artificial
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intelligence is to provide a mathematical analysis of what constitutes
optimal reasoning.

3. Formal logic is only distantly related to human reasoning, so cognitive
science should pursue other approaches.

The first position is advocated by a few psychologists who have provided
experimental evidence that people use rules like modus ponens. The
second position is popular among philosophers and artificial intelligence
researchers who prefer formal approaches. The third position is probably
now the dominant view in psychology, but is less popular in philosophy
and artificial intelligence.

The psychologists who have most aggressively defended the first posi-
tion are Martin Braine (1978; Braine and O'Brien 1998) and Lance Rips
(1983, 1986, 1994). Rips (1986, 279) lists several kinds of psychological evi-
dence for mental logic. Theories of mental logic successfully predict the
validity judgments that subjects give for a fairly wide range of proposi-
tional arguments. For example, people recognize as valid arguments that
have the same form as modus ponens, but reject arguments of the form
“If A, then C; C, therefore, A.” Theories of mental logic also account for
reaction times and help make sense of what subjects say when they think
aloud about validity decisions.

Nevertheless, other kinds of experiments have made many psychologists
skeptical about mental logic. The best-known experimental technique uses
Wason's (1966) selection task, in which subjects are informed that they
will be shown cards that have numbers on one side and letters on the other.
They are then given a rule such as If a card has an A on one side, then it has
a 4 on the other. The subjects are then shown four cards and asked to indi-
cate exactly which cards must be turned over to determine whether the

rule holds. They can be given, for example, the four cards shown in figure
2.1. Then they must decide which of these cards should be turned over.
Most people realize that it is necessary to turn the A over to check whether
it has a 4 on the other side. This can be interpreted as an application of
modus ponens, since the rule If A then 4 combined with the premise A sug-
gests checking to see if there is a 4. On the other hand, a great many people
neglect to check the 7, failing to realize that if this card has an A on the
other side, it refutes the rule in question. Recognition that the card with
a 7 needs to be turned over requires an appreciation of modus tollens:” If
A then 4; 7 means not-4; so not-A is required for the rule to hold.” Some
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Johnson-Laird argues that the comparative difficulties that people have
with different kinds of inferences of this sort correspond exactly to the
complexity of different kinds of models that have to be constructed. Rips
(1994) and O’Brien, Braine, and Yang (1994) have responded with argu-
ments that mental logic accounts for the psychological evidence about
deductive inference better than mental models do. But mental model
theory has been applied to many kinds of human thinking, including
causal reasoning (Goldvarg and Johnson-Laird 2001).

Just as Johnson-Laird has challenged the relevance of formal logic to
human deductive reasoning, psychologists have done experiments that
suggest that human inductive reasoning may not have much to do with
probability theory. Tversky and Kahneman (1983), for example, have
shown that people sometimes violate the rule that the probability of a con-
junction will also be less than or equal to the probability of one its con-
juncts, P(p & gq) < P(p). Suppose you are told that Frank likes to read a lot
of serious literature, attend foreign movies, and discuss world politics. You
are then asked to estimate the probability that Frank is college educated,
that Frank is a carpenter, and that Frank is a college-educated carpenter.
Not surprisingly, people in experiments like this one tend to judge it to be
more probable that Frank is college educated than that he is a carpenter,
but they often violate probability theory by judging it to be more likely
that Frank is a college-educated carpenter than that he is a carpenter. When
people approach such examples, they seem to employ a kind of matching
process that judges the degree of fit between the description of the indi-
vidual and their stereotypes such as college-educated and carpenter (see
chapter 4). Numerous other instances have been found where people’s
inductive reasoning appears to be based on something other than formal
rules of probability theory (Kahneman, Slovic, and Tversky 1982; Gilovich,
Griffin, and Kahneman 2002). However, just as Rips and others have
defended mental deductive logic, some psychologists have offered differ-
ent interpretations of Tversky and Kahneman's results that are consistent
with the view that people employ probabilistic reasoning (Gigerenzer, Hof-
frage, and Kleinbdlting 1991; Gigerenzer 2000).

One open possibility is that mental logic may give an appropriate
account of some narrow kinds of human reasoning such as applying
modus ponens, whereas more vivid representations such as mental models
are needed to account for more complex kinds of human reasoning such
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as that involving “all” and “some.” It is at least obvious that the logical
approach is not the only possible way of understanding human thinking,
and various alternatives are discussed in the chapters to come. Of course,
philosophers and artificial intelligence researchers not interested in psy-
chology can maintain that whether or not people use logic in their think-
ing is less important than developing formal logical models of how people
and other intelligent systems should think. What they risk missing is the
appreciation that human intelligence and the kind of machine intelligence
we want to build may rest on representational structures and computa-
tional processes that differ markedly from those that logic affords.

Neurological Plausibility

Until recently, little was known about the neurological plausibility of
formal logic. Metaphorically, every synaptic connection between neurons
looks like a miniature inference using modus ponens: if neuron 1 fires,
then neuron 2 fires. Neuron 1 fires, so neuron 2 fires. However, it is obvious
that single neurons do not represent whole propositions, and how groups
of neurons perform inferences is unknown. However, it is now possible to
investigate at a larger scale how the brain performs deductive reasoning.
Brain scanning experiments are being used to determine whether people
perform deductions using just the left half of the their brains, as suggested
by the mental logic view that deduction is formal and independent of
content. The alternative hypothesis is that people perform deductions
using the right half of their brains, as suggested by the mental models view
that deduction requires regions in the right hemisphere of the brain that
involve spatial reasoning (Wharton and Grafman 1998). (See chapter 8 for
an introduction to how brain scanning is used to identify neural correlates
of different kinds of thinking.)

Goel et al. (1998) used brain scans to identify regions involved in rea-
soning tasks such as syllogisms. They found no significant right-
hemisphere activation, suggesting that deductive reasoning is purely
linguistic as implied by the mental logic theory. However, Kroger, Cohen,
and Johnson-Laird (forthcoming) compared brain regions involved in
logical reasoning and mathematical calculation and found that parts of the
right half of the brain were more active in reasoning than in calculation.
They judged that their results are incompatible with a purely linguistic
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